ANS X9.82, Part 3 - DRAFT January 2006

DRAFT X9.82 (Random Number Generation)

Part 3, Deterministic Random Bit Generator
Mechanisms

January 2006




~N OO R~ WO =

ANS X9.82, Part 3 - DRAFT January 2006

Table of Contents
SCOPE i M R B ST T e |
(672701757 1111~ L1 - RSN e g oo oo oAy e D Tl
NOIMALIVE FEfEr@NCES ....oceerrrecrnieies et stssissse st ssa s sbs s s s a s a s e b s s s s basansabesbnsnnsasssransssses O
Definitions and ACTONYIMS ......ccicierrirniec i ses s rssastsasbs s ss e n s e s e s s e e s naenasn s 8
SYMDOIS ...t e e e 9
General Discussion and Organization ..........c.euccemiemsssnsemssmssssesssssssssssssssnsees 11
DRBG Functional Model...........cccoiiiiiiiiimmniimmmmosesmemmmsesememmmmsmssessssssssssesssesses 19
7.1 Functional Model.............cccceeeueens - Sammiesmsesmsszeessisaszesesscssssessseaiitaaity 13

7.2 Functional Model Components...... . . 13

7.21  ENrOPY INPUL ......ceniiiminsireninnirrnsses s stsssss s s snan st srmnnssssnaesaessae s shesamannssmenmnn s nn s s s 13
7.2.2  Other INPULS ...coiciiiiiieniisnniisnies it sestessssaisnessatsssas s s s s sas i saa e sas b e a4 bR n e R e e sae e mn e mnsameaat 14
7.2.3 The Internal State...... S S 14
7.2.4 The DRBG FUNCHIONS ..ccucoueiiiieisisiennsnnnmmnsnnnnsnrssssssnesassssssnsssmmnnsssnssmsnsnssn e st assrsssssnssnes 14

DRBG Concepts and General Requirements .........ceuiimnissnimesmssissssssssss 16
8.1 Introduction ......ccceverimriciniicnnnnen, E 16
8.2 DRBG Functions and a DRBG Instantiation . . . 16
8.2.1 Functions .. T N N P 16
8.2.2 DRBG INStantiations ..........ccceemimicemsisnsessenismnsnnsrr st ss s s ssanrsn e s s 16
8.2.3  Internal States .........ccviriinriirsinmmminn s s . 16

8.2.4 Security Strengths Supported by an Instantiation P ————erreres 17
8.3 DRBG Boundaries.........oceressenirianas : 18
8.4  SeedS ... s

8.4.1 General Discussion
8.4.2 Generation and Handling of Seeds 20
8.5 Other Inputs to the DRBG 3 23

8.5.1 Discussion ... 23

8.5.2 Personalization String .......cccuvcmniiiinnnicsinenn e 23

8.5.3  Additional INPUL ...ttt s s sses s st e s e s n e s e e e e e n R e e e 24

8.6 Prediction Resistance and Backtracking Resistance............c.emnunee 24
DRBG FUNCHONS ...coiciiieaieieiasseiseassssssssssssssassssasssssnsssssssssnsssssssssssssssssssssssnssssssssnssnsesans SO




10

9.1
9.2
9.3
9.4

9.5
9.6

9.7

10.1
10.2

10.3

10.4

ANS X9.82, Part 3 - DRAFT January 2006

General DISCUSSION ....covriiceriisemiseiisii s nes st s s sn s s n s s s n e s me s s 25
Instantiating @ DRBG..........ccocinmmminimsniesssssssssmmsensersasssesssnmsmmsssssssssssssssss .25
Reseeding @ DRBG Instantiation ............ccccernmmivirnsinneecninnmmm s sssssssnnmsasen 28
Generating Pseudorandom Bits Using a DRBG.........ccc.ccocicnininnnne 30
9.4.1 The Generate FUNCHION ......c.occvviinimmiiennnin s st s 30
9.4.2 Reseeding at the End of the Seedlife.........ccceevrrrnmrmmnss s 33
9.4.3 Handling Prediction Resistance Requests .......cccconmriricniianns .33
Removing a DRBG Instantiation........c..ccccimmncvnicnimnnciccinninninsann: 34
Self-Testing of the DRBG (Health Testing) 34

9.6.1 Discussion

9.6.2 Testing the Instantiate Function

9.6.3 Testing the Generate Function...... 35
9.6.4 Testing the Reseed Function ...........cciiiniinnna .36
9.6.5 Testing the Uninstantiate FUNCLION.........ccocmmrrmrsrinensccsamenmn st eesassanns 36
Error Handling .......cucccmmmeinienineiienmmnnnsisessssmnnsmsisssssnes 36
9.7.1  General DISCUSSION ..cccevuciiiriminnitissnssnrrmrs e ssesas s sn s st s s s s nsm e s r b e st e s e s e s e 36
9.7.2 Errors Encountered During Normal Operation ..., 36
9.7.3 Errors Encountered During Self-Testing .. 37
DRBG Algorithm Specifications ... ssassssssssssssess 98
Lo R VT S PR OSSP PR PPN 38
Deterministic RBG Based on Hash Functions ..........ccccccnvnnnenninnann. 38
10.2.1 DISCUSSION ..coiicsiiiimisisiniseniasssssenissniiias st ssssssss s s s st s ea s s p R R R s E e R b s e R R s AR e m e 000 38
10.2.2 HMAC_DRBG (...) cuuvrsserereesssesssssssesssssssressasmsssssssssesssessessssasessassssssasssssss sessiasmasssssas esss 39
10.2.2.1  DISCUSSION w.veveeressesinsisissssasasssssessassramsssssesemssssssesctesssseieasehemesscramsensiseassassoses 39
10.2.2.2 Specifications........cc.ccovcmiiiii 3 .40

DRBG Based on BIOCK CIPREIS ......ccivmiimmmimiiccismminnisnsiatessnn s nnss st s ssse s s sensessans 45
10.3.1 Discussion .......cceccmrannn. 45
10.3.2 CTR_DRBG.....euiiiienmemieeressntosassmmmmmmssantssmssenmsmmmnmmssssatnsssens sasssmsmassasss s sessatsassonnnmmmsnnnasasennssans 45
10.3.2.1 CTR_DRBG DeSCrPLON.......coiciiiiiiiiiiiiiic et aneessasnssans 45
10.3.2.2  SPECIfICAtIONS ......ceeiiiiiiiiicii i 47
Deterministic RBG Based on Number Theoretic Problems......cccccomriiiiinneesnn, 58
10.4.1 DISCUSSION weeeccieiriieriiiers s riina e s easassiaes e m s sro e assa s e a s s e e s e s e b e eR g SRR R R R RS s s b e b m e s s R R R R 58




10.5

ANS X9.82, Part 3 - DRAFT January 2006

10.4.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG).....cccevvereiiissnmmisssnensssssissnneersnns 58
10.4.2.1  DiSCUSSION weizsunamvasssissassnsiansssiontsssnss sssnsisss sssais 5o 555 05HsmE s soswios s sssuis 15 5o sissnoss 58
10.4.2.2 SPECfiCAtiONS .....oooiiiiii et s et 60

Auxilliary FUNCLIONS ...ccoccceerrrrcceerrcnrennrenrnnmsressaneesssmenes s .66

10.5.1 DiSCUSSION ...ccociiieciiimrcs s e e 66

10.5.2 Derivation Function Using a Hash Function (Hash_df)...... 66

10.5.3 Derivation Function Using a Block Cipher Algorithm (Block_Cipher_df).........cccccverrnnns 67

10.5.4 Block_Cipher_Hash FUNCLION......cccciicciecriiirescninnes s eeesnsssmsrsssms s s sessmmsesssmessssasesssnnsre snsnn 68

A AASSUIIANYC® . . swicusisaeesnnsise e e s mf s S i i i s o A s B ap s e amaimmsmmizsit) £ O

11.1
11.2
1.3
11.4

OV OV IO Wisyrvissmrsassrsmemsonsvnns vasvsiessssmnsssnsssis 50A581 5945 Sp ¥ S48 aNFNSwS AT NS AR A SA TSN A S04 PN PO P RSO PUAATH SRS 70
Minimal Documentation ReqUIreMEeNtS ........ccccccccerrrrsecmrrssmmmersssnecererssscssesssarsessnmsrsssmsssssassessansesrass 71
Implementation Validation Testing. Meareeesnieseeesiesinsenesaessstessaaantanes 7
Health Testing PR PPN N s 71
11.4.1 Overview.............. B T T e T e e e e M Ee NGO o B e R P, 7
11.4.2 Known-AnSWer TeSHING «..ccceivinniriiinimiinniiiiiimmiimerssnss e isssesssserssssnsasses 72

Annex A: (Normative) Application-Specific Constants .........c..ccceceencrnvnrcnnnn. 73

A.1 Constants for the Dual_EC_DRBG. LeeeessmeeremeettesssersssiseseereenereeieesrasnamRRReeeaRsssanREESe 73
A1 Curves over Prime FIelds .......cuiiiiiiiuciiiiisiinmssisiinssssie s sassssssssssssensssssss s sasasasssanses 73

A 111 Curve P-256 i ettt i S NS e S i ol it s T S a3

A 11,2 CUIVE P-384 iiiiciiisiinitisiisisimisimmtiiiriniiisismiissiiisiasssiass omss omsbimesaions dravisvis s e sioassns 74

A 11,3 CUIVE P-521 :uiiausmvisssussssviznnssassnsvaniesasasssisiins s sainssss ssies siassant bsasssssas siSas Siess snsnsi arasss 74

A.2 Using Alternative Points in the Dual_EC_DRBG() .... 75
A.2.1 Generating Alternative P,Q....c...cccoccceriimnininsnnsnesinnss s s ses s saeeas Y £
A.2.2 Additional Self-testing Required for Alternative P,Q.........ccccercmnrsmirennrcscsnemnssssssssenssesnnns 76
ANNEX B : (Normative) Conversion and Auxilliary Routines............ccrnun.ne.e. 77
B.1 Bitstring to an Integer ............... TTRE e e s T o1 TS S SRR 77
B.2 Integer to @ BitString ......ccovvvsriricrmmssisssamssissssnmssansisssesnsssesnans R S 77
B.3 Integer to an Octet String................ ireeeseesesressesraraesanrnssnrevsannnnan 77
B.4 Octet String to an Integer EEsStteriesereseasameresaeEeEessanEEssaSsSESiTeReterrasebrTanesanrnraeannr e anenennnnensannnerare 78

Annex C: (Informative) Security Considerations.............coccciicvcinicicricicinnn . 79

CA

Extracting Bits in the Dual_EC_DRBG {...) N 79

iv



C.2

ANS X9.82, Part 3 - DRAFT January 2006

C.1.1 Potential Bias Due to Modular Arithmetic for Curves OVer Fy.......cccoccvvnmmnnnnniinsnienins

C.1.2 Adjusting for the Missing Bit(s) of Entropy in the x Coordinates

Reserve for a discussion of the nonce specified in Section 8.4.2, item 7 .. 81

ANNEX D: (Informative) DRBG Selection..........ccoinnimnniinnnssene. 82

D.1
D.2
D.3
D.4

Choosing a DRBG Algorithm
HMAC_DRBG.........
CTR_DRBG .....c..coremmmiricanrinnns
DRBGs Based on Hard Problems...........cccccuvmiinsniinnnnmmmnsnninmssensisssesssesssnssmsssssssssssssssssssssnsssnes 85

ANNEX E: (Informative) Example Pseudocode for Each DRBG ........ccceceninveennereevesnensienns 87

EA
E.2

E.3

E.4

E.5

Preliminaries.....ccccccemnvsnmnsninennnnninenns Earerrenerr s onsan e R 87
HMAC_DRBG Example...... . 87
E.2.1 DiscusSion .......ccccermmrmnmnsmrcmmmsnnsnnsnsneenns S 87
E.2.2 Instantiation of HMAC_DRBG ............. T T T T T O T T T L T 88
E.2.3 Generating Pseudorandom Bits Using HMAC_DRBG..........ccccsvunnaes . 89
CTR_DRBG Example Using a Derivation FUNCHON........ccccceriveemvieerivnemm s 91
E.3.1  DISCUSSION oottt snane e s sa s s e s s sm s s nas s e rmrnan s srasaesan s nsamsanssena nmrmn e 91
E.3.2 The Update Function ............ - 92
E.3.3 Instantiation of CTR_DRBG Using a Derivation Function.. 92
E.3.4 Reseeding a CTR_DRBG Instantiation Using a Derivation Function.......cceccunnnmncnnnineas 94
E.3.5 Generating Pseudorandom Bits Using CTR_DRBG............cccccvcemsmniimismmnnnsnesimnssssnsesmnenens 95
CTR_DRBG Example Without a Derivation FUNCHON .....cccccrimrirrienncivnne e e 98
E.4.1 Discussion ......ccuerreicveraniene - eesnsenssnnian .98
E.4.2 The Update Function ...........ccouns. Ty P e Ry o o T P KL e A i 99
E.4.3 Instantiation of CTR_DRBG Without a Derivation Function .......... 99
E.4.4 Reseeding a CTR_DRBG Instantiation Without a Derivation Function ...........ccccccceninainns 99
E.4.5 Generating Pseudorandom Bits Using CTR_DRBG............ S 99
Dual_EC_DRBG Example..........ccccmucsvmmmmnnnieeninsessssssssnmmmmsensarsssens 100
E.5.1 Discussion ......cccco..... . 100
E.5.2 Instantiation of Dual_EC_DRBG.........c.ccccvsmmmmmmmrmenmmiseisisssesmmmsnmmemmssinmmasssnssesnn 101
E.5.3 Reseeding a Dual_EC_DRBG Instantiation ........ccccociiiiiiiniiiiininnininine . 102
E.5.4 Generating Pseudorandom Bits Using Dual_EC_DRBG.........cccoccvrvmninrinrsrarnanns 103




ANS X9.82, Part 3 - DRAFT January 2006

ANNEX F: (Informative) DRBG Provision of RBG Security Properties .......... 106

F.1 Introduction

F.2
F.3
F.4
F.5
F.6
F.7

Security Levels......

106

106

Entropy and Min-Entropy 106
Backtracking Resistance and Prediction Resistance 106
Indistinguishability and Unpredictability 106
Desired RBG OUPUL PropPerties....ccciiiimeiiiiniisistiimimmmsstomeessmsssssmmssesssnsnsssssssssssssassssssssss snsasnss 107
Desired RBG Operational Properties 107
General Functional Requirements 108
Functional Requiraments for Entrapy NPUL.........cccciiimccicm et sssssssssssnsasnns 109
Functional Requirements for Other INPULS........cccu it s s s s 109
Functional Requirements for the Internal State 109
Funetional Requirements for the Interrial State Transition Functien 110
Funetional Requirements for the Output Generation Function 111
Functional Requirements for Support Functions .. 112
R [

ANNEX G: (Informative) Bibliography ...............

vi



ANS X9.82, Part 3 - DRAFT - January 2006

Random Number Generation
Part 3: Deterministic Random Bit Generator Mechanisms

1 Scope

TFhis part of ANSI X9.82 defines techniques for the generation of random bits using
deterministic methods. This part includes:

—_

A model for a deterministic random bit generator,
2. Requirements for deterministic random bit generator mechanisms,

Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

4, Implementation issues, and
5. Assurance considerations.

The precise structure, design and development of a random bit generator is outside the
scope of this

This part of ANS X9.82 specifies several diverse DRBG mechanisms, all of which
provided acceptable security when this Standard was approved. However, in the event that
new attacks are found on a particular class of mechanisms, a diversity of approved
mechanisms will allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, e.g.,
communicating entities may use different DRBG mechanisms without affecting their
ability to communicate. Therefore, an entity may choose a single appropriate DRBG
mechanism for their applications; see Annex D for a discussion of DRBG selection.

Formatted: Bullets and Numbering



ANS X9.82, Part 3 - DRAFT = January 2006

2 Conformance

An implementation of a deterministic random bit generator (DRBG) may claim
conformance with ANS X9.82 if it implements the mandatory provisions of Part 1, the
mandatory requirements of one or more of the DRBG mechanisms specified in this part of
the Standard, an entropy source from Part 2 and the appropriate mandatory requirements of
Part 4.

Conformance can be assured by a testing laboratory associated with the Cryptographic
Module Validation Program (CMVP) (see http://csrc.nist.gov/cryptval). Although an
implementation may claim conformance with the Standard apart from such testing,
implementation testing through the CMVP is strongly recommended.

3 Normative references

The following referenced documents are indispensable for the application of this Standard.
For dated references, only the edition cited applies. Nevertheless, parties to agreements
based on this document are encouraged to consider applying the most recent edition of the
referenced documents indicated below. For undated references, the latest edition of the
referenced document (including any amendments) applies.

ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation.

ANS X9.62- , Public Key Cryptography for the Financial Services Industry - The
Elliptic Curve Digital Signature Algorithm (ECDSA).

ANS X9.63-2000, Public Key Cryptography for the Financial Services Industry - Key
Agreement and Key Transport Using Elliptic Key Cryptography.

ANS X9.82, Part 1-200x, Overview and Basic Principles, Draft.
ANS X9.82, Part 2-200x, Entropy Sources, Draft.
ANS X9.82, Part 4-200x, RBG Constructions, Draft.

FIPS 180-2, Secure Hash Standard (SHS), August 2002; ASC X9 Registry 00003.
FIPS 197, Advanced Encryption Standard (AES), November 2001; ASC X9 Registry 00002.

FIPS 198, Keyed-Hash Message Authentication Code (HMAC), March 6, 2002; ASC X9
Registry 00004.

4 efinitions

Definitions used in this part of ANS X9.82 are provided in Part 1.



ANS X9.82, Part 3 - DRAFT - January 2006

Abbreviation Meaning
ALS Advunced Enervption Stundard.
ANS American National Standard
ASC Accredited Standards Committee
DRBG Deterministic Random Bit Generator.
ECDLP Elliptic Curve Disercte Logarithm Problem,
I'IPS Federal Information Processing Standard
HMAC Keved-Hash Message Authentication Code.
NRBG Non-deterministic Random Bit Generator.
RBG Random Bit Generator.
TDLEA [riple Data Enervption Algorithm,
5 Symbols
The following symbols are used in this document.
Symbol Meaning
+ Addition
X1 Ceiling: the smallest integer > X. For example, f5—| =5, and
[53] =6.
Lx] Floor: The largest integer less than or equal to X. For
example. |5]=5.and|5.3]=>5.
XoY Bitwise exclusive-or (also bitwise addition mod 2) of two
bitstrings X and Y of the same length.
X10] Concatenation ol Lo sirings Y and 1. Vand Y are either both
bitstrings. or both vclet sivings.
cd (x. The greatest common divisor ol the inlegers x and y.
len («) The length in bits ol string «.




ANS X9.82, Part 3 - DRAFT - January 2006

I'he unique remainder 1 (w

Vhere 1) 5 1) when inte

{aq, ...a}

The internal state of the DRBG at a point in time. The types
and number of the &; depends on the specific DRBG.

ox

crmal notation that is ysed Lo define a byvie ( % bits
ol information.

heach speeily 4 bils of
information and have valies from the range {0, 1. 2....Fi. F
exumple. Dxe is used W represent 10001 10, where «

A string of x zero bits.

10



ANS X9.82, Part 3 - DRAFT - January 2006

6 General Discussion and Organization

Part 1 of this Standard (Random Number Generation, Part 1: Overview and Basic
Principles) describes several cryptographic applications for random numbers and specifies
the characteristics for random numbers and random number generators, introducing the
concept of non-deterministic random bit generators (NRBGs) and deterministic random bit
generators (DRBGs). In addition, Part 1 also introduces a general functional model and

Part 2 of this Standard (Entropy Sources) discusses entropy sources used by random bit
generators. In the case of DRBGs, the entropy sources are required to
the DRBG.

Part 4 of this Standard (Random Bit Generator Constructions) provides guidance on
combining components to construct secure random bit generators.

This part of the Standard (Random Number Generation, Part 3: Deterministic Random Bit
Generator Mechanisms) specifies Approved DRBG mechanisms. A DRBG mechanism is
an RBG component that utilizes an algorithm to produce a sequence of bits from an initial
internal state that is determined by an input that is commonly known as a seed-

ciitropy npul. Because of the deterministic nature of the process, a
DRBG mechamsm is sa1d to produce ‘pseudorandom” rather than random bits, i.e., the
string of bits produced by a DRBG mechanism is predictable and can be reconstmcted,
given knowledge of the algorithm, ' citropy Tnpul. the seed and any other input
information.

The seed for a DRBG mechanism requires that sufficient entropy be provided during
instantiation and reseeding (see Parts 2 and 4 of this Standard). While a DRBG mechanism
may conform to this part of the Standard (i.e., Part 3), an implementation cannot achieve
the properties specified in Part 1 unless the entropy input source is included as specified in
Part 4. That is, the security of an RBG that uses a DRBG mechanism is a system
implementation issue; both the DRBG mechanism and its entropy input source must be
considered.

Throughout the remainder of this document, the term “DRBG mechanism™ has been
shortened to “DRBG”.

The remaining sections of this part of the Standard are organized as follows:

— Section 7 provides a functional model for a DRBG that particularizes the general
functional model of Part 1.

— Section 8 provides DRBG concepts and general requirements.

11



ANS X9.82, Part 3 - DRAFT - January 2006

— Section 9 specifies the DRBG functions that will be used to access the DRBG
algorithms specified in Section 10.

— Section 10 specifies Approved DRBG algorithms.
— Section 11 addresses assurance issues for DRBGs.
This part of the Standard also includes the following normative annexes:
— Annex A specifies additional DRBG-specific information.
— Annex B provides conversion routines.
The following informative annexes are also included:
— Annex C discusses security considerations tor selecting and implementing DRBGs.

— Annex D provides a discussion on DRBG selection.

— Annex E provides example pseudocode for each DRBG.

art 1o e requaements and

— Annex F relates the security properties identified in
specifications in Part 3.

— Annex G provides a bibliography for related informational material.

12



ANS X9.82, Part 3 - DRAFT - January 2006

7 DRBG Functional Model
7.1 Functional Model

Part 1 of this Standard provides a general functional model for random bit generators
(RBGs). Figure 1 particularizes the functional model of Part 1 for DRBGs. The
components of this model are discussed in the following subsections.

Personalization

String  Nomce  Entropy Input Additional Inpue
l l A A
Instantiate Reseed
Function Function
h 4

Generate
Function

Uninstantiate
Function

Health Tests | ® l
DS S A Pseudorandom Output

Figure 1: DRBG Functional Model

7.2 Functional Model Components

7.21 Entropy Input

The entropy input is provided to a DRBG for the seed (see Section 8.4.2). The entropy
input and the seed shall be kept secret. The secrecy of this information provides the basis
for the security of the DRBG. At a minimum, the entropy input shall provide the requested
amount of entropy for a DRBG. Appropriate sources for the entropy input are discussed in
Parts 2 and 4 of this Standard.

Ideally. the entropy input will be full entropy; however. the DRBGs have been specified to
allow for some bias in the entropy input by allowing the length of the entropy input to be
longer than the required amount of entropy (expressed in bits). The entropy input can be
defined to be a variable length (within limits). as well as fixed length. In all cases. the
DRBG expects that when entropy input is requested, the returned bitstring will contain at
least the requested amount of entropy. Additional entropy beyond the amount requested is

13



ANS X9.82, Part 3 - DRAFT - January 2006

not required, but is desirable.
7.2.2 Other Inputs

Other information may be obtained by a DRBQ as input. This information may or may not
be required to be kept secret by a consuming application; however, the security of the
DRBG itself does not rely on the secrecy of this information. The information should be
checked for validity when possible.

During DRBG instantiation, a nonce may be required. and if used. it is combined with the
entropy input to create the initial DRBG seed. The nonce and its use are discussed in
Section 8.4.2.

This Standard recommends the insertion of a personalization string during DRBG
instantiation; when used, the personalization string is combined with the entropy bits and a
nonce to create the initial DRBG seed. The personalization string shall be unique for all
instantiations of the same DRBG type (e.g., HMAC DRBG). See Section 8.5.2 for
additional discussion on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.5.3 for a discussion of this input.

7.2.3 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG uses or acts upon. The internal state
contains both administrative data (e.g., the security level) and data that is acted upon
and/or modified during the generation of pseudorandom bits (i.e., the working state). The
contents of the internal state is dependent on the specific DRBG and includes all
information that is required to produce the pseudorandom bits from one request to the next.

7.2.4 The DRBG Functions

The DRBG functions handle the DRBG’s internal state. The DRBGs in this Standard have
five separate functions texelusive-ofhealth-testsy:

1. The instantiate function acquires entropy input and may combine it with a nonce
and a personalization string to create a seed from which the initial internal state is
created.

2. The generate function generates pseudorandom bits upon request, using the current
internal state, and generates a new internal state for the next request.

3. The reseed function acquires new entropy input and combines it with the current
internal state and any additional input that is provided to create a new seed and a
new internal state.

4. The uninstantiate function zeroizes (i.e., erases) the internal state.
5. The health test {unction determines that the DRBG continues Lo function correctly.

14



ANS X9.82, Part 3 - DRAFT - January 2006

7.2:56---Health-Tests

15



ANS X9.82, Part 3 - DRAFT - January 2006

8. DRBG Concepts and General Requirements
8.1 Introduction

This section provides concepts and general requirements for the implementation and use of
a DRBG. The DRBG functions are explained and requirements for an implementation are
provided.

8.2 DRBG Functions and a DRBG Instantiation

8.2.1 Functions

DRBG may also include a reseed function. A DRBG shall be instantiated prior to the
generation of output by the DRBG. These functions are specified in Section 9.

8.2.2 DRBG Instantiations

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA
private keys and AES keys) and may be separately instantiated for each purpose.

A DRBG is instantiated
using a seed and may be

reseeded; when reseeded, Instantiale: Ll g LE

the seed shall be Seed period 1
different than the seed v

used for instantiation. |(0p|‘.) Reseed with sved , ]

Each seed defines a seed

period for the DRBG Seed period 2
instantiation; an h 4

instantiation consists of | (Opt) Reseed with.sed,, |

one or more seed periods
that begin when a new
seed is acquired (see
Figure 2).

Seed periods 3ton

8.2.3 Internal States

o L Figure 2: DRBG Instantiation
During instantiation, an

initial internal state is
derived from the seed. The internal state for an instantiation includes:

1. Working state:

a. One or more values that are derived from the seed and become part of the
internal state; these values must usually remain secret, and

b. A count of the number of requests or blocks produced since the instantiation

16



ANS X9.82, Part 3 - DRAFT - January 2006

was seeded or reseeded.
2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. Each DRBG
instantiation shall have its own internal state; the internal state for one DRBG instantiation
shall not be used as the internal state for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide
new pseudorandom bits. A DRBG may also be implemented to transition in response to
internal or external events (e.g., system interrupts) or to transition continuously (e.g.,
whenever time is available to run the generator).

A DRBG implementation may be designed to handle multiple instantiations. Sufficient
space must be available for the expected number of instantiations, i.e., sufficient memory
must be available to store the internal state associated with each instantiation.

8.2.4 Security Strengths Supported by an Instantiation

The DRBGs specified in this Standard support four security strengths: 112, 128, 192 or
256 bits. The actual security strength supported by a given instantiation depends on the
DRBG implementation and on the amount of entropy provided to the instantiate function
in the entropy input. Note that the security strength actually supported by a particular
instantiation could be less than the maximum security strength possible for that DRBG
implementation (see Table 1). For example, a DRBG that is designed to support a
maximum security strength of 256 bits could be instantiated to support only a 128-bit
security strength if the additional security provided by the 236-bit sccurity strength is not
required.

Table 1: Possible Instantiated Security Strengths

Maximum Designed 112 128 192 256
Security Strength

Possible Instantiated 112 112, 128 112,128,192 | 112, 128, 192,
Security Strengths 256

A security strength for the instantiation is requested by a consuming application during
instantiation, and the instantiate function obtains the appropriate amount of entropy for the
requested security strength. Any security strength may be requested, but the DRBG will
only be instantiated to one of the four security strengths above, depending on the DRBG
implementation. A requested security strength that is below the 112-bit security strength or
is between two of the four security strengths will be instantiated to the next highest fevet

112-bit security strength).

Following instantiation, requests can be made to the generate function for pseudorandom
17




ANS X9.82, Part 3 - DRAFT - January 2006

bits. For each generate request, a security strength to be provided for the bits is requested.
Any security strength can be requested up to the security strength of the instantiation, e.g.,
an instantiation could be instantiated at the 128-bit security strength, but a request for
pseudorandom bits could indicate that a lesser security strength is actually required for the
bits to be generated. The generate function checks that the requested security strength does
not exceed the security strength for the instantiation. Assuming that the request is valid, the
requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a security strength of 112
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to
be instantiated to support the 256-bit security strength.

8.3 DRBG Boundaries

As a convenience, this Standard uses the notion of a “DRBG boundary” to explain the
operations of a DRBG and its interaction with and relation to other processes; a DRBG
boundary contains all DRBG functions and internal states required for a DRBG. A DRBG
boundary is entered via the DRBG’s public interfaces, which are made available to
consuming applications.

Within a DRBG boundary,

1. The DRBG internal state and the operation of the DRBG functions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary. The
internal state shall be contained within the DRBG boundary and shall not be
accessed by non-DRBG functions.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cryptographic primitive as long as the DRBG’s internal
state and the DRBG functions are not affected.

A DRBG’s functions may be contained within a single device, or may be distributed across
multiple devices (see Figures 3 and 4). Figure 3 depicts a DRBG for which all functions
are contained within the same device. Figure 4 provides an example of DRBG functions
that are distributed across multiple devices. In this lalter case, each device has a DRBG
sub-boundary that contains the DRBG functions implemented on that device, and the
boundary around the entire DRBG consists of the aggregation of sub-boundaries providing
the DRBG functionality. The use of distributed DRBG functions may be convenient for
restricted environments (e.g., smart card applications) in which the primary use of the

18



ANS X9.82, Part 3 - DRAFT - January 2006

DRBG does not require repeated use of the instantiate or reseed functions.

DRBG Boundary
Instantiate | Instantiate |,
Function
— Entropy
Input
Reseed Reseed -
Instantiation Function
o * Generate
Request Biis _ Function
Test > Test | Staks
DREBG =« Function
Uninstantiate . ;
DREC Unmstm.mate
Funclion

Figure 3: DRBG Functions Within a Single Device

Although the entropy input that is used to create the seed is shown in the figures as
originating outside the DRBG boundary, it may originate from within the boundary.

Entropy Input

[ 1
| |
| |
N
i ' |
| Uninstantiate Instantiate Protected State | | Generate Uninstantiate :
} Function Function *| Function Function :
I
t |
I I
: Test Test :
: Function Function |
| |
|
: DRBG Sub-Boundary (Instantiate) DRBG Sub-Boundary (Generate) I
| i e gt o |
DRBG Boundary

Figure 4: Distributed DRBG Functions

Each DRBG boundary or sub-boundary shall contain a test function to test the “health” of
19




ANS X9.82, Part 3 - DRAFT - January 2006

other DRBG functions within that boundary. [ addition. cach boundary or sub-boundars
shall contain an uninstantiate function in order to perform and/or react to health testing.

When DRBG functions are distributed, appropriate mechanisms shall be used to protect
the confidentiality and integrity of the internal state or parts of the internal state that are
transferred between the distributed DRBG sub-boundaries. The confidentiality and
integrity mechanisms and security strength shall be consistent with the data to be protected
by the DRBG’s consuming application (see SP-860-37ZASC X9 Registry ).

8.4 Seeds

8.4.1 General Discussion

When a DRBG is used to generate pseudorandom bits, entropy input is acquired in order to
generate a seed prior to the generation of output bits by the DRBG. The seed is used to
instantiate the DRBG and determine the initial internal state that is used when calling the
DRBG to obtain the first output bits.

Reseeding is a means of reeovertrg-restoring the secrecy of the output of the DRBG if a
seed or the internal state becomes known. Periodic reseeding is a good way of addressing
the threat of etther-the DRBG seed. entropy input or working state being compromised
over time. In some implementations (e.g., smartcards), an adequate reseeding process may
not be possible. In these cases, the best policy might be to replace the DRBG, obtaining a
new seed in the process (e.g., obtain a new smart card).

8.4.2 Generation and Handling of Seeds

The seed and its use by a DRBG is generated and handled as follows:

1. Seed construction for

instantiation: Figure 5 depicts the

H Optional
.seed construction process for‘ Entropy Nonee Personalization
instantiation. The seed material Input String

used to determine a seed for
instantiation consists of entropy
input, a nonce and an optional Opt.
personalization string. Entropy df,
input is always used in the
construction of a seed;
requirements for the entropy input
are discussed in item 3. Except
[or the case noted below, a nonce
is efse-used; requirements for the
nonce are discussed in item 7.
This Standard also recommends the inclusion of a personalization string;
requirements for the personalization string are discussed in Section 8.5.2.

Seed

Figure 5: Seed Construction for Instantiation

Depending on the DRBG and the source of the entropy input, a derivation function
20



ANS X9.82, Part 3 - DRAFT - January 2006

may be required to derive a seed from the seed material. When full entropy input is
readily available, the DRBG: based on block cipher algorithms (see Section 10." ')
may be implemented without a derivation function. When implemented in this
manner, a nonce (as shown in Figure 5) is not used. Note, however, that the
personalization string could contain a nonce, if desired.

Fheso-othisseedvonstiie o oo asurethat the seed- e statstos g

2. Seed construction for

reseeding: Figure 6 depicts the

seed construction process for Internal Entropy Optional
di . e Th State Input Additional

reseeding an instantiation. The Value Input

seed material for reseeding
consists of a value that is
carried in the internal state!, L4
new entropy input and, Od'}"
optionally, additional input.

The internal state value and the
entropy input are required; Seed
requirements for the entropy

input are discussed in item 3.

Requirements for the additional Figure 6: Seed Construction for Reseeding
input are discussed in Section

8.5.3. As in item 1, a derivation function may be required for reseeding. See item 1
for further guidance.

3. Entropy requirements for the entropy input:

Additional entropy be provided in the nonce or the optional
personalization string during instantiation, or in the additional input during
reseeding generation, but this is not required.

4. Seed length: The minimum length of the seed depends on the DRBG and the
security strength required by the consuming application. See Section 10.

5. Entropy input source: |he source ol the entropy input be

a n Approved NRBG.

1 See each DRBG specification for the value that is uszeli



ANS X9.82, Part 3 - DRAFT - January 2006

b. sAn Approved DRBG. thus forming a chain of at least two DRI3Gs: the
highest-level DRBG in the chain shall be seeded by an Approved NRBG
JI SO

¢ oranotherAn appropriate cniropy source.

Further discussion about the entropy input source is provided in Parts 2 and 4 of
this Standard.

6. Entropy input and seed privacy: The entropy input and the resulting seed shall be
handled in a manner that is consistent with the security required for the data
protected by the consuming application. For example, if the DRBG is used to
generate keys, then the entropy mpuls and seeds used to generate the keys shall (.

aominintum) be treated protecled at-teast-as we 1) as the ]\\\. (ebh-ch- PR

7. Nonce: A nonce -0y be required in the construction ol a seed during instantation
in order to provide a security cushion to block certain attacks, The nonce shall be
cither:

a. A randon value with at least (sectrity strengrh/2) bits of entropy.

b. A non-random value that is expected w0 repeat no more oflen than a
|
(security sirength/2)-hit random string would be expected o repeat.

For case a, the nonce w1y be acquired from the same source and at the same
time as the entropy mput. In {his case, the seed could be considered to be
constructed from an “extra strong™ entropy input and the optional personalization
string, where the entropy for the entropy input is equal to or greater than (3/2
security strength) bits.

The nonce is required Jor instantiation o provide security strengih bits ol security.
When a DRBG is instantiated many times Without 4 nonce. a Compromise iy
become more likely. In some consuming applications, a single DRBG compromise
may reveal long-term seerets (¢.g.. a compromise ol the DSA per-message secret
reveals the signing key). Futther discussion is providediin AppendizeAnnes

PSS SOl

8. Reseeding: Generating too many outputs from a seed (and other input information)
may provide sufficient information for successfully predicting future outputs sless
prediction-resistanee tsprovided-tsee Part-H. Periodic reseeding will reduce
security risks, reducing the likelihood of a compromise of the data that is protected

I by cryptographic mechanisms that use the DRBG.

Seeds have a finite seedlife (i.e., the length of the seed period); the maximum
seedlife is dependent on the DRBG used. Reseeding is accomplished by 1) an
explicit reseeding of the DRBG by the consuminge application, or 2) by the generate
function when either prediction rec;lstance n lequcsled or when lhc hmll. of the
seedlife is reached. Aoy




ANS X9.82, Part 3 - DRAFT - January 2006

Reseeding of the DRBG shall be performed in accordance with the specification
for the given DRBG. The DRBG reseed specifications within this Standard are
designed to produce a new seed that is determined by both the current internal state
and newly-obtained entropy input that will support the desired security strength.

9. Seed use: A seed that is used to initialize one instantiation of a DRBG shall not be
intentionally used to reseed the same instantiation or used as a seed for another
DRBG instantiation.

A DRBG does not provide output until a seed is available:. and the internal state
has been initialized.

10. Seed separation: Seeds used by DRBGs
shall not be used for other purposes (e.g., domain parameter or prime
number generation).

8.5 Other Inputs to the DRBG
8.5.1 Discussion

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input and a nonce to
derive a seed (see Section 8.5.2). When pseudorandom bits are requested and when
reseeding is performed, additional input may be provided (see Section 8.5.3).

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or consuming application. For example, the input could be
derived directly from values entered by the user or consuming application, or the input
could be derived from information introduced by the user or consuming application (e.g.,
from timing statistics based on key strokes or movements of the computer’s mouse), or the
input could be the output of another DRBG or an NRBG.’

8.5.2 Personalization String

During instantiation, a personalization string should be used to derive the seed (see

Section 8.4.2). The intent of a personalization string is to differentiate this DRBG

instantiation from all that might ever be created. The

personalization string should be set to some bitstring that is as unique as possible, and may

include secret information. The value of any secret information contained in the

personalization string should be no greater than the claimed strength of the DRBG, as the
23



ANS X9.82, Part 3 - DRAFT - January 2006

DRBG's cryptographic mechanisms (specifically, its backtracking resistance and the
entropy provided in the entropy input) will protect this information from disclosure. Good
choices for the personalization string contents include:

e +—Device serial numbers, e & —Network addresses,

¢ _2—Public keys, * 9—Special secret key values for this

o B N TenfRalion, specific DRBG instantiation,

I e +46-Application identifiers,

5 5 PN e EESRwET; o _H-Protocol version identifiers,

e _6—Secret per-module or per- Sz aRENd G AUMBETS) F0d

device values, e 13 Nonces.

o 7—Timestamps,

8.5.3 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional. and the ability to enter additional input may or may
nol be included in an implementation. Additional input may be restricted, depending on the
implementation and the DRBG. The use of additional input may be a means of providing
more entropy for the DRBG internal state that will increase assurance that the entropy
requirements are met. If the additional input is kept secret and has sufficient entropy, the
input can provide more assurance when recovering from the compromise of the cntropy
inpul. the seed or one or more DRBG internal states.

8.6 Prediction Resistance and Backtracking Resistance

Part I discusses backtracking and prediction resistance. All DRBGs in this Standard have
been designed to provide backtracking resistance. Prediction resistance can be provided
only by ensuring that a DRBG is effectively reseeded between DRBG requests. The
DRBGs in this Standard can (optionally) be implemented to support prediction resistance
(see Section 9), and a user or application can request prediction resistance when needed.

24

| Formatted: Bullets and Numbering



ANS X9.82, Part 3 - DRAFT - January 2006

9 DRBG Functions
9.1 General Discussion

The DRBG functions in this Standard are specified as an algorithm (see Section 10) and an
“envelope” of pseudocode around that algorithm (defined in this section). The pseudocode
in the envelopes checks the input parameters, obtains input not provided by the input
parameters, accesses the appropriate DRBG algorithm and handles the internal state. A
function need not be implemented using such envelopes (e.g., all code may be
implemented in-line), but the function shall have equivalent functionality.

function is used for convenience. This function is not fully specified in this
RecommrendationStandard, but has the following meaning:

—Get_entropy_input: A function that is used to obtain entropy input. The function
call is:

(status, entropy_input) = Get_entropy_input (min_entropy, min_length, max
length)

which requests a string of bits (entropy input) with at least min_entropy bits of
entropy. The length for the string shall be equal to or greater than min_length bits, and
less than or equal to max_length bits. A status code is also returned from the function.

Note that an implementation may choose to define this functionality differently; for
example, for many of the DRBGs, the min length = min_entropy for the
Get_entropy_input function, in which case, the second parameter could be omitted.

9.2 Instantiating a DRBG
A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function:
1. Checks the validity of the other input parameters,
Determines the security strength for the DRBG instantiation,

Determines any DRBG specific parameters (e.g., elliptic curve domain parameters),

2
3
4. Obtains entropy input with entropy sufficient to support the security strength,
5. Obtains the nonce (it required),

6. Determines the initial internal state using the instantiate algorithm,

7

. Returns a state handle for the internal state to the consuming application (see
below).

Let working state be the working state for the particular DRBG, and let min_length, max_
25

Formatted: Bullets and Numbering



ANS X9.82, Part 3 - DRAFT - January 2006

length, and highest supported_security_strength be defined for each DRBG (see Section
10). The following or an equivalent process shall be used to instantiate a DRBG.

Input from a consuming application for instantiation:

L.

requested instantiation_security_strength: A requested security strength for the
instantiation. DRBG implementations that support only one security strength do not
require this parameter; however, any application using that DRBG implementation
must be aware of this limitation.

2. prediction_resistance_flag: Indicates whether or not prediction resistance may be

required by a the consuming application during one or more requests for
pseudorandom bits. DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user of a
consuming application must determine whether or not prediction resistance may be
required by the consuming application before electing to use such a DRBG
implementation. If the prediction_resistance flag is not needed (i.c., because
prediction resistance is always or never performed), then the input parameter may
be omitted, and the prediction_resistance_flag may be omitted from the internal
state in step 11 of the instanti

3. personalization_string: An optional input that provides personalization information

(see Sections 8.4.2 and 8.5.2). The maximum length of the personalization string
(max_personalization_string length) is implementation dependent, but shall be
less than or equal to the maximum length specified for the given DRBG (see
Section 10). If a personalization string will never be used, then the input parameter
and step 3 instanti may be omitted, and instantiate pr step 9
may be modified to omit the personalization string.

Required information not provided by the consuming application during
instantiation:

Comment: This input shall not be provided
by the consuming application as an input
parameter during the instantiate request.

entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be less than or equal to the
specified maximum length for the selected DRBG (see Section 10).

nonce: A nonce as specified in Section 8.4.2. Note that if a random value is used as
the nonce, the entropy input and nonce could be acquired using a single
Get_entropy_input call (see step 6 I X ); in this case, the first
parameter would be adjusted to include the entropy for the nonce (i.e.,
security strength would be increased by at least security strength/2), step
8 would be omitted, and the nonce would be omitted from the parameter list in

r step 9.

26



ANS X9.82, Part 3 - DRAFT - January 2006

Output to a consuming application after instantiation:

1. status: The status returned from the instantiate function. The starus will indicate
SUCCESS or an ERROR. If an ERROR is indicated, either no state_handle or an
invalid state_handle shall be returned. A consuming application should check the
status to determine that the DRBG has been correctly instantiated.

2. state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

Information retained within the DRBG boundary after instantiation:

The internal state for the DRBG, including the working state and administrative
information (see Sections 8.2.3 and 10).

Instantiate Process:

Comment: Check the validity of the input
parameters.

1. If requested_instantiation security strength>
highest_supported_security strength, then return an ERROR_FLAG.

2. If prediction resistance_flag is set, and prediction resistance is not supported, then
return an ERROR _FLAG.

3. If'the length of the personalization string > max_personalization_string length,
return an ERROR FLAG.

4 Set security_strength to the nearest security strength greater than or equal to
requested_instantiation_security strength.

Comment: The following step is required by
the Dual_EC_DRBG when multiple curves
are available (see Section 10.24.2.2.2).
Otherwise, the step should be omitted.

5. Using the security strength, select appropriate DRBG parameters.
Comment: Obtain the entropy input.

6. (status, entropy_input) = Get_entropy_input (security strength, min_length,

max_length).
7. If an ERROR is returned in step 6, return an
ERROR
8. Obtain a nonce. Comment: This step shall include any

appropriate checks on the acceptability of the
nonce. See Section 8.4.2.

Comment: Call the appropriate instantiate
algorithm in Section 10 to obtain values for
27



ANS X9.82, Part 3 - DRAFT - January 2006

the initial working_state.

9. il working state = Instantiate_algorithm (entropy_input, nonce,
personalization string).

10. Get a state_handle for a currently empty state. If an empty internal state cannot be
found, return an ERROR 'L AG.

11. Set the internal state indicated by state_handle to the initial values for the
and any other values required for the working state (see Section 1 0)
administrative information
12. Return SUCCESS and state_handle.
9.3 Reseeding a DRBG Instantiation
The reseeding of an instantiation is not required, but is recommended whenever a

consuming application and implementation are able to perform this process. Reseeding
will insert additional entropy into the generation of pseudorandom bits. Reseeding may be:

o explicitly requested by a consuming application,
o performed when prediction resistance is requested by a consuming application,

e triggered by the generate function when a predetermined number of pseudorandom
outputs have been produced or a predetermined number of generate requests have
been made (i.e., at the end of the seedlife), or

e triggered by external events (e.g., whenever sufficient entropy is available).

If a reseed capability is not available, a new DRBG instantiation may be created (see
Section 9.2).

The reseed function:
1. Checks the validity of the input parameters,
2. Obtains entropy input with sufficient entropy to support the security strength, and

3. Using the reseed algorithm, combines the current internal state with the new
entropy input and any additional input to determine the new internal state.

Let working_state be the working state for the particular DRBG, and let min_length and
max_ length be defined for each DRBG (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.
Input from a consuming application for reseeding:

1) state handle: A pointer or index that indicates the internal state to be reseeded.

28



2)

ANS X9.82, Part 3 - DRAFT - January 2006

This value was returned from the instantiate function specified in Section 9.2.

additional input: An optional input. The maximum length of the additional input
(max_additional_input_length) is implementation dependent, but shall be less than
or equal to the maximum value specified for the given DRBG (see Section 10). If
additional_input will never be used, then the input parameter and step 2 of (I

r I may be omitted, and step 2- - may be modified to remove the
additional_input from the parameter list.

Required information not provided by the consuming application during reseeding:

Comment: This input shall not be provided
by the consuming application in the input
parameters.

. entropy input: Input bits containing entropy. The maximum length of the

entropy input is implementation dependent, but shall be less than or equal to the
specified maximum length for the selected DRBG (see Section 10).

Internal state values required by the DRBG for reseeding, i.e., the working_state
and administrative information, as appropriate.

Output to a consuming application after reseeding:

1.

status: The status returned from the function. The status will indicate SUCCESS or
an ERROR.

Information retained within the DRBG boundary after reseeding;:

Replaced internal state values (i.e., the working state).

Reseed Process:

Comment: Get the current internal state and
check the input parameters.

Using state _handle, obtain the current internal state. If state_handle indicates an
invalid or empty internal state, return an ERROR_FLAC,

If the length of the additional _input > max_additional input_length, return an
ERROR

Comment: Obtain the entropy input.

(status, entropy_input) = Get_entropy input (security strength, min length,
max_length).

If an ERROR is returned in step 3, return

ERROR

Comment: Get the new working state using
the appropriate reseed algorithm in Section
10.

29



6.

7.

ANS X9.82, Part 3 - DRAFT - January 2006

working state = Reseed_algorithm (working state, entropy input,
additional input).

Comment: Save the new values of the internal
state.

Replace the working state in the internal state indicated by state handle with the
-values

Return SUCCESS.

9.4 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding (see
Sections 9.2 and 9.3). The generate function:

1.
2.

4.
5.

Checks the validity of the input parameters,

Calls the reseed function to obtain sufficient entropy if the instantiation needs
additional entropy because the end of the seedlife has been reached or prediction
resistance is required: see Sections 9.4.2 and 9.4.3 for more information on
reseeding at the end of the seedlife and on handling prediction resistance requests
Generates the requested pseudorandom bits using the generate algorithm. The
generate algorithm will check that two consecutive outputs are not the same.
Updates the working state.

Returns the requested pseudorandom bits to the consuming application.

9.4.1 The Generate Function

Let outlen be the length of the output block of the cryptographic primitive (see Section 10).

The following or an equivalent process shall be used to generate pseudorandom bits.

‘ Input from a consuming application generation:
1. state_handle: A pointer or index that indicates the internal state to be used.
2. requested number of bits: The number of pseudorandom bits to be returned from
the generate function. The max_number _of bits per request is implementation
| dependent but shall be the value provided in Section 10 for a
specific DRBG.
3. requested security strength: The security strength to be associated with the

requested pseudorandom bits. DRBG implementations that support only one
security strength do not require this parameter; however, any I
application using that DRBG implementation must be aware of this limitation.

4. prediction_resistance_request: Indicates whether or not prediction resistance is to

be provided. DRBGs that are implemented to always or never support prediction
resistance do not require this parameter. However, the user of a consuming

30



ANS X9.82, Part 3 - DRAFT - January 2006

application must determine whether or not prediction resistance may be required by
the application before electing to use such a DRBG implementation.

If prediction resistance is never provided, then the prediction_resistance_request
input parameter and step 5 of (he gener may be omitted, and step 7 may
be modified to omit the check for the prediction_resistance request.

If prediction resistance is always performed, then the prediction_resistance_request
input parameter and step 5 may be omitted, and steps 7 and 8 are replaced by:

status = Reseed (state_handle, additional _input).
If status indicates an ERROR, then return s7cius.
Using state_handle, obtain the new internal state.

(status, pseudorandom_bits, working state) = Generate_algorithm
(working_state, requested number of bits).

Note that if additional _input is never provided, then the additional input parameter
in the Reseed call above may be omitted.

5. additional_input: An optional input. The maximum length of the additional input
(max_additional_input length) is implementation dependent, but shall be less than
or equal to the specified maximum length for the selected DRBG (see Section 10).

If additional_input will never be used, then the input parameter, pr step 4,
step 7.4 and the additional input input parameter in step 8 may be
omitted.

Required information not provided by the consuming application during generation:

1. Internal state values required for generation for the working_state and
administrative information, as appropriate.

Output to a consuming application after generation:

1. status: The status returned from the function. The status will indicate SUCCESS
or an ERROR.

2. pseudorandom_bits: The pseudorandom bits that were requested.
Information retained within the DRBG boundary after generation:
Replaced internal state values (i.e., the 1o\ working_state).
Generate Process:

Comment Get the internal state and check the
input parameters.

1. Using state _handle, obtain the current internal state for the instantiation. If
state_handle indicates an invalid or empty internal state, then return an
ERROR_FLAG.

31



ANS X9.82, Part 3 - DRAFT - January 2006

If requested number of bits > max_number_of bits_per_request, then return an
ERROR _

If requested_security strength > the security_strength indicated in the internal
state, then return an ERROR_ Il A (..

If the length of the additional input > max_additional_input_length, then return an
ERROR

. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR

. Clear the reseed _required flag. Comment: See Scction 9.4.2 for discussion.

Comment:

wededReseed il n

. Ifreseed required flag is set, or if prediction_resistance_request is set, then

7.1 status = Reseed (state_handle, additional input).
7.2 If status indicates an ERROR, then return s/afuss.
7.3 Using state handle, obtain the new internal state.
7.4 additional_input = the Null string.

7.5 Clear the reseed required_flag.

Comment: Request the generation of
pseudorandom_bits using the appropriate
generate algorithm in Section 10.

(status, pseudorandom_bits, ne\r working_state) = Generate_algorithm
(working_state, requested number of bits, additional_input).

If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 Set the reseed _required flag.
9.2 Gotostep7.

Replace the old working state in the internal state indicated by statehandle with

32



ANS X9.82, Part 3 - DRAFT - January 2006

the rew-values of new svorking state.
211, Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not available, then steps 6 and 7 may be removed; and step 9 is
replaced by:

9. If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 status = Uninstantiate (state_handle).
9.2

9:3—Return an indication that the DRBG instantiation can no longer be used.

9.4.2 Reseeding at the End of the Seedlife

When pscudorandom bits are requested by a consuming application. the senerate function
chiceks whether or not a veseed is required by comparing the counter within the intemal
stiate (see Section 8.2.3) against o predetenmined reseed interval for the DRBG

-
3

implementation. Thi

is

0. Step6 clears the reseed. required flag.

b. Step 7 checks the value ol the yeseed required flag. At this tme. it is clear: so step
7 would be skipped unless prediction resistance was requested by the consuming

application. For the purposes of this explanation, assume that prediction idsistance

Step 8 calls the Generate algorithm. which will check whether a reseed is
required. [Cit s required. an appropriate status will be returned.

If-

d. Step 9 checks the stains returned by the Generate algorithm. LI the status
indicates (hat a reseed is not required. the generate process continues with step 10.

¢. Ilthe status indicates that a reseed is required, then the reseed required flag is selL.
and proce 1o step 7 (see sieps 9.1 and 9.2).

ing continues by going by

L Lhe substeps b step 7 ave exceuted. The reseed funcetion will be called: any
addirionad_inpur provided by the consuming application in the generate request
will be used during reseeding. The new values ol the intemal state are aeyuired. any
cclelitional ipur provided by the consuming application in the generate request iy

ced by a Nl string. and the reseed requived flag is cle

g, The generate algorithm is called (again) in step 8. (he check ol the returmed sraus is

made in step 9. and (presumably) step 10 is then executed.

9.4.3_ Handling Prediction Resistance Requests

When pseudorandom bits are requested by a consuming application with predietion

33



ANS X9.82, Part 3 - DRAFT - January 2006

n_speeilied in Section Y.4.1 ¢
- ' of the generate process

9.5 Removing a DRBG Instantiation

The internal state for an instantiation may need to be “released”
. The uninstantiate function:

1. Checks the input parameter for validity.
2. Empties the internal state.

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a
DRBG instantiation:

Input from a consuming application for uninstantiation:
1. state_handle: A pointer or index that indicates the internal state to be “released”.
Output to a consuming application after uninstantiation:

1. status: The status returned from the function. The status will indicate SUCCESS or
| ERROR

Information retained within the DRBG boundary after uninstantiation:
An empty internal state.
Uninstantiate Process:
\ 1. If state_handle indicates an invalid state, then return an ERROR_I'LAG.
2. Erase the contents of the internal state indicated by state_handle.
3. Return SUCCESS.
| 9.6 Self-Testing of the DRBG

9.6.1 Discussion

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (health testing). The testing function(s) within a
DRBG boundary (or sub-boundary) shall test each DRBG function within that boundary.
Note that this may require the creation and use of an instantiation for lesting purposes only

34



ANS X9.82, Part 3 - DRAFT - January 2006

Errors occurring during testing shall be perceived as DRBG failures
. The condition causing the failure shall be corrected and the DRBG re-
instantiated before requesting pseudorandom bits (also, see Section 9.7)

9.6.2 Testing the Instantiate Function

Known-answer tests on the instantiate function shall be performed prior to creating each
operational instantiation. However, if several instantiations are performed in quick
succession using the same input parameters, then the testing be reduced to testing
only prior to creating the first instantiation using that parameter set until such time as the
succession of instantiations is completed. ‘Thereafter. other instantiations shall be Llested as
specified above.

The security_strength and prediction resistance flag to be used in the operational
invocation shall be used during the test. Representative fixed values and lengths of the
entropy_input, nonce and personalization_string (if allowed) shall be used; the value of
the entropy input used during testing shall not be intentionally reused during normal
operations (either by the instantiate or the reseed functions). Error handling shall also be
tested, including whether or not the instantiate function handles an crror from the entropy
input source correctly.

If the values used during the test produce the expected results, and errors are handled

correctly, then the instantiate function may be used to instantiate using the tested values of
security_strength and prediction_resistance_flag.

An implementation should provide a capability to test the instantiate function on demand.

9.6.3 Testing the Generate Function

Known-answer tests shall be performed on the generate function before the first use of the
function and at reasonable intervals defined by the implementer. The implementer shall
document the intervals and provide a justification for the selected intervals.

The known-answer tests shall be performed for each implemented security strength.
Representative fixed values and lengths for the requested number_of bits and

additional _input (if allowed) and the working state of the internal state value (see Sections
8.2.3 and 10) shall be used. If prediction resistance is available, then each combination of
the security_strength, prediction_resistance_request and prediction_resistance_flag shall
be tested. The error handling for each input parameter shall also be tested, and testing shall
include setting the reseed _counter to meet or exceed the reseed interval in order to check
that the implementation is reseeded or that the DRBG is “shut down”, as appropriate.

If the values used during the test produce the expected results, and errors are handled
correctly, then the generate function may be used during normal operations.

Bits generated during health testing shall not be output as pseudorandom bits.

An implementation should provide a capability to test the generate function on demand.

Sote-thatHhe seperste banchonpe o co i Hitods st - b comparinesediiential S

35




ANS X9.82, Part 3 - DRAFT - January 2006

9.6.4 Testing the Reseed Function

A known-answer test of the reseed function shall use the security strength in the internal
state of the instantiation to be reseeded. Representative values of the entropy input and
additional input (if allowed) and the working state of the internal state value shall be used
(see Sections 8.2.3 and 10). Error handling shall also be tested, including an error in
obtaining the entropy input (e.g., the entropy input source is broken).

If the values used during the test produce the expected results, and errors are handled
correctly, then the reseed function may be used to reseed the instantiation.

Fhe reseed funetion-mav-be-ealed-ever-timethat the cenerate-funetion-iscalledH
predicton-resistance-is-available-and-considerbhy-lesstrequently-otherwise: Self-test shall
be performed as follows:

1. When prediction resistance is available in an implementation, the reseed function
shall be tested whenever the generate function is tested (see above).

2. When prediction resistance is not available in an implementation, the reseed
function shall be tested whenever the reseed function is invoked and before the
reseed is performed on the operational instantiation.

An implementation should provide a capability to test the reseed function on demand.
9.6.5 Testing the Uninstantiate Function

The uninstantiate function shall be tested whenever other functions are tested. Testing
shall attempt to demonstrate that error handling is performed correctly, and the internal
state has been zeroized.

9.7 Error Handling

9.7.1 _General Discussion

The expected errors are indicated for each DRBG function (see Sections 9.2 - 9.5) and for
the derivation functions in Section . The error handling routines should indicate the
type of error.

9.7.12 Errors Encountered During Normal Operation

Many etrors during normal operation may be caused by a consuming application’s
improper DRBG request: (hese crrors are indicated by "ERROR FLAG™ in L
In these cases, the consuming application user is responsible for correcting

the request within the limits of the user’s organizational security policy. For example, if a
failure indicating an invalid requested security strength is returned, a security strength
higher than the DRBG or the DRBG instantiation can support has been requested. The user

reduce the requested security strength if the organization’s security policy allows
the information to be protected using a lower security strength, or the user shall use an

36



ANS X9.82, Part 3 - DRAFT - January 2006

appropriately instantiated DRBG.

For catastrophic etrors (e-e- entropy-—inpubsonree taitarel.e.. those crrors indicated by the
CATASTROPHIC ERROR FLAG i the preadoceods), the DRBG shall not produce
further output until the source of the error is corrected. and the DRBG is re-instantiated.

9.7.23 Errors Encountered During Self-Testing

During self-testing. all unexpected behavior is catastrophic. The DRBG shall be corrected,
and the DRBG shall be re-instantiated before the DRBG can be used to produce
pseudorandom bits. Examples of unexpected behavior include:

e A test deliberately inserts an error. and the error is not detected, or

e An incorrect result is returned from the instantiate. reseed or generate function
than was expected.

37



HMAC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

10 DRBG Algorithm Specifications
10.1 Overview

Several DRBGs are specified in this Standard. The selection of a DRBG depends on
several factors, including the security strength to be supported and what cryptographic
primitives are available. An analysis of the consuming application’s requirements for
random numbers should be conducted in order to select an appropriate DRBG. A detailed
discussion on DRBG selection is provided in Annex D. Pseudocode examples for each
DRBG are provided in Annex E. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Annex B.

10. Deterministic RBG Based on Hash Functions
10.12,1 Discussion

A hash DRBG is based on a hash function that is non-invertible or one-way. The hash-
based DRBG specified in this Standard has been designed to use any Approved hash
function and may be used by consuming applications requiring various security strengths,
providing that the appropriate hash function is used and sufficient entropy is obtained for
the seed.

The maximum security strength that could be supported by each hash function is provided
in . This Standard supports only four security strengths
for DRBGs: 112, 128, 192, and 256 . Table 2 specifies the values that shall be used for
the function envelopes and DRBG algorithm for each Approved hash function.

Table 2: Definitions for the Hash-Based DRBG

SHA-1 l SHA-224 | SHA-256 | SHA-384 | SHA-512

Supported security strengths See

highest_supported_security strength See

Output Block Length (outlen) 160 ‘ 224 | 256 l 384 ‘ 512
Required minimum entropy for security_strength

instantiate and reseed

Minimum entropy input length security_strength
(min_length)

Maximum entropy input length < 2% bits

(max_length)

Seed length (seedlen) 440 | 440 l 440 | 888 [ 888

38




HMAC_DRBG

ANS X9.82, Part 3 - DRAFT - January 2006

SHA-1 ‘ SHA-224 } SHA-256 ‘ SHA-384 ‘ SHA-512

Maximum personalization string
length
(max_personalization_string length)

< 2% bits

Maximum additional_input length
(max_additional_input_length)

< 2% bits

max_number_of bits_per_request

<2 bits

Number of requests between
reseeds (reseed_interval)

< 248

Note that since SHA-224 is based on SHA-
256, there is no efficiency benefit for using
the SHA-224; this is also the case for SHA-
384 and SHA-512, i.e., the use of SHA-256 or
SHA-512 instead of SHA-224 or SHA-384,
respectively, is preferred. The value for
seedlen is determined by subtracting the count
field (in the hash function specification) and
one byte of padding from the hash function
input block length; in the case of SHA-1,
SHA-224 and SHA 256, seedlen =512 - 64 -
8 = 440; for SHA-384 and SHA-512, seedlen
=1024 - 128 - 8 = 888. ‘

10.12.2 HMAC_DRBG {...)
10.42.2.1 Discussion

HMAC_DRBG uses multiple occurrences of
an Approved keyed hash function, which is
based on an Approved hash function. This
DRBG uses the Update [unction specified in
Section 10.42.2.2 and the HMAC function
within the Update function as the derivation
function during instantiation and resceding.
The same hash function shall be used
throughout 5
The hash function used shall meet or exceed
the security requirements of the consuming
application.

Figure 7 depicts the HMAC_DRBG in three
stages. HMAC_DRBG is specified using an

39

(Opt) additional input

l [ Null

UPDATE

State

y | reseed
counter

Slate H J’
Key | v [reseed .

conmter|

reseed
counter

’VKey | v

Figure 7: HMAC_DRBG Generate
Function




HMAC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

internal function (Update). This function is called by the HMAC_DRBG instantiate,
generate and reseed algorithms to adjust the internal state when new entropy or additional
input is provided. as well as to update the internal state after pseudorandom bits are
generated. The operations in the top portion of the figure are only performed if the
additional input is not null. Figure 8 depicts the Update function.

10.42.2.2 Specifications

10.42.2.2.1 HMAC_DRBG Internal State

The internal state for HMAC_DRBG
consists of:

V 10300 [ previded data

1. The working state: Key
a. The value V of outlen bits Key [
’ HMAC
which is updated each time i:l
another outlen bits of output
N Key #———
are produced (where outlen is o o Trmietdma |

specified in Table 2 of Section
10.42.1). e e ¥ iy

b. The outlen-bit Key, which is
updated at least once each time
that the DRBG generates
pseudorandom bits.

c. A counter (reseed_counter)
that indicates the number of
requests for pseudorandom bits

since instantiation or
reseeding. Figure 8: HMAC_DRBG Update Function

2. Administrative information:
a. The security strength of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG instantiation.

The values of ¥ and Key are the critical values of the internal state upon which the security
of this DRBG depends (i.e., ¥ and Key are the “secret values” of the internal state).

10.42.2.2.2 The Update Function (Update)
The Update function updates the internal state of HMAC_DRBG using the

provided_data. Note that for this DRBG, the Update function also serves as a derivation
function for the instantiate and reseed functions.

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function

40



HMAC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

selected for the DRBG from Table 2 in Section 10.12.1.

The following or an equivalent process shall be used as the Update function.

| 10.

Input:
1. provided data: The data to be used.
2. K: The current value of Key.
3. V: The current value of V.
Output:
1. K: The new value for Key.
2. V: The new value for V.

HMAC_DRBG Update Process:
K=HMAC (X, V| 0x00 || provided data).
V=HMAC (X, V).
If (provided _data = Null), then return K and V.
K=HMAC (X, V| 0x01 || provided data).
V=HMAC (X, V).
Return K and V.

.3 Instantiation of HMAC_DRBG

Bowawo -

Notes for the instantiate function specified in Section 9.2:

The instantiation of HMAC_DRBG requires a call to the instantiate function specified
in Section 9.2. Process slep 9 of that function calls the instantiate algorithm specified in
this section. For this DRBG, step 5 0! (he instuntiaie process should be omitted. The
values of highest_supported . securlty strength and min length are provided in Table 2
of Section 10.+2.1. The contents of the internal state are provided in Section
10.42.2.2.1.

The instantiate algorithm:

|

Let Update be the function specified in Section 10.12.2.2.2. The ouiput block length
(outlen) is provided in Table 2 of Section 10.12.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9% of the instantiate process in Section 9.2):

Input:
1. entropy input: The string of bits obtained from the entropy input source.

2. nmonce: A string of bits as specified in Section 8.4.2.

41



HMAC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

3. personalization string: The personalization string received from the consuming
application. If a personalization_string will never be used, then step 1 may be
modified to remove the personalization string.

Output:

1. initial working state: The inital values for ¥, Key and reseed counter (see
Section 10.42.2.2.1).

B( Instantiate Process:

1. seed material = entropy input || nonce || personalization_string.

2. Key =0x00 00...00. Comment: outlen bits.

3. ¥V =0x0101...01. Comment: outlen bits.

Comment: Update Key and V.
4. (Key, V) = Update (seed_material, Key, V).
. reseed _counter = 1.
. Return ¥, Key and reseed counter as the working state.
10.12.2.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function specified in Section 9.3:

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed function
specified in Section 9.3. Process step 5 of that function calls the reseed algorithm
specified in this section. The values for min Jength are provided in Table 2 of Section

10.

1.

The reseed algorithm:

Let Update be the function specified in Section 10.12.2.2.2. The following process or
its equivalent shall be used as the reseed algorithmn for this DRBG (see step 5 of the
reseed process in Section 9.3):

Input:
1.

working_state: The current values for ¥, Key and reseed_counter (see Section
10.42.2.2.1).

entropy_input: The string of bits obtained from the entropy input source.

additional input. The additional input string received from the consuming
42



HMAC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

application. If additional input will never be used, then process step 1 may be
modified to remove the additional _input.

‘ Outputsiter vesecding:
1. new_working state: The new values for V, Key and reseed_counter.
‘ I Reseed Process:
seed_material = entropy input || additional input.
(Key, V) = Update (seed material, Key old V old).

reseed counter = 1.

W N =

4. Return V, Key and reseed counter as the ey working state.
10.12.2.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function specified in Section 9.4:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the generate function specified in Section 9.4. rocess step 8 of that function
calls the generate algorithm specified in this section. The values for

| max_number_of bits per request and outlen are provided in Table 2 of Section
10.42.1.

The generate algorithm :

| Let HMAC be the keyed hash function specified in
using the hash function selected for the DRBG. The value for reseed interval is
‘ defined in Table 2 of Section 10.+2.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (sce step 8 of the generate process in Section 9.4):

[ Inputiosgenerntion:

1. working state: The current values for ¥, Key and reseed_counter (see Section
| 10.12.2.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional input: The additional input string received from the consuming
application. If an implementation will never use additional_input, then step 3 of
the FHIMAC generate process may be omitted. If an implementation does not
include the additional input parameter as one of the calling parameters, or if
the implementation allows additional_input, but a given request does not
provide any additional input, then a Null string shall be used as the
additional _input in step 6.

Output
43



HMAC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

status: The status returned from the function. The status will indicate
SUCCESS, aa-ERROR or indicate that a reseed is required before the
requested pscudorandom bits can be generated.

returned_bits: The pseudorandom bits to be returned to the generate function.
new_working_state: The new values for V, Key and reseed_counter.

G Generate Process:

L.

If reseed counter > reseed_interval, then return an indication that a reseed is
required.

ior / il. Update ios !
. temp = Null.
. While (len (femp) < requested number of bits) do:
.1 ¥=HMAC (Key V).

temp = temp || V.
. returned_bits = Leftmost requested number_of bits of temp.
. (Key, V) = Update (additional_input, Key, V).
. reseed_counter = reseed_counter + 1.

. Return SUCCESS, returned_bits, and the new values of Key, ¥ and
reseed_counter as the working_state).

44



CTR_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

10. DRBG Based on Block Ciphers
10.231

A block cipher DRBG is based on a block cipher algorithm. The block cipher DRBG
specified in this Standard has been designed to use any Approved block cipher algorithm
and may be used by consuming applications requiring various levels of security, providing
that the appropriate block cipher algorithm and key length are used, and sufficient entropy
is obtained for the seed.

10.23.2 CTR_DRBG

10.23.2.1 CTR_DRBG Description

CTR_DRBG uses an Approved block cipher
algorithm in the counter mode as specified in Key
. The same R Comment [ebb1]: This only applies to AES,
block cipher algorithm and key length shall : ) i R il andedy
be used for all block cipher operations. The v | * :
block cipher algorithm and key length shall @ 'I 1
meet or exceed the security requirements of T—I— :
|
|
|
|
|

the consuming application.

CTR_DRBG is specified using an internal
function (Update). Figure 9 depicts the
Update function. This function is called by
the instantiate, generate and reseed algorithms
to adjust the internal state when new entropy
or additional input is provided. as vwell as to
update the internal state after pseudorandom
bits are generated. Figure 10 depicts the

CTR_DRBG in three stages. The operations psiiied §5ia =
in the top portion of the figure are only
performed if the additional input is not null.
Table 3 specifies the values that shall be used
for the function envelopes and DRBG
algorithms.
Table 3: Definitions for the CTR_DRBG Figure 9: CTR_DRBG Update Function
3Key | AES-128 | AES-192 | AES-256
TDEA
Supported security strengths See
highest_supported_security_strength See

45



CTR_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

3Key | AES-128 | AES-192 | AES-256
TDEA

Output block length (outlen) 64 128 128 128
Key length (keylen) 168 128 192 256

Required minimum entropy for security_strength
instantiate and reseed

Seed length (seedlen = outlen + keylen) 232 l 256 320 | 384

If a derivation function is used:

a. Minimum entropy input length security_strength
(min _length)

b. Maximum entropy input length < 2% bits
(max _length)

¢. Maximum personalization string < 2% bits
length
(max_personalization_string length)

d. Maximum additional_input length < 2% bits
(max_additional_input_length)

If a derivation function is not used
(full entropy is available):

a. Minimum entropy input length seedlen
(min _length = outlen + keylen)

b. Maximum entropy input length seedlen
(max _length) (outlen + keylen)

¢. Maximum personalization string seedlen
length

(max_personalization_string_length)

d. Maximum additional_input length seedlen
(max_additional_input_length)

max_number_of bits per_request <2¥ <2

Number of requests between reseeds <2% <2® !
(reseed_interval)

The CTR_ DRBG may be implemented to use the block cipher derivation function
| specified in Section 9-510.5.2 during instantiation and reseeding. However, the DRBG is
specified to allow an implementation tradeoff with respect to the use of this derivation

46



CTR_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

function. If a source for full entropy input is always available to provide entropy input
when requested, the use of the
derivation function is optional,
otherwise, the derivation functon
shall be used. Table 3 provides
lengths required for the

entropy input,
personalization_string and
additional _input for each case.

(Opt) aditional Inpui

BLOCK CIFHER
———| DERIVATION
FUNCTION

soedtien Wity _|

UFDATE

When full entropy is available,
and a derivation function is not
used by an implementation, the
seed construction shall not use a
nonce? (see Section 8.4.2).

When using TDEA as the

selected block cipher algorithm,
the keys shall be handled as 64-
bit blocks containing 56 bits of

P
key and 8 bits of parity as T |
specified for the TDEA engine State |
in SP-806-67ANS X9.52. Key| v |reseed | ‘ (| Brock
connter Encrypt
10.23.2.2 Specifications

Iterate

10.23.2.21 CTR_DRBG Internal
State

Boll o ll By | By

The internal state for Pseudorandom bits
CTR_DRBG consists of:

1. The working state: 0

a. The value V of outlen
bits, which is updated 1
each time another
outlen bits of output | Ky | v
are produced (see ]
Table 3 in Section +a—1 I
10.23.2.1).

b. The keylen-bit Key,

which is updated Figure 10: CTR-DRBG
whenever a

predetermined number of output blocks are generated.

reseed
counder

2 The specifications in this Standard do not accomm&?ate the special treatment required for a nonce in this
case



CTR_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

c. A counter (reseed counter) that indicates the number of requests for

pseudorandom bits since instantiation or reseeding.

2. Administrative information:

a. The security_strength of the DRBG instantiation.

b. A prediction resistance_flag that indicates whether or not a prediction

resistance capability is required for the DRBG.

| The values of ¥ and Key -are the critical values of the internal state upon which the security
of this DRBG depends (i.e., ¥ and Key are the “secret values” of the internal state).

’ 10.23.2.2.2 The Update Function (Update)

The Update function updates the internal state of the CTR_DRBG using the
provided_data. The values for outlen, keylen and seedlen are provided in Table 3 of

Section 10.23.2.1. The block cipher operation in step step 2.2 ot the CTR_DRBG update
process uses the selected block cipher algorithm (also see Section 10.45.4).

The following or an equivalent process shall be used as the Update function:

nputInput:
1.

provided data: The data to be used. This must be exactly seedlen bits in length;
this length is guaranteed by the construction of the provided_data in the
instantiate, reseed and generate functions.

2. Key: The current value of Key.

3. V: The current value of V.
Output:

1. K: The new value for Key.

2. V: The new value for V.
CTR_DRBG Update-Update PProcess:

1. temp = Null.

2. While (len (temp) < seedlen) do

2.1 V=(V+1)mod 2°"n,

2.2 outputl_block = Block_Encrypt (Key, V).
2.3 temp =temp | ouput_block.

temp = Leftmost seedlen bits of temp.

temp = temp ® provided data.

5. Key = Leftmost keylen bits of temp.

48



CTR_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

6. V=Rightmost outlen bits of temp.

7. Return the new values of Key and V,
l 10.23.2.2.3 Instantiation of CTR_DRBG

Notes for the instantiate function i

The instantiation of CTR_DRBG requires a call to the instantiate function specified in
Section 9.2. step 9 of that function calls the instantiate algorithm specified in
I this section. For this DRBG, step 5 should be omitted. The
values of highest supported_security_strength and min _length are provided in Table 3
of Section 10.22.2.1. The contents of the internal state are provided in Section
10.23.2.2.1.

The instantiate algorithm:

pdate i i i [
the derrviiBes-frpetoi-spec ek HY Seetion o2 usine e PR Ty Y FEWEY
The output block length (outlen), key length (keylen), seed
length (seedlen) and security_strengths for the block cipher algorithms are provided in
Table 3 of Section 10.23.2.1.

Inputhiuput-forsinstantintion:
1. entropy input: The string of bits obtained from the entropy input source.

2. nonce: A string of bits as specified in Section 8.4.2; this string shall not be
present unless a derivation function is used.

3. personalization_string: The personalization string received from the consuming

application.
Output
1. (uitic] working state: The inital values for V, Key,
reseed counter (see Section 10.23.2.2.1).
2.2.3.1  The Process Steps for Instantiation When Full Entropy is Available for the
Entropy Input, and a Derivation Function Is Not Used

Instantiate Process

49



CTR_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

|, Hthe-biopkcipher devivation funciionis-cvaitable—ihos
- f-sesd-maierial—e NFop- (P BoHE S PersoRatisation—sisng
FZyouelanerarial—Block -Cipher—df fseod-mealeriad—seedion.
Idwo—omment—ihe-bleck-cipher devivatian-functions-aol-used-and-full-ontvopy
+3-temp = len (personalization_siring).
Comment: Ensure that the length of the
personalization string is exactly seedlen bits.
The maximum length was checked in Section

9.2. processing step 3, using Table 3 to define
the maximum length.

2. JIf (temp < seedlen). then personalization_string = personalization_string ||
”\.'.-,I/un g /um/).
1

3. V-3 seed material = entropy_input ® personalization _string.
24. Key = 0f<™, Comment: keylen bits of zeros.
35, 1 =", Comment: outlen bits of zeros.
46. (Key, V) = Update (seed material. Key. V).
537. reseed counter = 1.
. G itialt .
compating with the first DRBG output-bloek
b previows—ontpui-ock—Bloek—Encrypt{fer—5:

Fzerog =0 CemmentProdueeastringotseedien
s

98. Return V', Key. previows—onipti—blockand reseed_counter as the

initial_working state.

Implementation note:

L w personalizaigon sring will never be provided from the instuntiate function. then steps

1-3 are replaced by:

seed _material = entropy _inpul,

Fhut is. steps [-3 collapse intw the above siep.

50



CTR_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

10.3.2.2,3.2 The Process Steps for instantiation Whan a Derivation Function is Used

L Block Cipher df be the derivation function specitied in Section 11L5.3 using th

[+ |1 ysen block ¢ |r her ||I rithi and Key size

Lhe following process or its equivalent shall be used as the instantiate algorithm for this
DRBG:
CTR_DRBG Instantiate ProcessC FR-DRBG lnstantiate ©
\. seed material = entropy _inpul || nonce || personalizutic ng

Comment: Ensure that the length of the
seed material is exactly seedlen bits.

2. seed materiad = Bloek _Cipher df (seed material. seedlen)

3 Key=0" Comment: keylen bits of zeros.
o= Comment: outlen bits ot zeros.

5. (thev, )= Update (seed matericd. Key. 1),

6. reseed counter = 1.

7. Return /. Kev. and reseed coumter as \ZW initicl working state.

Implementation note:s:

+-If a personalization string will never be provided from the instantiate function-ard-a
derivationfunction-wit-beused. then steps [-2-1 beeomesare replaced by:

seed _material — Block_Cipher_df (entropy input. seedlen).

. ‘TH N . 1 21345 4% 6 co ,!ﬁ e .H“’ - b(ﬁ‘ et EB
10.23.2.2.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function specitied in Section 9.3:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed function
specified in Section 9.3. Process step 5 of that function calls the reseed algorithm
specified in this section. The values for min _length are provided in Table 3 of Section
10.23.2.1.

The reseed algorithm:

Let Update be the function specified in Section 10.23.2.2.2-und-tet- Bloek Cipherdf
51



CTR_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

bethe-deriviin funetion spectivd irSection 352 usine the chosen-plock cipher
aleorithmand key size, The seed length (seedlen) is provided in Table 3 of Section
10.25.2.1.

For this DRBG. there are bwo cases Loy the processing. The input to the reseed

alodrithm is the same Tor each case: likewise Far the output Trom the reseed algorithm
 Seetions 10.3.2.2.4.1 and

Flowever, the proces

10.3.2.2.4.2).

s steps are slightly different

Hon block vipher derivation-{unetion-is-to be-used: then the Bloek Cipher—df

ifiedinSeeti 5
algorithin and key size:-in-this-ease;step-below shall consist-of-steps 1.1 and

Wl entropy is avatnble whenever enteopy-inpod s requived, and o Mock cipher

MMHMWMMMMH—MWM{WMM
Inputinputfor-reseeding:
1. working state: The current values for V, Key, previous _output_block and
reseed_counter (see Section 10.23.2.2.1).

2. entropy input: The string of bits obtained from the entropy input source.

3. additional_input. The additional input string received from the consuming
application.

Output Output nlter reseeding:

1. nevw working state: The new values for V, Key, previouns—ontpii—tlockand
reseed_counter.

10.3.2.2.4.1 _The Process Steps for Reseeding When Full Entropy is Available for the
Entropy Input, and a Derivation Function is Not Used

The following process or its_equivalent shall be used as the reseed algorithm lor (his

DRBG (see step 5 ol the reseed process in Section 9.3);
CTR DRBG Reseed Process

Seod-BRHEP O — CRFRpY—inpi—— cadelitieme—iapid:

sedcd initericd— Bloek—Cipler—df-isecd-meterial, seedlens

fefne Egmment—he-Maock-cipher devivation

52



CTR_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

+3-temp = len (additional _input).

Comment: Ensure that the length of the
additional _input is exactly seedlen bits. The
maximum length was checked in Section 9.3,
processing step 2, using Table 3 to define the
maximum length.

seedlen - temp

2. -t (remp < seedlen), then additional _input = additional _input || 0

3. +tS-seed material = entropy input @ additional input.

24. (Key. V) = Update (seed material, Key. I).

33. reseed counter = 1.

46. Return V, Key—previows—ontpri—block and reseed counter as the

new _working state.

Implementation note:

W additional _fnpar Will never be provided from the reseed lunction, then steps -3 ae
replaced by:

seed materiol = entropy Inpul.

That is. steps -3 collapse inte the above step.

10.3.2.2.4.2 The Process Steps for Reseeding When a Derivation Function is Used

Let Block_Cipher_df be the derivation function specificd in Seetion 10.5.3 using the

chosen bloek cipher algorithm and ke

Lhe [ollowing process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.3):

CTR DRBG Reseed ProcessCTR—DRBG Reseed-;

1. seed matericd = emrapy input || additional input.

Comment: Ensure that the length of the
seed material is exactly seedlen bits.

2. seed punerial = Bloek Cipher df (seed material. seedlen),

lad

. (Kev. 1) = Update (seed _material, Kev. ).

b

reseed counter = 1.

5. Return I Kev. and resecd counter as the new working. state.

Implementation notes:
Y——Itadditional input will never be provided from the reseed function-and-a
53




CTR_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

derivation-tunction-will-be-used, then steps 1-2-+1 becomes:
seed material = Bloek_Cipher_df (entropy input. seedlen).

I W additienat-inpratwillbuever be-provided-from-the veseed funetion, a-full
entropy souree-will-be-availableand-n-devivation-funeton will-not-be-useds

thenstep-l-becomes

10.23.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function specitied in Section 9.4:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a call
to the generate function specified in Section 9.4. Process step 8 of that function calls
the generate algorithm specified in this section. The values for

max_number of bits per request, mox_cciditionu! 1upn lengih. and outlen are
provided in Table 3 of Section 10.23.2.1. If the derivation function is not used, then the
maximum allowed length of additional input = seedlen.

he processine. The inpul Lo the generate

For this DRBG. there are two cases lor |

cewise for the output from the eencrate
are slighdy different (see ‘*«u.i:ulh 10.3.2.2.5.1

algorithim is the same for ach case;

algorithm, However, the process steps

and 10.3.2.2.5.2).

Foahe deriviation funetion- s notasedthenthe-masimm-allowed-leneth o

ditional—i — condion
Let Update be the function specified in Section 10.23.2.2.2_ and let Block Encrypt be
the Tunetion speciled 1 Section 10.45.24. The seed length (seedlen) and the value of
reseed _interval are provided in Table 3 of Section 10.2 1.2.1. Siep 52 below yaes the
selegted Block cipier diporthin- Ha-defbratonfinetiop-is-potased-or e PRBG
implementationsthansiep- 3 2shal-be omiied:

Hog-blogk-vipherderivationtunetionis-te-be uveds thenthe-Bloek - Cipher (i speeied
i-Section .32 shidh-be-implemenied usine the shasen-block-oipher-algerithm mad-kev
stee-i-this-ensessien- 32 heloveshalbbe-tncluded:

H-tull-epwopy-is-avadible wheneversntopy-inpe- b regeiredeand-a-block-sipher
derivationturetends-notta-beusadi-thenstep 32 belowshall-rot-Be-used;

Fhe-folowing provess-or-fs-equivalentshall be tsed-as-generate-sdgorithm-torthiy

Inputinpui-for generation:

1. working state: The current values for V, Key. previcus—outpni—blockand
54



CTR_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

reseed counter (see Section 10.23.2.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be allowed, then step 3 becomes:

o . ceedle
additional _input = 0™,

OutputQutputaftergeneration:
1. status: The status returned from the function. The status will indicate
SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned bits: The pseudorandom bits returned to the generate function.
3. working state: The new values for V, Koy, previows outpi—blockand
reseed_counter.

10.3.2.2.5.1 The Process Steps for Generating Pseudorandom BitsWhen a Derivation
Function is Not Used for the DRBG Implementation

Ihie following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of the generate process in Section 9.4.1):

CTR DRBG Generate Processc TR_DRBG Generate

Proeess:
1. If reseed counter > reseed interval, then return an indication that a reseed is
required.
2. Hold=¥

3—It (additional _input # Null). then

Comment: Ensure that the length of the
additional _input is exactly seedlen bits. The
maximum length was checked in Section
9.4.1. processing step 4. using Table 3 to
define the maximum length. If the length of
the additional input is —:_seedlen. derive
seedtenpad with zero -bbits.
32.\ temp = len (additional _input).
Conents Ha block-cipher derivation-fupnebon-s usedk
3.2 Wotremp =-seadlenythern additicrad—inpii—

Block—Cipher— df tadditioncaf—inpi—seedien)

Cemmment: Hthe lenath-of the-additional —inpai-ts— seedlean padawith

55



CTR_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

32.32 If(temp < seedlen). then
additional _input = additional input || 0

seedlen - temp

32.43 (Key. ') = Update (additional _input. Key, ).

Else additional input = 0",

43. temp = Vull.

54. While (len (temp) < requested_number of bits) do:

54.1 V=(V+ 1) mod 2",
54.2 output block = Block_Enerypt (Key. V).

c - Conti ¢ |
33— HWtamtput-Mock=previeus—onipit- blockictherretum-an-ERROR-
Sodoprasients ottipii-block —onipit—iack.
54.33 temyp = temp || owtpur block.

63, retrned bits = Lemost requested number of 'bits ol temp.
FComment: Update Tor backtracking
resistance.

86. (Key. 1= Update (adiditional input. Key. 1),

07, reseed counter = reseed counter + 1.

W8, Return SUCCESS and returned bits: also return Key, 1,
previgus—oipii-Mockand reseed connter ag the sese e werking state.

10.3.2.2.5.2 The Process Steps for Generating Pseudorandom BitsWhen a Derivation
Function is Used for the DRBG Implementation

chusen bliick cipher algorithm and key size.

The following process or its equivalent shall be used as generate algovithm for this DRBG
[s¢e step 8 ol the generate process in Section 94,15

CTR DRBG Generate Processt FR-DRBG Generate;

ed comner > reseed _imerval. then return an indication that @ resced is

L 1Lres

required.

2. W (gdditional mput = Null), then

56



CTR_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

2.0 additional_inpur = Bloek_Cipher_df (additional input. seedlen).

2.2 (Key. 1) = Update (qelditional inp, Key, 1),

Else additional input = 0",

3. temp = Nufl,
While (len (femp) < requested_aumber of bifs) du:

=

et

40 F=(+ 1ymod 2

4.2 owtpnt bluck = Block Encrypt (Aey. V).

=

4=

3 temp = temp || outpul_block

5, retwrned bity = Letmost reguested munber _of bits ol temp.

Comment: U pdate for backliacki

6. (Key. 1Y)~ Update (aelditionad input. Kev, 1)

7. reseed connter = veseed counter v .

8. Rewrn SUCCESS und requrmed_birs: also réturn Key, 17, and reseed connier as
the pew_working_state,

57



Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

10.34 Deterministic RBG Based on Number Theoretic Problems
10.34.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. Section 10.34.2 specifies a DRBG based on the elliptic curve discrete logarithm
problem.

10.34.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)
10.34.2.1 Discussion

The Dual EC_DRBG is based on the following hard problem, sometimes known as the
“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic
curve of order n, find a such that O = aP.

Dual EC_DRBG uses a seed that is m bits in length (i.e., seedlen = m) to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on two
points in an elliptic curve group, where the curve is defined over a field approximately 2"
in size. For all of the NIST curves given in this Standard for the DRBG, m > 2506. Figure
11 depicts the Dual_ EC_DRBG.

seed Y
Instand. ox
Teesd nly
t s | r | Extract
t* . 4
[Optional] @ x P))lfg.{q)(x (s"Q) Bits
additional input T T ;
0 P Q Pseudorandom

Bits

I additionsl inpud = Null

Figure 11: Dual_EC_DRBG

The instantiation of this DRBG requires the selection of an appropriate elliptic curve and
curve points specified in Annex A.1 for the desired security strength. The seed used to
determine the initial value (s) of the DRBG shall have entropy that is at least

security strength bits. Further requirements for the seed are provided in Section 8.2. This
DRBG uses the derivation function specified in Section 10.443.2 during instantialion and
reseeding.

Backtracking resistance is inherent in the algorithm, even if the internal state is
compromised. As shown in Figure 12, Dual_EC_DRBG generates a seedlen-bit number
58




Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

for each step i = 1,2,3,..., as follows:

Si= o(x(Si-1 *P))

R =o(x(Si *Q)). — —
Each arrow in the figure represents an Elliptic Sy H S, ( 8,
Curve scalar multiplication operation, followed L L -
by the extraction of the x coordinate for the r
resulting point and for the random output R; T
[ollowed by truncation to produce the output L R1J
(formal definitions for ¢ and x are given in
Section 10.34.2.2.4). Following a line in the

direction of the arrow is the normal operation;
inverting the direction implies the ability to solve
the ECDLP for that specific curve. An
adversary’s ability to invert an arrow in the figure implies that the adversary has solved the
ECDLP for that specific elliptic curve. Backtracking resistence is built into the design, as
knowledge of S; does not allow an adversary to determine Sy (and so forth) unless the
adversary is able to solve the ECDLP for that specific curve. In addition, knowledge of R
does not allow an adversary to determine S; (and so forth) unless the adversary is able to
solve the ECDLP for that specific curve.

Figure 12: Dual_EC_DRBG (...)
Backtracking Resistance

Table 4 specifies the values that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Annex A.1. Note that all
curves exeept-theP-224 curve can be instantiated at a security strength lower than its
highest possible security strength. For example, the highest security strength that can be
supported by curve P-384 is 192 bits; however, this curve can alternatively be instantiated
to support only the 112 or 128-bit security strengths).

Table 4: Definitions for the Dual_EC_DRBG

222 P-384 P-521
P-256
Supported security strengths See SP 800-57
Size of the base field (in bits) 256 384 521
highest supported_ See SP 800-57
security strength
Output block length (max_outlen = 208 368 504
largest multiple of 8 less than (size 240
ot the base ficld) - (13 + log, (the
cofactor))
Required minimum entropy for security strength
instantiate and reseed

59




Dual_EC_DRBG

ANS X9.82, Part 3 - DRAFT - January 2006

e P-384 P-521
P-256
Minimum entropy input length security_strength
(min_length)
Maximum entropy input length <2 bits
(max _length)
Maximum personalization string <2 bits
length
(max_personalization_string length)
Maximum additional input length 27 bits
(max_additional_input_length)
Seed length (seedlen) 2 x security_strength
Appropriate hash functions SHA-1, SHA- SHA-224, SHA- SHA-256,
224, SHA-256, | 256, SHA-384, SHA-384,
SHA-384, SHA- | SHA-512 SHA-512
512
max_number_of bits_per_request max_outlen x reseed_interval
Number of blocks between < 2% blocks
reseeding (reseed_interval)
Lot bbb Ha-SeetontH-Delected-enorsshatrosu

10.34.2.2 Specifications

10.24.2.2.1 Dual_EC_DRBG Internal State

The internal state for Dual_ EC_DRBG consists of:

1. The working state:

A value (s) that determines the current position on the curve.

b. The elliptic curve domain parameters (seedlen, p, a, b, n), where seedlen is the
length of the seed-; a and b are two field elements that define the equation of
the curve. : and # is the order of the point G. If only one curve will be used by
an implementation, these parameters need not be present in the working_state.

c. Two points P and Q on the curve; the generating point G specified in Annex
A.1 for the chosen curve will be used as P. If only one curve will be used by an
implementation, these points need not be present in the working_state.

d. A counter (block_counter) that indicates the number of blocks of random

60




Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

produced by the Dual_EC_DRBG since the initial seeding or the previous
reseeding.

2. Administrative information:
a. The security_strength provided by the instance of the DRBG,

b. A prediction resistance_flag that indicates whether prediction resistance is
required by the DRBG.

The value of s is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value™ of the internal state).

‘ 10.34.2.2.2 Instantiation of Dual_EC_DRBG

Notes for the instantiate function specitied in Section 9.2:

The instantiation of Dual EC_DRBG requires a call to the instantiate function
I specified in Section 9.2. Process step 9 of that function calls the instantiate algorithm in
this section.

In process step 5 of the instantiate function, the following step shall be performed to
select an appropriate curve if multiple curves are available.

| 5. Using the security strength and Table 4 in Section 10.34.2.1, select the smallest
available curve that has a security strength > security _strength.

The values for seedlen, p, a, b, n, P, Q are determined by that curve.

It is recommended that the default values be used for P and Q as given in Annex A.1.
However, an implementation may use different pairs of points, provided that they are
verifiably random, as evidenced by the use of the procedure specified in Annex A.2.1
and the self-test procedure described in Annex A.2.2.

The values for highest_supported security strength and min_length are determined by
| the selected curve (see Table 4 in Section 10.34.2.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 10.43.2 using an
appropriate hash function from Table 4 in Section 10.34.2.1. Let seedler be the
appropriate value from Table 4.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of the instantiate process in Section 9.2):

‘ Inputiaput-for-instantiation:
1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.2.

3. personalization string: The personalization string received from the consuming

61



Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

application.
Outpututput niter instantiation:
1. s: The initial secret value for the 11111/ working_state.

2.
block counter: The initialized block counter for reseeding.
] EC Instantiate Process

1. seed _material = entropy input || nonce || personalization_string.

Comment: Use a hash function to ensure that
the entropy is distributed throughout the bits,
and s is m (i.e., seedlen) bits in length.

2. s=Hash_df (seed material, seedlen).

block_counter = 0.

. Return s, block_counter for the working state.
10.24,2.2.3 Reseeding of a Dual_EC_DRBG Instantiation

Notes for the reseed function specitied in Section 9.3:

The reseed of Dual_EC_DRBG requires a call to the reseed function specified in
Section 9.3. Process step 5 of that function calls the reseed algorithm in this section.
The values for min _length are provided in Table 4 of Section 10.24.2.1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 10.45.1 2 using an
appropriate hash function from Table 4 in Section 10.54.2.1.

The following process or its equivalent shall be used to reseed the Dual EC_DRBG
process after it has been instantiated (see step 54 of the reseed process in Section 9.3):

Inputinput-for reseeding:
1. s: The current value of the secret parameter in the working_state.
2. entropy input: The string of bits obtained from the entropy input source.

3. additional _input: The additional input string received from the consuming
application.

Output
1. s: The new value of the secret parameter in the nev working state.

2. block counter: The re-initialized block counter for reseeding.

62



Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

Dual EC DRBG Reseed Process

Comment: pad8 returns a copy of s padded
on the right with binary 0’s, if necessaty, to a
multiple of 8.

1. seed material = pad8 (s) || entropy_input || additional input_string.
2. s=Hash_df (seed material, seedlen).

3. block counter = 0.

4. Return s and block counter for the new_working_state.

Implementation notes:

If an implementation never allows additional_input, then step 1 may be modified as
follows :

seed_material = pad8 (s) || entropy_input.
10.34.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function specified in Section 9.4:

The generation of pseudorandom bits using a Dual_EC_DRBG instantiation requires a
call to the generate function specified in Section 9.4. Process step 8 of that function
calls the generate algorithm specified in this section. The values for

max number_of bits_per request and max_outlen are provided in Table 4 of Section
10.34.2.1. outlen is the number of pseudorandom bits taken from each x-coordinate as
the Dual EC_DRBG steps. For performance reasons, the value of outlen should be set
to the maximum value as provided in Table 5. However, an implementation may set
outlen to any multiple of 8 bits less than or equal to max_outlen. The bits that become
the Dual EC_DRBG output are always the rightmost bits, i.., the least significant bits
of the x-coordinates.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 10.43.4-2 using an
appropriate hash function from Table 4 in Section 10.34.2.1. The value of
reseed_interval is also provided in Table 4.

The following are used by the generate algorithm:

a. pads (bitstring) returns a copy of the bitstring padded on the right with binary
0’s, if necessary, to a multiple of 8.

b. Truncate (bitstring, in_len, out_len) inputs a bitstring of in_len bits, returning
a string consisting of the lefimost our_len bits of bitstring. If in_len < out_len,
the bitstring is padded on the right with (out_len - in_len) zeroes, and the result
is returned.

¢. x(A) is the x-coordinate of the point 4 on the curve, given in affine coordinates.
63



Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

c.

An implementation may choose to represent points internally using other
coordinate systems; for instance, when efficiency is a primary concern. In this
case, a point shall be translated back to affine coordinates before x() is applied.

¢ (x) maps field elements to non-negative integers, taking the bit vector
representation of a field element and interpreting it as the binary expansion of
an integer.

The precise definition of @(x) used in steps 6 and 7

below depends on the field representation of the curve points. In keeping with
the convention of FIPS 186-2, the following elements will be associated with
each other (note that m = seedlen):

B: cuallcmall - |lc1llco , abitstring, with cu.1 being lefimost
Zoem2™ 4 42+ 2t e € Z;
Fa: 2™ + .. 422 + ¢2'+ ¢o modp € GF(p) ;

Thus, any field element x of the form Fa will be converted to the integer Z or
bitstring B, and vice versa, as appropriate.

* is the symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 in Section 9.4):

Inputinput for generation:

1.

working_state: The current values for s, seedlen, p, a, b, n, P, Q, and
reseed counter (see Section 10. 2.1).

requested_number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional _input: The additional input string received from the consuming
application.
Output
1. status: The status returned from the function. The status will indicate

2.
3.
4.

SUCCESS, or an indication that a reseed is required before the requested
pseudorandom bits can be generated.

returned_bits: The pseudorandom bits to be returned to the generate function.
s: The new value for the secret parameter in the new working_state.
block counter: The updated block counter for reseeding.

Generate Process

Comment: Check whether a reseed is

64



Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

required.

requested _number _of __bits

1. If (block_ counter + { -l] >reseed_interval, then

outlen
return an indication that a reseed is required.

Comment: If additional input is Null, set to
seedlen zeroes; otherwise, Hash_df to
seedlen bits.

2. If (additional_input string = Null), then additional input =0
Else additional input = Hash_df (pad8 (additional_input_string), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:

3. temp = the Null string.

4 i=0.

5. t=s5® additional _input. Comment: £ is to be interpreted as a seedlen-
bit unsigned integer. To be precise, ¢ should
be reduced mod n; the operation * will effect
this.

6. s=@(x(t * P)). Comment: s is a seedlen-bit number.

7. r =o(x(s *Q)). Comment; » is a seedlen-bit number.

8.

temp = temp || (rightmost outlen bits of v ).

. additional _input=0 Comment: seedlen zeroes;
additional _input_string is added only on the
first iteration.

block _counter = block_counter + 1.
i=it1.
If (len (temp) <

requested number of bits), then go to
step 5.

returned_bits = Truncate (femp, i x outlen, requested_number_of bils).

. Return SUCCESS, returned bits, and s, and block_counter for the
working_state.

65



Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

' 10.5 Auxilliary Functions

10.5.1 Discussion

Derivation (unctions are intemal lunctions that are used during DRBG instuntiation and
reseeding to either derive internal state values or to distribute entropy throughout o
bitstring. Two methods are provided. One method is bised an hash functions (see Section
10:3.2). and the other method i basied on block cipher algorithms tsee 10.3.3). The block
cipher devivation Tunction uses o Bloek Cipher Hash function that is speeilied in Scetion
10.5.4.

10.5.2 Darivation Function Using a Hash Function (Hash df}

I'his derivation function is used by the Dual EC_DRBG specilied Section 10.44.2. The
hash-based derivation function hashes an input siring and retns the requested number ol
bits. Let Hash (...) be the hash function used by the DRBG. and let omtlen be its outpul
length.

The following or an equivalent process shall be used w derive the requested number of
bits.

Input:
1. input_string: The string to be hashed.

2. no_of bits_to_retrn: The number of hits o be returned by Hash_df. The
maximum leneth (mezx mumber of bits) is implementation dependent. but shall
be less than or equal to (235 x outlen). no_of bits_to_return is represented as a
32-bit integer.

Qutput:

1. status: The status retuned rom Hash_df. The statgs will indicale SUCCESS
or ERROR FLAG.

2. requested bits - The result ol pecforming the Hash_df,

Hash_df Process:

1. Lo of bits 1o et = max _nwmber of biis. then retuin an ERROR-
FLAG.

2. temp = the Null string.

. [no_of bits_to_return
3. len= = == = :
outlen

4, counter = an 8-bit binary value representing the integer 1",

5. Fori=1tolendo

Comment = Instep 3.1, no_of bits_to return
66



Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

is used as a 32-bit string.

5.1 temp = temp || Hash (counter || na_of bits_to_return || input_string).

5

counter = counter + 1.
6. requesied bits = Lelimost (no_of bits 1o _return) of temp.

7. Rerun SUCCESS and reguested hits,
10.5.3 Derivation Function Using a Block Cipher Algerithm (Block Cipher df)

I'his derivation function is used by the CTR_DRBG that is specilied in Section 1:3.2, Let
Block Cipher Hash be the function specified in Section 10.5.4 Let ontlen be its output
Block tepgth. which is o multiple of 8 bits for the Approved block cipher algorithms, and
let keylen be the key length.

e following of an egquivalent process shall be used (o derive the requested number of
bits.

[nput:
L impt siring: The stiing to be operated on. his string shall be a multiple of 8

2. wo of bits o remrn: The number of bits to be returned by Block_Cipher_df.
The maxinuum length (max_manber_of bits)is 312 bits for the currently
approved block cipher algorithms,

Output:

1. status: The status returned from Block Cipher df. The status will indicate
SUCCESS or ERROR FLAG.

2, requested bits : The result of performing the Bloek _Cipher df.

Block_Cipher_df Process:

L. I (number_of bits_to_return > nax_number_of bits). then return an

ERROR FLAG.
2 L= len (inpul_string)/8. Comment: £ is the bitstring represention ol

the integer resulting from len (input string)(8,
L shall be represented as o 32-bit integer.

3, N =pumber of bits to_retwen/$. Comment : N s the bitstring represention of
the integer resulting from
numher of bits to return/8. N shall be
represented as a 32-bil integer.

Comment: Prepend the string leneih and ihe
requested length of the output to the
input_string.

67




Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

10.5.4

Comment : Pad S with zeros. if necessary.

While (len (S) mad eufen) = 0. S= S || 0x00.

Comment : Compute the stugting vilue.

=0, Comment . i shall be represented us o 32-bit
integer. i.c.. len (i) = 32,

K = Lelimost keylen bits ol Ox00010203... 11,

Comment: Compute the reguested number ol
bits.

2. While len (remp) < munher of bits to retnn. do

L reguested birs = Lefimost sumber of bits to_retinal e,

3. S=LIUN| input string || 0x80.
4.
5. tremp = the Null string.
. L —
8. While
83 i=i+1.
9, A = Lelimost kevien bits ol renyp.
10. V= Next ontlen bius ol remp.
11, temp = the Nudf string,
I g
12.1 V= Block Encrypt (A, Y).
12.2 temp = temp || .X.
13
14.

Retum SUCCESS and reguested bits.

Block Cipher Hash Function

The Block_Enerypt pseudo-function is used for convenience in the specitication of the
Block Cipher_Hash function. This function is not specitically defined in this
RecommendationStandard, but has the following meaning:

—Block_Encrypt: A basic encryption operation that uses the selected block cipher
algorithm. The function call is:

output_block = Block_Encrypt (Key. input block)

For TDEA, the basic encryption operation is called the forward cipher operation (see
SP-800-67ANS X9.52); tor AES, the basic encryption operation is called the cipher
operation (see FH2S-197ASC X9 Registry 00002). The basic encryption opetation is

68

i Formatted: Ellets and Numgering I



Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - January 2006

equivalent to an encryption operation on a single block of data using the ECB mode.

For the Bloek_Cipher_Hash function. let outlen be the length ol the output block of the
block cipher algorithm 1o be used.

bits.

Inpui:
1. Key: The kev Lo be used tor the block cipher opeation.

2. e to hash: The data to be operated upon. Note that the length of
date_to hash must be a multiple of outfen. This is euaranteed by steps 4 and
8.1 in Section 10.5.3,

Output:
V. ouipul block: Uhe result 1o be returned from the Bloek Cipher Hash
operdtion.

Block_Cipher Hash process:
ety

Comment: Set the first chaining value o
olitlen 2e108.

|, ehaining value =0

2, n=len (data to huashy outlen.

3. Splitthe data’ jo_hash into n blocks of enrlen bils cach torming Mock 1
block,,

1 lFori=lwndo

L1 inpue Mock = chaining value @ black, .

4.2 chaining value = Block Encvypt (Key. inpur biock).

5. ouprit block = chaining value.

6. Retwrn ompul_block.

69



11 Assurance
11.1 Overview

A user of a DRBG for cryptographic
purposes requires assurance that the

ANS X9.82, Part 3 - DRAFT - January 2006

generator actually produces random and Design « Evaluation
unpredictable bits. The user needs l l
assurance that the design of the generator,

its implementation and its use to support Standards

cryptographic services are adequate to
protect the user's information. In addition,
the user requires assurance that the
generator continues to operate correctly.
The assurance strategy for the DRBGs in
this Standard is depicted in Figure 13.

The design of each DRBG in this standard

Implementation < Validation

Operational Tests

has received an evaluation of its security
properties prior to its selection for

Figure 13: DRBG Assurance Strategy
inclusion in this Standard.

The accuracy of an implementation of a DRBG process may be asserted by an
implementer. However, this Standard requires that an implementation shall be designed to
allow validation testing, including documenting design assertions about how the DRBG
operates (see Section 11.2). This shall include mechanisms for testing all detectable error
conditions.

An implementation should be validated for conformance to this Standard by an accredited
laboratory (see Section 11.3). The consuming application or cryptographic service that
uses a DRBG should also be validated and periodically tested for continued correct
operation. However, this level of testing is outside the scope of this Standard. Such
validations provide a higher level of assurance that the DRBG is correctly implemented.
Validation testing for DRBG processes consists of testing whether or not the DRBG
process produces the expected result, given a specific set of input parameters (e.g., entropy
input). Implementations used directly by consuming applications should also be validated
against conformance to FIPS 140-2.

Iealth tests on the DRBG shall be implemented within a DRBG boundary or sub-
boundary in order to determine that the process continues to operate as designed and
implemented. See Section 11.4 for further information.

Note that any entropy input used for testing (either for validation testing or health testing)
may be publicly known. Therefore, entropy input used for testing shall not knowingly be
used for normal operational use.

70



ANS X9.82, Part 3 - DRAFT - January 2006

11.2 Minimal Documentation Requirements

This Standard requires the development of a set of documentation that will provide
assurance to users and (optionally) validators that the DRBGs in this Standard have been
implemented properly. Much of this documentation may be placed in a user’s manual. This
documentation shall consist of the following as a minimum:

o Document the method for obtaining entropy input. « Formatted: Bullets and Numbering

¢ Document how the implementation has been designed to permit implementation
validation and eperationat-hcalth testing.

e Document the type of DRBG (e.g., HMAC_DRBG, Dual_EC_DRBG), and the
cryptographic primitives used (e.g., SHA-256).
e Document the security strengths supported by the implementation.

e Document features supported by the implemention (e.g., prediction resistance, the
available elliptic curves, etc.).

o In the case of the CTR_DRBG, indicate whether a derivation function is provided.
If a derivation function is not used, documentation shall clearly indicate that the
implementation can only be used when full entropy input is available.

e Document any support functions other than health testing.

11.3 Implementation Validation Testing

A DRBG process may be tested for conformance to this Standard. Regardless of whether
or not validation testing is obtained by an implementer, a DRBG shall be designed to be
tested to ensure that the product is cotrectly implemented; this will allow validation testing
to be obtained by a consumer, if desired. A testing interface shall be available for this
purpose in order to allow the insertion of input and the extraction of output for testing.
Implementations to be validated shall include the following:

e Documentation specified in Section 11.2.

e Any documentation or results required in derived test requirements.

11.4 Health Testing
11.4.1 Overview

A DRBG implementation shall perform self-tests to ensure that the DRBG continues to
function properly. Self-tests of the DRBG processes shall be performed as specified in
Section 9.6. A DRBG implementation may optionally perform other self-tests for DRBG
functionality in addition to the tests specified in this Standard.

All data output from the DRBG boundary shall be inhibited while these tests are
performed. The results from known-answer-tests (see Section 11.4.2) shall not be output

71



ANS X9.82, Part 3 - DRAFT - January 2006

as random bits during normal operation.

When a DRBG fails a self-test, the DRBG shall enter an error state and output an error
indicator. The DRBG shall not perform any DRBG operations while in the error state, and
no pseudorandom bits shall be output when an error state exists. When in an error state,
user intervention (e.g., power cycling, restart of the DRBG) shall be required to exit the
error state (see Section 9.7).

11.4.2 Known-Answer Testing

Known-answer testing shall be conducted as specified in Section 9.6. A known-answer test
involves operating the DRBG with data for which the correct output is already known and
determining if the calculated output equals the expected output (the known answer). The
test fails if the calculated output does not equal the known answer. In this case, the DRBG
shall enter an error state and output an error indicator (see Section 9.7).

The generalized known-answer testing is specified in Section 9.6. Testing shall be
performed on all DRBG functions implemented.

72



ANS X9.82, Part 3 - DRAFT - January 2006

Annex A: (Normative) Application-Specific Constants
A.1 Constants for the Dual_EC_DRBG

The Dual. EC_DRBG requires the specifications of an elliptic curve and two points on the
elliptic curve. One of the following MS4-approy ed curves and points shall be used in

applications requiring certification under |54 N9 Reist 00001, More details
about these curves may be found in FIPS PUB 186-3, lhe I):g:tal Slgnalurc Standard (%],

A.1.1 Curves over Prime Fields

Each of following mod p curves is given by the equation:
y? =x*-3x+ b (mod p)
Notation:
p - Order of the field F}, , given in decimal

r - order of the Elliptic Curve Group, in decimal . Note that r is used here for
consistency with FIPS 186-3 but is referred to as » in the description of the
Dual_EC_DRBG (...)

a— (-3) in the above equation
b - coefficient above

The x and y coordinates of the base point, ie generator G, are the same as for the point
P.

A.1.1.1 Curve P-256

p = 11579208921035624876269744694940757353008614\
3415290314195533631308867097853951

r = 11579208921035624876269744694940757352999695\
5224135760342422259061068512044369

b= 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e
27d2604b

Px = 6b17d1f2 el2c4247 f8bce6e5 63a440f2 77037d81 2deb33al
£4a13945 d898c29%6

Py = 4fe342e2 fela7f9 Bee7ebda 7c0f9el6 2bce3357 6b3l5ece
cbb64068 37bf51£5

73



ANS X9.82, Part 3 - DRAFT - January 2006

Ox = c97445f4 5cdef9f0 d3e0S5ele 585fc297 235b82b5 be8ff3ef
ca67c598 52018192

Oy = b28ef557 ba3ldfcb dd2lac46 e2a%le3c 304f44cb 87058ada
2cb81515 1610046

A.1.1.2 Curve P-384

p = 39402006196394479212279040100143613805079739\
27046544666794829340424572177149687032904726\
6088258938001861606973112319

¥ = 39402006196394479212279040100143613805079739\
27046544666794690527962765939911326356939895\
6308152294913554433653942643

b=Db3312fa7 e23ee7ed 988e056b e3f82d19 181d9cee fe814112 0314088f
5013875a ¢656398d 8a2edl19d 2a85c8ed d3ec2aef

Px = aaB87ca22 be8b0537 8eblc7le £320ad74 6eld3b62 8ba79b98
59f741e0 82542a38 5502f25d bf55296¢c 3a545e38 72760ab7

Py = 3617deda 96262c6f 5d9e98bf 9292dc29 £8f41ldbd 289%aldvc
e9da3113 b5f0b8c0 0a60blce 1d7e819d 7a431d7c 90eale5f

Ox = 8e722de3 125bddb0 5580164b fe20b8b4 32216a62 926c5750
2ceede3l c4781l6ed dle89769 124179d0 b6951064 28815065

Qy = 023b1660 dd701d08 39fd45ee c36f9%ee7 b32e13b3 15dc0261
Oaalb636 e346dfe7 1£790£84 c5e09b05 674dbb7e 45¢803dd
A.1.1.3 Curve P-521

p = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397656052122559\
64066145455497729631139148085803712198799971\
6643812574028291115057151

r = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397655394245057\
74633321719753296399637136332111386476861244\
0380340372808892707005449

b=051953eb 9618elc9 alf929a2 1a0b6854 Oeea2da’l 25b99b31 5£3b8b48
74



ANS X9.82, Part 3 - DRAFT - January 2006

9918efl10 9e156193 95lec7e9 37bl652c Obd3bblb £f073573d £883d2c3
4flef451 £d46b503 £00

Px = c6858e06 b70404e9 cd9%e3ecb 662395b4 429c6481 39053fb5
21f828af 606b4d3d baaldbbe 77efe759 28feldcl 27a2ffa8
de3348b3 cl1856a42 9bf97e7e 31lc2ebbd 66

Py = 11839296 a789%a3bc 0045c8a5 fb42c7dl bd998£54 449579b4
46817afb dl17273e6 62c97ee7 2995ef42 640c550b 9013fado
761353c7 086a272c 24088be9 4769fdl6 650

Ox = 1b9fa3eb 18d683c6 b6576369 4acB8efba ec6fabdd £2276171
a4272650 7dd08add 4c3b3fdc lebcSbl2 22ddbal7 7£722943
b24c3edf a0f85fe2 4d0c8cO0l 591f0be6 f63

QOy= 1f3bdba5 85295d9%a 1110d1ldf 1f9430ef 8442c501 8976f£34
37ef91b8 1dcO0b813 2c8d5¢39 c¢32d0e00 4a3092b7 d327c0Oe7?
add26d2c 7b69b58f 90666529 1145777 9de

A.2 Using Alternative Points in the Dual_EC_DRBG()

The security of Dual_EC_DRBG( ) requires that the points P and Q be properly
generated. To avoid using potentially weak points, the points specified in Annex A.1
should be used. However, an implementation may use different pairs of points provided
that they are verifiably random, as evidenced by the use of the procedure specified in
Annex A.2.1 below, and the self-test procedure in Annex A.2.2. An implementation that
uses alternative points generated by this Approved method shall have them “hard-wired”
into its source code, or hardware, as appropriate, and loaded into the working_state at
instantiation. To conform to this Standard, alternatively generated points shall use the
procedure given in Annex A.2.1, and verify their generation using Annex A.2.2.

A.2.1 Generating Alternative P,Q

The curve shall be one of the NiSTF-eurves-from EHRS186-3curves that is specified in

Annex A.1 of this Standard, and shall be appropriate for the desired security_strength, as
specified in Table 4, Section 10.34.2.1.

The point P shall remain the generator point G given in Annex A.1 for the selected curve.
(This minor restriction simplifies the test procedure to verify just one point each time.)

The point Q shall be generated using the procedure specified in ANS X9.62. The
following input is required:

An elliptic curve £ = (Fy, a, b), cofactor , prime , a bit string SEED, and hash
function Hash(). The curve parameters are given in Appendix-Annen A 1-ofANS
X982 The minimum length m of SEED shall conform to Section 10.34.1, Table 4,
under “Seed length”. The bit length of SEED may be larger than m. The hash function

75



ANS X9.82, Part 3 - DRAFT - January 2006

shall be SHA-512 in all cases.

If the output from the ANS X9.62 generation procedure is “failure”, a different SEED must
be used.

Otherwise, the output point shall be used as the point Q.
A.2.2 Additional Self-testing Required for Alternative P,Q

To insure that the point Q has been generated appropriately, an additional self-test
procedure shall be performed whenever the instantiate function is invoked. Section 9.6.2
specifies that known-answer tests on the instantiate function be performed prior to creating
an operational instantiation. As part of those tests, an implementation of the generation
procedure specified in ANS X9.62 shall be called with the SEED value used to generate
the alternate Q. The point returned shall be compared with the stored value of Q used in
place of the default value (see Annex A.1-ofANS-X9-82). If the generated value does not
match the stored value, the implementation shall halt with an error condition.

76



ANS X9.82, Part 3 - DRAFT - January 2006

ANNEX B : (Normative) Conversion and Auxilliary Routines

B.1 Bitstring to an Integer

Input:

1. by, by ..., by The bitstring to be converted.
Output:

1. x The requested integer representation of the bitstring.
Process:

1. Let (b, by, ..., b,) be the bits of b from leftmost to rightmost.

2. x=)207p,.

i=l
3. Return x.

In this Standard, the binary length of an integer x is defined as the smallest integer »
satisfying x < 2"

B.2 Integer to a Bitstring

Input:

1. x The non-negative integer to be converted.
Output:

1. by, by, ..., b, The bitstring representation of the integer x.
Process:

1. Let (b1, by, ..., by) represent the bitstring, where b, = 0 or 1, and &, is the most
significant bit, while b, is the least significant bit.

2. For any integer # that satisfies x < 2", the bits 4; shall satisfy:

x= zn:Z("'i)b, .
=)

3. Return by, by, ..., by.

In this Standard, the binary length of the integer x is defined as the smallest integer » that
satisfies x <2".

B.3 Integer to an Octet String

Input:
77



ANS X9.82, Part 3 - DRAFT - January 2006

1. A non-negative integer x, and the intended length # of the octet string satisfying
25> x.
Output:
1. An octet string O of length # octets.
Process:
1. Let Oy, O, ..., Oy be the octets of O from leftmost to rightmost.
2. The octets of O shall satisfy:
x =% 2o,
fori=1ton.
3. Return O.
B.4 Octet String to an Integer

Input:
1. An octet string O of length # octets.
Output:
1. A non-negative integer x.
Process:
1. Let O,, O, ..., O, be the octets of O from leftmost to rightmost.
2. x is defined as follows:
x =2 250,
fori=1ton.

3. Return x.

78



ANS X9.82, Part 3 - DRAFT - January 2006

Annex C: (Informative) Security Considerations
C.1 Extracting Bits in the Dual_EC_DRBG (...)

C.1.1 Potential Bias Due to Modular Arithmetic for Curves Over F,

C.1.2 Adjusting for the Missing Bit(s) of Entropy in the x Coordinates.

In a truly random sequence, it should not be possible to predict any bits from previously
observed bits. With the Dual EC_DRBG (...), the full output block of bits produced by
the algorithm is “missing” some entropy. Fortunately, by discarding some of the bits,
those bits remaining can be made to have nearly “full strength”, in the sense that the
entropy that they are missing is negligibly small.

To illustrate what can happen, suppose that a mod p curve with m = 256 is selected, and
that all 256 bits produced were output by the generator, i.e. that outlen = 256 also. Suppose
also that 255 of these bits are published, and the 256-th bit is kept “secret”. About %2 the
time, the unpublished bit could easily be determined from the other 255 bits. Similarly, if
254 of the bits are published, about Y of the time the other two bits could be predicted.
This is a simple consequence of the fact that only about 1/2 of all 2" bitstrings of length m
occur in the list of all x coordinates of curve points.

The "abouts" in the preceding example can be made more precise, taking into account the
difference between 2™ and p, and the actual number of points on the curve (which is
always within 2 * p” of p). For the curves , these differences won't
matter at the scale of the results, so they will be ignored. This allows the heuristics given
here to work for any curve with "about" (2")/f points, where f= 1 is the curve's cofactor.

The basic assumption needed is that the approximately (2™)/(2f) x coordinates that do occur
are "uniformly distributed": a randomly selected m-bit pattern has a probability 1/2f of
being an x coordinate. The assumption allows a straightforward calculation,--albeit
approximate--for the entropy in the rightmost (least significant) m-d bits of

79



ANS X9.82, Part 3 - DRAFT - January 2006

Dual EC_DRBG output, with d << m.

24
The formulais E=-)_ [2"’“’ binomprob(Z",z,Z" - j)]p ,log, p;, where E is the entropy.

=0

The term in braces represents the approximate number of (m-d)-bitstrings that fall into one
of 142 categories as determined by the number of times j it occurs in an x coordinate; z =
(2£-1)/2fis the probability that any particular string occurs in an x coordinate; p; = (7*2/)/2"
is the probability that a member of the j-th category occurs. Note that the /=0 category
contributes nothing to the entropy (randomness).

The values of E for d up to 16 are:
log2(f): 0 d: 0 entropy: 255.00000000 m-d: 256
log2(f): 0 d: 1 entropy: 254.50000000 m-d: 255

log2(f): 0 d: 14 entropy: 241.99995597 m-d: 242
log2(f): 0 d: 15 entropy: 240.99997800 m-d: 241
log2(f): 0 d: 16 entropy: 239.99998900 m-d: 240

log2(f): 0 d: 2 entropy: 253.78063906 m-d: 254
log2(f): 0 d: 3 entropy: 252.90244224 m-d: 253
log2(f): 0 d: 4 entropy: 251.95336161 m-d: 252
log2(f): 0 d: 5 entropy: 250.97708960 m-d: 251
log2(f): 0 d: 6 entropy: 249.98863897 m-d: 250
log2(f): 0 d: 7 entropy: 248.99434222 m-d: 249
log2(f): 0 d: 8 entropy: 247.99717670 m-d: 248
log2(f): 0 d: 9 entropy: 246.99858974 m-d: 247
log2(f): 0 d: 10 entropy: 245.99929521 m-d: 246
log2(f): 0 d: 11 entropy: 244.99964769 m-d: 245
log2(f): 0 d: 12 entropy: 243.99982387 m-d: 244
log2(f): 0 d: 13 entropy: 242.99991194 m-d: 243

d

d:

Observations:
a) The table starts where it should, at 1 missing bit;
b) The missing entropy rapidly decreases;

¢) For log2(f) = 0, i.e, the mod p curves, d=13 leaves 1 bit of information in every
10,000 (m-13)-bit outputs (i.e.. one bit of entropy is missing in a collection of
80




ANS X9.82, Part 3 - DRAFT - January 2006

10.000 outputs).

Based on these calculations, for the mod p curves, it is recommended that an
implementation shall remove at least the leftmost (most significant) 13 bits of every m-bit
output.

For ease of implementation, the value of d should be adjusted upward, if necessary, until
the number of bits remaining , m-d= outlen, is a multiple of 8. By this rule, the
recommended number of bits discarded from each x-coordinate will be either 16 or 17. As
noted in Section 10.34.2.2.4, an implementation may decide to truncate additional bits
from each x-coordinate, provided that the number retained is a multiple of 8.

Because only half of all values in [0,1,...,p-1] are valid x-coordinates on an elliptic curve
defined over F,, it is clear that full x-coordinates should not be used as pseudorandom bits.
The solution to this problem is to truncate these x-coordinates by removing the high order
16 or 17 bits. The entropy loss associated with such truncation amounts has been
demonstrated to be minimal (see the above chart).

One might wonder if it would be desirable to truncate more than this amount. The obvious
drawback to such an approach is that increasing the truncation amount hinders the already
sluggish performance. However, there is an additional reason that argues against
increasing the truncation. Consider the case where the low s bits of each x-coordinate are
kept. Given some subinterval / of length 2° contained in [0, p), and letting N(/) denote the
number of x-coordinates in 7, recent results on the distribution of x-coordinates in [0, p)
provide the following bound:

IN(D/ (p/2)-2° I p|<k*log? p/sqrtp,

where k is some constant derived from the asymptotic estimates given in [Shparhnski9].
For the case of P-521, this is roughly equivalent to:

IN@- 20| <k *2,

where the constant & is independent of the value of 5. Fors < 2277 this inequality is weak
and provides very little support for the notion that these truncated x-coordinates are
uniformly distributed. On the other hand, the larger the value of s, the sharper this
inequality becomes, providing stronger evidence that the associated truncated x-
coordinates are uniformly distributed. Therefore, by keeping truncation to an acceptable
minimum, the performance is increased, and certain guarantees can be made about the
uniform distribution of the resulting truncated quantities.

C.2 Reserve for a discussion of the nonce specified in Section 8.4.2, item 7

81



ANS X9.82, Part 3 - DRAFT - January 2006

ANNEX D: (Informative) DRBG Selection
D.1 Choosing a DRBG Algorithm

Almost no application or system designer starts with the primary purpose of generating
good random bits. Instead, he (e desivner typically starts with some goal that he wishes to
accomplish, then decides on some cryptographic mechanisms, such as digital signatures or
block ciphers that can help kir achieve that goal. Typically, as

the requirements of those cryptographic mechanisms . he learns
random bits cd 1o senerated, and that this must
be done with great care. or the cryptographic mechanisms

. At this point, there are three things that
may guide the designer's choice of a DRBG:

a. He may already have decided to include a set of cryptographic primitives as part of
his implementation. By choosing a DRBG based on one of these primitives, he can
minimize the cost of adding that DRBG. In hardware, this translates to lower gate
count, less power consumption, and less hardware that must be protected against
probing and power analysis. In software, this translates to fewer lines of code to
write, test, and validate.

For example, a module that generates RSA signatures has an available hash
function, so a hash-based DRBG is a natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash
function, etc., to have certain properties. By choosing a DRBG based on similar
properties, he can minimize the number of algorithms he has to trust.

For example, an AES-based DRBG might be a good choice when a module
provides encryption with AES. Since the sccurity of the DRBG is dependent on the
strength of AES, the module's security is not made dependent on any additional
cryptographic primitives or assumptions.

¢. Multiple cryptographic primitives may be available within the system or
application, but there may be restrictions that need to be addressed (e.g.,code size
or performance requirements).

The DRBGs specified in this Standard have different performance characteristics,
implementation issues, and security assumptions.

D.2 HMAC_DRBG

HMAC DRBG is a->RB6 built around the use of some approved hash function in the
HMAC construction. To generate pseudorandom bits from a secret key (Key) and a
starting value ¥, the DRBG computes

82



ANS X9.82, Part 3 - DRAFT - January 2006

V=HMAC (Key, V).

At the end of a generation request, the DRBG DRBG generales a new Key and ¥, each
requiring one HMAC computation.

than the underlving hash function processes inputs: for SHA-236. a long sencrate regu
Lach generate reguest also involves additional
extra bits with SILA-236. Note. however. (hat hash functions are Lvpically quite fast: tew il

any consuming applical
can proy ide them.

Security The security of HMAC DRBG is based on the assumption that an appros cd

ons are expecled W need output bits faster than HNAC DRBC

famlly. Informally, this }st means that when an attacker doesn’t know the key used,
HMAC outputs look random, even given knowledge and control over the inputs. In
general, even relatively weak hash functions seem to be quite strong when used in the
HMAC construction. On the other hand, there is not a reduction proof from the hash
function’s collision resistance properties to the security of the DRBG; the security of
HMAC_DRBG ultimately relies on the pseudorandomness properties of the underlying
hash function. Nole thal-btH-tepessiileta-pelaeipletor HALAC DREBG (o-he Biaken
byt wha-carmtHndcollsionsorpremmsei-tor the-uaderlying -hosh Junctian,
That-said. the pseudorandomness of HMAC is a widely used assumption in
designingdesigns—and the- HMAGC-DRBG requives far-tess-demandine propertiesol-the
anderlyine-hash-function-than-Hash-DRBG.

Constraints on Queputs. As shown in Table 2 of Section 10421, lor cach hash Junclion.

48 S e R
up Lo 27 generale requests may_be made. cach ol up to 2 " bits,

Resources. HMAC_DRBG requlres access to i ¢ edl(.dlt,d H\I AC

|mnlcmentalmn ior
ophm [‘\_'.l-rl'!?.-,..il; However. a general-purpose has 1

always be used o implement [I\[«\( Any_implementation ]I ires the
1cquned [or the mtundl state {see Section 10.2 2 Ud ﬁ(HHH}‘: engine or-an-HMAC
Hmplementation-and-the stornge space-required-for-the-iternab state fsee-Seetion 1 02+,

SLaee Space

Algorithm Choices. The choice of aloorithns hash [une
HMAC_DRBG is discussed in Section 10.42.1.

D.3 CTR_DRBG

Lluns that may be used by

CTR_DRBG is ¢ R B¢ based on using an Approved block cipher alcorithin in counter
mode (see ASC XY Registin 00002). At the present time of tiis—vriting, only three-key
TDEA and AES are approved for use within ANS-x9-42in this DRBG. Pseudorandom
outputs are generated by encrypting successive values of a counter; after a generate

request, a new key and new starting counter value are generated.
Performance, [For large Generate requests. CTR_DRBG produces outputs al the same

83

Comment [ebb2]: This reference is only

- useful for AES, not TDEA.



ANS X9.82, Part 3 - DRAFT - January 2006

speed as the orithm encrypts data, Furtherinore, CI'R. DRBG
is parall iHL iV _:Iv_l_‘.. .)_1 l_lIL_},l_‘lL[_-\_l I.;-lg_h_t. ienerute request, work eguivalent to o or4
cncryptions is performed. depending on the choice of underlying block cipher algorithm. to

generate new kevs and counters for the next Gengerate request.

Security. The security of CTR_DRBG is directly based on the security of the underlying
block cipher 1 corithin, in the sense that, so long as some limits on the total number of
outputs are observed any attack on CTR_DRBG represents an attack on the underlying

Constraints on Outputs. As shown in Table 3 of Section 10.2°.2,1, for each of the three
AES key sizes, up to 2% generate requests may be made, each of up to 2" bits, with a
negligible chance of any weakness that does not represent a weakness in AES. However,
the smaller block size of TDEA imposes more constraints: each generate request is limited
to 2" bits, and at most 2°? such requests may be made.

Resources. CTR _DRBG mayv be implemernted with or without a derivation [unction.

When a derivation {upetion h_U‘de CTR l)l{li__( ._.,m mgl._g._w_x_l_l_t_t__ La.:nnnaluduon str |ng
and any additional input in the
In.“m se ol the use ol the d-.r'r

um Ium,lrun i as nppn\t.!,’ Lu nul LNI}" llli. dL‘II\dLIOH

Ju:vih-.,sl tlu. i‘t.h\lr_us_t_i'!_{ilﬂ!ﬂ_\l{ g and a¢ |l.|'|[h‘!hl.] !I’L‘_l_ll_ll__l_.._l__lll_llJI exceed \LGC//CII blt% Suoh
implementiat

ions must be seeded by a source ol entropy input that provides (ull entropy
an Approved conditioned entropy source or Approved RBG).

e

CTR_DRBG requires access to a block cipher algorithm, including the ability (o change
kevs. and the storage space required for the internal state (see Section
l() 3. 2 2. 1).CTR-DRBG-is rdealr forsituations in-whieh—+ }Jmedlretmn ms]%amew%enen

the-wse oba-derivation-functon-showld-not-lead o an-important-performuanee penslbsiee
beth-these operations-ate-done-orb-veryrateh-— CFR-DPRBG-implementations-may-dlso
suffer-a-substantial pecformanee-pepaliv- - thev- process aikditional-put-with-generate
reguests: sinee the-derivation funetion-ray-be requited-ta-this-case-aswell-unless-the
Ww&é&mﬂ%ﬁﬁeﬁ%ﬂ%ﬂ%w%ﬂawe%%

Algorithm Choices.- : -The choice of block cipher algorithms and key sizes that may be

84



ANS X9.82, Part 3 - DRAFT - January 2006

used by CTR_DRBG is discussed in Section 10.25.12. 1.
D.4 DRBGs Based on Hard Problems

The Dual_EC_DRBG generates pseudorandom outputs by extracling bits lrom elliptic
curve points, The seeret. internal state of the DRBG is a value S that is the x-coordinate of
a point on an elliptic curve. Outputs are produced by first computing & to be the x-
coordinate of the point S*P and then extracting low order bits from the x-coordinate of the
elliptic curve point R*Q,

Performance. Due to the elliptic eurve arithmetic involved in this DRBG. this aliorithm
should be noted. however, that the design of this algorithm allows for certain performance-
enhaneing possibilities, First, note that the use of fixed base points allows a substantial
inerease in the performance of this DRBG via the use of tables. By storing multiples of the
points £ und (2, the elliptic curve multiplication ¢an be accomplished via point additions
rather than multiplications. @ mugh less expensive operation. [n more constrained
chvironments where table storage is not an option. the use ol sosgalled Montgomers
Coordinates ol the lorm (X 2 Z) can be used s u method toinerease performance, since the
v-goordinutes ol the computed poinis are not required. A given implementation ol this
DRBG need not include all three of the NS E-Approved-curves specilied in Anpex ALl
Once the designer decides upon the strength required by a given application. he can then
choose 10 implement the single curve thut most appropriately meels Lis reguirement. For
a common level ol optimization expended. the higher strength curves will be slower and
tend toward less elficient use of output blocks: To mitigate the latter. the designer should
be aware that every distinet request for random bits. whether for two million bits or a
single bit. requires the computational expense af at least two elliptic curve point
multiplications. Applications requiring large blocks ol random bits (such as IKI or 881,
can hus be implemented most efficient!y by st making a single call to the DRBG for all
the reguired bits. and then appropriately partitioning these bits-as required by the protocol.
For applications that already have hardware or software support for elliptic curve
arithmetic. this DRBG is a natural choice. as it allows the designer to ulilize existing
capabilities to generate truly high-security random numbers,

Security. The security of Dual EC_DRBG is based on the so-called "Elliptic Curve

the-middle™ atacks. For an elliptic curve defined over a lield of size 2, the work factor of
hes s is approximately 2”7, so that solving this problem is computationally
infeasible for the curves in this Standard. _The Dual EC_DRBG is the only DRBG in this
Standard whaose seeurity i8 related to a hard problem in number theory.

Constraints on Qutputs. For any one of the three elliptic curves. a particular instance of

Dual EC DRBG mav pencrate 4t most 27 output blocks hefoie icseeding. where the size

of the output blocks is discussed in Section 10.34.2.2.4. Since the sequence of vutput

blocks is expueeted wevele in approximately sqrige) bits (where n is the (prime) order off

the particular elliptic curve being used). this is quite a conservative reseed interval for any
85




ANS X9.82, Part 3 - DRAFT - January 2006

one ol he three possible curyes.

Resources. Any entropy input source may be used with Dual_EC_DRBG. provided that
it is capable of gencrating at least min entropy bits of entropy in a string ol 'max_length =
2 bits. This DRBG also requires an appropriate hash [unction (sce Table 4) that is used
exclusively lor producing an appropriately-sized initial state from the entropy input at
instantiation or reseeding. An implementation ol this DRBG must also have enough
storage [or the internal state (see 10.34.2.2.1). Some optimizations require additional
storage for moderate to large tables of pre-computed values.

Algorithm Choices. The choice of appropriate elliptic curves and points used by
Dual_EC_DRBG is discussed in Annex A. 1.

86



ANS X9.82, Part 3 - DRAFT - January 2006

ANNEX E: (Informative) Example Pseudocode for Each DRBG
E.1 Preliminaries

The internal states in these examples are considered to be an array of states, identified by
state_handle. A particular state is addressed as internal state (state_handle), where the
value of state_handle begins at 0 and ends at #-1, and » is the number of internal states
provided by an implementation. A particular element in the internal state is addressed by
internal_state (state handle).element. In an cmpty internal state. all bitstrings are set to
Vull. and all integers are set Lo 0.

in this annex. arbitary values have been selected thal wre ¢
as specilied in the appropriate table in Section 10
The pseudocode in this annex_does not include the necessary conversions (e.g.,

integer to bitstring) for an implementation. When conversions are required, they must be
accomplished as specified in \nnes B.

The following routine is defined for these pseudocode examples:

Find_state_space (): A function that finds an unused internal state. The function
returns a status (either “Success” or a message indicating that an unused internal state
is not available) and, if status = “Success”, a state_handle that points to an available
internal_state in the array of internal states. If status # “Success”, an invalid
state_handle is returned.

When the uninstantantiate function is invoked in the following examples, the function
specified in Section 9.5 is called.

E.2 HMAC_DRBG Example
E.2.1 Discussion

This example of HMAC_DRBG uses the SHA-256 hash function. Reseeding and
prediction resistance are not provided. The nonce for instantiation consists of a random
value with security_strength/2 bits of entropy; the nonce is obtained by increasing the call
for entropy bits via the Get_entropy input call by security strength/2 bits (i.e., by adding
security strength/2 bits to the security strength value). The Update funclion is specified

in Section 10:42.2.2.2.

A personalization string is allowed, but additional input is not. A total of 3 internal states
are provided. For this implementation, the functions and algorithms are written as separate
routines. Also. the Get_entropy_input function uscs only two input paramelers. since the
first two parameters (as specified in Section 9) have the same value.

The internal state contains the values for V, Key, reseed counter, and security_strength,
where ¥ and C are bitstrings, and reseed_counter and security strength are integers.

In accordance with Table 2 in Section 10. , security strengths of 112, 128, 192 and 256
87



ANS X9.82, Part 3 - DRAFT - January 2006

| bits may be supported. Using SHA-256, the following definitions are applicable for the
instantiate and generate functions and algorithms:

1.
2.

. Required minimum entropy for the entropy input at instantiation = 3/2

8.

E.2.2

highest supported security strength =256.
Output block (outlen) = 256 bits.

security_strength (this includes the entropy required for the nonce).
Seed length (seedlen) = 440 bits.

Maximum number of bits per request (max number of bits per request) = 7500
bits.

Reseed_interval (reseed interval) = 10,000 requests.

Maximum length of the personalization string (max_personalization string length)
=160 bits.

Maximum length of the entropy input (max _length) = 1000 bits.
Instantiation of HMAC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered.

Instantiate_ HMAC_DRBG (...):

Input: integer (requested_instantiation _security strength), bitstring

personalization_string.

Output: string status, integer state handle.

Process:

Check the validity of the input parameters.

1. If (requested instantiation_security Strength> 256), then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 160), then Return (“Personalization_string
too long?”, -1)

Comment: Set the security_strength to
one of the valid security strengths.

3. If (requested security strength < 112), then security strength=112
Else (requested security strength < 128), then security strength =128
Else (requested_security_strength < 192), then security_strength = 192
Else security _strength = 256.

Comment: Get the entropy_input and
88



8.
9.

ANS X9.82, Part 3 - DRAFT - January 2006

the nonce.
min_entropy = 1.5 x security_strength.
(status, entropy_input) = Get_entropy_input (imin_entropy, 1000).

If (status # “Success™), then Return (“KaHure-tndieationrettrnedCatastrophic
failure of-by- the entropy source:” || status, -1).

Comment: Invoke the instantiate algorithm.
Note that the entropy_input contains the
nonce.

(¥, Key, reseed_counter) = Instantiate_algorithm (entropy input,
personalization string).

Comment: Find an unused internal state and
save the initial values.

(status, state_handle) = Find_state_space ().

If (status = “Success”), then Return (“No available state space:” || status, -1).

10. internal_state (state_handle) = {V, Key, reseed_counter, security strength}.

11. Return (“Success™ and state_handle).

Instantiate_algorithm (...):

Input: bitstring (entropy_input, personalization_string).

Output: bitstring (V, Key), integer reseed_counter.

Process:

L.

2
3.
4

(9]

seed_material = entropy input || personalization_string.
Set Key to outlen bits of zeros.

Set V'to outlen/8 bytes of 0x01.

(Key, V) = Update (seed_material, Key, V).

4

T—reseed counter = 1.

80, Return (V, Key, reseed_counter).
E.2.3 Generating Pseudorandom Bits Using HWAC_DRBG

The implementation returns a Nu// string as the pseudorandom bits if an error has been

detected.

HMAC_DRBG(...):

Input: integer (state handle, requested no_of bits, requested security strength).

89



ANS X9.82, Part 3 - DRAFT - January 2006

Output: string (status), bitstring pseudorandom _bits.
Process:
Comment: Check for a valid state handle.

1. If ((state_handle < 0) or (state_handle > 2) or (internal_state (state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).

Comment: Get the internal state.

2. V=internal_state (state_handle).V, Key = internal_state (state_handle).Key,
security_strength = internal _state (state_handle).security strength,
reseed counter = internal _state (state_handle).reseed counter.

Comment: Check the validity of the rest of
the input parameters.

3. If (requested no_of bits > 7500), then Return (“Too many bits requested”,
Null).

4. If (requested security strength > security strength), then Return (“Invalid
requested security strength”, Null).

Comment: Invoke the generate algorithm.

5. (status, pseudorandom_bits, V, Key, reseed counter) = Generate_algorithm
(V, Key, reseed _counter, requested number_of bits).

6. If (status = “Reseed required”), then Return (“DRBG can no longer be used.
Please re-instantiate or reseed”, Null).

internal state (state handle) = {V, Key, security strength, reseed counter}.
8. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):
Input: bitstring (/ /<, Key), integer (reseed counter, requested_number of bits).

- Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed_counter.

90



ANS X9.82, Part 3 - DRAFT - January 2006

Process:

1 If (reseed _counter > 10,000), then Return (“Reseed required”, Null, V, Key,
reseed _counter).

2. temp = Null.
While (len (temp) < requested no of bits) do:
3.1 V=HMAC (Key V).
32

temp =temp || V.
4. pseudorandom bits = Leftmost (requested no_of bits) of temp.
5. (Key, V)= Update (additional input, Key, V).
6. reseed counter = reseed counter + 1.
7. Return (“Success”, pseudorandom bits, V, Key, reseed_counter).
E.3 CTR_DRBG Example Using a Derivation Function

E.3.1 Discussion

This example of CTR_DRBG uses AES-128. The reseed and prediction resistance
capabilities are available, and a block cipher derivation function using AES-128 is used.
Both a personalization string and additional input are allowed. A total of 5 internal states
are available. For this implementation, the functions and algorithms are written as separate
routines. The Block_Enerypt function (specified in Section [0 ) uses AES-128 in the
ECB mode.

The nonce for instantiation (instantiation_nonce) consists of a 32-bit incrementing counter.
The nonce is initialized when the DRBG is installed (e.g., by a call to the clock or by
setting it to a fixed value) and is incremented for each instantiation.

The internal state contains the values for V, fci. pre v s oo ol counter,
and security_strength, where | and Aey and previo prief—hie aleaumgh, and all
other values are integers. Since prediction res1stance is always available, there is no need
for prediction resistance_flag in the internal state.

In accordance with Table 3 in Section 10.23.2.1, security strengths of 112 and 128
may be supported. Using AES-128, the following definitions are applicable for the
instantiate, reseed and generate functions:

1. highest supported security strength = 128.
2. Output block length (outlen) = 128 bits.

91



ANS X9.82, Part 3 - DRAFT - January 2006

3. Key length (keylen) = 128 bits.

4. Required minimum entropy for the entropy input during instantiation and reseeding
= security strength.

5. Minimum entropy input length (min length) = security strength bits.
6. Maximum entropy input length (max length) = 1000 bits.

7. Maximum personalization string input length
(max_personalization_string input length) = 800 bits.

8. Maximum additional input length (max_additional _input_length) = 800 bits.
9. Seed length (seedlen) = 256 bits.

10. Maximum number of bits per request (max_number_of bits_per request) = 4000
bits.

11. Reseed interval (reseed interval) = 100,000 requests. Note that for this value, the
instantiation count will not repeat during the reseed interval.

E.3.2 The Update Function

Update (...):
Input: bitstring (provided data, Key, V).
Output: bitstring (Key, V).
Process:
1. temp = Null.
2. While (len (temp) < 256) do
3.1 V=(V+1)mod2%,
3.2 output block= AES_ECB_Encrypt (Key, V).
3.3 temp =temp || ouput_block.
4. temp = Leftmost 256 bits of temp.
5 temp = temp ® provided_data.
6. Key = Leftmost 128 bits of temp.
7. V=Rightmost 128 bits of temp.
8. Return (Key, V).
E.3.3 Instantiation of CTR_DRBG Using a Derivation Function

This implementation will return a text message and an invalid state handle (-1) when an error
| is encountered. Block_Cipher_df is the derivation function in Section 10.45.23, and uses

92



ANS X9.82, Part 3 - DRAFT - January 2006

AES-128 in the ECB mode as the Block_Encrypt function.

Note that this implementation does not include the prediction_resistance_flag in the input
parameters, nor save it in the internal state, since prediction resistance is always available.

Instantiate. CTR_DRBG (...):

Input: integer (requested_instantiation_security strength), bitstring
personalization_string.

Output: string status, integer state handle.
Process:

Comment: Check the validity of the input
parameters.

L. If (requested_instantiation_security_strength > 128) then Return (“Invalid
requested_instantiation_security strength”, -1).

2. If (len (personalization string) > 800), then Return (“Personalization_string
too long”, -1).

3. If (requested_instantiation_security_strength < 112), then security strength =
112

Else security_strength = 128.
Comment: Get the entropy input.

4. (status, entropy inpuf) = Get_entropy_input (security strength,
security strength, 1000).

5. If (status # “Success”), then Return (“Fature-indieation+eturned
byCatastrophic failure ol the entropy source” || status, -1).

Comment: Increment the nonce; actual coding
must ensure that the nonce wraps when its
storage limit is reached, and that the counter
pertains to all instantiations, not just this one.

6. instantiation_nonce = instantiation_nonce + 1.

Comment: Invoke the instantiate algorithm.

7. (V, Key. previows—omtpri—blocl—reseed counter) = Instantiate_algorithm

(entropy_input, instantia;ion_nonce, personalization_string).

Comment: Find an available internal state and
save the initial values.

8. (status, state_handle) = Find_state_space ().

9. If (status # “Success™), then Return (“No available state space:” || status, -1).

93



ANS X9.82, Part 3 - DRAFT - January 2006

Comment: Save the internal state.

10. internal_state _(state_handle) = {V, Ke).
reseed counter, Security strength}.

[ 1. Return (“Success”, state_handle).
Instantiate_algorithm (...):
Input: bitstring (entropy_input, nonce, personalization_string).
Output: bitstring (¥, Key), integer (reseed_counter).
Process:

1. seed material = entropy_input || nonce || personalization_string.

seed_material = Block_Cipher_df (seed_material, 256).
Key=0"%, Comment: 128 bits.
V=02%, Comment: 128 bits.

(Key, V) = Update (seed material, Key, V).

reseed counter = 1.

=S A s e i

Return (¥, Key. reseed counter).

E.3.4 Reseeding a CTR_DRBG Instantiation Using a Derivation Function
The implementation is designed to return a text message as the status when an error is
encountered.
Reseed_CTR_DRBG_Instantiation (...):

Input: integer (state_handle), bitstring additional input.

Output: string status.

Process:

Comment: Check for the validity of
state_handle.

1. If ((state handle < 0) or (state_handle > 1) or (internal_state(state_handle) =
{Null, Null. (0. 0}), then Return (“State not available for the indicated
state_handle”).

Comment: Get the internal state values.

04



ANS X9.82, Part 3 - DRAFT - January 2006

2. V=internal state (state_handle).V, Key = internal state (state handle).Key,
security strength = internal_state (state_handle).security _strength.
3. If (len (additional input) > 800), then Return (“Additional _input too long”).

4. (status, entropy_input) = Get_entropy (security strength,
security_strength, 1000).

6. If (status # “Success”), then Return (*
the entropy source:” || status).

Comment: Invoke the reseed algorithm.

7. (V, Key, reseed counter) = Reseed_algorithm (V, Key, reseed counter,
entropy_input, additional_input).

8. internal state (state_handle) = {V,
mnter, security strength }.

9. Return (“Success”).
Reseed_algorithm (...):

Input: bitstring (V, Key), integer (reseed_counter), bitstring (entropy input,
additional _input).

Output: bitstring (¥, Key), integer (reseed_counter).
Process:
1. seed material = entropy_input || additional_input.
2. seed_material = Block_Cipher_df (seed material, 256).
3. (Key, V)= Update (seed material, Key, V).
4. reseed counter=1.
5. Return V, Key, reseed counter).
E.3.5 Generating Pseudorandom Bits Using CTR_DRBG
The implementation returns a Null string as the pseudorandom bits if an error has been
detected.
CTR_DRBG...):

Input: integer (state_handle, requested no of bits, requested security_strength,
prediction_resistance request), bitstring additional input.

Output: string status, bitstring pseudorandom_bits.

Process:

95



ANS X9.82, Part 3 - DRAFT - January 2006

Comment: Check the validity of state handle.

. If ((state_handle < 0) or (state_handle > 4) or (internal_state (state _handle) =
{Null, Null. 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).

Comment: Get the internal state.

V = internal_state (state ' handle).V, Key znternal ' state (state_ handle) Key,
securzty strength lnternal | state (state handle) securtty strength
reseed counter = internal state (state_handle).reseed counter.

Comment: Check the rest of the input
parameters.

. If (requested_no_of bits > 4000), then Return (“Too many bits requested”,
Null).

. If (requested security strength > security strength), then Return (“Invalid
requested security_strength”, Null).

. If (len (additional_inpuf) > 800), then Return (“Additional input too long”,
Null).

6. reseed required flag=0.

. If ((reseed required flag=1) , then

7.1 status = Reseed_CTR_DRBG_Instantiation (state_handle,
additional input).

7.2 If (status = “Success™), then Return (status, Null).

Comment: Get the new working state values;
the administrative information was not
affected.

7.3 V=internal state (state_handle).V, Key internal_state
(state_handle).Key. previonns onipi
reseed counter = internal state
(state_handle).reseed_counter.

7.4 additional_input = Null.
7.5 reseed required flag=0.

Comment: Generate bits using the generate
algorithm.

. (status, pseudorandom_bits, V, )=
Generate_algorithm (7, A

96



ANS X9.82, Part 3 - DRAFT - January 2006

requested number of bits, additional_input).
9. If (status = “Reseed required”), then

9.1 reseed required flag=1.

9.2 Gotostep 7.

Bob2 Hotakestma+ “Suveess o then-Retnen ¢ PDIBG AT LR

SHECess e aHtplts- e handuninstantiaielsdeds

internal_state (state_handle) = {V, Key,
WA ons entipui- Block-security_strength. soscod- connter),

. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):
Input: bitstring (/ Koy old proviens awipui- hlock), integer (reseed_counter,
requested_number_of bits) bitstring additional _input.

Output: string status, bitstring (returned bits, V, hev. previous ougpne bioek),
integer reseed counter.

Process:
1. If (reseed counter > 100,000), then Return (“Reseed required”, Null, V,
Key. reseed counter).

2. If (additional_input # Null), then
2.1 additional _input = Block_Cipher_df (additional _input. 256).
2.2 Hitanm V36 - then-crelditioncl—inp b=l onal—invt
(Key, V) = Update (additional input, Key 1)-oled).

LA MR ey = Aoy ofdborddb = Lol then Return- (B ROI autput:

mateh =Nt K e provions—ertitr hilvek Feihighy Py BTy IYTETT Nt
3. temp = Null.
4. While (len (temp) < requested_number_of bits) do:
4.1 V=(V+1)mod2'%
4.2  output_block= AES_ECB_Encrypt (Key, V).
4.3 Wowipii—hlock—provions—eomtpni- dock-then Return (L RGO

97



ANS X9.82, Part 3 - DRAFT - January 2006

temp = temp || ouput block.
returned _bits = Leftmost (requested number of bits) of temp.

0%, Comment: Produce a string of 256 zeros.

zeros =
(Key, V)= Update (zeros, Key, V)

reseed counter = reseed counter + 1,

Sl S

Return (“Success”, returned bits, V, Key.
reseed counter).

E.4 CTR_DRBG Example Without a Derivation Function

E.4.1 Discussion

This example of CTR_DRBG is the same as the previous example except that a derivation
function is not used (i.e., full entropy is always available). As in Annex E.3. the
CTR_DRBG uses AES-128. The reseed and prediction resistance capabilities are
available. Both a personalization string and additional input are allowed. A total of 5
internal states are available. For this implementation, the functions and algorithms are
written as separate routines. The Bloek_Encrypt function (as specified in Seclion

10. ) uses AES-128 in the ECB mode.

The nonce for instantiation (instantiation nonce) consists of a 32-bit incrementing counter
that is the initial bits ol the personalizalion Stl'iﬂgf“\t'ciinn 8.6:45.2 states that when a
derivation function is used. the nonce. if used. is contained in the personalization string).
The nonce is initialized when the DRBG is installed (e.g., by a call to the clock or by
setting it to a fixed value) and is incremented for each instantiation.

The internal state contains the values for ¥, K¢;. reseed _counter,
and security_strength, where | Key are strings, and all
other values are integers.Since prediction resistance is always available, there is no need
for prediction_resistance flag in the internal state.

In accordance with Table 3 in Section 10. .1, security strengths of 112 and 128
may be supported. The definitions are the same as those provided in

.3, except that (o be compliant with Table 3. the maximum size of the
personalization_string is 224 bits in order to accommodate the 32-bits of the
instantiation nonce (i.e., len (instantiation_nonce) + len (personalization_string) must be
< seedlen. \whcere seedlen — 256 bits). In addition, the maximum size of any
additional input is 256 bits (i.e., len (additional input < seedlen)).

98



ANS X9.82, Part 3 - DRAFT - January 2006

E.4.2 The Update Function

The update function is the same as that provided in Annex E.3.2.
E.4.3 Instantiation of CTR_DRBG Without a Derivation Function

The instantiate_{unction (Instantiate_ CTR_DRBG) is the same as that provided in Annex
E.3.23. except for the following:
e Step 2 is replaced by:

If (len (personalization_string) > 224). then Return (“Personalization_string too
long™. -1).

e Step 6 is replaced by :
instantiation_nonce = instantiation_nonce + 1.
personalization string = instantiation_nonce || personalization string

The instantiate_algorithm (Instantiate_algorithm) is the same as thai provided in Annex
E.3.23. cxeept that steps | and 2 are replaced by:

temp = len (personalization string).
If (temp < 256). then personalization string = personalization string || 077"
seed material = entropy _input @ personalization_string.

E.4.4 Reseeding a CTR_DRBG Instantiation Without a Derivation Function

—The reseed lunction (Reseed CTR_DRBG) is lhe same as that provided in Annex « ! Formatted: Bullets and N_umberin_g
E.3.34. except that step 3 is replaced by:

If (Ien (additional _input) > 256), then Return (“Additional _input too long™).

he instantiatereseed algorithm (Reseed_algorithm) is the same as that provided in Annex
I..3.84, except that steps | and 2 are replaced by:

temp = len (additional _inpuf).
256-temp

L (temp < 256). then additional _input = additional _input || 0

seed material = entropy input @ additional input.
F4.4E.4.5 Generating Pseudorandom Bits Using CTR_DRBG
The gencrate function (CTR_DRBG) is the sume as that provided in Annex FE.3.5. except
that step 5 is replaced by :

If (len (additional _input) > 256). then Return (“Additional_input too long”. Nultl).

The generate algorithm (Generate_algorithm) is the same us that provided in Annex
EL.3.45. except that step 2.1 is replaced by:

99



ANS X9.82, Part 3 - DRAFT - January 2006

temp = len (additional _inpuf).
[f (temp < 256). then additional input = additional input || 077"

The generate-function is-the same as that provided in-Annex-E 3.6
FE.5 Dual_EC_DRBG Example
E.5.1 Discussion

This example of Dual_EC_DRBG allows a consuming application to instantiate using any
of the prime curves. The elliptic curve to be used is selected during instantiation
in accordance with the [ollowing:

requested_instantiation_security_strength | Elliptic Curve
112 P-256
13128 P-256
129 - 192 P-384
193 - 256 P-521

A reseed capability is available, but prediction resistance is not available. Both a
personalization_string and an additional_input are allowed. A total of 10 internal states are
provided. For this implementation, the algorithms are provided as inline code within the
functions.

The nonce for instantiation (instantiation_nonce) consists of a random value with
security strength/2 bits of entropy; the nonce is obtained by a separate call to the
Get_entropy_input routine than that used to obtain the entropy input itself. Also. the

The internal state contains values for s, seedlen, p, a, b, n, P, and
security_strength.

In accordance with Table 4 in Section 10.2.12, security strengths of 112, 128, 192 and
256 may be supported. SHA-256 has been selected as the hash function. The following
definitions are applicable for the instantiate, reseed and generate functions:

1. highest _supported_security strength=256.
2. Output block length (outlen): See Table 4.

3. Required minimum entropy for the entropy input at instantiation and reseed =
security strength.

4. Maximum entropy input length (max _length) = 1000 bits.

100



9

F.5.1E.5.2

ANS X9.82, Part 3 - DRAFT - January 2006

. Maximum personalization string length (max_personalization_string length) =

800 bits.
Maximum additional input length (max_additional _input_length) = 800 bits.
Seed length (seedlen): =2 x security strength.

Maximum number of bits per request (max_number _of bits per request) =
1000 bits.

Reseed interval (reseed interval) = +9.6062" blocks.
Instantiation of Dual_EC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an
ERROR is encountered. Hash_df is specified in Section [0.43.42.

Instantiate_Dual_EC_DRBG (...):

Input: integer (requested_instantiation security strength), bitstring

personalization_string.

Output: string status, integer state_handle.

Process:
Comment : Check the validity of the input
parameters.
1. If (requested_instantiation security strength> 256) then Return (“Invalid

requested_instantiation security strength”, -1).

If (len (personalization_string) > 800), then Return (“personalization_string
too long”, -1).

Comment : Select the prime field curve in
accordance with the
requested_instantiation_security_strength.

If requested_instantiation_security strength < 112), then
{security_strength = 112; seedlen=224; outlen =240}
Else if (requested instantiation_security _strength < 128), then
{security_strength = 128; seedlen=256; outlen =240}
Else if (requested instantiation_security _strength < 192), then
{security strength = 192; seedlen =384; outien = 368}

Else {security_strength = 256; seedlen=512; outlen = 504 .

Select the appropriate elliptic curve from Appendix-Annex A using the Table in
Appendix-Annex F.5.1 to obtain the domain parameters p, a, b, n, P, and Q.

101



ANS X9.82, Part 3 - DRAFT - January 2006

Comment: Request entropy_input.
5. (status, entropy_input) = Get_entropy (security strength, 1000).

6. If (status # “Success™), then Return (“
the entropy_input source:” || status, -1).

7. (status, instantiation_nonce) = Get_entropy (security strength/2. 1000).

8. If (status # “Success”), then Return (“( atasiio)
‘uined by-the random nonce source:” || status, -1).

Comment: Perform the instantiate algorithm.
9. seed _material = entropy input || instantiation_nonce || personalization_string.
10. s = Hash_df (seed material, seedlen).
11
block counter = 0.

Comment: Find an unused internal state and
save the initial values.

. (status, state_handle) = Find_state_space ( ).
If (status # “Success™), then Return (status, -1).

internal_state (state handle) = {s, seedlen, p, a, b, n, P, O,
block counter, security strength}.

. Return (“Success”, state_handle).
Reseeding a Dual_EC_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.
Reseed_Dual EC_DRBG_Instantiation (...):
Input: integer state_handle, string additional _input.
Output: string status.
Process:
Comment: Check the input parameters.

1. If ((state_handle < 0) or (state_handle > 9) or (internal _state
(state_handle).security strength = 0)), then Return (“State not available for the
state_handle”).

2. If (len (additional input) > 800), then Return (“Additional_input too long™).

Comment: Get the appropriate state values for
102



ANS X9.82, Part 3 - DRAFT - January 2006

the indicated state handle.

3. s=internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security strength = internal_state
(state_handle).security strength.

Comment: Request new entropy _input with
the appropriate entropy and bit length.

3. (status, entropy_input) = Get_entropy_input (security strength. 1000).

4. 1If (status = “Success”), then Return (“Catastrophic failure ol FaHure-indication
rettened-by-the entropy source:”|| status).

Comment: Perform the reseed algorithm.
5. seed material = pad8 (s) || entropy_input || additional _input.
6. s=Hash_df (seed material, seedlen).

Comment: Update the changed values in the
state.

7. internal_state (state_handle).s = s.
8. internal_state.block counter = 0.
9. Return (“Success”).
E-83E.5.4 Generating Pseudorandom Bits Using Dual_EC_DRBG
The implemenation returns a Null string as the pseudorandom bits if an error is
encountered.
Dual_EC_DRBG (...):

Input: integer (state_handle, requested_security_strength, requested_no_of bits),
bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
Process:
Comment: Check for an invalid state _handle.

1. If ((state handle < 0) or (state_handle > 9) or (internal_state (state_handle) =
0)), then Return (“State not available for the state_handle”, Null).

Comment: Get the appropriate state
values for the indicated state_handle.

2. s=internal_state (state_handle).s, seedlen = internal _state
(state_handle).seedlen, P = internal state (state_handle).P, Q = internal _state
(state_handle).Q, : ' ' yr—edd-block_counter =

103



ANS X9.82, Part 3 - DRAFT - January 2006

internal_state (state_handle).block_counter.

Comment: Check the rest of the input
parameters.

If (requested_number_of bits > 1000), then Return (“Too many bits
requested”, Null).

If (requested security strength > security_strength), then Return (“Invalid
requested strength”, Null).

If (len (additional_input) > 800), then Return (“Additional_input too long”,
Null).

Comment: Check whether a reseed is
required.

requested _number of _bits

If (block_counter +’V w> +8:6062), then

outlen

6.1 Reseed Dual_EC_DRBG_Instantiation (state_handle,
additional input).

6.2 If (status # “Success™), then Return (status).

6.3 s=internal state (state_handle).s, block_counter = internal_state
(state_handle).block_counter.

6.4 additional input = Null.

Comment: Execute the generate algorithm.

. If (additional _input = Null) then additional input=0

Comment: additional _input set to m zeroes.
Else additional input = Hash_df (pad8 (additional_input), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:

8. temp = the Null string.

i=0.

. t=5® additional_input.
.8 =o(x(t *P)).
r =0(x(s *Q)).

104



ANS X9.82, Part 3 - DRAFT - January 2006

temp = temp || (vightmost outlen bits of r ).

gFeedien, Comment: seedlen zeroes; additional_input

is added only on the first iteration.

. additional input=

block counter = block_counter + 1.
i=i+1.

If (len (temp) <
requested_no_of bits), then go to step
10.

. pseudorandom_bits = Truncate (temp, i x outlen, requested no_of bits).

Comment: Update the changed values
in the state.

. internal state.s = s.

internal_state.block _counter = block_counter.

. Return (“Success”, pseudorandom_bits).

105



ANS X9.82, Part 3 - DRAFT - January 2006

ANNEX F: (Informative) DRBG Provision of RBG Security
Properties

F.1 Introduction

Part | of'this Standard identifies several security properties that ave required for
cryplographic tandom number generators. This annex discusses how hese properties are
provided by the DRBGs in this part ol the Standard or points to sections in Part 3 orin

propertics. - a
F.2 Security Levels

Part | identities tour security levels that RIBGs should support @ 112, 128, 192 and 256 bits.
These security levels may be supported in Pact 3 by requesting the appropriate securily
level during instantiation and generation (see Sections 8.2.4. 9.2 and 9.4). and by the use ol
an appropriate entropy input source (see Part@3GNd Parts 4).

F.3 Entropy and Min-Entropy

Part | delines the use ol mip-gntropy to measure the amount ol entropy needed to suppord
a given seeurity level. Part 3 cequests the entropy via the use ol a Get_entropy_input call

F.4 Backtracking Resistance and Prediction Resistance

Part | delines backiracking and prediction resistance, As indicated in Section 8.6, the
DRBGs in Part 3 have been designed to support backtracking resistance. Prediction
resistance may be provided using a DRBG when:

1. A reseed capability is availuble that can obtain the appropriate amount of entropy
required o support the securiiy level of the instantiation during each call for
entropy input (see Section 9.3).

I

A prediction resistance Nag that is used as input during instantintion indicates that
prediction resistanee may be required (o the instantiation (see Section 9.2).

3. A prediction resistance requiest is made In o generate request (see Section 9.4),
F.5 _Indistinguishability and Unpredictability

Part | staes thal this Standard veguives indistinguishability from random, in addition 1o
unpredictabifity for RBG output. The DRIBGs in this Standard have been designed o
provide these properties when provided with sulficient entropy as discussed in Pa & 250k
4.

106



ANS X9.82, Part 3 - DRAFT - January 2006

F.6 Desired RBG Output Properties

Part | states that the outpul ol a eryprographically secure RBG has the following desired

propetrties:
1. Under reasonable assumptions. it is not feasible to distinguish the output of the

RBG from true random numbers that arc uniformly distributed with or without
replacement, Informally. all possible outputs oecur with equal probability, and u
series of aulputs appears to conform 1o a uniform distribution.

Given only a sequence of output bits. it is not feasible to compute or predict any

|led

other output bit, either past of [uture, Note that this is different from both
prediction resistance and backiracking resistance.

The outputs of an RIBG are statisticallv unigue. That is. the output values cither (A )
are allowed Lo repeat with a negligible probability or (B) are prohibited firom
repeating (whether by being seleated without replacement or by discarding
duplicates) to meet application requiraments for a specified class ol outputs, Note

cryptoperiod.

Ihe DRBGs in this Sundard have been designed w provide these properties when

provided with sulficient entropy as discussed in Parts 2 and 4.

F.7 Desired RBG Operational Properties

The desired vperational properties of an RBG ure as follows:

L Lhe RBG does now generae bits unless the generator has been assessed 1o possess

sufficient entropy.
‘Ihe Get_entropy_input call (see Section 9.1) is used during instantiation to obtsin
sutficient entropy Lo support the desived securits level. This propetty is supported

. The source of entropy input s designed and implemented us reguired in
Parts 2 and 4 of this Standard.

b, Entropy input is not retumed during instantiation unless the requested
amount of entropy has been obtained (see Section 9.2).

When an error is detected, the RBG either (a) enters a permanent error state, or (b)

Lad

ix able to yecover from q loss vr compromise of engopy if the permanent errer state
is deemed ynacceprable for the application requirements.

Part 3 specities the conditions that must be tested for cach DRBG lunetion (see
Sections 9.2, 9.3 and 9.4). the tests to be mude during health testing (see Section
9.6) and the handling of any errors detected (see Section 9.7).

The design and implementation of an RBG has a defined logical protection

boundary. The RBG needs 1o be protecied in o nanner that is consistent with the
107




ANS X9.82, Part 3 - DRAFT - January 2006

wse and sensitiviey of the opur for the consuming application,

Part 3 uses a conceptunl DRBG boundary 1o provide this property. Requirements
tor the DRIBG boundary wre provided in Section 8.3.

A, The probability that the RBG can “mishehave ” in some pathological way that
wiolates the output requirements fe.g,. constant onfpul or smoll cyeles: thei is,
looping such that the same oulput is repeated) s sufficiently smell

Assuranee of this property may be obtained when an RBG implementation is
valldated as discussed in Sections 2 and 11,3 of Part 3, and in Parts 2 and 4,

5. The RBG desies includes methods to prohibil prediciable influence. manipulation
or side-channel observation as appropriate, depending on the threat mode!,

Assurance of this property may be obtained when an RBG implementation is
validated as discussed in Sections 2 and 1.3 ol Part 3. and in Parts 2 and 4.

Assurance of this property nury be obtained when an RBG implementation is
validated for asdiscussed in Section 2 and 1.3 of Part 3. and in Parts 2 and 4,

7. The RBG can be run in known=answer test mode. Al porttons that can have
known=answer tests ave tested in this mode. When an RBG is in known-answer st
made, the RBG is not capable of being wsed to generate output bits and dovs ot
pse any stored secrel information; however, it may use non-secret information for
testing purposes.

T'he health wsting ol'a DRBG is discussed in Sections 9.6 and 11.4.

8. An RBG s designed (o support buckirae

The DRBGs i Part 3 have been designed to support backiracking resistance (see
Section 8.6).

Q. An RBG may support prediciion pesistanee,

A DRBG mgy be designed and implemented Lo support prediction resistance. See
Annex F.4 tor additional information.

The tollowing text was the original material thay addressed the Part | requirements, Since
Part | no longer has requirements. the material below may not be appropriate to pul in this

Annex. but is provided for checking during this review.

108



ANS X9.82, Part 3 - DRAFT - January 2006




ANS X9.82, Part 3 - DRAFT - January 2006

110



ANS X9.82, Part 3 - DRAFT - January 2006

111



ANS X9.82, Part 3 - DRAFT - January 2006




ANS X9.82, Part 3 - DRAFT - January 2006

113



ANS X9.82, Part 3 - DRAFT - January 2006

ANNEX EG: (Informative) Bibliography

[1] Handbook of Applied Cryptography; Menezes, van Oorschot and Vanstone; CRC Press,
1997

[21  Applied Cryptography, Schneier, John Wiley & Sons, 1996

3] RFC 1750, Randomness Recommendations for Security, IETF Network Working
Group; Eastlake, Crocker and Schiller; December 1994.

4] Cryptographic Random Numbers, Ellison, submission for IEEE P1363.

[5] Cryptographic Randomness from Air Turbulence in Disk Drives; Davis, Ihaka and
Fenstermacher.

[6]  Yarrow-160: Notes on the Design and Analysis of the Yarrow Cryptographic
Pseudorandom Number Generator; Kelsey, Schneier, and Ferguson.

[71  The Intel® Random Number Generator; Cryptography Research, Inc.; White paper
prepared for Intel Corporation; Jun and Kocher; April 22, 1999.

o bederal-tnformation-Proeessing Standard 02 Seemriti-Rediirements-for
CryptographicHodtosMay- 232004

fo—Natiopal-nstitute-of-Standards-and-Fechnology-Speeial-Publication- 800384
Recommendeationfor-BlockCipher-Modes-of Operation—Methods~<nd-Feehnigies:
December200+

rmation Processing Stundard 186-3. Digiral Signature Siandard (£55),

R PO ey A " ¢ \WTPSTTTO M JATAL:
PTTIT I Pr S TR AT I T Wetpiesoemtte it -+ ue st _...nl

[+19] [Shparlinski] Mahassni, Edwin, and Shparlinski, Igor. On the Uniformity of
Distribution of Congruential Generators over Elliptic Curves. Department of
Computing, Macquarie University, NSW 2109, Australia; {eelmaha,
igor}@isc.mq.edu.qu.

114



