ANS X9.82, Part 3 - DRAFT July 2005

DRAFT X9.82 (Random Number Generation)

Part 3, Deterministic Random Bit Generator
Mechanisms

July 2005

Contribution of the U.S. Federal Government and not subject to copyright

~N O AW N =

ANS X9.82, Part 3 - DRAFT July 2005

Table of Contents

L oo - SO AR TPPASLIT ST IOLRR PRI 9
L0111 0] £ 11 T=1 2 L1 - P PP P PP PP PRI 9
NOrmative referenCescmeiiisinsnmiiiirns s s vt s s s mnasas s 10
Terms and definitioNs.......cccicereninnne s 10
General Discussion and Organization ..., 21
DRBG Functional Model.........cccccuiirmnininnnininssssnnnie e, reesre s 23
7.1 Functional Model 23
7.2 Functional Model Components...... 23
7.2.1 Introduction 23
7.2.2 Entropy INput ... 23
7.2.3 Other Inputs ...cccericvneeenvemmmncceaniinn 24
7.2.4 The Internal State 24
7.2.5 The Internal State Transition Function 24
7.2.6 The Output Generation FUNCHIONocemmincicinnnnnnninsinisans 25
7.2.7 Support Functions 25
DRBG Concepts and General Requirementsccocvcnvnincnninnnmenn. 26
8.1 INtrodUuCtioncccccmmmnisimniensninmrssens s s st s e 26
8.2 DRBG Functions and a DRBG Instantiation 26
8.2.1 FUNCLIONS ..occviestrmmrsesccensnnesmmsssssssssnmsnasn secssnnanas 26
8.2.2 DRBG Instantiations 26
8.2.3 Internal States....... 26
8.2.4 Security Strengths Supported by an Instantiation .27
8.3 DRBG Boundaries 28
8.4 Seceds 30
8.41 General Discussion 30
8.4.2 Generation and Handling of Seeds 30
8.5 Other Inputs to the DRBG 33
8.5.1 Discussioncaniiinnccnniisnin 33
8.5.2 Personalization String 33
8.5.3 Additional Input 34

10

ANS X9.82, Part 3 - DRAFT July 2005

8.6 Prediction Resistance and Backtracking ReSiStanceccomireciniiiniiniinccnnccnniiniannnn, 34
DRBG FUNGHOMS ...eeverveeenrinerseiseiaesnessessssnssssssssssssassassassssssssnsssssassassssssssessesnssnssssassassasansss 30
9.1 General Discussion 36
9.2 Instantiating a DRBG rerserernr et reasans 36
9.3 Reseeding a DRBG Instantiation... 39
9.4 Generating Pseudorandom Bits Using a DRBG.........ccvmvcmemmcecmnnnnmissiinmnnsninmssnsene 41
9.5 Removing a DRBG Instantiation..........cccenneevinmmcciiiinns e, 44
9.6 Auxilliary Functions 45
9.6.1 Introduction w45

9.6.2 Derivation Function Using a Hash Function (Hash_df)....... 45

9.6.3 Derivation Function Using a Block Cipher Algorithm..........ccceveeenccrccnninnnnminisnen 46

9.64 Block_Cipher_Hash Function 48

9.7 Self-Testing of the DRBG.........ccovemiiiimiininerinmmmmtiiiiisss s s 48
9.7.1 Discussion 48

9.7.2 Testing the Instantiate Function 48

9.7.3 Testing the Generate Function...... 49

9.7.4 Testing the Reseed Function 49

9.7.5 Testing the Uninstantiate Function........cccccvvrereerecnnccsiinieninnen. 50
DRBG Algorithm Specificationsccvviinnnnnnnic 51
10.1 Deterministic RBGs Based on Hash Functions 51
10.1.1 Discussion 51
10.1.2 Hash_DRBG 52
10.1.2.1 DISCUSSION ..evviveeeeeeieeieecet et asi sttt s bt b e ge s st e s enae s enn s anrsanenns 52

10.1.2.2 SPECIICAIONSv.vvecreremieesrerasemessremmesssssssssetnns s s are e saeasasmans b ssssars s gassssess D2

10.1.2.2.1 Hash_DRBG Internal Statec.ccoeererrormmnmscnnsriinisacirsciiesanisinens 92

10.1.2.2.2 Instantiation of HASh_DRBGcccciiianminiiiiisismmimsisssssseiaianes 93

10.1.2.2.3 Reseeding a Hash_DRBG Instantiation...................cocovveimninncine 54

10.1.2.2.4 Generating Pseudorandom Bits Using Hash_DRBG.............ccccoceee. 55

10.1.3 HMAC_DRBG {(...) 58
10.1.3.1 DISCUSSION ...evrvriiiicreirreie et et e sb e e sb st 58

10.1.3.2 Specifications........cccuieniiciiciinna ...58

0T < 725 OO OO PP PP I IS PP

HMAC_DRBG Intei

ANS X9.82, Part 3 - DRAFT July 2005

10.1.3.2.2 The Update Function (Update)............ aamterosatasaransnensnsss S—— 59

10.1.3.2.3 Instantiation of HMAC_DRBGccovuriiiiiiimnirnncnn it 60

10.1.3.2.4 Reseeding an HMAC_DRBG Instantiation............ocovienicnnrannnenes 61

10.1.3.2.5 Generating Pseudorandom Bits Using HMAC_DRBGcccoivmieiciinn 62

10.2 DRBGs Based on Block Ciphers ... 64

10.2.1 DISCUSSION recrersaniseesacssnessnerneonmisessssamsssesasmssessnnsnsssnssssssaasonsss 64

10.2.2 CTR_DRBG 66

10.2.2.1 DISCUSSION ..oveevireerereriieress crseiasaseseses et s n s s a st 66

10.2.2.2 SPEGIICAHONSovuvrireieserrieii st 66

10.2.2.2.1 CTR_DRBG Internal Statecoovuimmivaimnmnisisrsssssismassssmmsmacusssasssass 66

10.2.2.2.2 The Update Function (Update)cocviuimimnmnmmississssnarsesiessisiass 67

10.2.2.2.3 Instantiation of CTR_DRBGcccovreimrrniniimminmisinsss s 68

10.2.2.2.4 Reseeding a CTR_DRBG Instantiation.........cccocovvimvircnminiananens 69

10.2.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG.......oo e 71

10.2.3 OFB_DRBG 74

10.2.3.1 DISCUSSION <..vtiveeveveersersereeeiiessessesse st s eb e et 74

10.2.3.2 SPECHICALIONS c.coucmvirrrieressessrs e b b 74

10.2.3.2.1 OFB_DRBG Internal State ... 74

10.2.3.2.2 The Update Function(Update) ..o 75

10.2.3.2.3 Instantiation of OFB_DRBG (...} eirevcnimmiiniinisssnsinsnisisens 76

10.2:3.2.4 Reseeding an OFB_DRBG Instantiation ..o 76

10.2.3.2.5 Generating Pseudorandom Bits Using OFB_DRBG......ccocvrimrmeaamrnennnes 76

10.3 Deterministic RBGs Based on Number Theoretic Problems 77

10.3.1 Discussion ' 77

10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG).. 77

10.3.2.1 DISCUSSION ..vvlveieeerereiiesrinrtiimasessrses st snssnana s s st

10.3.2.2 SPECIICAIONSovcvirieriier it

10.3.2.2.1 Dual_EC_DRBG Internal State and Other Specification Details.......... 80

10.3.2.2.2 Instantiation of Dual_EC_DRBGcccooiriininiiimmiiniees 80

. 10.3.2.2.3 Reseeding ofa Dual_EC_DRBG INSLARUALIONcveeereevieieeeerecrieenies 82

10.3.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG.....ccceceriinee 83

10.3.3 Micali-Schnorr Deterministic RBG (MS_DRBG) 86

v

ANS X9.82, Part 3 - DRAFT July 2005

10.3.3.1 DiSCUSSION ..veviuicesiniiiasriesissssnscansramnninsnsasanas e s 00
10.3.3.2 MS_DRBG SPeCifiCations......ccoveerrrrerommimiriviininsimsiscine s 88
10.3.3.2.1 Internal State for MS_DRBG ..o 88
10.3.3.2.2 Selection of the M-S parametersc.ocovieee BUUR : 1:
10.3.3.2.3 Instantiation of MS_DRBGcooviimiiiiii e 89
10.3.3.2.4 Reseeding of a MS_DRBG Instantiation.............ccoeveiiiiniains

10.3.3.2.5 Generating Pseudorandom Bits Using MS_DRBGcovimriiieeiinns 92

41 ASSUIANCE veeerreeramreresrrrssessrasesanesssssssomssnestasarssessnast emme st arsnasasssantasnestisns it istssmmsmmarninissnessians 95

11.1 Overview....cooueveimeennaes 95

11,2 Minimal Documentation Requirements 96

11.3 Implementation Validation Testing " 96

11.4 Operational/Health Testing : 96
11.41 Overview96

11.4.2 Known Answer Testing e 97

Annex A: (Normative) Application-Specific Constantscceeeeinesnesnnnnes 98

A.1 Constants for the Dual_EC_DRBG 98

A.1.1 Curves over Prime Fields .. 98

AT 1A CUNVE P-224 ..ot eieeeetseecreesasss e bbb e s 98

A1 4.2 CUNVE P-25B oviviveeeeeeeeusveseeestaeseesssiss b vesssesas s s 99

Ad. 1.3 CUVE P-384 .oeoooieeeereieieceseereeretissaa s r e s T bR e 99

AAEA CUNVE P-B2T coiiieitieeeeeeeiseeisseerestasiessasaa s bbb s 100

A.1.2 Curves over Binary Fields 100

A1.2.1 CUIVE K233 oo ivereieeeeeaeae s e csesescaressbaseaasa s ases o ra o0 s bR et 101

A1.2.3 CUINVE B233 ..ooeeiieiueseeeeaisseetsietsssss st eessas e as st s s a RS 102

A1.2.2 CUIVE K283 ..oeieieeeeeeee et b as e e 103
A.1.2.4 Curve B-283 ..o JOT TP PRPUP PP TP PSSP 103
A1.2.5 CUIVE K400 ..ovieierenmsiairreisestiariees st s B s 104

A.1.2.6 CUIVE B-409oooinriiaiiresicinnmmasnnssasnases .. 105
AA.2.7 CUIVE KBTT ooeieirieeeeieresesresseeeeasas et bess e en bt eSSt 106
A1.2.8 CUNVE B-BT1 oeviieeeieeeeeeteeeseetseasaeresiss bbb s s e 107
A.2 Test Moduli for the MS_DRBG (...).... 108

ANS X9.82, Part 3 - DRAFT July 2005

A.2.1 The Test Modulus n of Size 2048 Bitscccecnon.. 109

A.2.2 The Test Modulus n of Size 3072 BISccovieiirivnennnricsmmmnnnsircnstsssnesssnse s siessssiiaenes 109

ANNEX B : (Normative) Conversion and Auxilliary Routines...........cccccccccc0e0. 110
B.1 Bitstring to an Integer .. 110

B.2 Integer to @ BitStringc..cceoureeeevmvirenmesnnee s en s s e e 110

B.3 Integer to an Octet String........cccevvnvmereccenensnannncnnnnns .10

B.4 Octet String t0 an INtEger........ivouiiisesimsrr st cs s et st st aa s s s s e s e 111
Annex C: (Informative) Security CONSIAEIAtIONS ...o.eoereervveverssmssssssresenessessessens 112
C.1 The Security of Hash FUNCLIONSiccovinrimcenenseinmmsisissinsnns s s ssssssmnarmnannns 112

C.2 Algorithm and Keysize Selection.......cocrrreeriiminmecnnnmnsnimmemmsssnnssmnnesssmani 112

C.3 Extracting Bits in the Dual_EC_DRBG (... 114

C.3.1 Potential Bias Due to Modular Arithmetic for Curves OVer Fy......ooveniiiiinsisnseninininanns 114

C.3.2 Adjusting for the missing bit(s) of entropy in the x coordinates................ 115

ANNEX D: (Informative) Functional Requirements...........ccooeinniniinninnsisnnes

119

D.1 General Functional Requirements 119
D.2 Functional Requirements for Entropy Input 119
D.3 Functional Requirements for @RBE INPULS......ocmvimcniiminieiecrn st 119
D.4 Functional Requirements for the Internal State.....cc.ccorvniiicmncn i, 120
D.5 Functional Requirements for the Internal State Transition FUNCtion..........cccvmveinmmisiecssecnnenns 120
D.6 Functional Requirements for the Output Generation Function.......cccccvecvcnvennninines 121
D.7 Functional Requirements for SUpport FUNCLIONScccvcenrmsscsssinnismnmenssminn. 122
ANNEX E: (Informative) DRBG Selection ... 124
E.1 Choosing a DRBG Algorithm.......ccccnnmniinciiicniniians 124
E.2 DRBGs Based on Hash FUNCLIONS.....cc.cveeceecennrinnnncectiinsnn s snnnssssessessannnnannnnens 124
E.21 Hash_DRBG 125
E.2.1.1 Implementation ISSUES.........ccccueiriiiiiiii it 125

E.2.1.2 Performance PrOPEIRIESc..ccviviviiieieniciitinennie e st e st e 125

E.2.2 HMAC_DRBGooiiiiiiiniienmsmssininessenasenneasrasessarsss s sassse 13sssmeenssansssn saasonsans annanssnissanassine 125
E.2.2.1 Implementation Properties............wiriminmmsissseemmmmumsssssesserssassenssiessnsssnsssssns 120

E.2.2.2 Performance Properties.........coccoireiiiiiiiiiieiniie et 126

E.2.3 Summary and Comparison of Hash-Based DRBGS.........c..ossssmmnininiinssssnsioneinmsssas e 127

vi

E.3

E.4

F.1
F.2

F.3

F.4

F.5

ANS X9.82, Part 3 - DRAFT July 2005

E.2.3.1 Security 127

Preliminaries

Hash_DRBG Example

F.2.1 Discussion........

HMAC_DRBG Example

F.3.1 Discussion

CTR_DRBG Example

F.4.1 Discussion ..

OFB_DRBG Example

F.5.1 Discussion....

E.2.3.2 Performance / Implementation Tradeoffs 128
DRBGs Based on BIOCK CIPRETSiccvniiiiiiiienniemimnmmninniareassssiesssnisnmsii s essnssnmnnssssssanassans 129
E.3.1 The Two Constructions: CTR and OFB 129
E.3.2 Choosing a Block Cipher 129
E.3.3 Conditioned Entropy Sources and the Derivation Function..........cccimisnisseniniinsenes 131
DRBGs Based on Hard Problems 131
E.4.1 Implementation Considerationsc.curvnmmcnisnmim s 132
E.4.1.1 DUBLEC_DRBGciiicciierecenicoicniiminiiiens et e s sas st snanss 132
E.4.1.2. MICalI-SCNNOIT ..ccveeiieivticrire e esmiiitim ittt s e s 132
ANNEX F: (Informative) Example Pseudocode for Each DRBG.........ccccoovneniniiiinnnninnanns 134
134

134

134

F.2.2 Instantiation of Hash_DRBG 135
F.2.3 Reseeding a Hash_DRBG Instantiation..... 136
F.2.4 Generating Pseudorandom Bits Using Hash_DRBG 138
140

....... 140

F.3.2 Instantiation of HMAC_DRBGcccceovmsrsssisiesismasmissssiissmnmsssissssssssmssssssssssrassssassissasssns 140
F.3.3 Generating Pseudorandom Bits Using HMAC_DRBG........ 142
143

....... 143

F.4.2 The Update FUNCHON wuceciviieiccmiiirmnnnnnnisssssissnsssttssssnsnissssnsssmsnssnssnssssassessesasasasssssssnanes 144
F.4.3 Instantiation of CTR_DRBG 145
F.4.4 Reseeding a CTR_DRBG Instantiation 146
F.4.5 Generating Pseudorandom Bits Using CTR_DRBG 147
150

....... 150

F.5.2 The Update Function 151
F.5.3 Instantiation of OFB_DRBG. 151

F.5.4 Reseeding the OFB_DRBG Instantiation 152
vii

F.5.5

F.6 Dual_EC_DRBG Example

F.6.1
F.6.2
F.6.3
F.6.4

F.7.1
F.7.2
F.7.3
F.7.4

ANNEX G: (Informative) Bibliographycccccmcininnnninnnennnienns

ANS X9.82, Part 3 - DRAFT July 2005

Generating Pseudorandom Bits using OFB_DRBG

DiSCUSSION ...occcrrrivecensirscrmsisamscssuesiarees

Instantiation of Dual_EC_DRBG

154

... 166

........................... 156

Reseeding a Dual_EC_DRBG Instantiation

Generating Pseudorandom Bits Using Dual_EC_DRBG..
F.7 MS_DRBG Example

Discussion

Instantiation of MS_DRBG

Reseeding an MSDRBG Instantiationcc.csveeveeae

Generating Pseudorandom Bits Using MS_DRBG

viil

srersasnsannnsans

166
159
160
162
162
163
166
166

169

ANS X9.82, Part 3 - DRAFT - July 2005

Random Number Generation
Part 3: Deterministic Random Bit Generator Mechanisms

Contribution of the U.S. Federal Government and not subject to copyright
1 Scope

This part of ANSI X9.82 defines techniques for the generation of random bits using
deterministic methods. This part includes:

1. A model for a deterministic random bit generator,
2. Requirements for deterministic random bit generator mechanisms,

3. Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

4. Implementation issues, and
5. Assurance considerations.

The precise structure, design and development of a random bit generator is outside the
scope of this standard.

This part of ANS X9.82 specifies several diverse DRBG mechanisms, all of which
provided acceptable security when this Standard was approved. However, in the event that
new attacks are found on a particular class of mechanisms, a diversity of approved
mechanisms will allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, e.g.,
communicating entities may use different DRBG mechanisms without affecting their
ability to communicate. Therefore, an entity may choose a single appropriate DRBG
mechanism for their applications; see Annex E for a discussion of DRBG selection.

2 Conformance

An implementation of a deterministic random bit generator (DRBG) may claim
conformance with ANSI X9.82 if it implements the mandatory provisions of Part 1, the
mandatory requirements of one or more of the DRBG mechanisms specified in this part of
the Standard, an entropy source from Part 2 and the appropriate mandatory requirements of
Part 4.

Conformance can be assured by a testing laboratory associated with the Cryptographic
Module Validation Program (CMVP) (see http:/csrc.nist.gov/cryptval). Although an
implementation may claim conformance with the Standard apart from such testing,
implementation testing through the CMVP is strongly recommended.

9

ANS X9.82, Part 3 - DRAFT - July 2005

3 Normative references

The following referenced documents are indispensable for the application of this
document. For dated references, only the edition cited applies. Nevertheless, parties to
agreements based on this document are encouraged to consider applying the most recent
edition of the referenced documents indicated below. For undated references, the latest
edition of the referenced document (including any amendments) applies.

ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation.

ANS X9.62-200Q, Public Key Cryptography for the Financial Services Industry - The Elliptic
Curve Digital Signature Algorithm (ECDSA).

ANS X9.63-2000, Public Key Cryptography for the Financial Services Industry - Key
Agreement and Key Transport Using Elliptic Key Cryptography.

ANS X9.82, Part 1-200x, Overview and Basic Principles, Draft.

ANS X9.82, Part 2-200x, Entropy Sources, Draft.

ANS X9.82, Part 4-200%, RBG Constructions, Draft.

FIPS 180-2, Secure Hash Standard (SHS), August 2002; ASC X9 Registry 00003.

FIPS 197, Advanced Encryption Standard (AES), November 2001; ASC X9 Registry 00002.

FIPS 198, Keyed-Hash Message Authentication Code (HMAC), March 6, 2002; ASC X9
Registry 00004.

4 Terms and definitions

For the purposes of this part of the Standard, the following terms and definitions apply.
4.

Algorithm

A clearly specified mathematica! process for computation; a set of rules that, if followed,
will give a prescribed result.

4,
Approved

|An X9 approved resource is one that is either specified as (or within) a current X9
standard, or listed in the X9 Registry|

4.
Backtracking Resistance
The assurance that the output sequence from an RBG remains indistinguishable from an

10

.| Comment [EBB1]: Page: 10

Note that this definition is different than the one
in Part 1. Which do we want ?

]

ANS X9.82, Part 3 - DRAFT - July 20056

ideal random sequence even to an adversary who compromises the RBG in the future, up
to the claimed security level of the RBG. For example, an RBG that allowed an attacker to
"backtrack" from the current working state to generate prior outputs would not provide
backtracking resistance. The complementary assurance is called Prediction Resistance.

4,
Biased

A bitstring (or number) that is chosen from a sample space is said to be biased if one
bitstring (or number) is more likely to be chosen than another bitstring (or number).
Contrast with unbiased.

4,
Bitstring

A bitstring is an ordered sequence of 0’s and 1’s. The leftmost bit is the most significant
bit of the string and is the newest bit generated. The rightmost bit is the least significant bit
of the string.

4.
Bitwise Exclusive-or

An operation on two bitstrings of equal length that combines corresponding bits of each
bitstring using an exclusive-or operation.

4.
Block Cipher

A symmetric key cryptographic algorithm that transforms a block of information at a time
using a cryptographic key. For a block cipher algorithm, the length of the input block is the
same as the length of the output block.

4.
Consuming Application

The application (including middle ware) that uses random numbers or bits obtained from
an Approved random bit generator

4.
Cryptographic Key (Key)

A parameter that determines the operation of a cryptographic function such as:

1. The transformation from plain text to cipher text and vice versa,

11

ANS X9.82, Part 3 - DRAFT - July 2005

2. The synchronized generation of keying material,

3. A digital signature computation or validation.
4,
Deterministic Algorithm
An algorithm that, given the same inputs, always produces the same outputs.
4,
Deterministic Random Bit Generator (DRBG)

An RBG that uses a deterministic algorithm to produce a pseudorandom sequence of bits
from a secret initial value called a seed, along with other possible inputs. A DRBG is often
called a Pseudorandom Number (or Bit) Generator.

4.
DRBG Boundary

A conceptual boundary that is used to explain the operations of a DRBG and its interaction
with and relation to other processes.

4.
Entropy

IA measure of the disorder, randomness or variability in a closed system. The entropy of X
is a mathematical measure of the amount of information provided by an observation of X.
As such, entropy is always relative to an observer and his or her knowledge prior to an
observation. Also, see min-entropy) .

4.
Entropy Input

The input to an RBG of a string of bits that contains entropy, that is, the entropy input is
digitized and is assessed. For an NRBG, this is obtained from an entropy source. Fora
DRBG, this is included in the seed material.

4.
Entropy Input Source

A source of unpredictable data, such as thermal noise or hard drive seek times. There is no
assumption that the unpredictable data has a uniform distribution.

12

Comment [EBB2]: Page: 12
This differs from Part 1. Which do we want ?

)

ANS X9.82, Part 3 - DRAFT = July 2005

4.

Equivalent Process

Two processes are equivalent if, when the same values are input to each process, the same
output is produced.

4.

Exclusive-or

A mathematical operation, symbol @, defined as:

000=0
0d1=1
1®0=1and
1®1=0.

Equivalent to binary addition without carry.
4,

Full entropy

|An m-bit string has full entropy if every m-bit value is equally likely to occur|
4.

Hash Function

A (mathematical) function that maps values from a large (possibly very large) domain into
a smaller range. For the purposes of this Standard, a hash function will be a cryptographic
hash function that satisfies the following properties:

1. (One-way) It is computationally infeasible to find any input that maps to any pre-
specified output;

2. (Collision free) It is computationally infeasible to find any two distinct inputs that
map to the same output.

4.
Implementation

An implementation of an RBG is a cryptographic device or portion of a cryptographic
device that is the physical embodiment of the RBG design, for example, some code
running on a computing platform.

13

Comment [EBB3]: Page: 13
This differs from Part 1. Which do we want 7

)

ANS X9.82, Part 3 - DRAFT - July 2005

4.
Implementation Testing for Validation

Testing by an independent and accredited party to ensure that an implemention of a
standard conforms to the specifications of that standard.

4.
Instantiation of an RBG

|An instantiation of an RBG is a specific, logically independent, initialized RBG. One

instantiation is distinguished from another by a handle (e.g., an identifying number), .| Comment [EBB4];: Page: 14
B This differs from Part 1. Which do we want ? A
comment has been submitted on Part 1's
4 definition.

Internal State

The collection of stored information about an RBG instantiation. This can include both
secret and non-secret information.

4.
Internal State Transition Functions

The set of functions that cause a particular internal state in an instantiation to be updated so
that a new internal state is the result.

4.

Key

See Cryptographic Key.

4.

Non-Deterministic Random Bit Generator (Non-deterministic RBG) (NRBG)

An RBG that (when working properly) produces output that is fully dependent on some
unpredictable physical source that produces entropy. Contrast with a DRBG. Other names
for non-deterministic RBGs are True Random Number (or Bit) Generators and, simply,
Random Number (or Bit) Generators.

4.
Operational Testing

Testing within an implementation immediately prior to or during normal operation to
determine that the implementation continues to perform as implemented and optionally
validated.

14

ANS X9.82, Part 3 - DRAFT - July 2005

4.

Output Generation Function

The function in an RBG that outputs bits that appear to be random, that is, conform with
the ideal random distribution.

4.

Personalization String

An optional string of bits that is combined with a secret input and a nonce to produce a
seed.

4.

Prediction Resistance

The assurance that the output sequence of an RBG remains indistinguishable (up to the
claimed security level of the RBG) from an ideal random sequence to an adversary who
has compromised the RBG at some specific time in the past. For example, if an adversary
compromised an RBG an hour ago, revealing all information about the internal state, and
the adversary is still able to predict its outputs, then the RBG fails to provide prediction
resistance. The complementary assurance is called Backtracking Resistance.

4.
Pseudorandom

A process or data produced by a process is said to be pseudorandom when the outcome is
deterministic, yet also effectively random as long as the internal action of the process is
hidden from observation. For cryptographic purposes, “effectively” means “within the
limits of the intended cryptographic strength.” Note: Non-cryptographic use of
“pseudorandom” has less stringent meanings for “effectively.”

4,

Pseudorandom Number Generator

See Deterministic Random Bit Generator.
4,

Public Key

In an asymmetric (public) key cryptosystem, that key of an entity’s key pair that is publicly
known.

15

ANS X9.82, Part 3 - DRAFT ~ July 2005

4,

Public Key Pair

In an asymmetric (public) key cryposystem, the public key and associated private key.
4.

Random Number

For the purposes of this standard, a value in a set that has an equal probability of being
selected from the total population of possibilities and hence is unpredictable. A random
number is an instance of an unbiased random variable, that is, the output produced by a
uniformly distributed random process.

4,
Random Bit Generator (RBG)

|A device or algorithm that outputs a sequence of binary bits that appears to be statistically

independent and unbiased.[.| comment [EBB5]: Page: 16
e e T R S e Tar Pl Wi err ot o
4 want ?

Random Number Generator (RNG)

A device or algorithm that can produce a sequence of random numbers that appears to be
from an ideal random distribution.

4,
Reseed

To aquire additional bits with sufficient entropy for the desired security strength.

4,
Security [Strength|~ comment [EBB6]: Page: 16

. Do we want to use securily strength or security
A number associated with the amount of work (that is, the number of operations) that is levelin ANSI ?

required to break a cryptographic algorithm or system; a security strength is specified in
bits and is a specific value from the set (112, 128, 192, 256). The amount of work needed
is 2 raised to the security strength.

4.

Seed

Noun: A string of bits that is used as input to a Deterministic Random Bit Generator

(DRBG). The seed will determine a portion of the internal state of the DRBG, and its
entropy must be sufficient to support the security strength of the DRBG. [New]

|Verb : To aquire bits with sufficient entropy for the desired security strength. These bits
16

ANS X9.82, Part 3 - DRAFT - July 2006

will be used as input to a DRBG to determine a portion of the initial internal state. Contrast

with reseed. | .| Comment [EBB7]: Page: 17
et eve RS eneReeebmER e es8eteren Ty bl ieoladed) Paetd.
4.

Seedlife

The length of the seed period.

4,
Seed Period

The period of time between initializing a DRBG with one seed and reseeding that DRBG
with another seed.

4,

Sequence

An ordered set of quantities.
4.

Shall

Used to indicate a requirement of this Standard.

4,

Should

Used to indicate a highly desirable feature for a DRBG that is not necessarily required by
this Standard.

4,

Statistically Unique

|A value is said to be statistically unique when it has a negligible probability to occur again
in a set of such values. When a random value is required to be statistically unique, it may
be selected either with or without replacement from the sample space of possibilities; this
is in contrast to when a value is required to be unique, as then it must be selected without

replacement,| .~ Comment [EBBS]: Page: 17
T —— . Commeok [ERRIN Pane: 1 e o s v
4, here 7

String

See Sequence.

4.

Supporting Functions

The set of functions in an RBG that are needed for assurance of correct operation but that
17

ANS X9.82, Part 3 - DRAFT - July 2005

do not change the internal state. |An example of a Supporting Function is the known

answer tests that are run at startup on a DRBG.| e -[Comment [ebbd]: g?age: 18
ST Can this be removed

4,
Unbiased
A bitstring (or number) that is chosen from a sample space is said to be unbiased if all

potential bitstrings (or numbers) have the same probability of being chosen. Contrast with
biased.

4.

Unpredictable
In the context of random bit generation, an output bit is unpredictable if an adversary has

only a negligible advantage (that is, essentially not much beter than chance) in predicting
it correctly.

4.
Working State

A subset of the internal state that is used by a DRBG to produce pseudorandom bits at a
given point in time. The working state (and thus, the internal state) is updated to the next
state prior to producing another string of pseudorandom bits.

18

ANS X9.82, Part 3 - DRAFT ~ July 2005

5 ' Symbols and abbreviated terms

The following abbreviations are used in this document:

Abbreviation Meaning
AES Advanced Encryption Standard.

ANS American National Standard

ANSI American National Standards Institute.
ASC Accredited Standards Committee

DRBG Deterministic Random Bit Generator.
ECDLP Elliptic Curve Discrete Logarithm Problem.
FIPS Federal Information Processing Standard.
HMAC Keyed-Hash Message Authentication Code.
NRBG Non-deterministic Random Bit Generator.
RBG Random Bit Generator.

TDEA Triple Data Encryption Algorithm.

The following symbols are used in this document.

Symbol Meaning

+ Addition

X1 Ceiling: the smallest integer > X. For example, |5]| = 5, and
[5.3] =6.

XeY Bitwise exclusive-or (also bitwise addition mod 2) of two
bitstrings X and ¥ of the same length.

X||Y Concatenation of two strings X and Y. X and Y are either both
bitstrings, or both octet strings.

ged (x, y) The greatest common divisor of the integers x and y.

len (a) The length in bits of string a.

xmod n The unique remainder r (where 0 < r < n-1) when integer x is

divided by n. For example, 23 mod 7 = 2.

19

ANS X9.82, Part 3 - DRAFT - July 2005

Used in a figure to illustrate a "switch” between sources of
input.

{aq, ...a} The internal state of the DRBG at a point in time. The types
and number of the a; depends on the specific DRBG.
o A string of x zero bits.

20

ANS X9.82, Part 3 - DRAFT = July 2005

6 General Discussion and Organization

Part 1 of this Standard (Random Number Generation, Part 1: Overview and Basic
Principles) describes several cryptographic applications for random numbers, specifies the
characteristics for random numbers and random number generators, and provides
mathematical and cryptographic background information on the concept of randomness.
Random bit generators are used for the generation of random numbers. Part | specifies
requirements for random bit generators that are applicable to both non-deterministic
random bit generators (NRBGs) and deterministic random bit generators (DRBGs). In
addition, Part 1 also introduces a general functional model and a conceptual cryptographic
Application Programming Interface (API) for random bit generators.

Part 2 of this Standard (Entropy Sources) discusses entropy sources used by random bit
generators. In the case of DRBGs, the entropy sources are required to seed and reseed the
DRBG.

Part 4 of this Standard (Random Bit Generator Constructions) provides guidance on
combining components to construct random bit generators.

This part of the Standard (Random Number Generation, Part 3: Deterministic Random Bit
Generator Mechanisms) specifies Approved DRBG mechanisms. A DRBG mechanism is
an RBG component that utilizes an algorithm to produce a sequence of bits from an initial
internal state that is determined by an input that is commonly known as a seed. Because of
the deterministic nature of the process, a DRBG mechanism is said to produce
“pseudorandom” rather than random bits, i.e., the string of bits produced by a DRBG
mechanism is predictable and can be reconstructed, given knowledge of the algorithm, the
seed and any other input information. However, if the input is kept secret, and the
algorithm is well designed, the bitstrings will appear to be random. A process or data
produced by a process is said to be pseudorandom when the outcome is deterministic.|

The seed for a DRBG mechanism requires that sufficient entropy be provided during
instantiation and resceding (see Parts 2 and 4 of this Standard). While a DRBG mechanism
may conform to this part of the Standard (i.e., Part 3), an implementation cannot achieve
the goals specified in Part 1 unless the entropy input source is included as specified in Part
4, That is, the security of an RBG that uses a DRBG mechanism is a system
implementation issue; both the DRBG mechanism and its entropy input source must be
considered.

Throughout the remainder of this document, the term “DRBG mechanism” has been
shortened to “DRBG”.

The remaining sections of this part of the Standard are organized as follows:

— Section 7 provides a functional model for a DRBG that particularizes the functional
model of Part 1.

— Section 8 provides DRBG concepts and general requirements.

21

; -[Comment [ebb10]: Page: 21

Mike to provide alternate text 7

ANS X9.82, Part 3 - DRAFT ~ July 2005

—— Section 9 specifies the DRBG functions that will be used to access the DRBG
algorithms specified in Section 10.

— Section 10 specifies Approved DRBG algotithms.

— Section 11 addresses assurance issues for DRBGs.
This part of the Standard also includes the following normative annexes:

— Annex A specifies additional DRBG-specific information.

—— Annex B provides conversion routines.

— Annex C discusses security considerations for selecting and implementing DRBGs.
The following informative annexes are also included:

__ Annex D discusses the functional requirements specified in Part 1 as they are
fulfilled by this part of the Standard.

— Annex E provides a discussion on DRBG selection.

— Annex F provides example pseudocode for each DRBG.

— Annex G provides a bibliography for related informational material.

22

ANS X9.82, Part 3 - DRAFT — July 2005

7 DRBG Functional Model
7.1 Functional Model

Part 1 of this Standard provides a general functional model for random bit generators
(RBGs). Figure 1 particularizes the functional model of Part 1 for DRBGs.

Pesonaliradisn
Siing Nemie FEdoopy Frpel AdSfanall Tk

Ll

Rehurn Pseudvrandom Ouiprat

Figure 1: DRBG Model
7.2 Functional Model Components
7.2.1 Introduction

Part 1 of this Standard provides general functional requirements for random bit generators.
These requirements are discussed briefly in this section. Annex D provides a discussion of
how each functional requirement in Part 1 is fulfilled by the requirements for DRBGs in

this part of the Standard. I .| comment [ebb11]): Page: 23
- o ' : Does the material In Annex D need to be
7.2.2 Entropy Input included here ?

The entropy input, as discussed in Part 1, is provided to a DRBG for the seed (see Section
8.4.2). The entropy input and the seed shall be kept secret. The secrecy of this information
provides the basis for the security of the DRBG. At a minimum, the entropy input shall

23

ANS X9.82, Part 3 - DRAFT - July 2005

provide the requested amount of entropy for a DRBG. Appropriate sources for the entropy
input are discussed in Parts 2 and 4 of this Standard.

The DRBGs, as specified in this part of the Standard and further discussed in Part 4, allow
for some bias in the entropy input. Whenever a bitstring containing entropy is required by
the DRBG, a request is made that indicates the minimum amount of entropy to be returned;
the request may obtain entopy input bits from a buffer containing readily available entopy
bits or may cause entropy input bits to be acquired. The request may be fulfilled by a
bitsting that is equal to or greater in length than the requested entropy. The DRBG expects
that the returned bitstring will contain at least the amount of entropy requested. Additional
entropy beyond the amount requested is not required, but is desirable. '

7.2.3 Other Inputs

Other information may be obtained by a DRBG as input. This information may or may not
be required to be kept secret by a consuming application; however, the security of the
DRBG itself does not rely on the secrecy of this information. The information should be
checked for validity when possible.

During DRBG instantiation, a nonce is required and is combined with the entropy input to
create the initial DRBG seed. Criteria for the nonce are provided in Section 8.4.

This Standard recommends the insertion of a personalization string during DRBG
instantiation; when used, the personalization string is combined with the entropy bits and a
nonce to create the initial DRBG seed. The personalization string shall be unique for all
instantiations of the same DRBG type (e.g., HMAC_DRBG). See Section 8.5.2 for
additional discussion on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.5.3 for a discussion of this input.
7.2.4 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG uses or acts upon. The internal state
contains both administrative data and data that is acted upon and/or modified during the
generation of pseudorandom bits (i.e., the working state). The contents of the internal state
is dependent on the specific DRBG and includes all information that is required to produce
the pseudorandom bits from one request to the next.

7.2.5 The Internal State Transition Function

An internal state transition function handles the DRBG’s internal state. The DRBGs in this
Standard have four separate state transition functions:

1. During the initial instantiation of the DRBG, a seed is created and is used to
determine the initial internal state.

2. Each request for pseudorandom bits produces the requested bits using the current

24

ANS X9.82, Part 3 - DRAFT - July 2005

internal state and determines a new internal state that is used for the next request of
bits.

3. When an application determines that reseeding of the DRBG is required, a reseed
function creates a new seed and determines a new internal state for the next request
for pseudorandom bits.

4, When a consuming application or a testing process no longer requires an
instantiation, the internal state is released.

7.2.6 The Output Generation Function

The output generation function of a DRBG produces pseudorandom bits that are a function
of the internal state of the DRBG and any input that is introduced while the internal state
transition function is operating. These pseuodorandom output bits are deterministic with
respect to the input information. Any formatting of the output bits prior to output is
determined by a particular implementation.

7.2.7 Support Functions

The support functions for a DRBG are concerned with assessing and reacting to the health
of the DRBG. The health tests are discussed in Sections 9.7 and 11.4.

25

ANS X9.82, Part 3 - DRAFT - July 2005

8. DRBG Concepts and General Requirements
8.1 Introduction

This section provides concepts and general requirements for the implementation and use of
a DRBG. The DRBG functions are explained and requirements for an implementation are
provided.

8.2 DRBG Functions and a DRBG Instantiation

8.21 Functions

A DRBG requires instantiate, uninstantiate, generate, and testing functions. A DRBG may
also include a reseed function. A DRBG shall be instantiated prior to the generation of
output by the DRBG. The instantiate function initializes the internal state using a seed; the
uninstantiate function zeroizes (i.e., erases) the internal state. The generate function
generates pseudorandom bits upon request. The reseed function modifies the internal state
using a new seed. The testing function is intended to test the continued “health” of the
DRBG.

8.2.2 DRBG Instantiations

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA
private keys and AES keys) and may be separately instantiated for each purpose.

A DRBG is instantiated using a seed and may be reseeded; when reseeded, the seed shall
be different than the seed used for instantiation. Each seed defines a seed period for the
DRBG instantiation; an instantiation consists of one or more seed periods that begin when
a new seed is acquired (see Figure 2).

8.2.3 Internal States

During instantiation, an Instantiate: Initialize with sced;
initial internal state is
derived from the seed.
The internal state for an
instantiation includes:

1. Working state: } Seed period 2

’ Seed period 1

v
[(Opt) Reseed withseed , |

h
a. One or more [(Opt) Reseed with seed s |
values that }
are derived ' Seed periods 3 ton
from the seed
and become
part of the

internal state;
these values Figure 2: DRBG Instantiation

26

ANS X9.82, Part 3 - DRAFT - July 2005

must usually remain secret, and

b. A count of the number of requests or blocks produced since the instantiation
was seeded or reseeded.

2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. Each DRBG
instantiation shall have its own internal state. The internal state for one DRBG
instantiation shall not be used as the internal state for a different instantiation.

A DRBG transitions between iriternal states when the generator is requested to provide
new pseudorandom bits. A DRBG may also be implemented to transition in response to
internal or external events (e.g., System interrupts) or to transition continuously (e.g.,
whenever time is available to run the generator).

A DRBG implementation may be designed to handle multiple instantiations. Sufficient
space must be available for the expected number of instantiations, i.e., sufficient memory
must be available to store the internal state associated with each instantiation.

8.2.4 Security Strengths Supported by an Instantiation

The DRBGs specified in this Standard support four security strengths: 112, 128, 192 or
256 bits. The actual security strength supported by a given instantiation depends on the
DRBG implementation and on the amount of entropy provided to the instantiate function.
Note that the security strength actually supported by a particular instantiation may be less
than the maximum security strength possible for that DRBG implementation (see Table 1).
For example, a DRBG that is designed to support a maximum security strength of 256 bits
may be instantiated to support only a 128-bit security strength.

Table 1: Possible Instantiated Security Strengths

Maximum Designed 112 128 192 256
Security Strength

Possible Instantiated 112 112, 128 112,128,192 | 112, 128, 192,
Security Strengths 256

A security strength for the instantiation is requested by a consuming application during
instantiation, and the instantiate function obtains the appropriate amount of entropy for the
requested security strength. Any security strength may be requested, but the DRBG will
only be instantiated to one of the four security strengths above, depending on the DRBG
implementation. A requested security strength that is below the 112-bit security strength or
is between two of the four security strengths will be instantiated to the next highest level
(e.g., a requested security strength of 96 bits will result in an instantiation at the 112-bit
security strength). '

27

ANS X9.82, Part 3 - DRAFT - July 2005

Following instantiation, requests can be made to the generate function for pseudorandom
bits. For each generate request, a security strength to be provided for the bits is requested.
Any security strength can be requested up to the security strength of the instantiation, e.g.,
an instantiation could be instantiated at the 128-bit security strength, but a request for
pseudorandom bits could indicate that a lesser security strength is actually required for the
bits to be generated. The generate function checks that the requested security strength does
not exceed the security strength for the instantiation. Assuming that the request is valid, the
requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a security strength of 112
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to
be instantiated to support the 256-bit security strength.

8.3 DRBG Boundaries

As a convenience, this Standard uses the notion of a “DRBG boundary” to explain the
operations of a DRBG and its interaction with and relation to other processes; a DRBG
boundary contains all DRBG functions and internal states required for a DRBG. A DRBG
boundary is entered via the DRBG’s public interfaces, which are made available to
consuming applications.

Within a DRBG boundary,

1. The DRBG internal state and the operation of the DRBG functions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary. The
internal state shall be contained within the DRBG boundary and shall not be
accessed by non-DRBG functions.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cry ptographic primitive as long as the DRBG’s internal
state and the DRBG functions are not affected.

A DRBG’s functions may be contained within a single device, or may be distributed across
multiple devices (see Figures 3 and 4). Figure 3 depicts a DRBG for which all functions
are contained within the same device. Figure 4 provides an example of DRBG functions

28

that are distributed across multiple
devices. In this case, each device has a
DRBG sub-boundary that contains the
DRBG functions implemented on that
device, and the boundary around the
entire DRBG consists of the
aggregation of sub-boundaries
providing the DRBG functionality.
The use of distibuted DRBG functions
may be convenient for restricted
environments (e.g., smart card
applications) in which the primary use
of the DRBG does not require
repeated use of the instantiate or
reseed functions.

Although the seed is shown in the
figures as originating outside the

ANS X9.82, Part 3 - DRAFT - July 2005

DRIC Bawndury
—
Fenction.
—— Smd
Rowed 14 Bewod
Instantiation Fonciisn
—w Ganexsie
Roquest Bl || Faxtion
Test —» Test
DRBG +——| Functian
Uninsiamiiain
DRRG — || Uinstautials
Fumetisn

Figure 3: DRBG Functions within a Single

DRBG boundary, it may originate Device
from within the boundary.
Seed
A e 7
1 |
| 3 |
| Uninstantiaie| | Instaniae Prokcied Siale | | Cemersie | [Uninstoni I
: Fancton Funciian *| Functim Fanetim i
1 |
I |
| Test Test :
: Funciisn Funcion ,
1 |
| “DRBC $ub-Bowndary (lrwtantiaie) DRBC Sub-Boundary (Ceneraie) I
B o s S e e et et 5 e e e o e S e e |
DRBG Boundary

Figure 4 : Distributed DRBG Functions

Each DRBG boundary or sub-boundary shall contain a test function to test the “health” of
other DRBG functions within that boundary and an uninstantiate function.

When DRBG functions are distributed, appropriate mechanisms shall be used to protect
the confidentiality and integrity of the internal state or parts of the internal state that are
transferred between the distributed DRBG sub-boundaries. The confidentiality and

29

ANS X9.82, Part 3 - DRAFT - July 2005

integrity mechanisms and security strength shall be consistent with the data to be protected
by the DRBG’s consuming application (see SP 800-57).

8.4 Seeds

8.4.1 General Discussion

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and
determine the initial internal state that is used when calling the DRBG to obtain the first
output bits.

Reseeding is a means of recovering the secrecy of the output of the DRBG if a seed or the
internal state becomes known. Periodic reseeding is a good countermeasure to the potential
threat that the seeds and DRBG output become compromised. In some implementations
(e.g., smartcards), an adequate reseeding process may not be possible. In these cases, the
best policy might be to replace the DRBG, obtaining a new seed in the process (e.g., obtain
a new smart card).

8.4.2 Generation and Handling of Seeds

The seed and its use by a DRBG shall be generated and handled as follows:

1. Seed construction for

instantiation: Figure 5 depicts the

seed construction process for Eniropy o -
instantiation. The seed material Input String
used to determine a seed for
instantiation consists of entropy
input, a nonce and an optional Opt.
personalization string. Entropy dr,
input shall always be used in the
construction of a seed;
requirements for the entropy input
are discussed in item 3. A nonce
shall also be used; requirements
for the nonce are discussed in
item 7. This Standard also
recommends the inclusion of a personalization string; requirements for the
personalization string are discussed in Section 8.5.2.

Sced

Figure 5: Seed Construction for Instantiation

Depending on the DRBG and the source of the entropy input, a derivation function
is required to derive a seed from the seed material. When full entropy input is
readily available, the DRBGs based on block cipher algorithms (see Section 10.2)
may be implemented without a derivation function. When implemented in this
manner, a nonce is not used as shown in Figure 5. Note, however, that the
personalization string could contain a nonce, if desired.

30

ANS X9.82, Part 3 - DRAFT - July 2005

The goal of this seed construction is to ensure that the seed is statistically unique.

2. Seed construction for

reseeding: Figure 6 depicts the
: ional
seed construction process for I“Stg:'e"" Entropy A%';‘i't‘i’::al
: } o Tout
reseeding an instantiation. The Value pu Input

seed material for reseeding
consists of a value that is
carried in the internal state!, L 2
new entropy input and, Od"r"
optonally, additional input. The

internal state value and the
entropy input are required; Seed
requirements for the entropy
input are discussed in item 3.
Requirements for the additional Figure 6: Seed Construction for Reseeding
input are discussed in Section

8.5.3. |As in item 1, a derivation function may be required for reseeding. See item 1

for further guidance.| .| comment [EBB12]: Page: 31
This may be removed, depending on which
3. Entropy requirements for the entropy input: The entropy input for the seed shall DRBGs ar retained.

contain sufficient entropy for the desired security strength. Additional entropy may
be provided in the nonce or the optional personalization string during instantiation,
or in the additional input during reseeding, but this is not required. Entropy
contained in the seed components is distributed across the seed (e.g., using an
appropriate derivation function) by the instantiate and reseed functions.

The entropy input shall have entropy that is equal to or greater than the security
strength of the instantiation. Note that the use of more entropy than the minimum
value will offer a security “cushion”. This may be useful if the assessment of the
entropy provided in the entropy input is incorrect. Having more entropy than the
assessed amount is acceptable; having less entropy than the assessed amount could be
fatal to security. The presence of more entropy than is required, especially during the
instantiatiation, will provide a higher level of assurance than the minimum required

entropy.
]4. Seed length: The minimum length of the seed depends on the DRBG and the
security strength required by the consuming application. See Section 10] .| Comment [ebb13]: Page: 31
"""" : This may need to be revised if the
5. Entropy input source: The source of the entropy input may be an Approved NRBG, Dual_EC_DRBG is not retained.

an Approved DRBG (or chain of Approved DRBGs) that is seeded by an Approved
NRBG, or an Approved entropy source. Further discussion about the entropy input
is provided in Parts 2 and 4 of this Standard.

6. Entropy input and seed privacy: The entropy input and the resulting seed shall be
handled in a manner that is consistent with the security required for the data

1 See each DRBG specification for the value that is us%}‘l.

ANS X9.82, Part 3 - DRAFT - July 2005

protected by the consuming application. For example, if the DRBG is used to
generate keys, then the entropy inputs and seeds used to generate the keys shall be
treated at least as well as the key.

7. Nonce: A nonce is required to construct a seed during instantation. The nonce shall
be either:

a. A random value with at least (security_strength/2) bits of entropy,
b. A non-random value that is guaranteed to never repeat, or

. A non-random value that is expected to repeat no more often than a
(security_strength/2)-bit random string would be expected to repeat.

For case a, the nonce may be acquired from the same source and at the same time
as the entropy input. In this case the seed could be considered to be constructed
from an “extra strong” entropy input and the optional personalization string, where
the entropy for the entropy input is equal to or greater than (3/2 security_strength)
bits.

8. Reseeding: Generating too many outputs from a seed (and other input information)
may provide sufficient information for successfully predicting future outputs unless
prediction resistance is provided (see Section 8.6). Periodic reseeding will reduce
security risks, reducing the likelihood of a compromise of the data that is protected
by cryptographic mechanisms that use the DRBG.

Seeds have a finite seedlife (i.e., the length of the seed period); the maximum
seedlife is dependent on the DRBG used. Reseeding is accomplished by 1) an
explicit reseeding of the DRBG by the application, or 2) by the generate function
when prediction resistance is requested (see Section 8.6) or the limit of the seedlife
is reached. An alternative to reseeding is to create an entirely new instantiation.

Reseeding of the DRBG shall be performed in accordance with the specification
for the given DRBG. The DRBG reseed specifications within this Standard are
designed to produce a new seed that is determined by both the old seed and newly-
obtained entropy input that will support the desired security strength.

9. Seed use: DRBGs may be used to generate both secret and public information. In
either case. the seed and the entropy input from which the seed is derived shall be
kept secret. A single instantiation of a DRBG should not be used to generate both
secret and public values. However, cost and risk factors must be taken into account
when determining whether different instantiations for secret and public values can

be accommadated.[____‘_‘”M___._._____.

.| Comment [EBB14]: Page: 32
Should this be addressed in Part 4 7

A seed that is used to initialize one instantiation of a DRBG shall not be
intentionally used to reseed the same instantiation or used as a seed for another
DRBG instantiation.

A DRBG shall not provide output until a seed is available, and the internal state

32

ANS X9.82, Part 3 - DRAFT - July 2005

has been initialized.

10. Seed separation: Seeds used by DRBGs shall not be used for other purposes (e.g.,
domain parameter or prime number generation).

8.5 Other Inputs to the DRBG

8.5.1 Discussion

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input and a nonce to
derive a seed (see Section 8.4, item 1). When pseudorandom bits are requested and when
reseeding is performed, additional input may be provided (see Section 8.5.3).

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or application. For example, the input could be derived directly
from values entered by the user or application, or the input could be derived from
information introduced by the user or application (e.g., from timing statistics based on key
strokes), or the input could be the output of another DRBG or an NRBG.

8.5.2 Personalization String

During instantiation, a personalization string should be used to derive the seed (see
Section 8.4). The intent of a personalization string is to differentiate this DRBG
instantiation from all the others that might ever appear. The personalization string should
be set to some bitstring that is as unique as possible, and may include secret information.
The value of any secret information contained in the personalization string sheuld be no
greater than the claimed strength of the DRBG, as the DRBG's cryptographic mechanisms
(specifically, its backtracking resistance and the entropy provided in the entropy input) will
protect this information from disclosure. Good choices for the personalization string
contents include:

1. Device serial numbers,

Public keys,

User identification,

Private keys,

PINs and passwords,

Secret per-module or per-device values,
Timestamps,

Network addresses,

© e N R W

Special secret key values for this specific DRBG instantiation,
10. Application identifiers,
33

ANS X9.82, Part 3 - DRAFT - July 2005

11. Protocol version identifiers,
12. Random numbers, and
13. Nonces.

8.5.3 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional and may be either secret or publicly known; its
value is arbitrary, although its length may be restricted, depending on the implementation
and the DRBG. The use of additional input may be a means of providing more entropy for
the DRBG internal state that will increase assurance that the entropy requirements are met.
If the additional input is kept secret and has sufficient entropy, the input can provide more
assurance when recovering from the compromise of the seed or one or more DRBG
internal states. ‘

8.6 Prediction Resistance and Backtracking Resistance

Figure 7 depicts the sequence of DRBG internal states that result from a given seed. The
internal state is used to generate pseudorandom bits upon request by a user. The following
discussions will use the figure to explain backtracking and prediction resistance. Suppose
that a compromise occurs at State,, where State, contains both secret and public
information.

Seed — | State, || State, | * * * State, 5| |State,,

[;Statex I\Statexq.] State,,| * * °

Figure 7: Sequence of DRBG States

Backtracking Resistance: Backtracking resistance means that a compromise of the DRBG
internal state has no effect on the security of prior outputs. That is, an adversary who is
given access to all of any-subsetefthat prior output sequence cannot distinguish it from
random; if the adversary knows only part of the prior output, he cannot determine any bit
of that prior output sequence that the-adversaryhe has not already seen. Faotherwords o

For example, suppose that an adversary knows Statey, -and-also-knows-the-output-bits
from-Steata,-to-Stare, - Backtracking resistance means that:

a. The output bits from State, to State,., cannot be distineuished from random. « -+ | Formatted: Bullets and Numbering |
a—b. The prior internal state values themselves (State, to State,.,) cannot be { Formatted _
recovered, given knowledge of the secret information in State, -State, -and-is ‘| Formatted]

34

ANS X9.82, Part 3 - DRAFT - July 2005

Backtracking resistance can be provided by ensuring that the internal state transition
function of a DRBG is a one-way function. All DRBGs in this Standard have been
designed to provide backtracking resistance.

Prediction Resistance: Prediction resistance means that a compromise of the DRBG
internal state has no effect on the security of future DRBG outputs. H-a-compromise-of
WWWWW@HW
km—q%aﬁm—the—e&mmem&sw&nﬂm%ﬁhat is, an adversary who is given access
to all of any-subset-efthe output sequence after the compromise cannot distinguish it from
random; if the adversary knows only part of the future output sequence, ar-adsersarvhe
cannot predict any bit of that future output sequence that he has not already seen.-t-other
“”E‘FéS, 2 5(9'"9"‘3””‘59 ‘ : 4 - o . o
For example, suppose that an adversary knows State,: -and-alse-knews-the-output-bits-from
:‘;Fﬁ!e‘,;..;—lﬁ—%?ﬂ&‘; ,,—Prediction resistance means that:

da.

mndum bitstring by thn adversary

b—b. The future internal state values themselves (Stafe,: and forward) cannot be .

predicted, given knowledge of State,.-State, and-its-output-bitscannot-be
determined-from-knowledse-otf-Siate {e-—State ~cannot-bebacked-upS-—tn
addition—sinee-the-output-bits-from-Stafe -to-State . appearto-berandom=the
sutpulbiteforSiera -e&pme{—be-pfeeheted—hem—she-e%pat—bﬁﬁﬂ{—&eﬁe ta-State, =
Sterte . -and et b celebbbon:

beeuuw—th&eu‘&pul-b&s—msﬁm ERIEEN N -«Whmdmﬂ—kh&ﬂu{pu{—%m
Sterte . -eannot-be-determined-from-the-output-bits-oF-State. s to-Shate, -

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded
between DRBG requests. That is, an amount of entropy that is sufficient to support the
security strength of the DRBG (i.e., an amount that is at least equal to the security strength)
must be added to the DRBG in a way that ensures that knowledge of the currentprevious
DRBG internal state does not allow an adversary any useful knowledge about future
DRBG internal states or outputs.

35

-1 Comment [ebb15]: Page: 34
This makes the definition very convoluted.
{ Formatted: Bullets and Numbering]
h "'[Formatted]
- [Formatted _]

ANS X9.82, Part 3 - DRAFT - July 2005

9 DRBG Functions
9.1 General Discussion

The DRBG functions in this Standard are specified as an algorithm and an “envelope” of
pseudocode around that algorithm. The pseudocode in the envelopes checks the input
parameters, obtains input not provided by the input parameters, accesses the appropriate
DRBG algorithm and handles the internal state. A function need not be implemented using
such envelopes, but the function shall have equivalent functionality.

In the specifications of this Standard, the following pseudo-functions are used. These
functions are not specifically defined in this Standard, but have the following meaning:

e Get_entropy: A function that is used to obtain entropy input. The function call is:

(status, entropy_input) = Get_entropy (min_entropy, min_ length, max_
length)

which requests a string of bits (entropy_input) with at least min_entropy bits of
entropy. The length for the string shall be equal to or greater than min_length bits,
and less than or equal to max_length bits. A status code is also returned from the
function.

e Block Encrypt: A basic encryption operation that uses the selected block cipher
algorithm. The function call is:

output_block = Block_Encrypt (Key, input_block)

For TDEA, the basic encryption operation is called the forward cipher operation;
for AES, the basic encryption operation is called the cipher operation. The basic
encryption operation is equivalent to an encryption operation on a single block of
data using the ECB mode.

Note that an implementation may choose to define this functionality differently; for
example, for many of the DRBGs, the min_length = min_entropy for the Get_entropy
function, in which case, the second parameter could be omitted.

9.2 Instantiating a DRBG
A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function shall:
1. Check the validity of the other input parameters,
Determine the security strength for the DRBG instantiation,
Determine any DRBG specific parameters (e.g., elliptic curve domain parameters),

Obtain entropy input with entropy sufficient to support the security strength,

ooE e e

Obtain the nonce,

36

8.

ANS X9.82, Part 3 - DRAFT - July 2005

Determine the initial internal state using the instantiate algorithm,

If possible, request that pseudorandom bits be generated; the generate function will
test that successive internal state values are not identical.

Return a state_handle for the internal state to the consuming application.

Let working_state be the working state for the particular DRBG, and let min_length, max_
length, and highest_supported_security_strength be defined for each DRBG (see Section
10). If a generate function is not contained in the same sub-boundary as the instantiate
function, steps 13 and 14 are not performed.

The following or an equivalent process shall be used to instantiate a DRBG.

Input from a consuming application:

1.

(%)

requested_instantiation_security_strength: A requested security strength for the
instantiation. DRBG implementations that support only one security strength do not
require this parameter; however, any application using that DRBG implementation
must be aware of this limitation.

prediction_resistance_flag: Indicates whether or not prediction resistance may be
required by a the consuming application during one or more requests for
pseudorandom bits. DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user ofa
consuming application must determine whether or not prediction resistance may be
required by the application before electing to use such a DRBG implementation. If
the prediction_resistance_flag is not needed (i.¢., because prediction resistance is
always or never performed), then the input parameter may be omitted, and the
prediction_resistance_flag may be omitted from the internal state in step 12.

. personalization_string: An optional input that provides personalization information

(see Sections 8.4 and 8.5.2). The maximum length of the personalization string
(max_personalization_string_length) is implementation dependent, but shall be <
2% bits. If a personalization string will never be used, then the input parameter and
step 3 may be omitted, and step 9 may be modified to omit the personalization
string.

DRBG _specific_input_parameters : Any additional parameters that are allowed for
a specific DRBG (see Section 10). The use of the DRBG-specific input parameters

is discussed for the DRBG instantiate algorithms. If a DRBG or a DRBG
implementation does not use these parameters, then step 5 may be omitted.

Required information not provided by the consuming application:

1.

Comment: This input shall not be provided
by the consuming application as an input
parameter during the instantiate request.

entropy_input: Input bits containing entropy. The maximum length of the
37

2.

ANS X9.82, Part 3 - DRAFT - July 2005

entropy_input is implementation dependent, but shall be < 2 bits.

nonce: A nonce as specified in Section 8.4. Note that if a random value is used as
the nonce, the entropy_input and nonce could be acquired using a single
Get_entropy call (see step 6); in this case, the first parameter would be adjusted to
include the entropy for the nonce (i.c., security_strength would be increased by at
least security_strength/2), step 8 would be omitted, and the nonce wou Id be omitted
from the parameter list in step 9.

Output to a consuming application:

1.

status: The status returned from the instantiate function. The status will indicate
SUCCESS or an ERROR. If an ERROR is indicated, either no state_handle or an
invalid state_handle shall be returned. A consuming application should check the
status to determine that the DRBG has been correctly instantiated.

state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

Information retained within the DRBG boundary:

The internal state for the DRBG, including the working_state and administrative
information (see Sections 8.2.3 and 10).

Process:

Comment: Check the validity of the input
parameters.

If requested_instantiation_security_strength >
highest_supportea’_security_strength, then reruen an ERROR.

If prediction_resistance_flag is set, and prediction resistance is not supported, then
return an ERROR. ‘

If the length of the personalization_string > max - personalization_string_length,
return an ERROR.

Set security_strength to the nearest security strength greater than or equal to
requested_instantiation_security_strength.

Comment: The following step is required by
the Dual EC_DRBG when multiple curves
are available (see Section 10.3.2.2.2), and by
the MS_DRBG (see Section 10.3.3.2.3).
Otherwise, the step should be omitted.

Using security_strength and DRBG _specific_input_parameters (if available), select
appropriate DRBG parameters.

Comment: Obtain the entropy input.

38

ANS X9.82, Part 3 - DRAFT - July 2005

6. (status, entropy_input) = Get_entropy (security_strength, min_length,
max_length).

7. Ifan ERROR is returned in step 6, return an ERROR.

8. Obtain a nonce. Comment: This step shall include any
appropriate checks on the acceptability of the
nonce. See Section 8.4

Comment: Call the appropriate instantiate
algorithm in Section 10 to obtain values for
the initial working_state.

9. (status. working state) = Instantiate_algorithm (entropy input, nonce,
personalization_string, other DRBG parameters).

10. If an ERROR is returned trom step 9, then
0.1 Delete all instantiations using the uninstantiate function.
10.2 Return the ERROR status from step 9.
Comment: Set up the initial internal state.

11. Get a state_handle that will be used to locate the internal state for this instantiation.
If an unused internal state cannot be found, return an ERROR.

12. Set the internal state indicated by state_handle to the initial values for the
working_state and administrative information, as appropriate.

Comment: Invoke the generate function in
Section 9.4 to test that two consecutive
internal states are not identical2. Ignore the
returned pseudorandom bits.

13. (status, pseudorandom_bits) = Generate_Function (state_handle, 64,
security_strength, No_prediction_resistance, Null, additional_input).

14. If status indicates that two consecutive internal states were identical, then
14.1 Delete all instantiations using the uninstantiate function.
[42 Return the ERROR status from step 14.
15. Return SUCCESS and state_handle.
9.3 Reseeding a DRBG Instantiation
The reseeding of an instantiation is not required, but is recommended whenever an

application and implementation are able to perform this process. Reseeding will insert
additional entropy into the generation of pseudorandom bits. Reseeding may be:

e explicitly requested by an application,

.)) 9
2 This is the continuous random number lest trom F[P% 140-2

ANS X9.82, Part 3 - DRAFT - July 2005

e performed when prediction resistance is requested by an application,

o triggered by the generate function when a predetermined number of pseudorandom
outputs have been produced (i.e., at the end of the seedlife), or

e triggered by external events (e.g., whenever sufficient entropy is available).

If a reseed capability is not available, a new DRBG instantiation may be created (see
Section 9.2).

The reseed function shall:
1. Check the validity of the input parameters,
2. Obtain entropy input with sufficient entropy to support the security strength, and

3. Using the reseed algorithm, combine the current working state with the new
entropy input and any additional input to determine the new working state. The
reseed algorithm will check that two consecutive states are different.

Let working_state be the working state for the particular DRBG, and let min_length and
max_ length be defined for each DRBG (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.
Input from a consuming application:
1) state_handle: A pointer or index that indicates the internal state to be reseeded.
This value was returned from the instantiate function specified in Section 9.2.

2) additional_input: An optional input. The maximum length of the additional_input
(max_additional_input_length) is implementation dependent, but shall be < 2%
bits. If additional_input will never be used, then the input parameter and step 2
may be omitted, and step 5 may be modified to remove the additional input from
the parameter list.

Required information not provided by the consuming application:

Comment: This input shall not be provided
by the consuming application in the input
parameters.
1. entropy input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be < 2% bits.

2. Internal state values required by the DRBG for reseeding, i.e., the working_state
and administrative information, as appropriate.

Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
an ERROR.

40

ANS X9.82, Part 3 - DRAFT - July 20056

Information retained within the DRBG boundary:
Replaced internal state values (i.e., the working_state).
Process:

Comment: Get the current internal state and
check the input parameters.

1. Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or unused internal state, return an ERROR.

2. Ifthe length of the additional input > max_additional_input_length, return an
ERROR.

Comment: Obtain the entropy input.

3. (status, entropy_input) = Get_entropy (security_strength, min_length,
max_length).

4, Ifan ERROR is returned in step 3, return an ERROR.

Comment: Get the new working_state using
the appropriate reseed algorithm in Section
10.

5. (status, working_state) = Reseed_algorithm (working state, entropy_input,
additional _input).

Comment: If an ERROR is returned, two
consecutive states are the same.

6. Ifan ERROR is returned from step 6, then
6.1 Delete all instantiations using the uninstantiate function.
6.2 Return the ERROR status from step 5.

Comment: Save the new values of the internal
state.

7 Replace the working state in the internal state indicated by state_handle with the
new values.

8. Return SUCCESS.
9.4 Generating Pseudorandom Bits Using a DRBG
This function is used to generate pseudorandom bits after instantiation or reseeding (see
Sections 9.2 and 9.3). The generate function shall:

1. Check the validity of the input parameters,

2. Ifthe instantiation needs additional entropy because the end of the seedlife has
been reached or prediction resistance is required, call the reseed function to obtain

41

ANS X9.82, Part 3 - DRAFT - July 2005

sufficient entropy.

3. Generate the requested pseudorandom bits using the generate algorithm. The
generate algorithm will check that two consecutive states are not the same.

4. Update the working state.

5. Return the requested pseudorandom bits to the consuming appication.
Let outlen be the length of the output block of the cryptographic primitive (see Section 10).
The following or an equivalent process shall be used to generate pseudorandom bits.

Input from a consuming application:
1. state_handle: A pointer or index that indicates the internal state to be used.

2. requested_number of bits: The number of pseudorandom bits to be returned from
the generate function. The max_number_of bits_per_request is implementation
dependent but shall be < the value provided in Section 10 for a specific DRBG..

3. requested_security_strength: The security strength to be associated with the
requested pseudorandom bits. DRBG implementations that support only one
security strength do not require this parameter; however, any application using that
DRBG implementation must be aware of this limitation.

4. prediction_resistance_request: Indicates whether or not prediction resistance is to
be provided. DRBGs that are implemented to always or never support prediction
resistance do not require this parameter. However, the user of a consuming
application must determine whether or not prediction resistance may be required by
the application before electing to use such a DRBG implementation. If the
prediction_resistance_request parameter is not needed, then the input parameter
and step 5 may be omitted.

If prediction resistance is never provided, then step 5 may be omitted, and step 7
may be modified to omit the check for the prediction_resistance_request.

If prediction resistance is always performed, then step 5 may be omitted, and steps
7 and 8 are replaced by:

status = Reseed (state_handle, additional _input).
If status indicates an ERROR, then return ERROR.
Using state_handle, obtain the new internal state.

(status, pseudorandom_bits, working_state) = Generate_algorithm
(working_state, requested_number_of bits).

Note that if additional_input is never provided, then the additional_input parameter
in the Reseed call above may be omitted.

5. additional_input: An optional input. The maximum length of the additional _input
(max_additional_input_length) is implementation dependent, but shall be < 2%
42

ANS X9.82, Part 3 - DRAFT - July 2005

bits. If additional_input will never be used, then the input parameter, step 4, step
7.4 and the additional _input input parameter in step § may be omitted.

Required information not provided by the consuming application:

1. Internal state values required for generation for the working_state and
administrative information, as appropriate.

Output to a consuming application:

1. status: The status returned from the function. The starus will indicate SUCCESS
or an ERROR.

2. pseudorandom_bits: The pseudorandom bits that were requested.
Information retained within the DRBG boundary:

Replaced internal state values (i.e., the working_state).
Process:

Comment Get the internal state and check the
input parameters.

1. Using state_handle, obtain the current internal state for the instantiation. If
state_handle indicates an invalid or unused internal state, then return an ERROR.

2. If requested_number_of bits > max_number_of bits_per request, then return an
ERROR.

3. If requested security strength> the security_strength indicated in the internal
state, then return an ERROR.

4. Ifthe length of the additional_input > max_additional_input_length, then return an
ERROR.

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR.

6. Clear the reseed required_flag.

Comment: Get the requested pseudorandom
bits.

7. If reseed_required_flag is set, or if prediction_resistance_request is set, then

Comment: Reseed the instantiation (see
Section 9.3).

7.1 status = Reseed (state_handle, additional _input).
7.2 If status indicates an ERROR, then return an ERROR.
7.3 Using state_handle, obtain the new internal state.
7.4 additional_input = the Null string.
43

ANS X9.82, Part 3 - DRAFT - July 2005

7.5 Clear the reseed_required_flag.

Comment: Request the generation of
pseudorandom_bits using the appropriate
generate algorithm in Section 10.

8. (status, pseudorandom_bits, working_state) = Generate_algorithm
(working_state, requested_number_of bits, additional_input).

9. If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 Set the reseed required flag.
9.2 Gotostep 7.

Comment: If an ERROR is returned, two
consecutive states are the same.

10. If an ERROR is returned from step 8,
10.1 Delete all instantiations using the uninstantiate function.
10.2 Return the ERROR received from step 8.

10. Replace the old working_state in the internal state indicated by state_handle with
the new working_state.

11. Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not available, then steps 6 and 7 may be removed; and step 9 is
replaced by:

9. If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 status = Uninstantiate (state_handle).
9.2 If an ERROR is returned in step 9.1, then return the ERROR.
9.3 Return an indication that the DRBG instantiation can no longer be used.
9.5 Removing a DRBG Instantiation
The internal state for an instantiation may need to be “released”. This may be required, for

example, following health testing of the instantiation function. The uninstantiate function
shall:

1. Check the input parameter for validity.
2. Empty the internal state.
The following or an equivalent process shall be used to remove (i.e., uninstantiate) a

44

ANS X9.82, Part 3 - DRAFT - July 2005

DRBG instantiation:
Input from a consuming application:

1. state handle: A pointer or index that indicates the internal state to be “released”.
Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
ERROR.

Information retained within the DRBG boundary:
An empty internal state.

Process:
1. If state_handle indicates an invalid state, then return an ERROR.
2. FErase the contents of the internal state indicated by state_handle.
3. Return SUCCESS.

9.6 Auxilliary Functions

9.6.1 Introduction

Derivation functions are internal functions that are used during DRBG instantiation and
reseeding to either derive internal state values or to distribute entropy throughout a
bitstring. Two methods are provided. One method is based on hash functions (see Section
9.6.2), and the other method is based on block cipher algorithms (see 9.6.3). The block
cipher derivation function uses a a CBC_MAC that is specified in Section 9.6.4.

9.6.2 Derivation Function Using a Hash Function (Hash_df)
The hash-based derivation function hashes an input string and returns the requested

number of bits. Let Hash (...) be the hash function used by the DRBG, and let outlen be its
output length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input string: The string to be hashed.

2. no_of bits_to_return: The number of bits to be returned by Hash_df. The
maximum length (max_number_of bits) is implementation dependent, but shall be
< (255 x outlen). no_of bits_to_return is represented as a 32-bit integer.

Output:

1. status: The status returned from Hash_df. The status will indicate SUCCESS or
45

ANS X9.82, Part 3 - DRAFT - July 2005

ERROR.
2. requested_bits : The result of performing the Hash_df.
Process:
1. Ifno_of bits_to_return> max_number_of bits, then return an ERROR.
2. temp =the Null string.
[no_of _bits_to_return—‘
outlen

3. len=

4. counter = a 32-bit binary value representing the integer "1".
5. Fori=1tolendo
5.1 temp = temp || Hash (counter || no_of bits_to_return || input_string).
5.2 counter = counter + 1.
6. requested_bits = Lefimost (no_of bits_to_return) of temp.
7. Return SUCCESS and requested_bits.
9.6.3 Derivation Function Using a Block Cipher Algorithm
Let Block_Cipher_Hash be the function specified in Section 9.6.4. Let Let outlen be its
output block length, and let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input_string: The string to be operated on. This string shall be a multiple of 8 bits.

2. no_of bits_to_return: The number of bits to be returned by Block_Cipher_df. The
maximum length (max_number_of bits) is 512 bits for the currently approved block cipher
algorithms.

Output:
1. status: The status returned from Block_Cipher_df. The status will indicate
SUCCESS or ERROR.

2. requested_bits : The result of performing the Block _Cipher_df.

Process:

1. If (number_of bits to_return> max_number_of bits), then return an ERROR.

2. L=len (input string)/8. Comment: L is the bitstring represention of
the integer resulting from len (input_string)/8.

46

ANS X9.82, Part 3 - DRAFT - July 2005

L shall be represented as a 32-bit integer.

3. N=number of bits to return/8. Comment : N is the bitsting represention of
the integer resulting from
number_of bits to_return/8. N shall be
represented as a 32-bit integer.

Comment: Prepend the string length and the
requested length of the output to the
input_string.

3. S=L||N| input_string || 0x80.

Comment : Pad S with zeros, if necessary.
4. While (len (S) mod outlen) =0, S =S || 0x00.

Comment : Compute the starting value.
5. temp = the Null string.

6. i=0. Comment : i shall be represented as a 32-bit
integer.

7. K= Leftmost keylen bits of 0x010203...1F.
8. While len (temp) < keylen + outlen, do

8.1 [y=ij|Q°ien-ten® Comment: The integer represenation of i is
padded with zeros to outlen bits.

8.2 temp=temp | Block Cipher_Hash (X, (IV || S)).
83 i=i+1l.

Comment: Compute the requested number of
bits.

9. K=Leftmost keylen bits of temp.
10. X = Next outlen bits of temp.
11. temp = the Null string.
12. While len (temp) < number of bits _to_return, do
12.1 X =Block Encrypt (X, X).
12.2 temp =temp || X.
13. requested_bits = Leftmost number_of bits_to_return of temp.
14. Return SUCCESS and requested_bits.

47

ANS X9.82, Part 3 - DRAFT - July 2005

9.6.4 Block_Cipher_Hash Function

Let outlen be the length of the output block of the block cipher algorithm to be used.

The-following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. Key: The key to be used for the block cipher opeation.

2. data_to_hash: The data to be operated upon. Note that the length of data_to_hash
must be a multiple of outlen. This is guanteed by steps 4 @nd 8.1 in Section 9.6.3.

Output:

1. output_block: The tesult to be returned from the Block_Cipher_Hash operation.
Process:

1. chaining value = 0""",
2. n=len (data_to hash)/outlen.
3. Split the data_to_hash into n blocks of outlen bits each forming blocki to block,.

4., Fori=1ltondo

Comment: Set the first chaining value to outlen zeros.

4.1 input_block= chaining_value ® block; .
42 chaining value = Block_Encrypt (Key, input_block).
5. output_block = chaining_value.
6. Return output block.
9.7 Self-Testing of the DRBG

9.7.1 Discussion

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (health testing). The testing function(s) within a
DRBG boundary (or sub-boundary) shall test each DRBG function within that boundary.

Errors occutring during testing shall be perceived as complete DRBG failures. The
condition causing the failure shall be corrected and the DRBG re-instantiated before
requesting pseudorandom bits (also, see Section 9.8)

9.7.2 Testing the Instantiate Function

Whenever the instantiate function is invoked, known-answer tests on the instantiate

function shall be performed prior to creating an operational instantiation. The

security_strength, prediction_resistance_flag and DRBG_specific_parameters used in the

invocation shall be used during the test. Representative fixed values and lengths of the

entropy_input, nonce and personalization_string (if allowed) shall be used; the value of
48

ANS X9.82, Part 3 - DRAFT - July 2005

the entropy _input used during testing shall not be intentionally reused during normal
operations (either by the instantiate or the reseed functions). Error handling shall be also
be tested, including an error in obtaining the entropy_input (e.g., the entropy_input source
is broken).

If the values used during the test produce the expected results, and errors are handled
correctly, then the instantiate function may be used to instantiate using the tested values of
security_strength, prediction_resistance_flag and DRBG_specific_parameters.

An implementation should provide a capability to test the instantiate function on demand.
9.7.3 Testing the Generate Function

The generate function shall be tested upon power-up and at periodic intervals. The interval
between periodic tests shall be consistent with the environment in which the DRBG is
used. Note that in some environments, the periodic tests may need to be delayed until after
a critical event has concluded; in this case, the periodic test shall be performed at the
earliest possible opportunity.

Known-answer tests shall be performed on the generate function using each implemented
security_strength. Representative fixed values and lengths for the
requested_number_of bits and additional_input (if allowed) and the working state of the
internal state value (see Sections 8.2.3 and 10) shall be used. If prediction resistance is
available, then each combination of the security_strength, prediction_resistance_request
and prediction_resistance_flag shall be tested. The error handling for each input parameter
shall also be tested, and testing shall include setting the reseed_counter to meet or exceed
the reseed_interval in order to check that the implementation is reseeded or that the DRBG
is “shut down”, as appropriate.

If the values used during the test produce the expected results, and errors are handled
correctly, then the generate function may be used during normal operations.

Bits generated during health testing shall not be output as pseudorandom bits.

An implementation should provide a capability to test the generate function on demand.
9.7.4 Testing the Reseed Function

A known-answer test of the reseed function shall use the security_strength in the internal
state of the instantiation to be reseeded. Representative values of the entropy_input and
additional_input (if allowed) and the working state of the internal state value (see Sections
8.2.3 and 10) shall be used. Error handling shall also be tested, including an error in
obtaining the entropy_input (e.g., the entropy_input source is broken).

If the values used during the test produce the expected results, and errors are handled
correctly, then the reseed function may be used to reseed the instantiation.

The reseed function may be called every time that the generate function is called if
prediction resistance is available, and considerbly less frequently otherwise. In particular :

49

ANS X9.82, Part 3 - DRAFT - July 2005

1. When prediction resistance is available in an implementation, the reseed function
shall be tested whenever the generate function is tested (see above).

2. When prediction resistance is not available in an implementation, the reseed
function shall be tested whenever the reseed finction is invoked and before the
reseed is performed on the operational instantiation.

An implementation should provide a capability to test the reseed function on demand.
9.7.5 Testing the Uninstantiate Function

The uninstantiate function shall be tested whenever other functions are tested. Testing
shall attempt to demonstrate that etror handling is performed correctly, and the internal
state has been "emptied". The reseed funetion shall be tested:

9.8 Error Handling

The expected errors are indicated for each DRBG function (see Sections 9.2 - 9.5) and for
the derivation functions in Section 9.6. The error handling routines should indicate the
type of error. For catastrophic errors (e.g., entropy input source failure), the DRBG shall
not produce further output until the source of the error is corrected.

Many errors during normal operation may be caused by an application’s improper DRBG
request. In these cases, the application user is responsible for correcting the request within
the limits of the user’s organizational security policy. For example, if a failure indicating
an invalid requested security strength is returned, a security strength higher than the DRBG
or the DRBG instantiation can support has been requested. The user may reduce the
requested security strength if the organization’s security policy allows the information to
be protected using a lower security strength, or the user shall use an appropriately
instantiated DRBG.

Failures that indicate that the entropy source has failed or that the DRBG failed health
testing (see Sections 9.7 and 11.4) shall be handled as complete DRBG failures. The
indicated DRBG problem shall be corrected, and the DRBG shall be re-instantiated before
the DRBG can be used to produce pseudorandom bits.

50

Hash_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

10 DRBG Algorithm Specifications

Several DRBGs are specified in this Standard. The selection of a DRBG depends on
several factors, including the security strength to be supported and what cryptographic
primitives are available. An analysis of the consuming application’s requirements for
random numbers shall be conducted in order to select an appropriate DRBG. A detailed
discussion on DRBG selection is provided in Annex E. Pseudocode examples for each
DRBG are provided in Annex F. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Annex B.

10.1 Deterministic RBGs Based on Hash Functions

10.1.1 Discussion

A hash DRBG is based on a hash function that is non-invertible or one-way. The hash
DRBGs specified in this Standard have been designed to use any Approved hash function
and may be used by applications requiring various security strengths, providing that the
appropriate hash function is used and sufficient entropy is obtained for the seed. The
following are provided as DRBGs based on hash functions:

1. The Hash _df DRBG specified in Section 10.1.2.
2. The HMAC_DRBG specified in Section 10.1.3.

The maximum security strength that could be supported by each hash function is provided
in SP 800-57. However, this Standard supports only four security strengths: 112, 128, 192,
and 256. Table 3 specifies the values that shall be used for the function envelopes and
DRBG algorithm for each Approved hash function. The specifications in this Standard
assume that a single appropriate hash function will be selected for a DRBG
implementation; i.e., a DRBG implementation will not contain multiple hash functions
from which to choose during instantiation.

Table 3: Definitions for Hash-Based DRBGs

SHA-1 ‘ SHA-224 | SHA-256 ‘ SHA-384 ‘ SHA-512

Supported security strengths See SP 800-57
highest_supported_security_strength See SP 800-57

Output Block Length (outlen) 160] 224] 256 | 384 | 512
Required minimum entropy for security_strength

instantiate and reseed

Minimum entropy input length security_strength
(min_length)

Maximum entropy input length < 2% bits
(max_ length)

51

Hash_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-512

Seed length (seedlen) for 368 368 368 816 816
Hash_df DRBG

Maximum personalization string < 2% bits

length

(max_personalization_string_length)

Maximum additional_input length < 2% bits
(max_additional_input_length)

max._number_of bits_per_request <2 bits

Number of requests between <2®

reseeds (reseed_interval)-

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit for using the
SHA-224; this is also the case for SHA-384 and SHA-512, i.e., the use of SHA-256 or
SHA-512 instead of SHA-224 or SHA-384, respectively, is prefei red. The value for
seedlen is determined by subtracting the count field and one byte of padding from the hash
function input block length; in the case of SHA=1, SHA-224 and SHA 256, seedlen =512 -
64 - 8 = 440; for SHA-384 and SHA-512, seedllen = 1024 - 128 - 8 = 888.

10.1.2 Hash_DRBG
10.4.24 Discussion

Flgure 8 presents the normal operation of the Hash_DRBG. The Hash_DRBG requires
ash function during the instantiate, seed and. generate functions; the same
hash function shall be used in all functions. The hash function to be used shall meet or
exceed the desired security strength of the consuming application.

implementation validation testing and health testing are discussed in Sections 9.7 and 11.
10.1.2.2 Specifications

10.1.2.2.4 Hash_DRBG Internal State

The internal_state for Hash_ DRBG consists of:
1. Theworking_state:
a, A value (V) of seedlen bits that is updated during each call to the DRBG.
b. A constant C of seedle bits that depends on the seed.

c. Al eoumer (reseed_coumter) that indicates the number of requests for
pseudorandom hits since new entropy_input Wes ‘abtained dering instantiation
or reseeﬁlmg

52

Hash_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

2:: Administrative information:

a. The security. strength of the ©nt) ceredl
DRBG instantiation. v "ipet € counter

b. A prediction_resistance_flag —
that indicates whether or not a oz v | 2 EomaT
pwdicnon resistance Ioprit
eapabﬂity is required for the
DRBG. I S
v
+ [
mtsmal state).
104:2:2:2 Instantiation of Hash_DREG wooo!
) IR £
Notes for the hustautmteuﬁmctlon, e
Function
e b | 1

v '
| emoushhiv 4, Counter: V reseed C

: speamc Inp TR : From B) | counter

arb raqu'ked fOl' ‘the iﬂstﬂl]ﬁﬁtg :7 {—+ Pseudorandom Bits
fun .._.ﬂedinSmﬁon 92(ie. N SO]

step 5 shi

The values: of
highest_supported.. security._sirength Figure 8: Hash_DRBG
and min_length are provided in Table
3 of Section 10.1.1. The contents of
the internal state are provided in Section 10.1.2.2.1.
Thig-tg ARt algotithi:
Let Hash_df be the hash derivation function specified in Section 9.6.2 using the
selected hash function. The output block length (outlen), seed length (seedlen) and

apprapriate ‘security_strengths for the implemented hash function are provided in Table
3 of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithim: for
this DRBG (see step 9 in Section 9.2).

Input:

53

Hash_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

I, entropy._input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4
3. personalization_string: The personalization string received from the consuming
application. [fa personalization_string will never be used, then steps 1 and 2
may be combined as follows:
seed = Hash_df (entropy. input. seedlen).

p—

1. working_state: The inital values for ¥, Cand reseed_counter (see Section
10.1.2:2.1).

Process:

1. seed material = entropy_input || nonce || personalization_string.
2. seed=Hash_df (seed material, seedlen).
3. V=seed.
4, 'C=Hash_df ((0x00 || ¥, seedlen). ‘Comment: Preceed I/ with'a byte of
5. reseed counter=1.
6. Return ¥, C and reseed counter as the working _state.

104.2.2:3 Reseeding a Hash_DRBG!/Instantiation

Notes for the reseed function:
The reseeding of a Hash_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in

this section. The values for min_length are provided in Table 3 of Section 10.1.1.
The reseed algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using the

selected hash function. The value for seedlen is provided in Table 3 of Section 10.1.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 in Section 9.3):

Input:

1% working_state: The current values for ¥, C and reseed_counter (see Section
10.1.2.2.1).
.+ entropy._input: The string of bits obtained from the entropy input source,
3. additional_input: The additional input string received from the consuming
application. If additional _input will never be provided, then step 2 may be
54

Hash_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

modified to remove the additional_input.
Qutpit:
I, status: The status of the reseed function. The returned status is either
SUCCESS or ERROR.
2. working state: The new values for ¥, C and reseed counter.
Process:
I. Vold=V.
seed_material = 0x01 || V|| entropy_input || additional_input.
seed = Hash_df (seed_material, seedlen).
- V=seed.
If(V= V_old), then return an ERROR.

\C = Hash_df ((0x00 ||), seedlen). Comment: Preceed with a byte of all
2810,

o o w0

7. reseed_counter = 1.
8. Return ¥, C and reseed counter as the new working state.
104.2:24 Generating Pseudorandom Bits Using Hash_DRBG
Notes for the generate function:
The generation of pseudordndom bits using a Hash_ DRBG instantiation requires a call
the generate function. specified in Section 9.4; ep 8 of that function calls the

g&el‘atfé algorithm specified in this section. The. valués for
max_number_of bits_per_request and ourlen are prev;ded in Table 3 of Section 10.1.1.

The generate algorithm:
Let Hash be the selected hash function. The seed Iengﬂ1 (seedlen) and the maximum
tween reseeding (resae*d im'erua}) are provided inTable 3 of Section 10.1.1.

Nate thai or this DRBG, the resaed counter is used to update the value of ¥ as well as
to count the number of generation requests.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):
Input:
1. working_state: The current values for V, € and reseed_counter (see Section
10.1.2.2.1).
2. requested_number_of bits: The number of pseudorandom bits to be returned to
the generate function.
3. additional input: The additional input string received fron thé:consurniing
55

Hash_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

qp[fill‘éa’xibﬂ.-:lEWEIEOE&&E&};‘W!M!l never be provided, then step 3 may be
omitted.
Output:
1. status: The status returt

SUCCESS, ERRO
pseudorandom bit

2. returned _bits: The pseuaomnddm bits to be returned to the generate function.
3. working_state: The new values for V, C and reseed_counter.
Process:

1. V.old=V.

2. Ifireseed counter reseed interval, then return an indication that a reseed is
required.

3. If (additional _input # Null), then do
3.1 w = Hash (0x02|| ¥ (| additional _input).
32 y= (V+w) mudﬁ*"‘”“’

d from the function. The status will indicate
ndical hat a reseed is required before the requested

5. «&aam.(nxos,;tlm.

6. W=(V+ H+ C+ reseed.counter) mod 2",
7. £ (V= V_old), return an ERROR.

8. reseed counter = reseed counter+ 1.

9. Return SUCCESS, returned_bits, and the new values of V. Cand
reseed. counter for the new working_state.

Hashgen (...):
Input:
{9 #equested_no_of bits: The number 0f bits to be réturned,
425 P48 clrrent value of V.
Output:
1. returned_bits: The generated bits to bestetuttied'to theigendrate function.
Process:
{. m_“l'reguesred no_of bi!s-l
v outlen

2. data=V.
56

Hash_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

3. W=the Null string.
4. Fori=1tom
4.1 w; = Hash (data).
42 W=W(w
4.3 data = (data + 1) mod 2",
5. returned_bits = Leftmost (requested_no_of bits) bits of W.
6. Return returned_bits.

57

HMAC_DRBG

10.1.3 HMAC_DRBG (...)

10.1.3.1 Discussion

HMAC_DRBG uses multiple
occurrences of an Approved keyed hash
function, which is based on an Approved
hash function. The same hash function
shall be used throughout. The hash
function used shall meet or exceed the
security requirements of the consuming
application.

Figure 9 depicts the HMAC_DRBG in
stages. HMAC_DRBG is specified
using an internal function (Update).
This function is called during the
HMAC_DRBG instantiate, generate and
reseed algorithms to adjust the internal
state when new entropy or additional
input is provided. The operations in the
top portion of the figure are only
performed if the additional input is not
null. Figure 10 depicts the Update
function. '

10.1.3.2 Specifications
10.1.3.21 HMAC_DRBG Internal State

. The internal state for HMAC_DRBG
consists of:

1. The working_state:

a. The value V of outlen bits,
which is updated each time
another outlen bits of output
are produced (where outlen is
specified in Table 3 of
Section 10.1.1).

ANS X9.82, Part 3 - DRAFT - July 2005

(Oph adislonabicpet

UPDATE

Tterate

w

B

3
Ly—

al

reseed
Key| ¥ counter|
: v
AEEA DN
Paeudorandom biis
adiiional impai

Staie A
Key | v |reseed | _ UPDATE

Figure 9: HMAC_DRBG

b. The Key of outlen bits, which is updated at least once each time that the DRBG

generates pseudorandom bits.

c. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

2. Administrative information:

provided
a. The security strength of ot T
the DRBG instantiation. Y
-
prediction_resistance_flag
that indicates whether or Key -
not a prediction resistance

capability is required for
the DRBG.

The values of V and Key are the
critical values of the internal state

upon which the security of this DRBG
depends (i.e., ¥ and Key are the
“secret values” of the internal state).

10.1.3.2.2 The Update Function
(Update)

The Update function updates the
internal state of HMAC_DRBG using
the provided_data. Let HMAC be the
keyed hash function specified in FIPS

198 using the hash function selected
for the DRBG from Table 3 in Section
10.1.1.

The following or an equivalent process shall be used as the Update function.
Input:
1. provided_data: The data to be used.
2. K: The current value of Key.
3. ¥: The current value of V.
Output:
1. K: The new value for Key.
2. V:The new value for V.
Process:
1. K=HMAC (X, V| 0x00 || provided_data).
2. V=HMAC (X, V).
3. If (provided_data= Null), then return K and V.

59

Figure 10: HMAC_DRBG Update Function

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

4, K=HMAC (X, V|| 0x01 || provided_data).
5. V=HMAC(,).
6. Return K and V.

10.1.3.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function:

The instantiation of HMAC_DRBG requires a call to the instantiate function specified
in Section 9.2; step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG, no DRBG specific_input_parameters are required for the
instantiate function specified in Section 9.2 (i.¢., step 5 should be omitted). The values
of highest_supported_security_strength and min _length are provided in Table 3 of
Section 10.1.1. The contents of the internal state are provided in Section 10.1.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The ouput block length
(outlen) is provided in Table 3 of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 8 of Section 9.2):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.

3. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then step 1 may be
modified to remove the personalization_string.

Output:

1. status: The status returned from the instantiate function. where status is either
SUCCESS or ERROR.

2. working_state: The inital values for ¥, Key and reseed_counter (see Section
10.1.3.2.1).

Process:
1. seed material = entropy_input || nonce || personalization_string.
2. Key old=0x00 00...00. Comment: outlen bits.
3. V old=0x0101..01. Comment: outlen bits.
Comment: Update Key and V.
4. (Key, V)= Update (seed_material, Key_old, V_old).

60

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

5. [f((Kev= Key old)or (V=V_old)), then return an ERROR.

6. reseed counter=1. _

7. Return SUCCESS, V, Key and reseed_counter as the initial working_state.
10.1.3.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function:

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_length are provided in Table 3 of Section 10.1.1.

The reseed algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The following process or its
equivalent shall be used as the reseed algorithmn for this DRBG (see step 5 of Section
9.3):
Input:
1. working_state: The current values for ¥, Key and reseed_counter (see Section
10.1.3.2.1).
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input
string received from the consuming application. If additional_input will
never be used, then step 1 may bemodified to remove the additional_input.

Output:
1. status: The status returned from the reseed function. The status is either
SUCCESS or an ERROR.

2. working_state: The new values for ¥, Key and reseed_counter.
Process:
1. V_old=V; Key old=Key.
2. seed_material = entropy_input || additional _input.
3. (Key, V)= Update (seed_material, Key old, V_old).
Comment: Check for “stuck”bits.
4. If((V ="V _old) or (Key = Key_old)), then return an ERROR.
5. reseed_counter = 1.
6. Return SUCCESS, 7, Key and reseed_counter as the new working_state.

61

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

10.1.3.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per_request and outlen are provided in Table 3 of Section 10.1 1.

The generate algorithm :

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG. The value for reseed_interval is defined in Table 3 of Section
10.1.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working state: The current values for V_old, Key old and reseed_counter (see
Section 10.1.3.2.1).

2. requested_number_of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application. If an implementation will never use additional_input, then step 2
may be omitted. If additional_input is not provided (regardless of whether or
not it will ever be provided), then a Null string shall be used as the
additional_input in step 6.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, an ERROR or indicate that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. working_state: The new values for V, Key and reseed_counter.
Process:

1. If reseed_counter > reseed_interval, then return an indication that a reseed is
required.

2. fadditional_input # Null, then (Key_old, V_ oldy = Update (additional_input,
Key old, V_old).

3. temp = Null.
4. While (len (temp) < requested_number_of bits) do:
62

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

4.1 V=HMAC (Key oldV old).
Comment: Check for stuck bits.

42 I (F=V_old), then return an ERROR.

43 V old=V.

44 temp=temp| V.
5. returned bits = Leftmost requested_number_of bits of temp.
6. (Key, V)= Update (additional input, Key old, V_old).

Comment: Check for “stuck™ bits.

7. IE((V ="V _old) or (Key = Key old)), then return an ERROR.
8. reseed_counter = reseed_counter + 1,

9. Return SUCCESS, returned_bits, and the new values of Key, ¥ and
reseed_counter as the working_state).

63

CTR_DRBG ANSI X9.82, Part 3 — Draft — July 2005

10.2 DRBGs Based on Block Ciphers

10.2.1 Discussion

A block cipher DRBG is based on a block cipher algorithm. The block cipher DRBGs
specified in this Standard have been designed to use any Approved block cipher
algorithm and may be used by applications requiring various levels of security, providing
that the appropriate block cipher algorithm and key length are used and sufficient entropy
is obtained for the seed. The following are provided as DRBGs based on block cipher
algorithms:

1. The CTR_DRBG specified in Section 10.2.2.
2. The OFB_DRBG specified in Section 10.2.3.

Table 4 specifies the values that shall be used for the function envelopes and DRBG
algorithm for each Approved block cipher algorithm. The specifications in this Standard
assume that a single appropriate block cipher algorithm and key size will be selected for a
DRBG implementation; i.e., a DRBG implementation will not contain multiple block
cipher algorithms or key sizes from which to choose during instantiation.

Table 4: Definitions for Block Cipher- Based DRBGs

3Key | AES-128 | AES-192 AES-256
TDEA
Supported security strengths See SP 800-57
J:ighest_suppar!ed_security_strengm See SP 800-57
Output block length (outlen) 64 128 128 128
['Key length (keylen) 168 128 2 | 256
Required minimum entropy for security_strength

instantiate and reseed
Seed length (seedlen = outlen + keylen) 232 I 256 l 320 1 384

A derivation function is used:

Minimum entropy input length security_strength
(min _length)

Maximum entropy input length < 2% bits
(max _length)

Maximum personalization string < 2% bits
length

(max _pers0nalization_string_length)

Maximum additional_input length < 2% bits
(max_additional_input_ length)

64

CTR_DRBG ANSI X9.82, Part 3 - Draft — July 2005

3Key | AES-128 | AES-192 | AES-256
TDEA
A derivation function is not used (full
entropy is available):
Minimum entropy input length seedlen
(min _length) (outlen + keylen)
Maximum entropy input length seedlen
(max _length) (outlen + keylen)
Maximum personalization string seedlen
length
(max_personalization_string_length)
Maximum additional_input length seedlen
(max_additional_input length)
max_number_of bits_per_request <2® <2V
Number of requests between reseeds <2* <2%
(reseed_interval)

The block cipher DRBGs may be implemented to use the block cipher derivation
function specified in Section 9.6.3. However, these DRBGs are specified to allow an
implementation tradeoff with respect to the use of this derivation function. If a source for
full entropy input is always available to provide entropy input when requested, the use of
the derivation function is optional; otherwise, the derivation functon shall be used. Table
4 provides lengths required for the entropy_input, personalization_string and
additional_input for each case.

When full entropy is available, and a derivation function is not used by an
implementation, the seed construction (seeSection 8.4.2) shall not use a nonce’.

When using TDEA as the selected block cipher algorithm, the keys shall be handled as
64-bit blocks containing 56 bits of key and 8 bits of parity as specified for the TDEA
engine.

3 The specifications in this Standard do not accommodate the special treatment required for a nonce in this
case.

65

CTR_DRBG

10.2.2 CTR_DRBG

10.2.2.1 Discussion

CTR_DRBG uses an Approved block
cipher algorithm in the counter mode as
specified in [SP 800-38A]. The same block
cipher algorithm and key length shall be
used for all block cipher operations. The
block cipher algorithm and key length shall
meet or exceed the security requirements of
the consuming application. The values to be
used for the implementation of this DRBG
are specified in Table 4 of Section 10.2.1.

CTR_DRBG is specified using an internal
function (Update). Figure 11 depicts the
Update function. This function is called by
the instantiate, generate and reseed
algorithms to adjust the internal state when
new entropy or additional input is provided.
Figure 12 depicts the CTR_DRBG in three
stages. The operations in the top portion of
the figure are only performed if the
additional input is not null.

10.2.2.2 Specifications

10.2.2.2.1 CTR_DRBG Internal State

The internal state for CTR_DRBG consists of:

1. The working state:

ANSI X9.82, Part 3 - Draft - July 2005

Figure 11: CTR_DRBG Update

a. The value V of outlen bits, which is updated each time another outlen bits of
output are produced (see Table 4 in Section 10.2.1).

b. The Key of keylen bits, which is updated whenever a predetermined number of

output blocks are generated.

c. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

2. Administrative information:

a. The security strength of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG.

66

CTR_DRBG

The values of ¥ and Key are the critical
values of the internal state upon which the
security of this DRBG depends (i.e., Vand
Key are the “secret values” of the internal
state).

10.2.2.2.2 The Update Function (Update)

The Update function updates the internal
state of the CTR_DRBG using the
provided_data. The values for outlen, keylen
and seedlen are provided in Table 4 of

Section 10.2.1. The block cipher operation in

step 2.2 uses the selected block cipher
algorithm.

The following or an equivalent process shall
be used as the Update function.

Input:

1. provided_data: The data to be
used. This must be exactly
seedlen bits in length; this length
is guaranteed by the construction
of the provided_data in the
instantiate, reseed and generate
functions.

2. Key: The current value of Key.

3. V: The current value of V.
Output:

1. K: The new value for Key.

2. V: The new value for V.
Process:

1. temp = Null.

2. While (len (temp) < seedlen) do

2.1 V=(V+1)mod2™"".

2.2 output_block=
Block_Encrypt (Key, V).

2.3 temp = temp || ouput_block.

67

ANSI X9.82, Part 3 — Draft — July 2005

UPDATE

e
ZIUE

Pyeudorandom bitx

71

]Key

UPDATE

Figure 12: CTR_DRBG

CTR_DRBG ANSI X9.82, Part 3 — Draft — July 2005

3. temp = Lefimost seedlen bits of temp.
4 temp = temp @ provided_data.
5. Key = Leftmost keylen bits of temp.

V = Rightmost outlen bits of temp.

6
7. Return the new values of Key and V.
10.2.2.2.3 Instantiation of CTR_DRBG

Notes for the instantiate function:

The instantiation of CTR_DRBG requires a call to the instantiate function specified
in Section 9.2; step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG, no DRBG specific_input_parameters are required for the
instantiate function specified in Section 9.2 (i.e., step 5 should be omitted). The
values of highest_supported_security_strength and min _length are provided in Table
4 of Section 10.2.1. The contents of the internal state are provided in Section
10.2.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.2.2.2.2, and let Block_Cipher_df
be the derivation function specified in Section 9.6.3 using the chosen block cipher
algorithm and key size. The output block length (outlen), key length (keylen), seed
length (seedlen) and security_strengths for the block cipher algorithms are provided
in Table 4 of Section 10.2.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG:

Input:
1. entropy_input: The string of bits obtained from the entropy input source.

2. nonce: A string of bits as specified in Section 8.4; this string shall not be
present when a derivation function is not used.

3. personalization_string: The personalization string received from the
consuming application.

Output:

1. working_state: The inital values for ¥, Key and reseed_counter (see Section
10.2.2.2.1).

Process:
1. Ifthe block cipher derivation function is available, then

1.1 seed material = entropy_input || nonce || personalization_string.

68

CTR_DRBG ANSI X9.82, Part 3 — Draft — July 2005

2
3.
4.
5. reseed counter = 1.
6.

1.2 seed material = Block_Cipher_df (seed_material, seedlen).

Else Comment: The block cipher
derivation function is not used and
full entropy is known to be available.

1.3 temp = len (personalization_string).
1.4 If temp > seedlen, then return an ERROR.

1.5 If (temp < seedlen), then personalization_string =
personalization_string || 0%~ mP

1.6 seed material = entropy_input @ personalization_string.

. Key = (e, Comment: keylen bits of zeros.

y = (Orten. Comment: outlen bits of zeros.
(Key, V)= Update (seed_material, Key, V).

Return ¥, Key and reseed_counter as the working_state.

Implementation notes:

1. Step 1 should consist of either steps 1.1 and 1.2, or steps 1.3 — 1.6. The decision for
the substeps to be used depends on whether the implementation has full entropy
and is using the derivation function.

2. If a personalization_string will never be provided from the instantiate function
and a derivation function will be used, then step 1.1 becomes:

seed_material = Block_Cipher_df (entropy_input, seedlen).

3. If a personalization_string will never be provided from the instantiate function, a
full entropy source will be available and a derivation function will not be used,
then step 1 becomes

seed_material = entropy_input.

That is, steps 1.3 — 1.6 collapse into the above step.
10.2.2.2.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min _length are provided in Table 4 of Section 10.2.1.

The reseed algorithm:
Let Update be the function specified in Section 10.2.2.2.2, and let Block_Cipher_df

69

CTR_DRBG ANSI X9.82, Part 3 — Draft — July 2005

be the derivation function specified in Section 9.6.3 using the chosen block cipher
algorithm and key size. The seed length (seedlen) is provided in Table 4 of Section
10.2.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.3):

Input:

1. working state: The current values for V, Key and reseed_counter (see Section
10.2.2.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from the instantiate function. The status is either
SUCCESS or an ERROR.

2. working_state: The new values for V, Key and reseed_counter.
Process:
1. Ifthe block cipher derivation function is available, then
1.1 seed_material = entropy_input || additional_input.
1.2 seed material = Block_Cipher_df (seed_material, seedlen).

Else Comment: The block cipher
derivation function is not used
because full entropy is known to be
available.

1.3 temp = len (additional_input).
1.4 If temp > seedlen, then return an ERROR.
1.5 If (temp < seedlen), then additional_input = additional_input li

oseedlen - !emp.

1.6 seed material = entropy_input ® additional_input.
V old=V, Key_old= Key.
(Key, V)= Update (seed_material, Key, V).
If (V =V _old) or (Key = Key_old)), then return an ERROR.

reseed_counter = 1.

Sn Ly = 59

Return ¥, Key and reseed_counter as the working_state.

70

CTR_DRBG ANSI X9.82, Part 3 - Draft — July 2005

Implementation notes:

1. Step 1 should consist of either steps 1.1 and 1.2, or steps 1.3 - 1.6. The decision
for the substeps to be used depends on whether the implementation has full
entropy and is using the derivation function.

2. If additional_input will never be provided from the reseed function and a
derivation function will be used, then step 1.1 becomes:

seed_material = Block_Cipher_df (entropy_input, seedlen).

3. If additional_input will never be provided from the reseed function, a full entropy
source will be available and a derivation function will not be used, then step 1
becomes

seed_material = entropy_input.

That is, steps 1.3 — 1.6 collapse into the above step.
10.2.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a
call to the generate function specified in Section 9.4, step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per_request and outlen are provided in Table 4 of Section
10.2.1. If the derivation function is not used, then the maximum allowed length of
additional_input = seedlen.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Let Block_Cipher_df be the derivation function specified in Section 9.6.3, and let
Update be the function specified in Section 10.2.2.2.2 using the chosen block cipher
algorithm and key size. The seed length (seedlen) and the value of reseed_interval are
provided in Table 4 of Section 10.2.1. Step 4.2 below uses the selected block cipher
algorithm. If a derivation function is not used for a DRBG implementation, then step
2.2 shall be omitted.

The following process or its equivalent shall be used as generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working_state: The current values for ¥, Key and reseed_counter (see Section
10.2.2.2.1).

2. requested_number _of bits: The number of pseudorandom bits to be returned
to the generate function.

3. additional_input: The additional input string received from the consuming

71

CTR_DRBG ANSI X9.82, Part 3 — Draft ~ July 2005

application. If additional_input will never be provided, then step 3 may be
omitted.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, an ERROR or indicate that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits returned to the generate function.

3. working state: The new values for V, Key and reseed_counter.
Process:

1. V_ old=V.Key old=Key.

2. If reseed _counter > reseed_interval, then return an indication that a reseed is
required.

3. If (additional_input # Null), then

Comment: If the length of the additional
input is > seedlen, derive seedlen bits.

3.1 temp = len (additional_input).

Comment: If a block cipher derivation
function is used:

3.2 If (temp > seedlen), then additional_input = Block Cipher_df
(additional_input, seedlen).

Comment: If the length of the
additional_input is < seedlen, pad with
zeros to seedlen bits.

33 If (temp < seedlen), then additional_input = additional_input || grecden -

temp.

3.4 (Key, V)= Update (additional_input, Key, V).
4. temp=Null.
5. While (len (temp) < requested_number_of bits) do:

5.1 ¥=(V+1)mod 2"

5.2 output_block=Block_Encrypt (Key, V).

5.3 temp = temp || ouput_block.
6. returned_bits = Lefimost requested_number_of bits of temp.

Comment: Update for backtracking
72

CTR_DRBG ANSI X9.82, Part 3 - Draft — July 2005

resistance.

7. zeros= 0", Comment: Produce a string of
seedlen zeros.

8. (Key, V)= Update (zeros, Key, V).
9. If(V="V old)or (Key = Key old)), then return an ERROR.
10. reseed_counter = reseed_counter + 1.

11 Return SUCCESS and returned_bits; also return Key, V and reseed_counter
as the new working state.

73

OFB_DRBG

10.2.3 OFB_DRBG

10.2.3.1 Discussion

OFB_DRBG uses an Approved block cipher
algorithm in the output feedback mode as
specified in [SP 800-38A]. The same block
cipher algorithm and key length shall be
used for all block cipher operations. The
block cipher algorithm and key length shall
meet or exceed the security requirements of
the consuming application. The values to be
used for the implementation of this DRBG
are specified in Table 4 in Section 10.2.1.

OFB_DRBG is specified using an internal
function (Update). Figure 13 depicts the
OFB_DRBG in three stages. The operations
in the top portion of the figure are only
performed if non-null additional input is
provided. Figure 14 depicts the Update
function. This function is called by the
instantiate, generate and reseed algorithms to
adjust the internal state when new entropy or
additional input is provided.Note that
OFB_DRBG is basically the same as
CTR_DRBG, except that the block cipher
mode is OFB rather than CTR.

10.2.3.2 Specifications
10.2.3.2.1 OFB_DRBG Internal State
The internal state for OFB_DRBG consists
of:
1. The working_state:

a. The value ¥, which is updated
each time another outlen bits of
output are produced.

b. The Key, which is updated
whenever a predetermined
number of output blocks are
generated.

¢c. A counter (reseed_counter) that

74

ANS X9.82, Part 3 - DRAFT - July 2005

(Opt) additional input

[IfsNull

BLOCK CIFHER
DERIVATION
FUNCTION

UPDATE

State

Keyv"’“"

counter|

Preudorandom bits

+a—1 1

il

UPDATE l

Figure 13: OFB_DRBG

OFB_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

indicates the number of requests
for pseudorandom bits since
instantiation or reseeding.

2. Administrative information:

a. The security strength of the DRBG
instantiation.

b. A prediction_resistance_flag that
indicates whether or not a
prediction resistance capability is
required for the DRBG.

The values of ¥ and Key are the critical values
of the internal state upon which the security of

this DRBG depends (i.e., ¥ and Key are the provided dah——» @
“secret values” of the internal state). I
10.2.3.2.2 The Update Function(Update)

[xer] v |

The Update function updates the internal state

of the OFB_DRBG using the provided data.
The values for outlen, keylen and seedlen are Figure 14: OFB_DRBG Update
provided in Table 4 of Section 10.2.1. The

block cipher operation in step 2.1 uses the

selected block cipher algorithm and key size.

The following or an equivalent process shall be used as the Update function,
Input:
1. provided data: The data to be used.
2. Key: The current value of Key.
3. V: The current value of V.
Output:
1. K: The new value for Key.
2. V: The new value for V.
Process:
1. temp = Null.
2. While (len (temp) < seedlen) do
2.1 V=Block_Encrypt (Key, V).
22 temp=temp| V.

75

OFB_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

. temp = Leftmost seedlen bits of temp.

3

4 temp = temp ® provided_data.

5. Key = Leftmost keylen bits of temp.

6. ¥ =TRightmost outlen bits of temp.

7. Return the new values of Key and V.
10.2.3.2.3 Instantiation of OFB_DRBG (...)

This process is the same as the instantiation process for CTR_DRBG in Section
10.2.2.2.3, except that the Update function to be used is specified iri Section 10.2.3.2.2.

10.2.3.2.4 Reseeding an OFB_DRBG Instantiation

This process is the same as the reseeding process for CTR_DRBG in Section 10.2.2.2.4,
except that the Update function to be used is specified in Section 10.2.3.2.2

10.2.3.2.5 Generating Pseudorandom Bits Using OFB_DRBG

This process is the same as the generation process for CTR_DRBG in Section 10.2.2.2.5,
except that the Update function to be used is specified in Section 10.2.3.2.2 and step 3
shall be as follows:

5. While (len (femp) < requested_number_of bir) do:
5.1 ¥V =Block_Encrypt (Key, V).
52 temp=temp|| V.

76

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

10.3 Deterministic RBGs Based on Number Theoretic Problems
10.3.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. Section 10.3.2 specifies a DRBG based on the elliptic curve discrete logarithm
problem; Section 10.3.3 specifies a DRBG based on a problem related to the RSA problem
of finding roots modulo a composite integer.

10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)

10.3.2.1 Discussion

Dual_EC_DRBG is based on the following hard problem, sometimes known as the
“clliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic
curve of order #, find a such that Q = aP.

Dual EC_DRBG uses a seed that is m bits in length (i.e., seedlen = m) to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on two
points in an elliptic curve group, where the curve is defined over a field approximately 2"
in size. For all the NIST curves given in this Standard, m > 163. Figure 15 depicts the
Dual EC_DRBG.

seed: ;

Insiand, or
Teseed anky

o & e} Lofoe s VR
! 7

t
[Optional]
additional input ;@_] M
0 P Q Pseudorandom

I siditional input= il Bits

Figure 15: Dual_EC_DRBG

The instantiation of this DRBG requires the selection of an appropriate elliptic curve and
curve points specified in Annex A.1 for the desired security strength. The seed used to
determine the initial value (s) of the DRBG shall have entropy that is at least
security_strength + 64 bits. Further requirements for the seed are provided in Section 8.4.

Backtracking resistance is inherent in the algorithm, even if the internal state is
compromised. As shown in Figure 16, Dual_EC_DRBG generates a seedlen-bit number

77

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

for each step i = 1,2,3,..., as follows:
Si=@(X(Si-1 *P))
Ri=o(x(Si *Q))-

Each arrow in the figure represents an Elliptic

g S| 5 '
Curve scalar multiplication operation, followed -
by the extraction of the x coordinate for the

resulting point and for the random output Ry, and ‘
Rl

by truncation to produce the output. Following a Ry
line in the direction of the arrow is the normal
operation; inverting the direction implies the
ability to solve the ECDLP for that specific curve.
An adversary’s ability to invert an arrow in the Figure 16: Dual_EC_DRBG (...)
figure implies that the adversary has solved the Backtracking Resistance
ECDLP for that specific elliptic curve. Backtracking resistence is built into the design, as
knowledge of S does not allow an adversary to determine Sg (and so forth) unless the
adversary is able to solve the ECDLP for that specific curve. In addition, knowledge of R
does not allow an adversary to determine Sy (and so forth) unless the adversary is able to
solve the ECDLP for that specific curve.

Table 5 specifies the values that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Annex A.l. Note that all
curves except the first three can be instantiated at a security strength lower than its highest
possible security strength. For example, the highest security strength that can be supported
by curve P-384 is 192 bits; however, this curve can alternatively be instantiated to support
only the 112 or 128-bit security strengths).

Table 5: Definitions for the Dual_EC_DRBG

P-224 ‘ B-233 l K-233 [P-256 ‘ B-283 | K-283

Supported security strengths See SP 800-57

highest supported_ See SP 800-57

security_strength

Output block length (outlen = 208 216 216 240 264 264

largest multiple of 8 less than
seedlen - (13 + log; (the cofactor))

Required minimum entropy for security_strength

instantiate and reseed

Minimum entropy input length 224 240 240 256 288 288

\min_length =8 x [seedlen/8) _ B [Comment [ebb16]: Page: 78
"""""""""""""""""" TS Why can't this be min_entropy ?

Maximum entropy input length < 2" bits

(max _length)

78

Dual_EC_DRBG

ANS X9.82, Part 3 - DRAFT - July 2005

P-224 ‘ B-233 | K-233 | P-256 | B-283 \ K-283

Maximum personalization string <29 bits
length

(max_personalization_string_length)

Maximum additional_input length <2 bits

(max_additional_input_length)

Seed length (seedlen = m)

224 l 233 \ 233 | 256 | 283 ‘ 283

Appropriate hash functions

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

max_number_of bits_per_request

outlen x reseed_interval

Number of blocks between
reseeding (reseed_interval)

< 10,000 blocks

P-384 | B-409 | K-409 1 P-521 I B-571 ‘ K-571
Supported security strengths See 800-57
highest_supported_ See SP 800-57
security_strength
Output block length (outlen = 368 392 392 504 552 552
smallest multiple of 8 less than
seedlen - (13 + log; (the cofactor))
Required minimum entropy for security _stength
instantiate and reseed
Minimum entropy input length 384 416 416 528 576 576
(min _length =8 x [seedlen/81)
Maximum entropy input length < 2" bits
(max _length)
Maximum personalization string < 2" bits
length
(max_personalization_string_length)
Maximum additional_input length < 2" bits
(max_additional_input_length)
Seed length (seedlen = m) 384 | 409 409 521 571 | 571
Appropriate hash functions SHA-224, SHA-256, SHA- | SHA-256, SHA-384, SHA-
384, SHA-512 512

max_number_of bits_per_request

outlen x reseed_interval

Number of blocks between
reseeding (reseed_interval)

< 10,000 blocks

79

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

Validation and Operational testing are discussed in Section 11. Detected errors shall result
in a transition to the error state.

10.3.2.2 Specifications
10.3.2.2.1 Dual_EC_DRBG Internal State and Other Specification Details

The internal state for Dual_EC_DRBG consists of:
1. The working_state:
a. A value (5) that determines the current position on the curve.

b. The elliptic curve domain parameters (curve_{ype, seedlen, p, a, b, n), where
curve_type indicates a prime field F, or a pseudorandom or Koblitz curve over
the binary field F;"; seedlen is the length of the seed ; @ and b are two field
elements that define the equation of the curve, and 7 is the order of the point G.
If only one curve will be used by an implementation, these parameters need not
be present in the working_state. If only one type of curve is implemented, the
curve_type parameter may be omitted.

¢. Two points P and Q on the curve; the generating point G specified in FIPS 186-
3 for the chosen curve will be used as P. If only one curve will be used by an
implementation, these points need not be present in the working_state.

d. A counter (block_counter) that indicates the number of blocks of random
produced by the Dual_EC_DRBG since the initial seeding or the previous
reseeding.

2. Administrative information:
a. The security_strength provided by the instance of the DRBG,

b. A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG, and

The value of s is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value” of the internal state).

10.3.2.2.2 Instantiation of Dual_EC_DRBG

Notes for the instantiate function:

The instantiation of Dual_EC_DRBG requires a call to the instantiate function
specified in Section 9.2; step 9 of that function calls the instantiate algorithm in this
section. For this DRBG, a DRBG-specific input parameter of requested_curve_type is
optional (see the definition for curve_type in Section 10.3.2.2.1). If only one type of
curve is available, then this parameter may be omitted. If multiple types are available,
then a Prime_field_curve will be selected if the parameter is omitted; if a

80

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - July 2006

Prime_field curve is not available, then a Random_binary_curve will be selected.

In step 5 of the instantiate function, the following step shall be performed to select an
appropriate curve if multiple curves are available.

5. Using requested_curve_type (if provided), the security_strength and Table 5 in
Section 10.3.2.1, select the smallest available curve that has a security strength
> security_strength.

5.1 If requested_curve_type is indicated, then select a curve of that type. If no
suitable curve of that type is available for the
requested_security_strength, then return an ERROR.

5.2 Ifa curve type is not requested, then select an appropriate
Prime_field curve if a suitable curve is available. If no suitable
Prime_field curve is available, then select a Random_binary_curve if a
suitable curve is available. If no suitable Random_binary_curve is
available, then select a Koblitz_curve. If no suitable Koblitz_curve is
available, then return an ERROR.

The values for curve_type, seedlen, p, a, b, n, P, O are determined by that curve.

The values for highest supported_security strength and min_length are determined by
the selected curve (see Table 5 in Section 10.3.2.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. Let seedlen be the
appropriate value from Table 5.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of Section 9.2):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.

3. personalization_string: The personalization string received from the consuming
application.

Output:
1. s: The initial secret value for the working_state,
2. block_counter: The initialized block counter for reseeding.
Process:
1. seed material = entropy_input || nonce || personalization_string.
Comment: Use a hash function to ensure that
81

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

the entropy is distributed throughout the bits,
and s is m (i.e., seedlen) bits in length.

2. s=Hash_df (seed_material, seedlen).

Comment: Save all state information.
3. block counter=0.
4. Return s and block_counter for the working_state.

Implementation notes:

If an implementation never uses a personalization_string, then steps 1 and 2 may be
combined as follows :

s = Hash_df (entropy_input, seedlen).
10.3.2.2.3 Reseeding of a Dual_EC_DRBG Instantiation|

Notes for the reseed function:

The reseed of Dual_ EC_DRBG requires a call to the reseed function specified in
Section 9.3; step 5 of that function calls the reseed algorithm in this section. The values
for min _length are provided in Table 5 of Section 10.3.2.1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1.

The following process or its equivalent shall be used to reseed the Dual EC_DRBG
process after it has been instantiated (see step 5 in Section 9.3):

Input:
1. s: The current value of the secret parameter in the working_state.
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from the reseed function. The startus is either
SUCCESS or ERROR.

9. s The new value of the secret parameter in the working_state.
3. block_counter: The re-initialized block counter for reseeding,
Process:

Comment: pad8 returns a copy of s padded
on the right with binary 0’s, if necessary, to a
82

1

Comment [ebb17]: Page: 82
Need to add steps to perform the
« continuous » test.

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

1.
2
3
4.
5

6.

multiple of 8.
seed_material = pad8 (s) || entropy_input || additional_input_string.

. s old=s.

. s = Hash_df (seed material, seedlen).

If (s = 5_old), then return an ERROR.

. block counter=20.

Return s and block counter for the new working_state.

Implementation notes:
If an implementation never allows additional_input, then step 1 may be modified as

follows :

seed_material = pad8 (s) || entropy_input.

10.3.2.2.4

Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Dual_EC_DRBG instantiation requires a
call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max._number_of bits_per_request and outlen are provided in Table 4 of Section 10.2.1.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. The value of
reseed_interval is also provided in Table 5.

The following are used by the generate algorithm:

a.

c.
d.

pads8 (bitstring) returns a copy of the bitstring padded on the right with binary
0’s, if necessary, to a multiple of 8.

Truncate (bitstring, in_len, out_len) inputs a bitstring of in_len bits, returning
a string consisting of the leftmost ouz_len bits of bitstring. 1f in_len < out_len,
the bitstring is padded on the right with (out_len - in_len) zeroes, and the result
is returned.

x(A) is the x-coordinate of the point 4 on the curve.

¢ (x) maps field elements to non-negative integers, taking the bit vector
representation of a field element and interpreting it as the binary expansion of
an integer. Section 10.3.2.2.4 has the details of this mapping.

The precise definition of (x) used in steps 6 and 7 below depends on the field
representation of the curve points. In keeping with the convention of FIPS 186-

83

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

2, the following elements will be associated with each other (note that m =
seedlen):

B: |CmilCmal - lCilco| , abitstring, with cn.1 being leftmost

7o om2™ 4 e+ e+ € Z;

Fa:cpi2™ + ... 4027 + ci2' 4+ ¢g modp € GF(p) ;

Fb: cpat mlagy @t @t D € GFQ2™), when a polynomial basis
is used;

2 22 2m-1 -

Fe: mif @ cmaf @ cmap” @ ... O oo e GF(2™), when a normal

basis is used.

Thus, any field element x of the form Fa, Fb or Fc will be converted to the
integer Z or bitstring B, and vice versa, as appropriate.

e. * is the symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 in Section 9.4):

Input:

1. working_state: The current values for s, curve_type, seedlen, p, a, b, n P, Q
and reseed counter (see Section 10.1.3.2.1).

2. requested_number_of bits: The number of pseudorandom bits to be returned to
the generate functione.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, ERROR or an indication that a reseed is required before the
requested pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. s: The new value for the secret parameter in the working_state.
4. block counter: The updated block counter for reseeding.

Process:

Comment: Check whether a reseed is
required.

requested _number _of _bits

1. If (block counter+[
- outlen

D > reseed_interval, then

84

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

return an indication that a reseed is required.

Comment: If additional input is Null, set to
seedlen zeroes; otherwise, Hash_df to
seedlen bits.

2. If (additional_input string = Null), then additional_input =0
Else additional_input = Hash_df (pad8 (additional_input_string), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:

. temp = the Null string.
i=0.

3
4
5. t=2s @ additional _input.
6. s old=s.

7

. 5 =0(x(t * P)). Comment: ¢ is to be interpreted as a seedlen-
bit unsigned integer. To be precise, when
curve_type = Prime_field curve, t should be
reduced mod #; the operation * will effect
this. s is a seedlen-bit number.

8. If(s=s_old), then return an ERROR.
9. r =o¢(x(s *Q)). Comment: r is a seedlen-bit number.
10. temp = temp || (rightmost outlen bits of r).

11. additional_input=0 Comment: seedlen zeroes;
additional_input_string is added only on the
first iteration.

12. block_counter = block_counter + 1.

13.i=i+1.

14. If (len (temp) < requested_number_of bits), then go to step 6.

15 returned_bits = Truncate (lemp, i x outlen, requested_number_of bits).

16. Return SUCCESS, returned_bits, and s and block_counter for the
working_state.

85

MS_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

10.3.3 Micali-Schnorr Deterministic RBG (MS_DRBG)

10.3.3.1 Discussion

The MS_DRBG generalizes the RSA generator, which is defined as follows: Let ged(x, y)
denote the greatest common divisor of the integers x and y, and ¢(n) represent the Euler phi
function®. Select 1, the product of two distinct large primes, and e, a positive integer such
that ged(e, $(rn)) = 1. Define f(y) = y mod n . Starting with a seed yp, form the sequence
yia1 = f(yi), and output the string consisting of the lg Ig (n) least significant bits of each y;.
These bits are known to be as secure as the RSA function f, and are commonly referred to
as the hard bits.

The Micali-Schnorr generator MS_DRBG uses the same e and n as the RSA generator, but
produces many more random bits per iteration and eliminates the overlap between the state
sequence and the output bits. Each y; € [0, 1) is viewed as the concatenation s || =/ ofan r-
bit number s, and a k = lg(n)-r bit number z;, The s; are used to propagate the integer
sequence y;+; =i mod n; the z; are output as random bits. » must be at least
2*min{security_strength, \g(n)le}, where security_strength is the desired security strength
of the generator, and e 2 65,537. (See Section 10.3.3.2.2). A random r-bit seed s is used to
initialize the process.

Figure 17 depicts the MS_DRBG. Under the proper assumption, the MS_DRBG isan
example of a cryptographically secure generator, i.e., one that passes all polynomial-time
statistical tests. The assumption is that sequences of the form s° mod n are statistically the
same as sequences of integers in Z,. This assumption is stronger than requiring the
intractability of the RSA problem. See [1] for a discussion of these concepts and references
to further details.

seed

Iuw.u-lnrnIony

s | p=s*modn ;= heimosts s

(Opt) = | Fionr R udorandom bits
udtﬁaimn{jw‘@——i N T T PR T S
g-=

T atitbonal_npus = Hull

.9, 87

Figure 17: MS_DRBG

4 The Euler phi function : ¢(n) = the number of posiéige integers < n that are relatively prime to n. For an
RSA modulus n = pg, $(n) = (p-1)(g-1)- .

MS_DRBG

ANS X9.82, Part 3 - DRAFT - July 20056

For MS_DRBG, the s values are assumed to be r-bit integers, and “statistically the same”
means indistinguishable by any polynomial-time algorithm. Accepting the stronger
assumption allows £ to be a significant percentage of [g(n). Note that in the specifications,
r has been redefined as seed/en, and k has been redefined to be outlen in order to be

consistent with the other DRBGs.

The specifications for the MS_DRBG (see Section 10.3.3.2) allow e and & (i.e., outlen) to
be specified. The lengths seedlen and outlen, the RSA modulus #, and the value of the
exponent e are variable within the bounds described below. The bounds are based on the
desired security strength for the bits produced. For maximum efficiency, e should be kept
small and outlen should be large. The outlen bits generated at each step are concatenated
to form pseudorandom bitstrings of any desired length. Table 6 provides definitions for
using with the MS_DRBG functions and algorithms.

Table 6: Definitions for MS_DRBG

Ig (n) = 2048 Ig (n) = 3072

Supported security strengths

See SP 800-57

highest_supported_security strength

See SP 800-57

Output Block Length (outlen = k)

8 < outlen < min{ lg(n) — 2*security_strength,
lg(n) — 2*lg(n)/e

Required minimum entropy for
instantiate and reseed

Security strength

Minimum entropy input length
(min _length)

security strength

Maximum entropy input length
(max _length)

< 2" bits

Maximum personalization string
length
(max_personalization_string_length)

<27 bits

Maximum additional_input length
(max_additional_input_length)

< 2" bits

Number of hard bits (Ig (Ig (n))

11 11

Seed length (seedlen =r)

lg(n) — outlen

Appropriate hash functions

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

max_number_of bits_per request

outlen x reseed_interval

Number of blocks of outlen
between reseeds (reseed_interval)

< 50,000 blocks

87

MS_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

10.3.3.2 MS_DRBG Specifications
10.3.3.2.1 Internal State for MS_DRBG

The internal state for MS_DRBG consists of:
1. The working_state:
a. The M-S parameters #, e, seedlen and outlen, and

b. Aninteger Sin [0,2°°em) that propagates the internal state sequence from
which pseudorandom bits are derived.

¢c. A counter (block_counter) that indicates the number of blocks of random
produced by MS_DRBG during the current instance since the previous
reseeding.

2. Administrative information:
a. The security_strength provided by the instance of the DRBG, and

b. A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG.

The value of S is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value” of the internal state).
10.3.3.2.2 Seclection of the M-S parameters

The instantiation of MS_DRBG consists of selecting an appropriate RSA modulus and
exponent e; sizes seedlen and outlen for the seeds and output strings, respectively; and a
starting seed.

The M-S parameters n, seedlen, e and outlen are selected to satisfy the following six
conditions, based on strength:

1. 1<e < §(n); ged(e, §(m)=1. Comment: ensures that the mapping s — s
mod n is 1-1.

2. (e x seedlen) = 2*1g(n). Comment: ensures that the exponentiation
requires a full modular reduction.

3. seedlen > 2*security_strengih. Comment: protects against a tableization
attack.

4. outlen and seedlen are multiples of 8.Comment: This is an implementation
convenience.

s. outlen=>8; seedlen + outlen=1g(n). Comment: all bits are used.

6. n=p*q. Comment: p and g are strong [as in FIPS 186-

88

MS_DRBG ' ANS X9.82, Part 3 - DRAFT - July 2005

3], secret primes .
The M-S parameters are determined in this order:

1. The size of the modulus lg(r) is set first. It shall conform to the values given in
Table 6 for the requested security_strength.

2. The RSA exponent e. The implementation should allow the application to request

any odd integer e in the range f<e<2'®-'_2%% 8™ | [Comment: The ..~ Comment [ebb18]: Page: 89
. : e et S For DSS, 16,537 < e < (2"™-1), where nlen s
inequality ensures that e < ¢(n) when an Approved algorithm is used to generate the the length of n, and s is the securily strength.

primes p and ¢.] If e is not provided during an instantiate request, or requested e =
0 is supplied, the default value e=3 should be used.

3. The number ouzlen of output bits used for each iteration. The implementation
should allow any multiple of 8 in the range 8 < outlen < min{ lg(n) —
2*security_strength, lg(n) — 2*Ig(n)/e } to be requested. However, ifa value for
outlen is not provided or requested outlen = 0 is specified, outlen should be
selected as the largest multiple of 8 integer in the allowable range and within the
range of bits currently known to be hard bits for the RSA problem. That value is
lg(lg(n)), as shown in Table 6. Thus, in all cases, the default value 8 will be used if
requested_outlen = 0.

Any values for requested_e and requested_outlen outside these ranges shall be
flagged as errors.

4. Set the size of the seeds: seedlen = 1g(n) — outlen.

5. Selection of the modulus n. Two primes p and g of size Ylg(n) bits, having entropy
at least min_entropy, and satisfying ged (e, (p-1)(g-1)) = 1 shall be generated as
specified in FIPS 186-3. An implementation shall use strong primes as defined in
that document: each of p-1, p+1, g-1, g+1 shall have a large prime factor of at least
security_strength bits. [Comment: Any Approved algorithm will generate a
modulus of size 1g(r) bits using strong primes of size ¥ lg(n) bits, and will allow
the exponent e to be specified beforehand.]

The difficulty of the RSA problem relies on the secrecy of the primes p and ¢ comprising
the modulus. Whenever private primes are generated, the implementation shall clear
memory of those values immediately after n has been computed. Only the modulus shall
be kept in the internal state.

10.3.3.2.3 Instantiation of MS_DRBG

Notes for the instantiate function:

The instantiation of MS_DRBG requires a call to the instantiate function specified in
Section 9.2; step 8 of that function calls the instantiate algorithm in this section. For
this DRBG, two DRBG-specific input parameters may be provided: requested_e and
requested_outlen.

The values for highest _supported_security_strength and min_length are provided in
89

MS_DRBG

ANS X9.82, Part 3 - DRAFT - July 2005

Table 6 in Section 10.3.3.1.

In step 5 of the instantiate function, the following steps shall be used fo select values
for n, e, seedlen and outlen:

5. Using security_strength, requested._e (if provided) and requested_outlen @f
provided), select values for n, e, seedlen and outlen.

5.1

5.2

5.3

54

5.5

Comment: Determine the modulus size.
If security strength =112, then lg (n) = 2048
Else lg (n) = 3072.
Comment: Select the exponent e.
If requested_e < 65537 or is not provided, then e = 65,537
Else
5.2.1 e=requested_e.

5.2.2 If (requested e < 3) or(requested e > 28011 _ (9 x 212180y o
(requested_e is even), then return an ERROR.

Comment : Select the output length outlen.
If requested_outlen =0 or is not provided, then outlen =38
Else
5.3.1 outlen= requested_outlen.

5.3.2 If (outlen < 1) or (outlen > min (ng) -2x securily_strength] 3
Lig (m) x (1 - 2/e)]) or (outlen is not a multiple of 8), then return
an ERROR.

Comment : Determine the seed length
(seedlen).

seedlen=1g (n) - outlen.
Comment: Get the modulus .

Using lg (#) and e, get a random modulus #. n shall be the product of
two primes p and g such that :

1) Each has a length of 1g ()/2 bits,
2) Each has at least security_strength + 64 bits of entropy,
3) ged(e (p-1),(g-1))=1.

4) (p-1), (p+1), (g-1) and (g+1) shall each have a large prime factor of
at least security strength bits.

90

MS_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

56 n=pxq.
57 p=q=0.

Since the values for working state values n, e, and outlen have been determined by
step 5 (above), they need not be provided to nor returned from the instantiate algorithm
in step 9; however, the value of seedlen is required by the instantite algorithm and must
be provided to it.

The instantiate algorithm:
Let Hash (...) be an Approved hash function for the security strengths to be supported.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 in Section 9.2):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.

3. personalization_string. The personalization string received from the consuming
application.

4. seedlen: The length of the seed.
Output:

1. working state: The inital values for S and block_counter (see Section
10.3.3.2.1).

Process:
1. seed_material = entropy_input || nonce || personalization_string.
2. S=Hash_df (seed_material, seedlen).
3. block_counter =0.
4. Return SUCCESS, S and block _counter for the working_state.

Implementation notes:

If a personalization_string will never be provided, then steps 1 and 2 may be combined as
follows:

S'=Hash_df (entropy_input, seedlen).
10.3.3.2.4 Reseeding of a MS_DRBG Instantiation

Notes for the reseed function:

The reseed of MS_DRBG requires a call to the reseed function specified in Section
9.3; step 5 of that function calls the reseed algorithm in this section. The values for
min_length are provided in Table 6 of Section 10.3.3.1.

91

MS_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

The reseed algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 6 in Section 10.3.3.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.3):

Input:
1. working_state: The current values for seedlen and S.
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status of performing this algorihm. The status is either SUCCESS
or ERROR.

2. working_state: The new values for § and block_counter.
Process:

1. seed material =S || entropy_input || additional_input.

2. S old=S.

3. S=Hash_df (seed_material, seedlen).

4. 1f(S=S_old), then return an ERROR.

5. block_counter=0.
6. Return SUCCESS, and the new values of S and block_counter.

Implementation notes:

If additional_input will never be provided, then steps 1 may be modified as follows:

seed_material = S || entropy_input.
10.3.3.2.5 Generating Pseudorandom Bits Using MS_DRBG

Notes for the generate function:

The generation of pseudorandom bits using an MS_DRBG instantiation requires a call
to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per_request and outlen are provided in Table 6 of Section
10.3.3.1.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
92

MS_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

appropriate hash function from Table 6 in Section 10.3.3.1. The value of
reseed_interval is also specified in Table 6.

Let pad8 (bitstring) be a function that inputs an arbitrary length bifstring and returns a
copy of that bitstring padded on the right with binary 0’s, if necessary, to a multiple of
8. Note: This is an implementation convenience for byte-oriented functions.

Let Truncate (bits, in_len, out_len) be a function that inputs a bitstring of in_len bits,
returning a string consisting of the leftmost out_len bits of input. If in_len < out len,
the input string is returned padded on the right with out_len —in_len zeroes.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 in Section 9.4):

Input:

1. working state: The cutrent values for n, e, seedlen, outlen, S, and
reseed_counter (see Section 10.3.3.2.1).

2. requested_number_of bits: The number of pseudorandom bits to be returned to
the generate functione.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from thefunction. The status will indicate
SUCCESS, an ERROR or an indication that a reseed is required befote the
requested pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. S: The updated secret value in the working_state.
4. block_counter: The updated block counter for reseeding.

Process:

Comment: Check whether a reseed is
required.

requested _number _of _bits

1. If (block __counter +[-D > reseed_interval, then

outlen
return an indication that a reseed is required.

2. If (additional_input = Null) then additional_input =0

Comment: additional_input set to seedlen
ZEeroes.

Else additional_input = Hash_df (pad8 (additional_input_string), seedlen).

93

mMS_DRBG ANS X9.82, Part 3 - DRAFT - July 2005

S o=

7.
8.

9.

10.
11.
12.
13.
14.
15.
16.

Comment: Hash to seedlen bits.

Comment: Produce
requested_number_of bits, outlen ata time.

temp = the Null string.

i=0.

S old=S.

s =S ® additional_input. Comment: 5 is to be interpreted as a seedlen-

bit unsigned integer.

S=L (s modn)/2""] Comment; S is a seedlen-bit number.

If (S = S_old), then return ERROR.
R = (s°mod n) mod polen, Comment: R is an outlen-bit number.

temp =temp || R

additional_input=0""", Comment: seedlen zeroes.

i=i+1.

block_counter = block_counter+1.

If (len (temp) < requested_number_of bits), then go to step 6.

returned_bits = Truncate (femp, i x k, requested_number_of_bits).

Return SUCCESS, returned_bits and the values of § and block_counter for the

working_state.

94

11 Assurance
11.1 Overview

A user of a DRBG for cryptographic
purposes requires assurance that the
generator actually produces random and
unpredictable bits. The user needs
assurance that the design of the generator,
its implementation and its use to support
cryptographic services are adequate to

ANS X9.82, Part 3 - DRAFT - July 2005

Design < Evaluation
! }

Standards

protect the user's information. In addition, l

the user requlr'es assurance that the Implem entation < Validation
generator continues to operate correctly.
The assurance strategy for the DRBGs in
this standard is depicted in Figure 18.

The design of each DRBG in this standard
has received an evaluation of its security
properties prior to its selection for
inclusion in this Standard.

Operational Tests

Figure 18: DRBG Assurance Strategy

The accuracy of an implementation of a DRBG process may be asserted by an
implementer, but this Standard requires the development of basic documentation to
provide minimal assurance that the DRBG process has been implemented properly (see
Section 11.2). An implementation should be validated for conformance to this Standard by
an accredited laboratory (see Section 11.3). Such validations provide a higher level of
assurance that the DRBG is correctly implemented. Validation testing for DRBG processes
consists of testing whether or not the DRBG process produces the expected result, given a
specific set of input parameters (e.g., entropy input). Implementations used directly by
consuming applications should also be validated against conformance to FIPS 140-2.

Operational (i.e., health) tests on the DRBG shall be implemented within a DRBG
boundary or sub-boundary in order to determine that the process continues to operate as
designed and implemented. See Section 11.4 for further information.

A cryptographic module containing a DRBG should be validated (see FIPS 140-2 8]).
The consuming application or cryptographic service that uses a DRBG should also be
validated and periodically tested for continued correct operation. However, this level of
testing is outside the scope of this Standard.

Note that any entropy input used for testing (either for validation testing or
operational/health testing) may be publicly known. Therefore, entropy input used for
testing shall not knowingly be used for normal operational use.

95

ANS X9.82, Part 3 - DRAFT - July 20056

11.2 Minimal Documentation Requirements

This Standard requires the development of a set of documentation that will provide
assurance to users and (optionally) validators that the DRBGs in this Standard have been
implemented properly. Much of this documentation may be placed in a user’s manual. [This
documentation shall consist of the following as a minimum:r

_..+| Comment [ebb19]: Page: 86
""""""""""""""""" e Probably need to add additional documentation

e Document how the implementation has been designed to permit implementation _requirements to address other requirements.
validation and operational testing.

e Document the type of DRBG (e.g., Hash_ DRBG, Dual_EC_DRBG), and the
cryptographic primitives used (e.g., SHA-256, AES-128).

e Document the security strengths supported by the implementation.

e Document features supported by the implemention (e.g., prediction resistance, the
available elliptic curves, etc.).

e [n the case of the CTR._DRBG and OFB_DRBG, indicate whether a derivation
function is provided. If a derivation function is not used, documentation shall
clearly indicate that the implementation can only be used when full entropy input is
available.

e Document any support functions other than operational testing.

11.3 Implementation Validation Testing

A DRBG process may be tested for conformance to this Standard. Regardless of whether
or not validation testing is obtained by an implementer, a DRBG shall be designed to be
tested to ensure that the product is correctly implemented; this will allow validation testing
to be obtained by a consumer, if desired. A testing interface shall be available for this
purpose in order to allow the insertion of input and the extraction of output for testing.

Implementations to be validated shall include the following:
e Documentation specified in Section 11.2.

e Any documentation or results required in derived test requirements.
11.4 Operational/Health Testing

11.4.1 Overview

A DRBG implementation shall perform self-tests to ensure that the DRBG continues to
function properly. Self-tests of the DRBG processes shall be performed prior to the first
instantiation and periodically, and a capability to perform self-tests on demand shall be
included (see Section 9.7). A DRBG implementation may optionally perform other self-
tests for DRBG functionality in addition to the tests specified in this Standard.

All data output from the DRBG boundary shall be inhibited while these tests are
performed. The results from known-answer-tests (see Section 11.4.2) shall not be output
96

ANS X9.82, Part 3 - DRAFT - July 2005

as random bits during normal operation.

When a DRBG fails a self-test, the DRBG shall enter an error state and output an error
indicator. The DRBG shall not perform any DRBG operations while in the error state, and
no pseudorandom bits shall be output when an error state exists. When in an error state,
user intervention (e.g., power cycling, restart of the DRBG) shall be required to exit the
error state (see Sections 7.2.7 and 9.8).

11.4.2 Known Answer Testing

Known answer testing shall be conducted prior to the first instantiation and periodically,
and may be conducted on demand. A known-answer test involves operating the DRBG
with data for which the correct output is already known and determining if the calculated
output equals the expected output (the known answer). The test fails if the calculated
output does not equal the known answer. In this case, the DRBG shall enter an error state
and output an error indicator (see Sections 7.2.7 and 9.8).

The generalized known answer testing is specified in Section 9.7. Testing shall be
performed on all DRBG functions implemented.

97

ANS X9.82, Part 3 - DRAFT - July 20056

Annex A: (Normative) Application-Specific Constants
A.1 Constants for the Dual EC_DRBG

The Dual_ EC_DRBG requires the specifications of an elliptic curve and two points on the
elliptic curve. One of the following NIST approved curves and points shall be used in
applications requiring certification under FIPS 140-2. More details about these curves may
be found in FIPS PUB 186-3, the Digital Signature Standard.

A.1.1 Curves over Prime Fields

Each of following mod p curves is given by the equation:
y? = x> 3x + b (mod p)
Notation:
p - Order of the field F, , given in decimal

- order of the Elliptic Curve Group, in decimal . Note that is used here for
consistency with FIPS 186-3 but is referred to as n in the description of the
Dual_EC_DRBG (...)

b - coefficient above
The x and y coordinates of the base point, ie generator G, are

the same as for the point P.
A.1.1.1 Curve P-224

p = 26959946667150639794667015087019630673557916\
260026308143510066298881

r = 26959946667150639794667015087019625940457807\
714424391721682722368061

b = b4050a85 0c04b3ab £5413256 5044b0b7 d7bfd8ba 270b3943
2355ffb4

Px = b70e0chd 6bb4bf7f 321390b9 4a03cld3 56c21122 34328046

115c1dz2l
Py = bd376388 b5f723fb 4c22dfe6 cd4375a0 5a074764 44d58199

85007e34

98

ANS X9.82, Part 3 - DRAFT - July 2005

Ox = 68623591 6elladfa £080a45l 477fa27a £21248be 916d3458
ab583a3c9
Qy = 6060018a 24b35be6 caecf3f0 7£2c6b43 4ed7479%e 55362c8f

5707adca
A.1.1.2 Curve P-256

p = 11579208921035624876269744694940757353008614\
3415290314195533631308867097853951

r = 11579208921035624876269744694940757352999695\
5224135760342422259061068512044369

b= 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e
27d2604b

Px = 6bl7d1lf2 el2c4247 f8bce6e5 63a440f2 77037d81 2deb33al
£4213945 d898c296

Py = 4fe342e2 fela7f9% BeeTebda 7c0f9%el6 2bce3357 6b3l5ece
cbb64068 37bf51£f5

Il

Ox c97445f4 5cdef9f0 d3e05ele 585£c297 235b82b5 be8ff3ef

ca67c598 52018192

b28ef557 ba3ldfcb dd2lacd6 e2a9le3c 304f44chb 87058ada
2cb81515 1610046

A.1.1.3 Curve P-384

p = 39402006196394479212279040100143613805079739\
27046544666794829340424572177149687032904726\
6088258938001861606973112319

r = 39402006196394479212279040100143613805079739\
27046544666794690527962765939911326356939895\
6308152294913554433653942643

b=Db3312fa7 e23eeled 988e056b e3£82d19 181d9c6e fe814112 0314088f
5013875a c656398d 8a2edl9d 2aB85cB8ed d3ecZaef

Px = aa87ca22 be8b0537 8eblc7le £320ad74 6eld3b62 8ba79b98
59f741e0 82542a38 5502f25d b£55296c 3a545e38 72760ab7
Py = 3617deda 96262c6f 5d9e98bf 9292dc29 £8f4ldbd 28%ald7c

99

ANS X9.82, Part 3 - DRAFT - July 2005

©9da3113 b5£0b8cO 0abl0blce 1d7e819d 7a431d7c 90ealesf

QOx = 8e722de3 125bddb0 5580164b fe20b8b4 32216a62 926c5750
2ceede3]l c47816ed dle89769 124179d0 b6951064 28815065

Qy = 023b1660 dd701d08 39fd4See c36f9%ee7 b32el3b3 15dc0261
02alb636 e346df67 1f790f84 c5e09b05 674dbb7e 45c803dd
A.1.1.4 Curve P-521

p = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397656052122559\
64066145455497729631139148085803712198799971\
6643812574028291115057151

F = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397655394245057\
74633321719753296399637136332111386476861244\
0380340372808892707005449

b=051953eb 9618elc9 alf929%a2 lal0b6854 Oeea2da7 25b99b31
5£3b8b48 9918efl0 9e156193 95lec7ed 37bl652¢c Obd3bblb
£073573d £883d2c3 4flef451 £d46b503 £00

Px = c6858e06 b70404e9 cd9e3ech 662395b4 429c6481 39053fb5
21£828af 606bdd3d baaldbSe 77efe759 28feldcl 27a2ffas8
de3348b3 cl1856a42 9bf97e7e 31lc2ebbd 66

Py = 11839296 a78%a3bc 0045c8ab fbd2c7dl bd998£54 449579b4
46817afb d17273e6 62c9T7ee7 2995ef42 640c550b 9013fadod
761353¢c7 086a272c 24088be9 4769fd1l6 650

Ox = 1b9fa3e5 18d683cé b6576369 4ac8efba ec6fabd4d £2276171
24272650 7dd08add 4c3b3f4c lebc5bl2 22ddbal7 7£722943
b24c3edf a0f85fe2 4d0c8c0l 591f0be6 £63

Oy = 1£3bdba$ 85295d9a 1110d1df 1£9430ef 8442¢501 8976£f34 37ef91b8 1dcOb813
268d5¢39 ¢32d0e00 4a3092b7 d327c0e7 add26d2c Tb69b58f 90666529 11e45777 9de

A.1.2 Curves over Binary Fields

For each field degree m, a pseudo-random curve (B) and a Koblitz curve (K) are given.

The pseudo-random curve has the form

100

ANS X9.82, Part 3 - DRAFT - July 2005

E: Y +xy=x+ x*+ b,

and the Koblitz curve has the form
E: Y+ xy =x*+ ax*+ 1, wherea=0or 1.

For each pseudorandom curve, the cofactor is f= 2. The cofactor of each Koblitz curve is f
=2ifa=1,andf=4ifa=0.

The coefficients of the pseudo-random curves, and the coordinates of the points P and Q
for both kinds of curves, are given in terms of both the polynomial and normal basis
representations, in hex.

NOTE: An implementation may choose to represent coordinates in either basis. However,
in order to gain certification it must demonstrate agreement with the test output vectors,
which have been generated using the normal basis representation for each of the binary
curves.

The order 7 of the base point P is given in decimal.

Note that 7 is used here for consistency with FIPS 186-3 but is referred to as # in the
description of the Dual_EC_DRBG(). r is given in decimal

A.1.2.1 Curve K-233

a=20

y = 34508731733952818937173779311385127605709409888622521\
26328087024741343

Polynomial Basis:

Px = 00000172 32ba853a 7e73lafl 29f22ff4 149563a4 19c26bf5
0adc9dee efad6l26

Py = 000001db 537dece8 19b7£70f 555a67c4 27a8cd9% £f18aeb9b
56e0c110 56faeba3 :

Normal Basis:

Px = 000000fd e76d9dcd 26e643ac 26flaa%90 1aal2978 4b71£fc07
22b2d056 14d650b3

Py = 00000064 3e317633 155c%e04 47ba8020 a3c43177 450ee036
d6335014 34cac978

Polynomial Basis:

Ox = 000000aa 7178e973 8a6f797a 1c265465 06106896 0a58b3fe
a3afc77f 18404eee

Oy = 0000002d 12a8f3e9 884bf31d 052aB8eaf 414b891a 0a40491e
1£9d2576 79248ee2

101

ANS X9.82, Part 3 - DRAFT - July 2005

Normal Basis:

Ox = 0000015a 96493d91 e56b5£10 579a7d58 eb895e06 8dI94elaf
86d34143 4377548c¢
Qy = 0000006b 13a689bb 3730dfd7 a46486ea ff8eb6chb 9d815981

a927d2eb 8cfa%00
A.1.2.3 Curve B-233

r = 69017463467905637874347558622770255558398127373450135\
55379383634485463 '

Polynomial Basis:

b= 066 647edebc 332c7f8c
0923bb58 213b333b 20e9ced2 81fell5f 7d8f90ad

Px = 000000fa c9dfcbac 8313bb21 39flbb75 5fef65bc 391f8b36
£8£f8eb73 71£d558b
Py = 00000100 6a08a419 03350678 e58528be bfB8albef f867a7ca

36716f7e 01£81052
Normal Basis:
b = 1a0 03e0962d 4f9aBe40
7c904a95 38163adb 82521260 0c7752ad 52233279

Px = 0000018b 863524b3 cdfefb94 £2784e0b 1ll6faac5 4404bcIl
62a363ba b84aldcs

Py = 00000049 25df77bd 8b8fflab5 ff519417 822bfedf 2bbd7526
44292c98 c7af6e02

Polynomial Basis:

Ox = 000000cb 50ce04af fdea6lll aaccfel4 aeb5fOdfe 95a59db4
cddabalc 1126615a

Qy = 0000005b ab8a93al0 5c42caae 1b322bl4 876ec2el 5c¢994a25
8e67295e 5808eafd

Normal Basis:

Ox

00000055 ealO7clca 4ad4312£f3 4562737c 257f4fa8 3b9d3d48
8al23cab 238f69%a2

Qy 00000055 d60eal7a 1cb969a8 3786a82f 8172889 026195£9

102

ANS X9.82, Part 3 - DRAFT - July 2005

923badbl beeb5702
A.1.2.2 Curve K-283

a=20

r = 38853377844514581418389238136470378132848117337930613\
24295874997529815829704422603873

Polynomial Basis:

Px = 0503213f 78cad488 3fla3b8l 62f188e5 53cd265f 23clb567a
16876913 b0Oc2ac24 58492836

Py = 0lccda38 0flc9e31l 8d90£95d 07e5426f e87e45c0 8184698
€4596236 4e341161 77dd2259

Normal Basis:

03ab9593 £8db09fc 188fld7c 4ac9fcc3 e57fcd3b dbl5024b

Px =
212¢7022 9de5fcd9 2ebleat6l
Py = 02118c47 55e7345¢c d8f603ef 93b98b1l0 6fe8854f feb%a3b3

04634cc8 3ale759f 0c2686bl
Polynomial Basis:

Ox = 0388eeed 1cc5808d 140d5179 76fbalfa 9c14b886 914387a6
89029497 £d3370b6 9cdd3779

Qy = 04d86b99 fed2ecad 1dc9fd77 ed5928ac ef908£97 leb22cf6
8e436df4 dbebelbe b2c2dff4d

Normal Basis:

Ox = 004abl7d 72374eb7 dac733d8 83d7b650 eb03ccb9 d6c6e0197
74f4lef2 1b8elell OfeBaabs8

Oy = 07243a25 e2e7e633 7897e8bl 9791¢c813 0317aecf 8clacZad
2ac03dac 4afdabe8 ££fc9888c

A.1.2.4 Curve B-283

r = 77706755689029162836778476272940756265696259243769048\
89109196526770044277787378692871

Polynomial Basis:

b = 27b680a c8b8596d abadaf8a 19a0303f
ca97fd76 45309fa2 a581485a £6263e31 3b79%9a2f5

Px = 05£93925 8db7dd90 el1934f8c 70bOdfec 2eed25b8 557eacSc

103

ANS X9.82, Part 3 - DRAFT - July 2005

80e2el198 f8cdbecd 86012053

Py = 03676854 fe24l4lc b98fe6dd b20d02b4 516££702 350eddbO
826779c8 13f0d4f45 be8112f4

Normal Basis:
b = 157261b 894739fb 5al13503f 55f0b3fl
0c560116 66331022 01138ccl 80c0206b dafbc851

Px = 0749468¢ 464ee468 634b21f7 £61cb700 701817e6 bc36a236
4cb8906e 940948ea a463c35d

Py = 062968bd 3b489%ac5 c9b859da 68475c31 5bafcdc4 ccd0dc90
5b70£624 46£49c05 2£49c08c

Polynomial Basis:

Ox = 06530328 33283d9%e bé6ebc03c 2d735ed9 12bdébcl 2364643
£8e309d9 d55e9440 28190bab

Qy = 03693cd3 8b4e022d ef8lbb7f 949ca7f4 287cbc3d 3aae8632
a6fea7l9 e0da9998 48211443

Normal Basis:

QOx = 06c2366¢c Bacc000a 5b5ledfc 4cf8a204 p255dd0d e53fl18el
99718e05 47b3845f 000626c9

Qy = 03667£53 ele528e9 99bfb2chb 9e609116 969d78fb 94a264a9
a2045878 132ca8f5 85b874ef

A.1.2.5 Curve K-409

a=20
r = 33052798439512429947595765401638551991420234148214060\

96423243950228807112892491910506732584577774580140963\
66590617731358671

Polynomial Basis:

Px = 0060Ff05f 658f49cl ad3abl189 0£718421 0efd0987 e307c84c
27accfb8 f9f67cc2 c460189%e bSaaaab2 ee222ebl b35540ct
€9023746

Py = 01e36905 Ob7c4ed?2 acbaldac bf04299¢c 3460782f 918ead27
e6325165 e9ealle3 dabf6cd2 e9c55215 aa9ca27a 5863ecd8
dg8e0286b

104

ANS X9.82, Part 3 - DRAFT - July 2005

Normal Basis:

Px = 01b559c7 cba2422e 3affel33 43e808b5 5e012d72 6calb7e6

a63aeafb cle3a98e 10calfcf 98350c3b 7£89a975 4a8eldcO
713cecda

Py = 016d8c42 052f07e7 713e7490 eff318ba labdéfef 8a5433c8B
94b24f5¢c 817aeb79 852496fb ee803a47 bc8a2038 78ebflcd
99afd7d6

Polynomial Basis:

Ox = 0lba%a6c 2d3ledf6 671ce7dl flo6fdab2 7c72ca88 cc3b33e9
b2ef536e 92bc06ad OcacOdéa 821898c2 847b5d7e 8506fd26
9eb5ldfcc

Qy = 019d9567 d1931672 ab748567 cd4fb75ad4 e0658b9b bfl7901e
b7d41148 489ab481 354977ac 390bbb05 a6e782b5 13caald9
02a846ef

Normal Basis:

Ox = 00e8b595 6a3f2ecs e8e3e3cf edc2003a 687feecc ade301le5
c34d47ef a723dacé 36flef6a cdbScedd2 309£fc937 £a5460d5
223c3743

Qy = 001£61£f2 2a66d942 delll925 dd94da’id 5c02edc2 23328beb
9019a157 d7b700f6 d8b42316 efe8193d 68c%0cel feb57ad2b
4£690281

A.1.2.6 Curve B-409

F = 66105596879024859895191530803277103982840468296428121\
92846487983041577748273748052081437237621791109659798\
67288366567526771

Polynomial Basis:

b = 021a5c2 cBee9feb 5cdb9a75
3b7b476b Tfd6422e £1£3dd67 4761fa99 déac27c8
a%9a197b2 72822f6c d57ab5aa 4£50ae3l Tb13545f

Px = 015d4860 d088ddb3 496b0c60 64756260 44lcdeda £1771d4d
b01ffe5b 34e59703 dec255a86 8al18051 5603aeab 60794e54
bb7996a7

Py = 0061blcf abébe5f3 2bbfa783 24edlO6a 7636b9c5 a7bdl198d
0158aadf 5488d08f 38514f1f df4b4f40 42181b36 8lc364ba
0273c706

105

ANS X9.82, Part 3 - DRAFT - July 2005

Normal Basis:

b = 124d065 1c3d3772 f7fbalfe
6715559 e2129bdf a04d52f7 béac7c53 2cf0ed06
£610072d 88ad2fdc c50c6fde 72843670 £8b3742a

Px = 00ceacbc 9£475767 d8e69f3b 5dfab398 13685262 bcacf22b
84cTb6dd 981899e7 318c96£0 761£77c6 02cO0léce d7c548de
830d4708f

Py = 0199d64b a8£089c6 dblOelb6l e80bb959 34afdlca f2eBbeT6
dlc5e9af fc7476df 49142691 ad303902 88aal9%bc ¢59cl573
aa3c009%a

Polynomial Basis:

Ox = 01920ed2 5ec895fc 704acOda 05a93ace 25£c9646 ab4533¢c0
4f759cel ac0e53d8 096b2318 d6fdd0d7 1ld2affdé 915e8d7a
2977127

Oy = 011d1dl5 0cl27a29 77b48al7 facB8aal3 96985213 3179fcl?
74£9d3db 1fébeed3 d8cO4cce 35f2abf8 022230f6 457f260a
72444bfd

Normal Basis:

Ox = 01b248le 3265c48d 28db6172 95efafdS 77f£7d0ed 175ccd9b
0fcb1982 639bc380 eeeB80285 e6efB8a7b la3l566d 602c07dc
dc85a5a5

Oy = 0040712d 082d31ba 22497958 b1178993 a2fbdcd4l £14207e4
0f8ccda8 06b637cc £1380320 b6ffodfd 8e811f£14 49cdc23e
2£4823fe

A.1.2.7 Curve K-571

a=20

r = 19322687615086291723476759454659936721494636648532174\
99328617625725759571144780212268133978522706711834706\
71280082535146127367497406661731192968242161709250355\
5733685276673

Polynomial Basis:

Px = 026eb7a8 59923fbc 82189631 £8103fed ac%ca297 0012d5d4
60248048 01841cad 43709584 93b205e6 47da304d bdcebl8c
bbdlba39 494776fb 988b4717 4dcaB88c7 e2945283 a01c8972

106

ANS X9.82, Part 3 - DRAFT - July 2005

Py = 0349dc80 7f4fbf37 4f4aeade 3bcad531l 4dd58cec 9£307a54
ffcolefc 006d8a2c 9d4979c0 acddaea7 4fbebbb9 f772aedc
b620b0la 7ba7aflb 320430c8 591984£f6 Olcd4cld 3eflcTa3

Normal Basis:

Px = 004bb2db a418d0db 107adae0 03427e5d 7ccl3%ac b465e593
4f0beal2a b2£f3622b c29b3d5b 9aa7alfd f£d5d8be6 6057¢cl00
8e71e484 bcd98f22 bf847642 37673674 29ef2ecd bc3ebef’

Py = 044cbb57 de20788d 2c952d7b 56cf39bd 3e89b189 84bdlZde
751ceff4 369dd8da c6ab9ebe 745df44d 8220ce22 aaZc852c
fcbbef49 ebaa98bd 2483e331 80e04286 feaa2530 50caff60

Polynomial Basis:

Ox = 06c62ea8 63120582 6aBe4328 412a3400 Obe7c23f 19982e7f
35164b12 cl18df503 2997173d 9776babl 2dafe58e 97elaadd
4726eaae 6473c2bc Te0c2752 fed22ac2 e86fbcfc 00468dc4

Oy = 070blc34 39bb9845 42£21349 21££78d0 cebefb9b f27£02b5
0£83c658 £29b2076 ac77c8ac 015be59c 02d090fb 20aada35s
£4745614 78445d04 £d2ee388 3cbd5508 f7edcfe7 aB803dd47

Normal Basis:

Ox = Ole8cee5 3c73b384 ad828269 7566e3ad bl1573fd 7aff7abd
1af60123 062e560c 1bb66d35 d00cd77e 101e7606 6afcd0cO
8c8826eb 79b91e33 1328701c 9fb5c3ab 01d798af cdfbeab?

Qy = 079d03ff 6£51d98d 467%aa59 97b5leca e2ecf2fe bad9ledf
AdSdE7df7 277bb265 b58bllad 5b916e99 fea7ef78 49314dfl
0af703bd 1b202c8c fa97760b 27044cl9 ac5d9fb5 65381df3

A.1.2.8 Curve B-571

¥ = 38645375230172583446953518909319873442989273297064349\
98657235251451519142289560424536143999389415773083133\
88112192694448624687246281681307023452828830333241139\
3191105285703

Polynomial Basis:

b = 2f40eTe 2221£295 de297117
b7£3d62f 5c6a97ff cb8ceffl cdébaBce 4a%alBad
84ffabbd 8efa5933 2be7ad67 56a66e29 4afdl8ba
78ffl2aa 520ed4de7 39bacalc 7ffeff7f 2955727a

107

ANS X9.82, Part 3 - DRAFT - July 2005

Px = 0303001d 34b85629 6cl6c0d4 0d3cd775 0a%3did2 955fa80a
a5f40fc8 db7b2abd bde53950 £4c0d293 cdd711a3 5b67fbl4
99ae6003 8614f139 4abfa3b4 ¢850d927 ele7769c 8eec2dl9

Py = 037b£273 42da63%b 6dccfffe b73d69d7 8c6c27a6 009cbbca 1980£853
3921e8a6 84423e43 bab08ab57 6291af8f 461bb2a8 b3531d2f
0485cl19b 16e2f151 6e23dd3c la4827af 1bBaclbb

Normal Basis:

b = 376240d 47116006 179da356
88eecaccf 59labcde a7500011 8d9608c5 9132d434
26101ald fb377411 5£586623 £75f0000 1lce61198
3cl1275fa 31f5bc9f 4belalf4 67£01lca8 85c74777

Px = 00735e03 5def5925 cc33173e b2aB8ce77 67522b46 64278065
0a291612 7dfead9d2 d361089f 0a7a0247 alB84elc7 04417866
e0feOfeb OfFf8f2f3 £9176418 £97dll7e 624e2015 dfl662a8

Py = 004a3642 0572616¢c df7e606f ccadaecf c3b76dab Oebl248d
d03fbdfc 9cd3242c 4726be57 9855e812 de7ec5c5 00b4576a
24628048 b6a72d88 0062eed0 dd34bl09 6d3acbb6 b0la4ad7

Polynomial Basis:

Ox = 01e263e6 afad323f 934e50e4 dalb015b 3£6727£4 2770lcc3
0dcdl145 cl2e3c66 50ccd260 5ccdb5aba 609cbhacd 3aed9e2d
32de8e64 80303414 dc0907£0 21f8cefd cfb45700 56£8d686

Qy = 06c99cbb 0c686abe d6b7015d e2cbel8a 3f623ae2 c87abda3
d6cd7b78 b37f49cc 5e88de04 b5668dad 2df3f34c 50b8c56a
3140d87f 8labb42e 919b3f8d 61743ba9 l4bcbllb defdabcf

Normal Basis:

Ox = Oleced446 40b698fe eb575fcO 65156¢5f £94c277a 5335ela2
28b65c22 aff27777 di59cfee c7£1270c c84bca33 8£f34abdd
6748f592 bf322442 e2ffeffe 9e5a321d cdébde75 a269e745

Qy = 0Olcadda7 5647bba5 8c08b5e2 2b633e3a 5dd3b2c9 5db81lf2d
220cba3d 7a38e692 072b3db2 6465b27a 2abd56b4 2291£982
3a902eb5 038dl62a 7a578d37 8dd0c620 4£722521 b8084didc

A.2 Test Moduli for the MS_DRBG {(...)

Each modulus is of the form n = pq with p =2p, + 1, g =24, + 1, where p; and g, are
(lg(n)/2 — 1)-bit primes.

108

ANS X9.82, Part 3 - DRAFT - July 2005

A.2.1 The Test Modulus n of Size 2048 Bits

The hexadecimal value of the modulus # is:
clla01£f2 5daf396a a927157b af6f504f 78cba324 57b58c6b
£7d851af 42385cc7 905b06£4 1f6d47ab 1b3a2cl2 17d14d15
070c9da5 24734ada 2fel7a95 e600ac9a 4f8bla66 96661e40
7d3043ec d1023126 5d8ealdl 81cf23c6 dd3dec9e b3fce204
5b9299bb cca63dee 435a2251 ad0765d4 9d29dble f5abalél
279aeb5f 6899fe48 7973e36c 1£b13086 d9231b6b 925a8495
4ba0fbca feaB4dea 77a9£852 £86915a4 e7lbd0ba bIb269c3
9a7a827a 41311ffa 4470140c 8b6509fe 5dbd39e3 ec816066
2d036e13 0e07e233 06a39b18 dbleBefe 64418880 8lac3673
2b4091£6 63690d03 3b486d74 371a20fc 3e2l4bce 7ed0e797
S5ea44453 cd161d32 8185204 59896571

A.2.2 The Test Modulus n of Size 3072 Bits

The hexadecimal value of the modulus # is:
c6046ba6 8beaal61 c468a9a7 4da34déd 21398c73 020837c?
d2a4042b dd9a7628 cab8022e 5bc4246f 75da8d26 03dag021
41c5d112 835e6bdb 57ed799e 28d6fa4d c3d0f5b5 £9776cl4
0a901bf7 73ae3113 35d0470e da9lb442 dbac62la cdd324e2
a70244d7 cbl55adc 4b77dd94 fafe069d 5b5cc494 86e9febl
5081190 abb24f54 2d7d21e9 c90453c6 9ac63143 401d6b35
e456ea2f 64ae76f9 2df80328 b48£7962 d5c9b779 b2078496
7d374£02 06b8afbf 678d7f5f 36c3d84e c9e55c28 Tce5c668
17¢e05b4 1059168f b5c5e2a3 6bc2féce 3b43bdil4 56eebdds
70ffe6le 5a7023a9 04d98f8a 96bfaf55 55al2f81 5561b401
63f3a50e alel6a36 3f5cdddd aldb275c 4fc2d650 d51f1e93
£5£d7631 cad5914f £6fe62a0 be55b997 5£6566bb 47¢76276
fde3b2eb 837bf0da 9d824687 042479a3 04147399 2d8l4a3a
7Tbe7bc3d 06992df6 6c1d7d06 f8cldlle 2bbb573a 0e278e7a
daa600£3 2577030e 95b73dd9 96b65£98 4740a485 e27138bd

d5102522 09bcf005 6640a1b3 bldd97ad 7¢187e04 01ba817d

109

ANS X9.82, Part 3 - DRAFT - July 2005

ANNEX B : (Normative) Conversion and Auxilliary Routines

B.1 Bitstring to an Integer

Input:

1. by, by,..., by The bitstring to be converted.
Output:

1. x The requested integer representation of the bitstring.
Process:

1. Let (dy, b, ..., by) be the bits of b from lefimost to rightmost.

2. x=Y 20,

i=l
3. Return x.

In this Standard, the binary length of an integer x is defined as the smallest integer n
satisfying x < 2",

B.2 Integer to a Bitstring

Input:

1. x The non-negative to be converted.
Output:

1. by, by, ..., b, The bitstring representation of the integer x.
Process:

1. Let (b1, b, ..., b,) represent the bitstring, where b; = 0 or 1, and b, is the most
significant bit, while b, is the least significant bit.

2. For any integer n that satisfies x <2, the bits 4, shall satisfy:

b= Z”:Z("’i)b,. .
i=l

3. Return by, bz, Gy b,.

In this Standard, the binary length of the integer x is defined as the smallest integer » that
satisfies x < 2",

B.3 Integer to an Octet String

Input:
110

ANS X9.82, Part 3 - DRAFT - July 2005

1. A non-negative integer x, and the intended length » of the octet string satisfying
P2" =xx
Output:
1. An octet string O of length » octets.
Process:
1. Let Oy, O,,..., Oy be the octets of O from lefimost to rightmost.
2. The octets of O shall satisfy:

x=3 250,
fori=1ton
3. Return O.

B.4 Octet String to an Integer

Input:
1. An octet string O of length n octets.
Output:
1. A non-negative integer x.
Process:
1. Let Oy, Oy, ..., O, be the octets of O from leftmost to rightmost.
2. x is defined as follows:
x =2 2%,
fori=1ton

3. Returnx.

111

ANS X9.82, Part 3 - DRAFT - July 2005

Annex C: (Informative) Security Considerations

[The information in this annex needs nto be reconsidered. Is C.1 needed here ? The
information in C.2 is provided in SP 800-57. C.3 is needed only if Dual_EC_DRBG is
retianed. What other information is appropriate ?]

C.1 The