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Overview

We present a variant of Falcon, called Zalcon

does not use floats

simpler and comparably efficient

allows a provable masking
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Overview

We present a variant of Falcon, called Zalcon

does not use floats

simpler and comparably efficient

allows a provable masking

Zalcon vs. Mitaka1 (the concurrent work presented 1 hour ago)

some high-level ideas are shared⇒ the same efficiency & compactness

different samplers ⇒ Mitaka needs floats, Zalcon does not

Mitaka and Zalcon can be masked similarly

1
Mitaka: A Simpler, Parallelizable, Maskable Variant of Falcon. Mehdi Tibouchi, Thomas Espitau, Akira Takahashi,

Alexandre Wallet. NIST 3rd PQC Standardization Conference.
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Falcon

Falcon is a round 3 finalist for NIST PQC signatures

4 / 21
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Falcon is a round 3 finalist for NIST PQC signatures

It follows the GPV hash-and-sign framework2

signing ⇔ sampling a lattice Gaussian

2
Trapdoors for Hard Lattices and New Cryptographic Constructions. Craig Gentry, Chris Peikert, Vinod Vaikuntanathan.

STOC 2008.
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Falcon

Falcon is a round 3 finalist for NIST PQC signatures

It follows the GPV hash-and-sign framework2

signing ⇔ sampling a lattice Gaussian

Two key ingredients

optimal NTRU trapdoor3 ⇒ compactness

fast Fourier sampler4 ⇒ efficiency

2
Trapdoors for Hard Lattices and New Cryptographic Constructions. Craig Gentry, Chris Peikert, Vinod Vaikuntanathan.

STOC 2008.
3

Efficient Identity-based Encryption over NTRU Lattices. Léo Ducas, Vadim Lyubashevsky, Thomas Prest. Asiacrypt 2014.
4

Fast Fourier Orthogonalization. Léo Ducas, Thomas Prest. ISSAC 2016.
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NTRU

Let f , g ∈ Z[x ]/φ(x). The NTRU lattice defined by h = f · g−1 mod q is

LNTRU = {(u, v) ∈ R2
n : u = vh mod q}.

In Falcon, φ(x) = xn + 1 with n = 2`

The trapdoor basis Bf ,g =

(
f F
g G

)
in Falcon

f , g ,F ,G are short

‖(f , g)‖ ≈ 1.17
√
q to minimize the Gram-Schmidt norm ‖Bf ,g‖GS
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Gaussian sampler of Falcon

Falcon uses a ring-efficient variant of Klein sampler

exploits the tower of rings structure

reduces the high-dimensional Gaussian to 1-dimensional Gaussians

With precomputed Falcon tree, the sampler is efficient

6 / 21



Gaussian sampler of Falcon

Falcon uses a ring-efficient variant of Klein sampler

exploits the tower of rings structure

reduces the high-dimensional Gaussian to 1-dimensional Gaussians

With precomputed Falcon tree, the sampler is efficient

6 / 21



Drawbacks of Falcon sampler

There are still some issues w.r.t. Falcon sampler. . .

heavily uses FPA (Gram-Schmidt orthogonalization)

inherently sequential and reliant on special rings

involved integer Gaussians have secret-dependent std. dev. and the
secure implementation leads to efficiency loss5

too complicated to mask

Let’s resolve them!

5
Isochronous Gaussian Sampling: From Inception to Implementation. James Howe, Thomas Prest, Thomas Ricosset,

Mélissa Rossi. PQCrypto 2020.
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Zalcon
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A first attempt

Klein sampler = randomized Babai’s nearest plane algorithm

⇓
Peikert sampler = randomized Babai’s round-off algorithm

offline: sample a pertubation p of covariance Σp = s2I − BBt

online: sample DL,r
√

Σ,c−p = B · DZn,r ,c′′ with Σ = BBt

Σp + BBt = s2I
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A first attempt

Peikert sampler resolves previous issues

can be FPA-freea

online sampling is parallelizable; compatible with arbitrary rings

base samplings are independent of the secret

simpler and supporting efficient masking

a
Integral Matrix Gram Root and Lattice Gaussian Sampling without Floats. Léo Ducas, Steven Galbraith,

Thomas Prest, Yang Yu. Eurocrypt 2020.

But security loss is significant

The Gaussian quality achieved by Peikert = s1(Bf ,g ) · ηε(Zn)
that by Klein = ‖Bf ,g‖GS · ηε(Zn)

s1(Bf ,g ) = O
(
n

1
4
√

log n
)
· √q ‖Bf ,g‖GS = O(1) · √q

bit security loss (quantum core SVP):
108→ 52 for n = 512 252→ 130 for n = 1024
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Our new sampler

Peikert sampler

offline: sample a pertubation p of covariance Σp = s2I − BBt

online: sample DL,r
√

Σ,c−p = B · DZn,r ,c′′ with Σ = BBt
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Our new sampler

To enhance security, we work with Gram-Schmidt basis B∗ instead of B

offline: sample a pertubation p of covariance Σp = s2I − B∗B∗t

online: sample DL,r
√

Σ,c−p = B∗ · DL(U),r ,c′′ with Σ = B∗B∗t
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Our new sampler

To enhance security, we work with Gram-Schmidt basis B∗ instead of B

offline: sample a pertubation p of covariance Σp = s2I − B∗B∗t

online: sample DL,r
√

Σ,c−p = B∗ · DL(U),r ,c′′ with Σ = B∗B∗t

Bf ,g =

(
f F
g G

)
=

(
f F ∗ = − qg

f f +gg

g G ∗ = qf

f f +gg

)(
1 u

1

)
= B∗f ,gU

DL(U),r ,c′′ is still easy and highly parallelizable

s1(Bf ,g ) = O
(
n

1
4
√

log n
)
· √q ⇒ s1(B∗f ,g ) = O

(
n

1
8 log

1
4 n
)
· √q

security (quantum core SVP):
108→ 52→ 79 for n = 512
252→ 130→ 185 for n = 1024
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Our new sampler

To avoid FPA, we further replace B∗ with an integral approximate B̃∗

u ⇒ ũ = bp·ue
p for some p ∈ Z

All intermediate values are integral too

B̃∗ = B

(
1 −ũ

1

)
∈ 1

pR
2×2

B̃∗
−1

=

(
1 ũ

1

)
B−1 ∈ 1

pqR
2×2
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Comparison with other samplers

quality FPA

Klein (Falcon) ‖B‖GS = O(
√
q) Yes

Peikert s1(B) = O
(
n

1
4
√

log n
√
q
)

No

Hybrid6 (Mitaka) s1(B∗) = O
(
n

1
8 log

1
4 n
√
q
)

Yes

Ours (Zalcon) s1(B̃∗) = O
(
n

1
8 log

1
4 n
√
q
)

No

Hybrid: Klein over R with Peikert as subroutine

Ours: Peikert sampler with a smaller covariance

6
Gaussian Sampling in Lattice-Based Cryptography. Thomas Prest. PhD thesis, ENS Paris, 2015.
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Improved Key Generation

The security not only relies on Sampler but also on Trapdoor

To enhance security, we further use a refined key generation

s1(B∗f ,g ) ⇒ min{s1(B∗f ,σi (g))} where σi : x 7→ x2i+1

σf ,g/
√

q
2n : 1.17 ⇒ 1.36 / 1.47 for n = 512 / 1024

security (quantum core SVP):
108→ 52→ 79→ 83 for n = 512
252→ 130→ 185→ 192 for n = 1024

Mitaka uses similar but more comprehensive techniques

gain around 15 bits of security with more randomness and time
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Implementation
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Integer Gaussian sampling

Zalcon needs two types of integer Gaussian samplers

arbitrary center: DZ,r ,c with c ∈ 1
QZ (online)

large width: DZ,Lr (offline)
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Integer Gaussian sampling

Zalcon needs two types of integer Gaussian samplers

arbitrary center: DZ,r ,c with c ∈ 1
QZ (online)

large width: DZ,Lr (offline)

We follow Micciancio-Walter approach7

fully over integers

offline / online

7
Gaussian Sampling over the Integers: Efficient, Generic, Constant-time. Daniele Micciancio, Michael Walter. Crypto 2017.
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Preliminary results

Caveat: the implementation is still ongoing

Online sampling seems encouraging

base sampler for arbitrary center samplings is implemented via CDT

storage for tables: 33× 15× 82 = 40590 bits

unoptimized result on i7-1065G7 CPU @ 1.30GHz for n = 512:
≈ 400 online samplings per seconds
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Caveat: the implementation is still ongoing

Online sampling seems encouraging

base sampler for arbitrary center samplings is implemented via CDT

storage for tables: 33× 15× 82 = 40590 bits

unoptimized result on i7-1065G7 CPU @ 1.30GHz for n = 512:
≈ 400 online samplings per seconds

Offline sampling is costly

it requires ≈ 215 calls of DZ,Lr and L = 235

but all these samplings are identical and secret-independent
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Masking
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Masking

Our sampler can be masked with standard techniques.

It is possible to only mask the online phase → more efficient as the
main randomness generation can be made offline.

Our building blocks:

masked CDT 8

masked NTT multiplications (between 2 sensitive polys)

We provide a complete proof of masking in the ISW model.

Mitaka uses a different building block for the Gaussian generation:
share-by-share based on Gaussian convolution.
This efficient gadget can be directly applied to Zalcon.

8
GALACTICS: Gaussian sampling for lattice-based constant-time implementation of cryptographic signatures, revisted.

Gilles Barthe, Sonia Belaid, Thomas Espitau, Pierre-Alain Fouque, Mélissa Rossi, Mehdi Tibouchi. CCS 2019.
An Efficient and Provable Masked Implementation of qTESLA. François Gérard, Mélissa Rossi. CARDIS 2019.
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Conclusion

We present Zalcon, an FPA-free and simpler variant of Falcon

We present one of the first provable maskings for lattice Gaussian sampling

The implementation is still in progress...

pk
(bytes)

sig
(bytes)

NIST
security level

Falcon-512 897 666 1
Zalcon-512 897 ≈ 766 1−

Dilithium-1− 992 1843 1−

Falcon-1024 1793 1280 5
Zalcon-1024 1793 ≈ 1526 3
Dilithium-3 1952 3293 3
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Thank you!
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