When Perimeter Defenses Are Compromised

Applying Zero Trust Concepts to Achieve Cyber Defense-In-Depth
The Current Landscape...

Today's systems are very brittle, rely on a one-dimensional protection strategy of penetration resistance, and are highly susceptible to devastating cyber-attacks.
The adversaries are relentless.
Exfiltrate information.
Preposition malicious code.
Bring down capability.
Create deception.
Defense Science Board Reports

- Resilient Military Systems and the Advanced Cyber Threat
- Cyber Supply Chain
- Cyber Deterrence
Defending cyberspace in 2020 and beyond.
A one-dimensional protection strategy of penetration resistance and perimeter defense is inadequate – especially for critical systems and high value assets.
Another Problem...

Little or no understanding of what is in the “black box.”

- Transparency
- Traceability
- Visibility
- Assurance
The Solution...

Adopt a multi-dimensional protection strategy that includes developing damage limiting system architectures and cyber resilient systems.
Reducing susceptibility to *cyber threats* requires a multidimensional strategy.

1. **First Dimension**: Harden the target.
2. **Second Dimension**: Limit damage to the target.
3. **Third Dimension**: Make the target resilient.

Diagram visualizes these steps, illustrating the interaction between the three dimensions to strengthen system security.
Cyber Resiliency

The ability to anticipate, withstand, recover from, and adapt to adverse conditions, stresses, attacks, or compromises on systems that use or are enabled by cyber resources.
Damage Limitation...

In Time—
- Virtualization and micro virtualization
- Limits “time on target” for adversaries

In Space—
- Zero trust architectures
- Domain separation
- Network segmentation / micro segmentation
- Impedes “lateral movement” of adversaries
Zero Trust...

A collection of concepts designed to reduce the uncertainty in enforcing accurate, per-request access decisions in information systems and services with the assumption that the system or network is compromised.
Zero Trust Architecture...

An enterprise’s security plan that employs zero trust concepts and includes component relationships, workflow planning, and access policies.
Zero Trust Concepts

DATA AND COMPUTING SERVICES ARE CONSIDERED RESOURCES

A network may be composed of many different classes of devices including devices with a small form factor that send data to aggregators or storage; software as a service (SaaS); systems sending instructions to actuators, and other functions.
Network location does not imply trust. Access requests from resources located on an enterprise-owned network (e.g., inside a traditional network perimeter) must meet the same security requirements as access requests from any other nonenterprise-owned network.
Zero Trust Concepts

ACCESS TO INDIVIDUAL RESOURCES IS GRANTED ON A PER-SESSION BASIS

Trust in the requester is evaluated before the access is granted. This could mean only “sometime previously” for a particular transaction and may not occur directly before initiating a session or performing a transaction with a resource.

Authentication and authorization to one resource does not automatically grant access to a different resource.
Zero Trust Concepts

ACCESS TO RESOURCES IS DETERMINED BY DYNAMIC POLICY

The dynamic policy includes the observable state of client identity, application, and the requesting asset, and may include other behavioral attributes.
ENTERPRISE-OWNED AND ASSOCIATED DEVICES ARE IN THE MOST SECURE STATE POSSIBLE

The security of devices is driven by mission or business requirements.

Enterprises continuously monitor devices to ensure those devices maintain their security posture.
Zero Trust Concepts

RESOURCE AUTHENTICATION AND AUTHORIZATION ARE DYNAMIC AND STRICTLY ENFORCED — BEFORE ACCESS IS ALLOWED

Constant cycle of obtaining access, scanning and assessing threats, adapting, and continually reevaluating trust in ongoing communications.

Identity, Credential, and Access Management (ICAM) and asset management systems are expected capabilities for an enterprise.
An enterprise collects data about network traffic and access requests, which is then used to improve policy creation and enforcement.

Data can also be used to provide context for access requests.
Zero Trust Architecture in the System Life Cycle

- Business or mission analysis
- Stakeholder needs and requirements definition
 - System requirements definition
 - Architecture definition
 - Design definition
 - System analysis
 - Implementation
 - Integration
 - Verification
- Transition
- Validation
- Operation
- Maintenance
- Disposal

Systems and software engineering — System life cycle processes

NIST SP 800-160 Volume 1
NIST Special Publication 800-160, Volume 2

Developing Cyber Resilient Systems

A Systems Security Engineering Approach

https://doi.org/10.6028/NIST.SP.800-160v2
NIST SUPPORTING INITIATIVES

Zero Trust Architecture Project
zta-nccoe@nist.gov

Systems Security Engineering Project
sec-cert@nist.gov