
Threshold Schemes for Cryptographic Primitives
Computer Security Division

Information Technology Laboratory — National Institute of Standards and Technology

The Threshold Cryptography project

How can we address single-points of failure in
implementations of cryptographic primitives

• Attacks exploit vulnerabilities in implementations

• Rogue operators make bad usage of secret keys

Solution: Standardize Threshold Schemes

• Each component operates
only on a share of the key

• Tolerance to compromise
of f -out-of-n components

• Enhanced resistance to
side-channel attacks

Example primitives to thresholdize

1. Key-generation (e.g., AES, ECC, RSA)

2. Signing (e.g., RSA, ECDSA, EdDSA)

3. Enciphering (e.g., AES)

4. Decryption (e.g., RSA)

5. Random number generation

The space of possibilities is large
Space of threshold schemes
for cryptographic primitives

Primitive c

Single-device Multi-party

Mode g Mode h

...

...
...

Primitive dPrimitive a

Mode e Mode f

...

...
...

Primitive b

Example modes:
• Interchangeable: the input/output interface does not change
• Shared-I/O: the input and/or the output are secret-shared
• Auditable: can prove the output was produced by a threshold entity

Important considerations
1. Focus on NIST-approved primitives
2. Advanced security features (composability, etc.)
3. Testing and validation; formal verification
4. Granularity (gadgets, ideal functionalities, ...)
5. Collaboration with stakeholders

The modularity challenge
Threshold schemes can be composed of several building blocks, with specifi-
cations ranging from security definitions to concrete mathematical objects.

Complex
compositions

Building
blocks

(gadgets)
Security
definitions

Concrete
instantiations

Construction complexity

Specification
detail

Q3

Q1

Q4

Q2

The figure above is an abstract representation of the states and paths of the evolution
process from conceptual building blocks to concrete complex threshold schemes.

Motivating applications
The standardization of threshold schemes for cryptographic
primitives can be useful for myriad potential applications.

1. Secrets protected at rest (e.g., for high-value signature keys)
2. Confidential communication (e.g., via shared-O decryption)

3. Distributed key generation (e.g., to avoid dealers)

4. Leakage-resistant hardware (e.g., via threshold circuit design)

5. Accountable transactions (e.g., via multi-signatures)

6. Password authentication (e.g., via threshold hashing)

7. Distributed computation (e.g., across HSMs or VMs)

Example: Threshold n-out-of-n RSA signature
• Traditional parameters:

– Public: modulus N = p×q; verification key e.
– Private: signing key d; group order φ = p−1×q−1

• Secret-share the key d: d→ d1,d2,d3: d1+d2+d3 = d mod φ

• Produce partial signatures: σi = mdi , for i = 1,2,3

• Obtain final signature: σ = σ1σ2σ3 = md1+d2+d3 = md mod φ

d d2

d3

σ1

σ2

σ3

σ

m
d1

Legend: AES (Advanced Encryption Standard); CA (Certification Authority); ECC
(Elliptic-Curve Cryptography); ECDSA (Elliptic-Curve Digital Signature Algorithm); EdDSA
(Edwards Curve Digital Signature Algorithm); HSM (Hardware Security Module); I/O
(Input/Output); NISTIR (NIST Internal Report); NTCW (NIST Threshold Cryptography
Workshop); RSA (Rivest-Shamir-Adleman); VM (Virtual Machine).

Threshold Cryptography contact: threshold-crypto@nist.gov
Webpage: https://csrc.nist.gov/Projects/Threshold-Cryptography
Poster produced for: NIST-ITL Science Day 2019 — November 06, 2019 (Gaithersburg, USA)

1

https://csrc.nist.gov/Projects/Threshold-Cryptography

		2019-11-25T09:20:49-0500
	Timestamping
	Timestamping




