Dual_EC_DRBG {(...) ANS X9.82, Part 3 - DRAFT - March 2004

10.3 Deterministic RBGs Based on Number Theoretic Problems

10.3.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. Section 10.3.2 specifies a DRBG based on elliptic curves; Section 10.3.3
specifies a DRBG based on the RSA integer factorization problem.

10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)

10.3.2.1 Discussion

Dual EC_DRBG (...) is based on the following hard problem, sometimes known as the
“elliptic curve discrete logarithm problem™: given points P and Q on an elliptic curve of
order », find a such that Q = aP.

Dual EC_DRBG (...) uses a seed that is m bits in length to initiate the generation of
blocksize-bit pseudorandom strings by performing scalar multiplications on two points in
an elliptic curve group, where the curve is defined over a field approximately 2" in size.
blocksize has been chosen to ensure full entropy in the output strings; it is a multiple of 8
that is close to but no larger than m — 16 (see Annex C.3.2 for details). Selecting an m as
small as possible -- subject to the security strength required -- may result in improved
performance. For all the NIST curves given in this Standard, m > 163. Figure 18 depicts
the Dual_EC_DRBG (...).

seed —I—

—

PO o T

U‘T’S E Q

Tf siditional ingt= Hull

Figure 18: Dual_EC_DRBG {...)

The instantiation of this DRBG requires the selection of an appropriate elliptic curve and
curve points specified in Annex A.1 for the desired security strength. The seed used to
determine the initial value (S) of the DRBG shall have entropy that is at least the
maximum of 128 and the desired security strength (i.e., entropy > max (128, strength)).
The seed length shall be m bits in length. Further requirements for the seed are provided in
Section 8.5.

Backtracking resistance is inherent in the algorithm, even if the internal state is
compromised. Prediction resistance is also inherent when observed fror outside the
DRBG boundary. If an application is concerned about the compromise of the hidden state

Dual_EC_DRBG (...) ANS X9.82, Part 3 - DRAFT - March 2004

in an instantiation of the Dual EC_DRBG(...), the state may be infused with new entropy
in a number of ways, as discussed in Section 10.3.2.2.5.

When optional additional input (additional input) is used, the value of additional _input is
arbitrary, in conformance with Section 8.7, but it will be hashed to an m-bit string.

Validation and Operational testing are discussed in Section 11. Detected errors shall result
in a transition to the error state.

Table 3 provides guidance for the selection of appropriate curves and hash functions for
each desired security strength, together with the associated entropy, seed length and
blocksize requirements. Complete specifications for each curve are provided in Annex A.1.

Table 3: Appropriate Dual_EC_DRBG (...) Selections for Desired Security Strengths

Maximum | Curve | Minimum Seed | Entropy | Block | Appropriate Hash
Security Entropy Iength=| Input Size Functions .| Comment [ebb1]: Page: 2)
Strengths Requirement | m | Length R I muly s ey
(m’) supported by a hash function is = to the output
block size, if sufficient entropy is obtained.
80 B-163 128 163 168 144 SHA-1, SHA-224,
SHA-256, SHA-
80 K-163 128 163 168 144 384, SHA-512
80 P-192 128 192 192 176
112 P-224 128 224 224 208 SHA-1, SHA-224,
SHA-256, SHA-
112 K-233 128 233 240 216
128 P-256 128 256 256 240 SHA-1, SHA-224,
SHA-256, SHA-
128 B-283 128 283 288 264 384, SHA-512
128 K-283 128 283 288 264
192 P-384 192 384 384 368 SHA-224, SHA-
256, SHA-384,
192 B-409 192 409 416 392 SHA-512
192 K-409 192 409 416 392
256 P-521 256 521 528 504 SHA-256, SHA-
384, SHA-512
256 B-571 256 571 576 552 ’
256 K-571 256 571 576 552

Dual_EC_DRBEG (...) ANS X9.82, Part 3 - DRAFT - March 2004

10.3.2.2 Interaction with Dual_EC_DRBG {(...)

f10.3.2.2.1 Instantiating Dual ECDRBG (..}

Prior to the first request for pseudorandom bits, Dual_EC_DRBG (...) shall be instantiated
using the following call:

(status, state_pointer) = Instantiate_Dual_EC_DRBG (requested_strength,
prediction_resistance_flag , personalization_string , requested_curve_type ,
reseed_interval, mode)

as described in Sections 9.5.1 and 10.3.2.3.3, with the addition of the
requested_curve type and reseed interval parameters. requested_curve_type is used to
specify a class of elliptic curves from which the instantiated elliptic curve is to be selected.
reseed_interval indicates the maximum number of steps that may be taken along the curve
before the DRBG must be reseeded.

10.3.2.2.2 Reseeding a Dual_EC_DRBG (...) Instantiation

When a DRBG instantiation requires reseeding, the DRBG shall be reseeded using the
following call:

status = Reseed_ Dual EC_DRBG_Instantiation (state_pointer, ladditional_input. | P

mode)
as described in Sections 9.6.2 and 10.3.2.3.4.
10.3.2.2.3 Generating Pseudorandom Bits Using Dual_EC_DRBG (...)

An application shall request the generation of pseudorandom bits by Dual EC_DRBG(...)
using the following call:

(status, pseudorandom_bits) = Dual_EC_DRBG (state_pointer, requested_strength,
requested no_of bits, additional _input_string, prediction_resistance_request, mode)

as described in Sections 9.7.2 and 10.3.2.3.5. The requested_strength parameter in the call
to Dual_EC_DRBG (...) is a failsafe mechanism. The implementation will check that the
value requested is not more than that provided by the instantiation, as determined by the
call to Instantiate_Dual_EC_DRBG (...). A call for greater strength will result in an error
condition .

10.3.2.2.4 Removing a Dual_EC_DRBG (...) Instantiation

An application may remove a DRBG instantiation (i.e., release the state space for that
instantiation) using the following call:

status = Uninstantiate_ Dual EC_DRBG (state_pointer)
as described in Sections 9.8 and 10.3.2.3.6.

-| Comment [ebb2]: Page: 1
The RNG editing group needs to discuss the
philosophy of allowing the user application to
determine teh reseeding interval. The hash-
based DRBGs don't currently do this. We need
to be consistent if it makes sense for a given
DRBG.

_..—| Comment [ebb3]: Page: 3
This was added to allow another avenue of
providing entropy or customization.

Dual_EC_DRBG (...) ANS X9.82, Part 3 - DRAFT - March 2004

10.3.2.2.5 Self Testing of the Dual_EC_DRBG (...)

A Dual_EC_DRBG(...) implementation is tested at power up and on demand using the
following call:

status = Test_Dual EC_DRBG ()
as described in Sections 9.9 and 103.2.3.7.

f0.3.2.2.4 Inserting Additional Entropy into the State Using Dual_EC_DRBG) _..[comment[ebb4]: Page: 4
A generalized.discussion of this (i.e., not
Additional entropy may be inserted into the state of the Dual_EC_DRBG (...) in 4 ways: picgic/0a glugr DREC) fansen idodas

: . . . (other than, perhaps) some of the details in item
1. By calling the Reseed_Dual_EC_DRBG_Instantiation(...) function at any time. 27 Does this need a section of its own ?

This function always calls the implementation-dependent function Get_Entropy
(...) for min_entropy = max (128,strength) new bits of entropy, which are added
to the state. Section 9.5.2 discusses the Get_entropy (...) function.

2. By utilizing the automatic reseeding feature of the Dual_EC_DRBG(...). If
reseed_interval is set to any positive integer £ at instantiation,
Reseed_Dual_EC_DRBG_Instantiation(...) is called automatically whenever &
blocksize bits of random have been generated since the previous reseeding. As
explained above, the reseed function introduces min_entropy bits of entropy each
time it is invoked. Note that automatic reseeding with k£ = 10,000 is done by
default if a reseed_interval=0 is supplied (see Annex C.3.2). Automatic reseeding
can be turned off by setting £ < 0.

3. By setting prediction_resistance_flag # 0 at instantiation. If set, any call to
Dual EC_DRBG(...) may include a prediction_resistance_request, which in turn
invokes a call to Reseed_Dual EC_DRBG_Instantiation() before new random is
produced. (Comment: Frequent calls to the Get_Entropy() function may cause
severe performance degradation with this or any DRBG.)

4. By supplying an additional _input_string on any call to Dual_EC_DRBG(...) for
random bits.

10.3.2.3 Specifications

10.3.2.3.1 General

The instantiation of Dual EC_DRBG (...) consists of selecting an appropriate elliptic
curve and point pairing from Annex A.1 and obtaining a seed that is used to determine an

initial value (S)i. The state consists of} .| comment [ebb5]: Page: 4
R S S T PR Note that the usage_class was rémoved.

1. A counter (reseed_counter) that indicates the number of blocks of random
produced by the Dual_EC_DRBG (...) during the current instance and since the
previous reseeding.

2. A reseed interval specifies the frequency, in blocks of blocksize bits of random
produced, at which automatic reseeding of the Dual_EC_DRBG (...) occurs.

Dual_EC_DRBG (...) ANS X9.82, Part 3 - DRAFT - March 2004

10.3.2.3

A value (S) that determines the current position on the curve E,

The elliptic curve domain parameters (curve_type, m, p, a, b, n), where curve_type
indicates a prime field F,, or a pseudorandom or Koblitz curve over the binary field
F,” ; aand b are two field elements that define the equation of the curve, and » is
the order of the point G,

Two points P and Q on the curve; the generating point G specified in FIPS 186-2
for the chosen curve will be used as P,

The security strength provided by the instance of the DRBG,

A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG., and

A record of the seeding material in the form of a one-way function that is
performed on the entropy_input for later comparison with new entropy_input when
the DRBG is reseeded.

.2 Dual _EC (...) Variables

The variables used in the description of Dual EC_DRBG (...) are:

a b

Two field elements that define the equation of the curve.

additional_input_string Optional additional input. A byte array that may be provided

on any call for random bits or during reseeding. The string
will be hashed to m bits using Hash_df (...). See Section
9.54.2

additional _input The hashed bitstring derived from the optional

additional _input_string.

blocksize The number of bits output by a single step of the

Dual EC_DRBG(...). The precise value depends on the
curve chosen, but is always a multiple of 8 near m-16. (See
Annex C.3.2 and Section 10.3.2.3.3)

curve_type Either 0 (Prime_field curve),] (Random_binary_curve),or 2

(Koblitz_curve), indicating a curve over a prime field, a
random binary curve, or a Koblitz curve, respectively. The
default curve type is 0 (i.e., mod p will be used).

E An elliptic curve defined over F, or F,".

entropy_input The bits containing entropy that are used to determine
seed_material and generate a seed.

I The cofactor of the curve: 1 for all prime field curves, 2 or 4

for the binary curves. Comment: This value will be implicit
from the curve_type and a.

Dual_EC_DRBG (...)

ANS X9.82, Part 3 - DRAFT - March 2004

Find_state_space (mode)

G

A function that finds an unused state in the state space. See

Section 9.5.3.

A generating point of prime order » on the curve E.

Get_entropy (min_entropy,min_length, max_length, mode)

Hash (hash_inpuf)

A function that acquires a string of bits from an entropy
input source. The parameters indicate the minimum entropy
to be provided in the returned bit string, and the limits
between which the length of that string must lie (i.e.,
min_length and max length). Dual EC_DRBG (....) will
always specify pnin_length = max_length=m | mode
indicates whether the function is called during normal
operation or during testing. Also, see Section 9.5.2.

An Approved hash function that returns a bitstring whose
input hash_input may be any multiple of 8 bits in length.

Hash_df (hash_input, output_len)

i

Invalid_state_pointer

len (4)

m

max (4, B)
max_length

max_no_of stales

min_entropy

min_length

A function to distribute the entropy in hash_input to a
bitstring output_len long. The function Hash (...) is used to
do this. hash_input may be any multiple of 8 bits in length;
outpul_len is arbitrary. See Section 9.5.4.2.

A temporary value that is used as a loop counter.

An illegal value for the state_pointer.

The length in bits of the string 4.

Length in bits of the internal state S; the curve is defined
over a field with approximately 2™ elements.

The maximum of the values 4 and B.
The maximum length of the entropy_input.

The maximum number of states and instantiations that an
implementation can handle.

A value used in the request to Get_entropy (...) to indicate
the minimum entropy to be provided.

Comment: In fact, the value of strength is used in this
determination, and strength is always at least
requested_strength.

The minimum length of the entropy_input.

...+ Comment [ebb6]: Page: 1
Do they really need to be the same ? See the
comment in Section 10.3.2.3.3, step 13.

Dual_EC_DRBG (...) ANS X9.82, Part 3 - DRAFT - March 2004

mode An indication of whether a request for entropy input is for
normal operation or for testing. For normal operation, mode
= 0= Normal_operation. See Section 9.9.2.1 for testing

values.
n The order of the generating point G on the curve.
Null The null (empty) string.

old_transformed_entropy_input

A record of the enfropy _input used in the previous instance

of the DRBG.

p The modulus when curve type =0 (Prime_field_curve); an
m-bit prime.

P QO Two points on the elliptic curve E, such that each generates a
large cyclic subgroup on E. The generating point G will be
used as P.

pad8 (bitstring) A function that inputs an arbitrary length bitstring and

returns a copy of that bitstring padded on the right with
binary 0’s, if necessary, to a multiple of 8. Comment: This is
an implementation convenience for byte-oriented functions.

personalization_string A byte array that can provide additional assurance of seed
uniqueness at instantiation.

prediction_resistance_flag

An instantiation flag indicating whether or not prediction
resistance is to be provided by the DRBG. If setto 1
(Allow_prediction_resistance), prediction resistance requests
may be made during calls for random bits. If set to 0
(No_prediction_resistance), later requests for prediction
resistance will return an error message.

prediction_resistance_request

Setting prediction_resistance_request =1
(Provide_prediction_resistance) at a call to

Dual EC_DRBG(...) specifies that

Reseed_Dual EC_DRBG_Instantiation(...) isto be
called before new random is produced. If
prediction_resistance_flag is not set to
Allow_prediction_resistance during the call to
Instantiate_Dual EC_DRBG(...), the request will return
an error message.

pseudorandom_bits The pseudorandom bits produced by the DRBG.

Dual_EC_DRBG {(...)

R

requested_curve_type

requested_no_of bits

requested_strength

reseed_counter

reseed_interval

seed material

state(state_pointer)

status

strength

temp

ANS X9.82, Part 3 - DRAFT - March 2004

A value from which pseudorandom bits are extracted.

The curve_type can be specified as input to
Instantiate_Dual EC_DRBG (...); if none is requested, the
default value of 0 (Prime_field_curve) is assigned.

The number of pseudorandom bits to be returned on a call to
Dual EC_DRBG (...).

The security strength of the bits requested from the DRBG.
The bits returned may have more than requested strength
bits of security, but never less.

A count of the number of iterations of the of
Dual_EC_DRBG (...) since the last reseeding.

The maximum number of steps taken along the curve before
the DRBG must be reseeded. The default value 10,000 is
recommended (see Annex C.3.2) and may be selected by
setting the reseed_interval input parameter to the
instantiation process to 0 (Use_default _reseed_interval). If
reseed_interval <0, automatic reseeding will not be
performed.

A temporary value.

A value that is initially determined by a seed, but assumes
new values during each request of pseudorandom bits from
the DRBG.

The seed used to derive the initial value of S.

An array of states for different DRBG instantiations. A state
is carried between DRBG calls. For the Dual EC_DRBG
(...), the state for an instantiation is defined as state
(state_pointer) = {reseed_counter, reseed_interval, S,
curve_type, p, a, b, n, P, O, strength,
prediction_resistance_flag , transformed_entropy_input}. A
particular element of the state is specified as
state(state_pointer).element, e.g., state (state_pointer).S.
Comment : p is only needed by the curve type=0

curves (Prime_field curve).

The status returned from a function call, where status =
“Success” or a failure message.

The maximum strength of an instance of the DRBG (i.e., 80,
112, 128, 192 or 256).

A temporary value.

Dual_EC_DRBG {(...) ANS X9.82, Part 3 - DRAFT - March 2004

temp_input A temporary value.
transformed_entropy_input

A one-way transformation of the entropy input for the
Hash_DRBG (...) instance.

Truncate (bits, in_len, out len)

A function that inputs a bit string of in_len bits, returning a
string consisting of the leftmost out_Jen bits of input. If
in_len <out len, the input string is padded on the right with
(out_len - in_len) zeroes, and the result is returned.

x(A4) The x-coordinate of the point 4 on the curve E.

0 A mapping from field elements to non-negative integers that
takes the bit vector representation of a field element and
interprets it as the binary expansion of an integer. Section
10.3.2.3.5 has the details of this mapping.

b Scalar multiplication of a point on the curve.

10.3.2.3.3 Instantiation of Dual_EC_DRBG {(...)

The following process or its equivalent shall be used to instantiate the Dual EC_DRBG
(...) process. Let Hash (...) be an Approved hash function for the security strengths to be
supported. If the DRBG will be used for multiple security strengths, and only a single hash
function will be available, that hash function shall be suitable for all supported security
strengths (see Table 3 and SP 800-57).

Instantiate_Dual_EC_DRBG (...):

Input: hnteger (requested_strength, prediction_resistance_flag ,personalization_string,
requested_curve_type . reseed_interval, mode)

Output: string status, integer state_poim‘er.| _..'| Comment [ebb7]: Page: 8
T : : AT The usage_class is no longer an input ; a
Process: stale_pointer is output.

1. If (requested strength > the maximum security strength that can be provided by
the implementation (see Table 3)), then Return (“Invalid requested_strength”,
Invalid_state_pointer).

2. If (prediction_resistance_flag = Allow_prediction_resistance) and prediction
resistance cannot be supported, then Return (“Cannot support prediction
resistance”, Invalid_state_pointer).

Comment : Find an empty state in the state
space for the instantiation.

3. (status, state_pointer) = Find_state_space (mode).

Dual_EC_DRBG {...) ANS X9.82, Part 3 - DRAFT - March 2004

4. 1f (status # “Success”), the Return (status, [nvalid_state_pointer).

Comment : Determine an mthat is appropriate
for the requested_strength; this will depend
on curve_type.

5. If (requested curve type = Prime_field_curve), then

Comment : choose one of the prime field
curves. There is no NIST curve with m = 160.
The smallest mod p curve in FIPS 186-2 is for
m = 192. Therefore, when the DRBG is
instantiated with a nominal strength of 80, the
actual strength is 96.

If (requested_strength < 80), then {strength = 80, m =192}
Else if (requested_strength <112), then {strength =112, m =224} |
Else if (requested_strength <128),then {swrength =128, m=256}
Else if (requested_strength < 192), then {strength =192, m = 384}

Else if (requested_strength < 256), then {strength =256, m =
521}

Comment: There is no NIST curve with m =
512.

6. If (requested curve type # Prime_field _curve), then

Comment: choose one of the binary or
Koblitz curves.

If (requested_strength < 80), then {strength =80, m =163}
Else if (requested_strength < 112), then {strength =112, m =233}
Else if (requested_strength <128), then {strength =128, m =283}
Else if (requested_strength < 192), then {strength =192, m = 409}

Else if (requested strength < 256), then {strength =256, m =
571.

Comment: Select the appropriate curve. For
the binary and Koblitz curves, p = 0.

7. If (curve type = Prime_field curve), then select elliptic curve P-m

Else if (curve_type = Random_binary_curve), then select elliptic curve B-m and
setp=0

Dual_EC_DRBG (...) ANS X9.82, Part 3 - DRAFT - March 2004

10.

11.

12.
13.
14.

15.

16.

Else if (curve_type = Koblitz_curve), then select elliptic curve K-m and set
p=0.

Set the point P to the generator G for the curve, and set » to the order of G.
Set the corresponding point Q from Annex A.1.

Set the blocksize—the number of bits to use for each iteration of the

Dual EC_DRBG(...). As explained in Annex C.3.2, this number depends on
the curve_type and its size m. Only the rightmost blocksize bits of each block
produced are output; the others are discarded. The formula for blocksize is
[smallest multiple of 8 larger than m-(13+logy(f))]. The following table
summarizes the blocksize calculation, in the format [NIST curve : blocksize]:

Prime_field curve | Random_binary curve Koblitz_curve
P-192:176 B-163 : 144 K-163 : 144
P-224 :208 B-233:216 K-233:216
P-256 : 240 B-283 : 264 K-283 :264
P-384 : 368 B-409 : 392 K-409 : 392
P-521:504 B-571 : 552 K-571:552

Comment: Set the automatic reseeding
interval. Automatic reseeding will not occur
if a negative value for reseed _interval is
provided.

If (reseed_interval =0), then reseed_interval = 10,000.

Comment: Request entropy_input with the
desired entropy and bitlength (the smallest
multiple of 8 at least as large as m).

min_entropy = max (128, strength).

(status, entropy_input) = Get_entropy (min_entropy, min_length, max_length,
mode).

If (status # “Success”), then Return (“Failure indication returned by the
entropy_input source:” || status, Invalid_state_pointer).

seed_material = entropy input || personalization_string.

Comment: Use a hash function to ensure that
the entropy is distributed throughout the bits,
and S is m bits in length.

+| Comment [ebb8]: Page: 11

Couldn't the max_/ength be larger ; the
entropy._inpul source may not have full entropy.
Note thal step 17 hashes down to the desired
size for S.

Dual_EC_DRBG {...) ANS X9.82, Part 3 - DRAFT - March 2004

17. S = Hash_df (seed _material, m).

Comment: Perform a one-way function on the
entropy_input for later comparison.

18. transformed_entropy_input = Hash (entropy_inpuf). .| Comment [ebb9): Page: 12
- - - We need to save the result from the
. : o3 Get_entropy function for later comparison with
19. reseed counter = Q0. Comment: re'seed._ counter is incremented the next rasult to determine if the entropy input
every blocksize bits. source has failed. We don't want to hash the
seed material, since it includes the
Comment: Save all state information. personalization slring. Note that | made the
same ervor.

20. state(state_pointer) = {reseed_counter, reseed_interval, S, curve_type, m, p, a,
b, n, P, Q, strength, prediction_resistance_flag , transformed_entropy input}.

21. Return (“Success”, state_pointer).

10.3.2.3.4 Reseeding of a Dual_EC_DRBG (...} Instantiation

The following process or its equivalent shall be used to reseed the Dual_EC_DRBG (...)
process, after it has been instantiated.

Reseed_Dual EC_DRBG_Instantiation (...):
Input: integer state_pointer,string additional _input_string, integer mode.
Output: string status.
Process:

1. If ((state_pointer > max_no_of states) or (state (state_pointer) = {0, 0, 0,0, 0,
0,0,0,0,0,00, -1, Null}), then Return (“State not available for the
state_pointer™).

Comment: Get the appropriate sfate
values for the indicated state _pointer.

2. S = state(state_pointer).S, m = state(state_pointer).m, strength =
state(state_pointer).strength, old_transformed_entropy _input =
state(state_pointer).transformed_entropy input.

Comment: Request new entropy_input with
the appropriate entropy and bit length.

3. min_entropy = max (128, strength).
4. min_length=max_length= 8§ x[mi8]

5. (status, entropy_input) = Get_entropy (min_entropy, min_ length, max_length,
mode).

6. If (status # “Success”), then Return (“Failure indication returned by the
entropy source:”|| status).

Dual_EC_DRBG (...) ANS X9.82, Part 3 - DRAFT - March 2004

Comment: Perform a one-way function on the
entropy. input for comparison.

7. transformed _entropy input = Hash (]entropy_inpud).

Comment: Check for a viable entropy source.
8. If (transformed_entropy_input = old_transformed_entropy _input), then

If (mode = Normal_operation), then Abort_to_error_state
(“Entropy_input source failure™)

Else Return (“Entropy input source failure”).

Comment: Combine new entropy input with
the old state and any additional input.

9. seed material = pad8 (S) || entropy_input || additional _input_string.
10. S = Hash_df (seed_material, m).

Comment: Update the changed values in the
state.

11. state.S = S.
12. state.transformed_entropy_input = transformed_entropy_input.
13. state.reseed_counter = Q.

14, Return (“Success™).

10.3.2.3.5 Generating Pseudorandom Bits Using Dual_EC_DRBG (...)

The following process or its equivalent shall be used to generate pseudorandom bits.

IDual EC_DRBG (...){

Input: integer (state_pointer, requested_strength, requested_no_of bits,
additional _input_string, prediction_resistance_request, mode).

Output: string status, bitstring pseudorandom_bits.
Process:

1. If ((state_pointer > max_no_of states) or (state (state_pointer) = {0, 0, 0, 0, 0,
0,0,0,0,0,00, -1, Null}), then Return (“State not available for the
state_pointer”, Null).

Comment: Get the appropriate state
values for the indicated state_pointer.

2. S = state(state_pointer).S, m = state(state_pointer).m, strength =
state(state_pointer).strength, P = state(state_pointer).P, Q =
state(state_pointer).Q, reseed_counter = state(state_pointer).reseed_counter,

| Comment {ebb10]: Page: 13

We need to save the result from the
Get_entropy function for later comparison with
the next result lo determine if the entropy input
source has failed. We don't want te hash the
seed material, since it includes the
personalization string. Note that | made the
same error.

| Comment [ebb11]: Page: 13

If there is no reseeding capability, do we need
to insert a check to see if the DRBG has maxed
out and then return an error ? This could be
done, for example, after step 2.

Dual_EC_DRBG {...) ANS X9.82, Part 3 - DRAFT - March 2004

5.

reseed._interval = state(state_pointer).reseed_interval,
prediction_resistance_flag = state(state_pointer).prediction_resistance_flag.

Comment: Check that the requested_strength
is not more than that provided by this
instantiation.

If (requested_strength > strength), then Return (“Invalid requested_strength”,
Null).

If ((prediction_resistance_request = Provide_prediction_resistance) and
(prediction_resistance_flag = No_prediction_resistance)), then Return
(“Prediction resistance capability not instantiated”, Null).

Comment: Check for supplied additional
input. This will be added to the state on the
first iteration only.

If (additional input string = Null) then additional _input =0
Comment: additional input set to m zeroes.
Else additional_input = Hash_df (pad8 (additional input_string), m).
Comment: Hash to m bits.

Comment: If a prediction resistance request
has been made, instill new entropy with a call
to reseed the Dual_ EC_DRBG(...).
Reseed_Dual_EC_DRBG (...) resets

reseed counterto 0

If (prediction_resistance_request = Provide_prediction_resistance), then

|6.1 status = Reseed_Dual EC_DRBG_Instantiation (state_pointer, Null,

mode)l ..——~| comment [ebb12]: Page: 14
g St e A A e AT TR TRy A T Altemnatively, this could be essentially be
< I replaced by a call to the get_entropy routine
6.2 If (status # “Success”), then Return (status, Null). and checking that the entropy,_input isn't the

same as the last time. Your call.

Comment: Produce requested no_of bits,
blocksize at a time:

temp = the Null string.
i=0.

Comment: Determine if reseeding is required.
The reseeding process resets reseed_counter
to 0.

If ((reseed_interval > 0) and (reseed_counter = reseed_interval)), then

Dual_EC_DRBG (...} ANS X9.82, Part 3 - DRAFT - March 2004

9.1 status = Reseed_Dual EC_DRBG_Instantiation (state_pointer, Null,
mode).

9.2 If (status # “Success”), then Return (status, Null).
10. 5 =S ® additional _input.

11. S = o(x(s * P)). Comment: s is to be interpreted as an m- bit
unsigned integer. To be precise, when
curve_type = Prime_field_curve, s should be
reduced mod #; the operation * will effect
this. Sis an m-bit number. See footnote '.

12. R = o(x(S * Q)). Comment: R is an m-bit number. See footnote
1

13. temp = temp || (rightmost blocksize bits of R).

14. additional _input=0 Comment: m zeroes; additional_input_string
is added only on the first iteration.

15. reseed_counter = reseed_counter + 1.

16.i=i+1.

17. If (len (temp) < requested_no_of bits), then go to step 9.

18. pseudorandom_bits = Truncate (temp, i x blocksize, requested_no_of bits).

Comment: Update the changed values
in the state.

19. state.S = S.

20. state.reseed_counter = reseed_counter.

1 The precise definition of ¢(x) used in steps 11 and 8 depends on the field representation of the
curve points. It keeping with the convention of FIPS 186-2, the following elements will be
associated with each other:

B: |cuilcual . |C1]co| , abitstring, with ¢, being leftmost
Zo ocp2" 4+ et o2t e € Z; .
Fa: ¢, 2™ + 2t + 2!+ ¢ modp e GF(p) ;

Fb: cut™ @ ... ®ct ® ot ® ¢y e GF(2"), when a polynomial basis is used;

m-1

2
Fe:cp p @ c,,,.zﬁz @ c,,,.3[32 @,... D c(,B2 e GF(2"), when a normal basis is used.

Thus, any field element x of the form Fa, Fb or Fe will be converted to the integer Z or bitstring B, and vice
versa, as appropriate.

Dual_EC_DRBG (...) ANS X9.82, Part 3 - DRAFT - March 2004

21. Return (“Success”, pseudorandom_bits).

10.3.2.3.6 Removing a Dual EC_DRBG (...) Instantiation

The following or an equivalent process shall be used to remove a Dual EC_DRBG (...)
instantiation :

Uninstantiate Dual EC_DRBG (...):
Input: integer state_pointer.
Output: string status.
Process:
1. If (state_pointer > max_no_of states), then Return (“Invalid state pointer”).
2. state(state_pointer) = {0,0,0,0,0,0,0,0,0,0,00, -1, Null}.
3. Return (*Success”).
10.3.2.3.6 Self Testing of the Dual_EC_DRBG (...)
Self testing shall be performed on the Dual EC_DRBG (...) processes contained within a
DRBG boundary using the specifications in Section 9.9.
[Difterences to be determined].
[10.3.2.3.7 Implementation Considerations
In deference to the defacto standard of using character arrays as inputs and outputs for
hash implementations, the Dual_EC_DRBG (...) pads bitstrings to byte boundaries, and

requests its seed material to comply as well. This is the reason for the variable min_lengtﬂ
and the functionpad8 (.0

[10.3.2.4 Generator Strength and Attributes

The particular curve to be used shall be based on strength, which is selected from one of
five security levels and shall always be at least requested strength. The curves and
associated security levels are those given in FIPS 186-3; they are meant to correspond to
the strengths of various standard symmetric encryption algorithms.

For each security strength, there are three curves associated with each security level, one
defined over a prime field GF(p) and two over a binary field GF (2™), where 2" =~ p. The
mod p curves, assigned curve type 0 (Prime_field curve), are used by default. Any of the
three curves may be used for the security level.

Initial seeding is accomplished with a call to Get_entropy(...), which returns a bitstring
of a specified length and entropy. The Dual_EC_DRBG (...) specifies max (128,
strength) bits of entropy.

Comment [ebb13]: Page: 16
Need to correct this.

Comment [ebb14]: Page: 16

This subject was handled differently for the
hash_based DRBGs. We need to decide the
best way to do this.

Dual_EC_DRBG (...) ANS X9.82, Part 3 - DRAFT - March 2004

10.3.2.4 Reseeding and Rekeying]

The reseeding process is specified in Section 10.3.2.3.4 . Automatic reseeding is done by
default after each 10,000 blocksize bits of random are generated. The frequency may be
changed by providing a positive value for reseed_interval, or the feature may be disabled
by setting reseed_interval <0 at instantiation. Alternatively, or in addition, a call to
Reseed Dual_EC_DRBG_Instantiation(...) can be made at any time.

[The Dual_EC_DRBG (...) is not keyed per se; however, the additional_input and
personalization_string features may be used to effect keying, if desi red] _.,.[c(,mment [ebb15]: Page: 17 }

Do we want lo make this a general statement
for all the DRBGs ? Or not say Itatall ?

[Comment [ebb16]: Page: 17 l

Meed o decide if this belongs here. Also, do we
really need these seclions 7

ANS X9.82, Part 3 - DRAFT - March 2004

10.3.3 Micali-Schnorr Deterministic RBG (MS_DRBG)

10.3.3.1 Discussion

““““ Can this be removed ?

The MS_DRBG(...) generalizes the bo-called IF_{SA generator, which is defined as follows: .- [Comment [ebb17]: Page: 18
Let ged(x, ¥) denote the greatest common divisor of the integers x and y, and ¢(») represent

the Euler phi function. Select n, the product of two distinct large primes, and e, a positive
integer such that ged(e, ¢(n)) = 1. Define f(y) = 3* mod n . Starting with a seed yy, form the
sequence y;+; = f(37), and output the string consisting of the k = 1g g (») least significant
bits of each y;. These bits are known to be as secure as the RSA function f, and are
commonly referred to as the hard bits.

The Micali-Schnorr generator MS_DRBG(...) uses the same e and » to produce many

""""""""""""""" Can this be reworded ?

more random bits per iteratiod, while removing the incestuous relationship k)etween the --[Comment [ebb18]: Page: 18
state sequence and the output bits. Each y; € [0,n) is viewed as the concatenation s; || z; of

an r-bit number s; and a k = lg(n)-7 bit number z;. The s; are used to propagate the integer
sequence yi+; = §¢ mod m; the z; are output as random bits. » must be at least
2*min{strength, lg(n)/e}, where strength is the desired security strength of the generator,
and e > 3. (See Section 10.3.3.3.2.) A random r-bit seed s, is used to initialize the process.
Figure 19 depicts the MS_DRBG(...).

7
seed —— = §
lettimo and atmeoad ‘:)—'——‘f‘ 'hsit W= sle Znij]?(il RENfmoct i R .
% S T pseudorandora bits

t
0~

rodr

Figure 19: MS_DRBG (...)

The MS_DRBG(...) is cryptographically secure under the assumption that sequences of
the form s° mod n are statistically the same as sequences of integers in Z,. This assumption
is stronger than requiring the intractability of the RSA problem.

For MS_DRBG (...), the s values are assumed to be r-bit integers, and “statistically the
same” means indistinguishable by any polynomial-time algorithm. Accepting the stronger
assumption allows £ to be a significant percentage of lg(n).

The lengths » and & , the RSA modulus #, and the value of the exponent e are variable
within the bounds described below. The bounds are based on the desired strength of bits
produced. For maximum efficiency, e should be kept small and & should be large. The &

ANS X9.82, Part 3 - DRAFT - March 2004

bits generated at each step are concatenated to form pseudorandom bit strings of any
desired length.

Seeding material is provided by the implementation-dependent function Get_entropy(...).
The mininum entropy required from this function will be set to max (128, strength), per
Section 9.3.

Backtracking resistance is inherent in the RSA algorithm, even if the internal state is
compromised. Prediction resistance is inherent when observed from outside the DRBG
boundary. If an application is concerned about the compromise of the hidden state in an
instantiation of the MS_DRBG(...), the state may be infused with new entropy in a
number of ways, as discussed in Sections 8.5 and 9.3.

When optional additional input (additional_input) is used, the value of the
additional_input is arbitrary, in conformance with Section 8.7. It will be hashed to an r-bit
string.

10.3.3.2 Interaction with MS_DRBG (...)

10.3.3.2.1 Instantiating MS_DRBG {...)

Prior to the first request for pseudorandom bits, MS_DRBG (..) shall be instantiated using
the following call:

(status, state_pointer) = Instantiate_MS_DRBG (requested_strength,
prediction_resistance_flag, personalization_string, use_random_primes ,
requested_e , requested_k , reseed_interval, mode)

as described in Section 9.5.1, with the addition of the use_random_primes, requested_e ,
requested k , and reseed_interval parameters. The application may request a specific RSA
exponent e, or specify the output size & of bits produced on an iteration of MS_DRBG
(...). reseed_interval indicates the maximum number of &-bit output blocks that may be
produced before the DRBG must be reseeded. Alternatively, default values for e, &, and
reseed_interval will be used if zero values are supplied.

Setting use_random_primes = 1 instructs the implementation to generate random primes
using an Approved method at instantiation; otherwise, default values appropriate for the
requested_strength will be selected from Annex A.2.

10.3.3.2.2 Reseeding a MS_DRBG (...) Instantiation

When a DRBG instantiation requires explicit reseeding (see Section 9.6), the DRBG shall
be reseeded using the following call:

status = Reseed_MS_DRBG_Instantiation(state_pointer, additional _input_string,
mode).

10.3.3.2.3 Generating Pseudorandom Bits Using MS_DRBG (...)

An application shall request the generation of pseudorandom bits by MS_DRBG(...) using
the following call:

ANS X9.82, Part 3 - DRAFT - March 2004

(status, pseudorandom_bits) = MS_DRBG (state_pointer, requested_strength,
requested_no_of bits, additional input_string, prediction_resistance_request, mode)

as described in Section 9.7.2. In particular, a request for higher strength than was set at
instantiation will result in an error.

10.3.3.2.4 Removing an MS_DRBG {(...) Instantiation

An application may remove a DRBG instantiation (i.e., release the state space for that
instantiation) using the following call:

status = Uninstantiate_ MS_DRBG (state_pointer)
as described in Section 9.8.

10.3.2.2.5 Self Testing of the MS_DRBG {...)

An MS_DRBG(...) implementation is tested at power up and on demand using the
following call:

status = Test_ MS_DRBG ()
as described in Section 9.9.

110.3.3.2.6 Inserting Additional Entropy into the State of MS_DRBG o

Additional entropy may be inserted into the state of the MS_DRBG (...) in 4 ways:

1. By calling the Reseed_MS_DRBG_Instantiation(...) function at any time. This
function always calls the implementation-dependent function Get_entropy (...) for
min_entropy = max(128,strength) new bits of entropy, which are added to the
state. Section 9.5.2 discusses the Get_entropy (...) function.

2. By utilizing the automatic reseeding feature of the MS_DRBG(...). The
reseed_interval may be set to any positive value j at instantiation.
Reseed MS_DRBG_Instantiation (...) is called automatically whenver j*k bits
of random have been output since the previous reseeding. As explained above, the
Reseed MS_DRBG_Instantiation (...) function introduces min_entropy bits of
entropy each time it is invoked. If a 0 value is provided as the reseed_interval
during instantiation, reseed interval defaults to 50,000. Automatic reseeding is
turned off by setting j < 0.

3. By setting prediction_resistance flag=1 (Allow_prediction_resistance) at
instantiation. If set, any call to MS_DRBG(...) may include a
prediction_resistance_request, which in turn invokes a call to
Reseed MS DRBG_Instantiation() before new random is produced. Note that
frequent calls to the Get_entropy (...) function may cause significant performance
degradation with this or any DRBG.

4. By supplying an additional input_string on any call to MS_DRBG() for random
bits.

Comment [ebb19]: Page: 1
See the comment for Sectlon 10.3.2.2.4.

ANS X9.82, Part 3 - DRAFT - March 2004

10.3.3.3 Specifications

10.3.3.3.1 General

During the instantiation of MS_DRBG (...), the M-S parameters #, e, r, and & are selected
as described in Section 10.3.3.3.3, and a random initial seed sy is obtained. Each of these
become part of the internal state of the DRBG. The state consists of:

1.

2. |A seed s € [0,2") that is updated during each request for pseudorandom bits.l
3.
4

The M-S parameters », e, r and k.

The security strength provided by the instance of the DRBG.

. The mininum entropy needed from a call to Get_entropy(...) for seeding material.

The value of min_entropy will be set to max (128, strength), per Section 9.3.

A reseed_interval may be provided that will automatically reseed the MS_DRBG
(...) whenever reseed_interval iterations (k-bit blocks) have been made since the
previous reseeding.

A counter (reseed_counter) that indicates the number of blocks of random
produced by MS_DRBG (...) during the current instance since the previous
reseeding.

A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG., and

A record of the seeding material in the form of a one-way function that is
performed on the entropy_input for later comparison with new entropy_input when
the DRBG is reseeded.

10.3.3.3.2 MS_DRBG {(...) Variables

The variables used in the description of MS_DRBG (...) are:

additional input_string Optional additional input. A byte array that may be provided on

any call for random bits. The string will be hashed to » bits using
Hash_df (...).

additional_input The hashed bitstring derived from the optional

e

additional _input_string.

A positive integer that is used as an RSA exponent.

entropy._input The bits containing entropy that are used to determine

seed_material and generate a seed.

Find_state_space (mode)A function that finds an unused state in the state space. See

Section 9.5.3.

gcd (x,y) The greatest common divisor of the integers x and y.

_...~'| Comment [ebb20]: Page: 1

This should probably refer to S, which is used in
the pseudocode. I'm not sure how you want to
word this.

ANS X9.82, Part 3 - DRAFT - March 2004

Get_entropy (min_entropy, min_length, max_length, mode)

lGet_random_modqus (lg(n), e, nﬂ__ o

Invalid_state_pointer

k

Hash (hash_input)

A function that acquires a string of bits from an entropy input
source. The parameters indicate the minimum entropy to be
provided in the returned bit string, and the limits between which
the length of that string must lie. The MS_DRBG (...) will
always specify min_length = max_length = r. mode indicates
whether the function is called during normal operation or during
testing.

An illegal value for the state_pointer.

The number of bits generated at each iteration of
MS_DRBG (...); as an implementation convenience, this will
always be a multiple of 8 bits.

An Approved hash function that returns a bitstring whose input
hash_input may be any multiple of 8 bits in length.

Hash_df (hash_input, output len)

i

lg(n)

max (4, B)
max_length

max_no_of states

min_entropy

min_length

A function to distribute the entropy in hash_input to a bitstring
output_len long., The function Hash (...) is used to do this.
hash_input may be any multiple of 8 bits in length ; output_len
is arbitrary.

A temporary value that is used as a loop counter.

The number of bits in the binary representation of #, it is
selected from Table 4 in Section 10.3.3.3.3 based on the
requested security strength.

The maximum of the values 4 and B.
The maximum length of the entropy_input.

The maximum number of states and instantiations that an
implementation can handle.

A value used in the request to Get_entropy (...} to indicate the
minimum entropy to be provided for seeding material.
Comment: In fact, the value of strength is used in this
determination, and strength is always at least
requested_strength.

The minimum length of the entropy_input.

Comment [ebb21]: Page: 1
Need a definition/specification for this.

ANS X9.82, Part 3 - DRAFT - March 2004

mode An indication of whether a request for entropy_input is for
normal operation or for testing. For normal operation, mode =0
(Normal_operation). See Section 9.9.2.1 for testing values.

M-S parameters ner k

n The RSA modulus; the product of two distinct large primes p
and q.

Null A null (empty) string.

old_transformed_entropy_input

A record of the entropy_input obtained during the previous
instance of the DRBG.

b q Prime numbers generated using an Approved algorithm, e.g., as
defined in ANS X9.31, Annex B. These will be randomly
generated at initialization if use_random_primes is set to 1.
Otherwise, the default modulus of an appropriate size will be
used.

pad8 (bitstring) A function that inputs an arbitrary length bitstring and returns a
copy of that bitstring padded on the right with binary 0°s, if
necessary, to a multiple of 8. Comment: This is an
implementation convenience for byte-oriented functions.

personalization_string A byte array that can provide additional assurance of seed
uniqueness at instantiation.

prediction_resistance_flag

An instantiation flag indicating whether prediction resistance is
to be provided by the DRBG. If set to 1
(Allow_prediction_resistance), prediction resistance requests
may be made during calls for random bits. If set to 0
(No_prediction_resistance), later requests will return an error
message.

prediction_resistance request

Setting prediction_resistance_requesi =1
(Provide_prediction_resistance)at a call to MS_DRBG(...)
specifies that Reseed_MS_DRBG_Instantiation(...) is to be
called before new random is produced. If

prediction resistance_flag is not set to
Allow_prediction_resistance during the call to
Instantiate MS DRBG(), the request will return an error
message.

' Comment [ebb22]: Page: 23
' This may not make sense.

pseudorandom_bits

¥

requested e

requested k

reseed_counter

reseed_interval

So

seed_material

State(state_pointer)

status

strength

ANS X9.82, Part 3 - DRAFT - March 2004

The pseudorandom bits produced by the DRBG.

Bit length of the seeds; » = lg(n) - k. Comment: r will always be
a multiple of 8 bits.

Requested RSA exponent ¢; a value of 0 indicates that the
default value is to be used.

Requested size & of each output string; a value of 0 indicates that
the default value is to be used.

An integer count of the number of iterations of the of
MS_DRBG (...) since the last reseeding.

The maximum number of steps taken before the DRBG must be
reseeded. The default value 50,000 is recommended (see Annex
C.3.2) and is assigned if reseed_interval = 0 is provided when an
instantiation is requested. If reseed interval < 0, automatic
reseeding will not be performed.

A value that is initially determined by a seed, but assumes new
values during each request of pseudorandom bits from the
DRBG.

A value from which pseudorandom bits are extracted.

The state, or seed, of the generator at the i-th iteration; an
integer, s; € (0,2")

Random initial rebit seed]

The seed used to derive the initial value of S.

An array of states for different DRBG instantiations. A stafe is
carried between DRBG calls. For the MS_DRBG (...), the state
for an instantiation is defined as state(state_pointer) =

{reseed counter, reseed interval, S, n, e, r, k, strength,
min_entropy , prediction_resistance_flag, transformed_seed}. A
particular element of the state is specified as state.element, e.g.,
state(state_pointer).S

The status returned from a function call, where status =
“Success” or a failure message.

The security strength of the bits requested from the DRBG. It
will always be at least requested_strength. For efficiency, the
smallest modulus size 1g(n) providing requested_strength bits of
security will be selected from Table 4 in Section 10.3.3.3.3.

transformed_entropy_input

.-} Comment [ebb23]: Page: 1
These are not specified in the pseudocode.
What should be done with them ?

ANS X9.82, Part 3 - DRAFT - March 2004

A record of the entropy_input used in the current instance of the
DRBG.

Truncate (bits, in_len, out_len)

use_random_primes

Vi

=i

o(n)

A function that inputs a bit string of in_Jen bits, returning a string
consisting of the leftimost ouz_len bits of input. If in_len <
out_len, the input string is returned padded on the right with
out_len—in_len zeroes.

If use_random_primes = 1 (Use_random_primes), random
primes of size % lg(n) will be generated at initialization, using
an Approved algorithm, and having entropy at least
min_entropy. If use_random_primes =0
(Random_primes_not_required), the appropriate modulus from
Annex A.2 shall be used.

An integer, y; € [0,n) . yi=si| =i .
k-bit output of MS_DRBG (...) at iteration i.

The Euler phi function : ¢(n) = the number of positive integers <
n that are relatively prime to n. For an RSA modulus # = pq,

¢(n) = (p-1)(g-1)-

10.3.3.3.3 Selection of the M-S parameters

The instantiation of MS_DRBG (...) consists of selecting an appropriate RSA modulus
and exponent e; sizes r and k for the seeds and output strings, respectively; and a starting

seed.

The M-S parameters n, r, ¢ and k are selected to satisfy the following six conditions, based

on strength:

1. 1<e < ¢(n); gedle, d(m)) = 1. Comment: ensures that the mapping s — s°

2. re> 2¥lg(n).

3. r2>2%¥strength.

mod nis 1-1.

Comment: ensures that the exponentiation
requires a full modular reduction.

Comment: protects against a tableization

attack.
4. kr are multiples of 8. Comment: an implementation convenience.
5. k=8; r+k=lg). Comment: all bits are used.

6. n=p*q.

Comment: strong [as in X9.31], secret primes .

The M-S parameters are determined in this order:

ANS X9.82, Part 3 - DRAFT - March 2004

1. The size of the modulus Ig(n) is set first. It shall conform to the values given in
Table 4 for the requested security strength.

Table 4 : Appropriate MS_DRBG (...) Selections

Bits of RSA lg(lg(n)) = # Appropriate Hash Functions
Security | modulus size | of hard bits
80 lg(n) = 1024 10 SHA-1, SHA-224, SHA-256, SHA-
384, SHA-512
112 lg(n) = 2048 11 SHA-1, SHA-224, SHA-256, SHA-
384, SHA-512
128 lg(n) = 3072 11 SHA-1, SHA-224, SHA-256, SHA-
384, SHA-512
192 lg(n) = 7680 12 SHA-224, SHA-256, SHA-384,
SHA-512
256 lg(n) = 15360 13 : SHA-256, SHA-384, SHA-512

2. The RSA exponent e. The implementation should allow the application to request
any odd integer e in the range 1 <e < 287~ _2%2 % le™ [Comment: The
inequality ensures that e < ¢(n) when an Approved algorithm is used to generate the
primes p,g.] If requested_e = 0 is supplied--the default value e=3 should be used.

3. The number k of output bits used for each iteration. The implementation should
allow any multiple of 8 in the range 8 < k < min{ lg(n) - 2*strength, lg(n) -
2*Ig(n)/e }. If requested k=0 is specified, k should be selected as the /argest
multiple of § integer in the allowable range and within the range of bits currently
known to be hard bits for the RSA problem. That value is Ig(lg(n)), shown in
Table 4. Thus, in all cases, the default value 8 will be used if requested k= 0.

Any values for requested e and requested_k outside these ranges shall be flagged
as errors.

4. Set the size r of the seeds: r = lg(n) — k.

5. Selection of the modulus n. The application may request a private modulus, or it
may use the default modulus of the appropriate size as given in Annex A.2. The
implementation shall permit either, based on the value of use_random_primes.

If use_random_primes = 1, two primes p and g of size ‘4lg(n) bits , having entropy at least
min_entropy, and satisfying ged (e, (p-1)(g-1)) = 1 shall be generated, using an approved
algorithm . A suitable algorithm can be found in ANSI X9.31-1997, Annex B. An
implementation shall use strong primes as defined in that document: each of p-1, p+1, -1,
g+1 must have a large prime factor of at least strength bits. [Comment: Any Approved

ANS X9.82, Part 3 - DRAFT - March 2004

algorithm will generate a modulus of size lg(#) bits using strong primes of size ¥ 1g(n)
bits, and will allow the exponent e to be specified beforehand.]

The difficulty of the RSA problem relies on the secrecy of the primes p and g comprising
the modulus. Whenever private primes are generated, the implementation shall clear
memory of those values priot to leaving the instantiation routine. Only the modulus »
shall be kept in the internal stafe.

If use_random_primes = 0 (Use_random_primes) the appropriate modulus from Bnnex
A.2. shall be used. These modulii have been generated using strong primes of the form p
= 2%p,+1, q=2%q + 1, where p, and g; are themselves prime. In addition, p+1 and
g+1 each have the required large prime factor. [Comment: This choice of strong primes
essentially guarantees that any odd exponent e in the allowable range that might be
requested will be relatively prime to ¢(x).]

10.3.3.3.4 Instantiation of MS_DRBG {(...)

The following process or its equivalent shall be used to instantiate the MS_DRBG (...)
process. Let Hash (...) be an Approved hash function for the security strengths to be
supported. If the DRBG will be used for multiple security strengths, and only a single hash

function will be available, that hash function shall be suitable for all supported security
strengths (see Table 4 and SP 800-57).

Instantiate_MS_DRBG (...):

Input: integer (requested_strength, prediction_resistance_flag,
personalization_string, use_random_primes, requested_e , requested k
Jreseed_interval, mode).

Output: string status, integer state_pointer.
Process:

1. If (requested_strength > the maximum security strength that can be provided by
the implementation (see Table 4)), then Return (“Invalid requested_strength”,
Invalid state_pointer).

2. If (prediction_resistance_flag = Allow_prediction_resistance) and prediction
resistance cannot be supported, then Return (“Cannot support prediction
resistance”, Invalid_state_pointer).

Comment: Find an empty state in the state
space for the instantiation.

3. (status, state_pointer) = Find_state_space (mode).

4. If (status = “Success), Return (status, Invalid_state_pointer).

ANS X9.82, Part 3 - DRAFT - March 2004

Comment: Determine modulus size 1g(#)
appropriate for the requested strength using
Table 4.

5. If (requested strength < 80)then {strength = 80, lg(n)= 1024}
Else if (requested _strength <112)then {strength =112, lg(n) = 2048}
Else if (requested strength < 128)then {strength =128, lg(n) = 3072}
Else if (requested_strength < 192) then {strength=192, lg(n) = 7680}

Else if (requested strength <256) {strength =256, lg(n) =
15360}

Else Return (“Invalid requested_strength”,
Invalid_state_pointer).

6. If (requested e = 0),then e =3 Comment: Select the exponent size e. The
default size is e=3.

Else Comment: Check the bounds. ¢ must be at
least 3.

6.1 If (e < 3) Return (“Invalid requested e”, Invalid_state_pointer).
Comment: e will need to be less than ¢(n).
6.21f (e = 2 '8~ _ 2% % 1&M) then Return (“Invalid requested _e”,
Invalid_state_pointer).

Comment: e will need to be relatively prime
to ¢(n) , hence odd

6.3 If (e is even) Return (“Invalid requested e” , Invalid_state_pointer).

7. If (requested k = 0), then Comment : Select the output length k. The
MS_DRBG (...) uses the least significant &
bits of y; = si || z; on each iteration . The
default size is to use the largest possible.

7.1 k=min { L lg(n) — 2*strength 1L lg(m) * (1 —2/e)]

Comment: 3<e<2B®-T_pxp %l
8 <lgm *2/3 < Llgm*(1-2/)] <
lg(n)— 1.

Comment: Round down to a multiple of 8.

72 k=8*Lk/8 .

Else Comment: Check the bounds.
7.3 k=requested k.
7.4 1If (k<1), then Return (“Inappropriate value for requested k”,
Invalid_state_pointer).

ANS X9.82, Part 3 - DRAFT - March 2004

7.5 1f (k> min { | lg(n) — 2*strength], L lg(m) * (1 -2/e) | }), then
Return (“Inappropriate value for requested k™,
Invalid_state_pointer).

7.6 If (k is not a multiple of 8), then Return (“Inappropriate value for
requested_k”, Invalid_state_pointer)

8. r=lglm)—k Comment: Set the size of the seeds; r
2*strength.

Comment: Select the modulus 7.
use_random_primes determines whether the
default values are used or a private modulus is
generated.

9. If (use_random_primes = Random_primes_not_required) then
Set # based on the size lg(n) from the list in Annex A.2.

Else Comment: Use an approved function to
generate a random modulus r of the
appropriate size, having strong primes as
factors, and for which ged (¢(r) ,e) = 1.

If (Get_random_modulus (lg(n), e, n)b # “Success "), then Return .| Comment [ebb24]: Page: 20
(“Failed to produce an appropriate modulus”, nvalid_state_pointer). ' Need to Cefinciiecuga b g,
Comment: Set the automatic reseeding
interval. Automatic reseeding will not occur
if a negative value for reseed_interval is
provided.

10. If (reseed_interval = 0), then reseed_interval = 50,000.

Comment: Request entropy_input with the
desired entropy and length r:

11. min_entropy = max (128, strength).

|12. min_length = max_length = rl .| Ccomment [ebb25]: Page: 29
"""""""""""""""""""""""" L o T Since step 16 will hash the entropy_inpul and
personalization string down Lo rbits, a larger
13. (status, entropy_input) = Get_entropy (min_entropy, min length max_length, Fvax. longth should be allowed 10 aflow for the
mode). case where full entropy Input Is not available.

14. If (status # “Success”), then Return (“Failure indication returned by the
entropy source”, Invalid_state_pointer).

15. seed material = entropy_input || personalization_string.

16. S = Hash_df (seed_material, r). Comment: Ensure that the entropy is
distributed throughout the bits, and S is r bits
in length.

ANS X9.82, Part 3 - DRAFT - March 2004

Comment: Perform a one-way function on the
seed material for later comparison.

17. transformed_entropy_input = Hash (entropy_input).

Comment: reseed_counter will be
incremented every k bits.

18. reseed counter = 0.

Comment: Store all values in state .

19. state(state_pointer) = {reseed_counter, reseed_interval, S, n, e, r, k, strength,

min_entropy, prediction_resistance_flag, transformed_entropy input}.

20. Return (“Success).

10.3.3.3.5 Reseeding of a MS_DRBG (...) Instantiation

The following process or its equivalent shall be used to reseed the MS_DRBG (...)
process, after it has been instantiated.

Reseed_MS DRBG (...):

Input: integer state_pointer, string additional_input_string, integer mode).
Output: string status.
Process:

1. If ((state_pointer> max_no_of states) or (state (state_pointer) = {0,0,0,00, 0,
0, 0, 0, 0, Null}), then Return (“State not available for the indicated
state_pointer ™).

Comment: Get the required state values for
the indicated state_pointer.

2. |min_entropy = state(state_pointer).min_entropy, IS = state(state_pointer).S, r .

= state(state_pointer).r, old_transformed_entropy_input =
state(state_pointer).transformed_entropy_input.

Comment: Request new entropy_input.

b. min_entropy = max (128, strength)l

|4. min_length = max_length = rl

5. (status, entropy_input) = Get_entropy (min_entropy, min_length, max_length,
mode).

6. If (status # “Success”), then Return (“Failure indication returned by the
entropy input source).

Comment: Perform a one-way function on the
seed material for comparison.

_.~~| Comment [ebb26]: Page: 30
This could be omitted, since It can be calculated

from the strength.

" comment [ebb27]; Page: 30

This could be removed if we decide to calculate
it below.

| Comment [ebb28]: Page: 30

This could be omitted if you decide to keep
min_entropy in the state.

| Comment [ebb29]: Page: 30

case where full entropy input is not available.

Since step 10 will hash the entropy_input and
personalization string down to r bits, a larger
max_length should be allowed to allow for the

ANS X9.82, Part 3 - DRAFT - March 2004

7. transformed_entropy_input = Hash (entropy_input).

Comment : Check for a viable entropy_input
source.

8. If (transformed_entropy_input = old_transformed_entropy_input), then

If (mode = Normal_operation), then Abort_to_error_state
(“Entropy _input source failure”)

Else Return (“Entropy_input source failure”).

Comment: Combine new entropy. input with
the old state and any additional _input.

9. seed_material =S| entropy_input || additional_input_string.
10. S = Hash_df (seed_material, r).

Comment: Update the changed values in the
state.

11. state(state_pointer).S = new_S.

12. state(state .pointer).transformed_entropy_input =
old_transformed_entropy_input.

13. state(state_pointer).reseed_counter = 0.
14. Return (“Success”™).

10.3.3.3.6 Generating Pseudorandom Bits Using MS_DRBG (...)

The following process or its equivalent shall be used to generate pseudorandom bits.
MS_DRBG (...):

Input: integer (state_pointer, requested_strength, requested_no_of bits,
additional input_string, prediction_resistance_request, mode).

Output: string status , bitstring pseudorandom_bits
Process:

1. If ((state_pointer > max_no_of states) or (state (state _pointer) ={0,0,0,00,0,
0, 0, 0, 0, Null}), then Return (“State not available for the indicated
state_pointer ”, Null).

Comment: Get the appropriate state for the
indicated state_pointer.

2. S = state(state_pointer).S, n = state(state_pointer).n, e =
state(state_pointer).e, k = state(state_pointer).k, r = state(state_pointer).r,
strength = state(state_pointer).strength, reseed_counter =

ANS X9.82, Part 3 - DRAFT - March 2004

9.2 If (status # “Success”), then Return (status, Null).

10. s = S @ additional_input. Comment: s is to be interpreted as an r-bit
unsigned integer.

11.S=[(s modn)/ 261, Comment: § is an r-bit number.

12. R = (s°mod n) mod 2k Comment: Risa k-bit number.

13. temp=temp || R.

14. additional _input=0. Comment: » zeroes; additional_input_string
: is added only on the first iteration.
15.i=i+1
16. reseed_counter = reseed_counter+1.
17. If Qe (ren requested no_of bits), then go to step 9. .. Comment [ebb30]: Page: 33
(len (temp) < requested _no_of bits),thengotostep9. ’ Comment[ebb30kipase 8 L
18. pseudorandom_bits = Truncate (temp, i x k, requested_no_of_bits). Soncateraton.

Comment: Update the changed values
in the state.

19, state.S = S.
20. state.reseed_counter = reseed_counter.
21. Return (“Success”, pseudorandom_bits).

10.3.3.3.8 Removing an MS_DRBG (...) Instantiation

The following or an equivalent process shall be used to remove an MS_DRBG (...)
instantiation :

Uninstantiate_ MS_DRBG (...):
Input: integer state_pointer,

Output: string stafus.

1. 1f (state_pointer > max_no_of states), then Return (“Invalid state pointer™).
2. state(state pointer) = {0,0,0.0, 0,0, 0,0, 0,0, Null}.
3. Return (“Success”).

10.3.3.2.9 Self Testing of the Dual_EC_DRBG (...)

Self testing shall be performed on the MS_DRBG (...) processes contained within a
DRBG boundary using the specifications in Section 9.9.

[Differences to be determined].

ANS X9.82, Part 3 - DRAFT - March 2004

10.3.3.3.10 Implementation Considerations

The Get_entropy (...) function is implementation dependent. Depending on the
environment, the entropy source may be an approved NRBG which is gathering entropy in
the background, or perhaps a hardware device specifically for this purpose. The
implementation may pause while the requested entropy is gathered (if so documented): it
shall return an error status if the requested entropy cannot be satisfied.

In deference to the defacto standard of using character arrays as inputs and outputs for Comment [ebb31]: Page: 34
- ?
hash implementations, MS_DRBG(...) pads bitstrings to byte boundaries, and requests its Bt
seed material to comply as well ...~[comment [ebb32]: Page: 34
e St s This subject weas handled differently for the
[10.3.3.4 Generator Strength and Attributes hash_based DRBGs. We need to decide the
besl way to do this.

The size of the RSA modulus is based on strength, which is selected from one of five
security levels and is always at least requested_strength. The sizes have been chosen to
comply with FIPS published standards.

Initial seeding is accomplished with a call to Get_entropy (...), which returns a bitstring
of a specified length and entropy. The MS_DRBG (...) specifies max (128, strength) bits
of entropy.

10.3.3.5 Reseeding and Rekeying

The reseeding process is covered in Section 10.3.3.3.5. Automatic reseeding is done by
default after each 50,000 blocks of £ bits of random are output. The frequency may be
changed by providing a positive value for reseed_interval, or the feature may be disabled
by setting reseed_interval <0 at instantiation. Alternatively, or in addition, a call to
Reseed MS_DRBG_Instantiation (...) can be made at any time.

The MS_DRBG (...) is not keyed per se; however, the additional _input and

personalization_string features may be used to effect keying, if desired.] -~ Comment [ebb33]: Page: 34
—UTe IR e e e s = Need to decide if we need this.

Comments on Dual EC_DRBG (March 2004 draft of X9.82, Part 3)
From Elaine Barker

1. The personalization string hasn’t been added as a parameter to the instantiation
routine. Will suggest fixes below. The string is to be combined with the entropy bits
to derive the seed.

2. Isuggest adding a table that provides guidance about using the DRBG (see below).
Correct whatever is in error.

Curve | Maximum Minimum Seed | Entropy | Block | Appropriate Hash

Security Entropy length Input Size Functions
Strengths | Requirement | =m Length
(m’)

B-163 80 128 163 | 168 | 144 | SHA-1, SHA-224,
K-163 80 128 163 | 168 | 144 Sgi‘, 2551{6,48%
P-192 80 128 192 | 192 | 176
P24 | 112 128 224 | 224 | 208 | SHA-224, SHA-
B-233 112 128 233 | 240 | 216 2565’1?2?13284’
K233 | 112 128 33 | 240 | 216
P256 | 128 128 256 | 256 | 240 | SHA-256, SHA-
B-283 | 128 128 283 | 288 | 264 | O84SHA-I2
K283 | 128 128 283 | 288 | 264
P38d | 192 192 384 | 384 | 368 | SHA-384, SHA-
B-409 | 192 192 209 | 416 | 392 L
K409 | 192 192 409 | 416 | 392
P-521 | 256 256 521 | 528 | 504 SHA-512
B571 | 256 256 571 | 576 | 552
K571 | 256 256 570 | 576 | 552

3. Section 10.3.2.2.1, last two sentences: These could be omitted or changed to
something like the following: “personalization_string is a string that will be
concatenated to the entropy input returned from Get_entropy (...) to produce the
seeding material that is used to derive the seed. A null string may...”.

4. Section 10.3.2.2.3: Remove the comment at the end.

I think that we decided to change the additional input flag to additional_input so
that the additional input is passed to the routine.

10.

11.

Section 10.3.2.2.4: We agreed to remove the “insert additional input routine” section
from the Hash DRBG (which was done). However, if you want to retain the text, it
could be used in Section 10.3.2.1 or (since the philosophy is appropriate to all the
DRBGs) we could add, with appropriate generalizations, to Section 8 or 9.

If we decide that we need a method to remove an instantiation, a section in 10.3.2.2
will be needed for that. 1’11 be sending out the text for the KHF _DRBG and
HMAC_DRBG soon, so you could get an idea what it might look like (assuming that
I’ve done it reasonably.

As shown in the Hash_ DRBG section, we’ll need a self testing section in 10.3.2.2.
However, 1 wouldn’t bother to flesh a routine for that out in 10.3.2.3 until we decide
how we really want to do it.

Section 10.3.2.3.1, item 6: Do we want to refer to FIPS 186-2 (which is real) or to the
coming FIPS 186-3 (which I hope to publish for comment by this summer)?

Section 10.3.2.3.1, item 9: Change “seed” to “entropy input” (twice).
Section 10.3.2.3.1, additional_input_flag: 1 think that we decided to remove this flag.

Get_entropy (...): Does the min_length have to equal the max_length, since the
entropy input is concatenated with the personalization string and forced to the proper
length by the Hash_df function?

old_transformed_seed: Change to old_transformed_entropy_input, and change
seed_material to entropy input. The actual seed_material includes the
personalization_string, and it’s the entropy input that we need to record.

personalization_string: Change “byte array” to “string™?

prediction_resistance_flag, next to last line: Place a comma before “it”, and change
“it” to “the flag”.

seed_material: Change to something like “The material used to derive the seed. The
seed is then used to derive...”

state: See the definition of state in the KHF DRBG and HMAC_DRBG write ups. If
this seems better, we should use it.

transformed_seed: change to transformed_entropy_input. See old_transformed_seed
above.

Section 10.3.2.2.2, instantiation routine, input string: copy the parameter list from
Section 10.3.2.2.1, which contains the personalization string.

Step 8: The table could be removed and replaced with a reference to the table
provided in comment 2.

Step 10: Could refer to the table (see comment 2) for the value of m’.

Steps 10-13: There is a difference in naming convention with the hash-based DRBGs
that we should probably rectify at some point.

Step 12, response to RWK,s comment: As stated in the second paragraph of 8.5.1, we
don’t require full entropy from the entropy input source. This implies that we need to

Comment [ebb1]: This is just a difference in
naming conventions that we need to rectify at some

: point

Comment [ebb2]: This is just a difference n
naming conventions that we need (o rectify at some
point

Comment [ebb3]: This is just a difference in

' naming conventions that we need to rectify at some

point.

12.

13.

14,

15.

16.

ask for more bits than the entropy requirement, and that the returned bits may not
have the entropy distributed evenly (maybe as bad as having all the real entropy at
one end of the string and zeros to “pad” it out to the requested length). We just don’t
know what the entropy input source will provide, at this point. Therefore, the hash
function is used to distribute the entropy properly. Does this help?

Section 10.3.2.2.3: steps 1 and 2: These are OK, but look at the KHF DRBG and
HMAC_DRBG write ups for a possible change.

Many of the same comments as for Section 10.3.2.2.2.

Section 10.3.2.2.4, input: I thought that we had decided to replace the
additional_input_flag with additional_input”.

Steps 1 and 2: These are OK, but look at the KHF_DRBG and HMAC_DRBG write
ups for a possible change.

Insert a step to check that if prediction resistance is requested and the
prediction_resistance_flag in the state hasn’t been set during instantiation, return an
error. Step 5 could be modified accordingly (i.e., to remove the check for
state.prediction_resistance_flag).

Step 4: Needs to be changed to use the additional_input provided during the function
call.

We may need to add sections on removing an instantiation and self testing (see
comments 6 and 7.

Section 10.3.2.3.5: Need to consider whether we like the implementation “advice” at
the end of each hash-based DRBG that indicates what could be omitted under certain
conditions.

Need to decide what we want in Sections 10.3.2.3 and 10.3.2.4 sections so that the
hash-based DRBGs can handle it the same way. Is this what we want?

Comments on MS_DRBG (March 2004 draft of X9.82, Part 3)
. Section 10.3.3.1, line 1: Remove the comment and “so-called”.

. Suggest moving the table in Section 10.3.3.3.2, step 1 to Section 10.3.3.1 and add
columns indicating the appropriate choices for the hash functions at each security
level and the amount of required entopy, etc. See the following table as a suggestion.
Does it make sense to add columns for e, & and r?

Additional concern: How does John Stasak’s strategy paper affect the use of this
DRBG? [think he wants to cut RSA off at n = 20487

Security | Minimum Size | No. of Appropriate hash functions
Strength Entropy of n hard
Requirement bits
80 128 1024 10 SHA-1, SHA-224, SHA-256, SHA-
384, SHA-512
112 128 2048 11 SHA-224, SHA-256, SHA-384,
SHA-512
128 128 3072 11 SHA-256, SHA-384, SHA-512
192 192 7680 12 SHA-384, SHA-512
256 256 15360 13 SHA-512

Page 138, para. beginning “Backtracking”: Spell “resistance” correctly. The last
sentence refers to Section 10:4.2.2.4. The text in that section could be placed here, or
that text could be generalized and placed in Section 8 or 9.

reseed_interval? If so, checks should be made on that.

Last two sentences of the next to last para.: Change to something like :
“personalization_string is a string that will be concatenated to the entropy input
returned from Get_entropy (...) to produce the seeding material that is used to derive
the seed. A null string may...”.

Last paragraph: Still need the material for C.4.

. Section 10.3.3.2.2, 1* line: Remove “explicit”.

5. Section 10.3.3.2.3: Remove the comment at the end.

I think that we decided to change the additional_input_flag to additional_input so
that the additional input is passed to the routine.

. Section 10.3.3.2.4: We agreed to remove the “insert additional input routine” section
from the Hash DRBG (which was done). However, if you want to retain the text, it
could be used in Section 10.3.3.1 or (since the philosophy is appropriate to all the
DRBGs) we could add, with appropriate generalizations, to Section 8 or 9.

7.

10.

If we decide that we need a method to remove an instantiation, a section in 10.3.3.2
will be needed for that. I’ll be sending out the text for the KHF_DRBG and
HMAC_DRBG soon, so you could get an idea what it might look like (assuming that
I’ve done it reasonably.

As shown in the Hash DRBG section, we’ll need a self testing section in 10.3.3.2.
However, [wouldn’t bother to flesh a routine for that out in 10.3.2.3 until we decide
how we really want to do it.

Section 10.3.3.3.1: The list needs to be renumbered.

Step 12: Capitalize “s”. This is only initialized to the seed; it’s not the seed after
being updated, so suggest Changing to something like “The value S...”

Step 14: This should be the strength instantiated for the state. See item 7 of
10.3.2.3.1.

Step 18: Change seed to entropy_input (twice)?
additional_input_flag: Remove this. See comment 5.

Get_entropy (...), line 1: Remove “Approved”. Does the value of r allow enough
difference between the entropy requirement and the seed length requirement to allow
for input that doesn’t have full entropy. Also, does the min_length have to equal the
max_length, since the entropy input is concatenated with the personalization string
and forced to the proper length by the Hash_df function?

old_transformed_seed: Change to old_transformed_entropy_input, and change
seed_material to eniropy_input. The actual seed_material includes the
personalization_string, and it’s the entropy_input that we need to record.

personalization_string: Change “byte array” to “string”?

prediction_resistance_flag, next to last line: Place a comma before “it”, and change
“it” to “the flag”.

seed_material: Change to something like “The material used to derive the seed. The
seed is then used to derive...”

state: See the definition of state in the KHF _DRBG and HMAC_DRBG write ups. If
this seems better, we should use it.

strength: This should be the record of the instantiated strength in the state.

transformed_seed: change to transformed_entropy_input. See old_transformed seed
above.

Section 10.3.3.3.2, para. 2; Change to “...n, r, e and k shall be selected...”
The table could be removed in favor of the table suggested in comment 2.

Item 3, 4" line: The table specifies a particular number of bits, not a range of bits.
Does think this sentence need to be changed? Fifth line: Place commas after “Thus”
and “cases”.

Ttem 5: Should we openly allow moduli other than those specified in the table? For
validation, we want to have an Approved moduli present (though others may also be

Comment [ebb4]: This is just a difference in
naming conventions that we need to rectify at some
point.

Comment [ebb5]: This is just a difference in
naming conventions that we need to rectify at some
point

Comment [ebb6]: This is just a difference in
naming conventions that we need to rectify at some
point

11.

12.

13.

14.

15.

16.

present). Also, for DSS, we are restricting the primes to being odd (talk to Rich
Davis). I think this means that we shouldn’t discuss private primes.

Section 10.3.3.3.3, input parameters: Add a personalization_string and remove the
comment.

Step 6: If a reseed_interval is provided, are there any restrictions that need to be
checked?

Step 7: I don’t think that min_entropy has been defined yet.

Steps 7-10: There is a difference in naming convention with the hash-i)ased DRBGs
that we should probably rectify at some point.

Section 10.3.3.2.3: steps 1 and 2: These are OK, but look at the KHF _DRBG and
HMAC_DRBG write ups for a possible change.

Many of the same comments as for Section 10.3.3.2.2.
Remove the comment from step 3.3.

Section 10.3.3.2.4, input: I thought that we had decided to replace the
additional_input_flag with additional_input”.

Steps 1 and 2: These are OK, but look at the KHF DRBG and HMAC_DRBG write
ups for a possible change.

Renumber the steps.

Insert a step to check that if prediction resistance is requested and the
prediction_resistance_flag in the state hasn’t been set during instantiation, return an
error. Step 5 (the second one) could be modified accordingly (i.e., to remove the
check for state.prediction_resistance_flag).

Step 7: Needs to be changed to use the additional_input provided during the function
call.

Step 9: We need to define the >> operation (say, in Section 4 or 10.3.3.3.1). Then the
comment can be removed.

We may need to add sections on removing an instantiation and self testing (see
comments 7 and 8.

Need to consider whether we like the implementation “advice” at the end of each
hash-based DRBG that indicates what could be omitted under certain conditions.

Need to decide what we want in Sections 10.3.2.3 and 10.3.2.4 sections so that the
hash-based DRBGs can handle it the same way. Is this what we want?

