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Random Number Generation

Part 3: Deterministic Random Bit Generator Mechanisms
Contribution of the U.S. Federal Government and not subject to copyright

1 Scope

This part of ANSI X9.82 defines techniques for the generation of random bits using
deterministic methods. This part includes:

1. A model for a deterministic random bit generator,
2. Requirements for deterministic random bit generator mechanisms,

3. Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

4. Implementation issues, and
5. Assurance considerations.

The precise structure, design and development of a random bit generator is outside the
scope of this standard.

This part of ANS X9.82 specifies several diverse DRBG mechanisms. all of which
provided acceptable security when this Standard was approved. However. in the event that
new attacks are found on a particular class of mechanisms. a diversity of approved
mechanisms will allow a timely transition to a difterent class of DRBG mechanism.

Random number generation does not require interoperability between two entities. e.g.,
communicating entities may use different DRBG mechanisms without affecting their
ability to communicate. Therefore, an entity may choose a single appropriate DRBG
mechanism for their applications: see Annex E for a discussion of DRBG selection.

2 Conformance

An implementation of a deterministic random bit generator (DRBG) may claim
conformance with ANSI X9.82 if it implements the mandatory provisions of Part 1, the
mandatory requirements of one or more of the DRBG mechanisms specified in this part of
the Standard, an entropy source from Part 2 and the appropriate mandatory requirements of
Part 4.

Conformance can be assured by a testing laboratory associated with the Cryptographic
Module Validation Program (CMVP) (see http://csre.nist.gov/cryptval). Although an
implementation may claim conformance with the Standard apart from such testing,
implementation testing through the CMVP is strongly recommended.
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3 Normative references

The following referenced documents are indispensable for the application of this
document. For dated references, only the edition cited applies. Nevertheless, parties to
agreements based on this document are encouraged to consider applying the most recent
edition of the referenced documents indicated below. For undated references, the latest
edition of the referenced document (including any amendments) applies.

ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation.

ANS X9.62-2000, Public Key Cryptography for the Financial Services Industry - The Elliptic
Curve Digital Signature Algorithm (ECDSA).

ANS X9.63-2000, Public Key Cryptography for the Financial Services Industry - Key
Agreement and Key Transport Using Elliptic Key Cryptography.

ANS X9.82, Part 1-200x, Overview and Basic Principles, Draft.

ANS X9.82, Part 2-200x, Entropy Sources, Draft.

ANS X9.82, Part 4-200x, RBG Constructions, Draft.

FIPS 180-2, Secure Hash Standard (SHS), August 2002; ASC X9 Registry 00003.

FIPS 197, Advanced Encryption Standard (AES), November 2001; ASC X9 Registry 00002.

FIPS 198, Keyed-Hash Message Authentication Code (HMAC), March 6, 2002; ASC X9
Registry 00004.

4 Terms and definitions

For the purposes of this part of the Standard, the following terms and definitions apply.
4,

Algorithm

A clearly specified mathematical process for computation; a set of rules that, if followed,
will give a prescribed result.

4.

Approved

An X9 approved resource is one that is either specitied as (or within) a current X9
standard. or listed in the X9 Registry.

4.

Backtracking Resistance

The assurance that the output sequence from an RBG remains indistinguishable from an

10
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ideal random sequence even to an attacker who compromises the RBG in the future, up to
the claimed security strength of the RBG. For example, an RBG that allowed an attacker
to "backtrack” from the current working state to generate prior outputs would not provide
backtracking resistance. The complementary assurance is called Prediction Resistance.

4,
Biased

A bitstring (or number) that is chosen from a sample space is said to be biased if one
bitstring (or number) is more likely to be chosen than another bitstring (or number).
Contrast with unbiased.

4.
Bitstring

A bitstring is an ordered sequence of 0°s and 1°s. The leftmost bit is the most significant
bit of the string and is the newest bit generated. The rightmost bit is the least significant bit
of the string.

4.
Bitwise Exclusive-or

An operation on two bitstrings of equal length that combines corresponding bits of each
bitstring using an exclusive-or operation.

4.
Block Cipher

A symmetric key cryptographic algorithm that transforms a block of information at a time
using a cryptographic key. For a block cipher algorithm, the length of the input block is the
same as the length of the output block.

4.
Consuming Application

The application that uses random numbers or bits obtained from an Approved random bit
generator

4.
Cryptographic Key (Key)

A parameter that determines the operation of a cryptographic function such as:

1. The transformation from plain text to cipher text and vice versa,

11
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2. The synchronized generation of keying material,

3. A digital signature computation or validation.

4,
Deterministic Algorithm

An algorithm that, given the same inputs, always produces the same outputs.

4.
Deterministic Random Bit Generator (DRBG)

An RBG that uses a deterministic algorithm to produce a pseudorandom sequence of bits
from a secret initial value called a seed (which contains entropy and possibly a
personalization string) along with other possible inputs. Additional non-deterministic
inputs may allow periodic reseeding. The outputs do not always contain full entropy,
contrast this with an NRBG. A DRBG is often called a Pseudorandom Number (or Bit)
Generator. A DRBG has an assessed security strength and is designed with the goal of
requiring an adversary to do at least the amount of work associated with that security
strength in order to distinguish the output from an ideal random sequence.

4.
DRBG Boundary

A conceptual boundary that is used to explain the operations of a DRBG and its interaction
with and relation to other processes.

4,
Entropy

A measure of the disorder, randomness or variability in a closed system. The entropy of X
is a mathematical measure of the amount of information provided by an observation of X.
As such. entropy is always relative to an observer and his or her knowledge prior to an
observation. Also, see min-entropy.

4.
Entropy Input

The input to an RBG of a string of bits that contains entropy, that is, the entropy input is
digitized and is assessed. For an NRBG, this is obtained from an entropy source. For a
DRBG, this is included in the seed material.

12
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4,
Entropy Input Source

A source of unpredictable data, such as thermal noise or hard drive seek times. There is no
assumption that the unpredictable data has a uniform distribution.

4.
Equivalent Process

Two processes are equivalent if, when the same values are input to each process. the same
output is produced.

4.

Exclusive-or

A mathematical operation, symbol @, defined as:

000=0
0d1=1
1®0=1and
1®1=0.

Equivalent to binary addition without carry.
4.

Full entropy

An m-bit string has full entropy if every m-bit value is equally likely to occur.
4,

Hash Function

A (mathematical) function that maps values from a large (possibly very large) domain into
a smaller range. The function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any input that maps to any pre-
specified output;

2. (Collision free) It is computationally infeasible to find any two distinct inputs that
map to the same output.

13
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4.
Implementation

An implementation of an RBG is a cryptographic device or portion of a cryptographic
device that is the physical embodiment of the RBG design, for example, some code
running on a computing platform. An implementation may be designed to handle more
than one instatniation at a time.

4.
Implementation Testing for Validation

Testing by an independent and accredited party to ensure that an implemention of a
standard conforms to the specifications of that standard.

4.
Instantiation of an RBG

An instantiation of an RBG is a specific, logically independent, initialized RBG. One
instantiation is distinguished from another by a handle (e.g.. an identifying number).

4.
Internal State

The collection of stored information about an RBG instantiation. This can include both
secret and non-secret information.

4.
Internal State Transition Functions

The set of functions that cause a particular internal state in an instantiation to be updated so
that a new internal state is the result.

4.

Key

See Cryptographic Key.

4.

Non-Deterministic Random Bit Generator (Non-deterministic RBG) (NRBG)

An RBG that produces output that is fully dependent on some unpredictable physical
source that produces entropy. Contrast with a DRBG. Other names for non-deterministic
RBGs are True Random Number (or Bit) Generators and, simply, Random Number (or
Bit) Generators.

14
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4.
Operational Testing

Testing within an implementation immediately prior to or during normal operation to
determine that the implementation continues to perform as implemented and optionally
validated.

4,
Output Generation Function

The function in an RBG that outputs bits that appear to be random, that is, conform with
the ideal random distribution.

4,
Personalization String

An optional string of bits that is combined with a secret input and a nonce to produce a
seed.

4.

Prediction Resistance

A compromise of the DRBG internal state has no effect on the seeurity of Tuture DRBG
oulputs. H-a-compromise-of-Stafe - deenrs- predietionresistanee-providesassuranee that
the-output-sequence resulting-from states gffer the-compromise-remains-seeure.- That is. an
adversary who is given access 1o all ol asy-subset-ef-the oulput sequence alter the

compromise cannot distinguish it from random: if the adversary knows only part of the
future output sequence, an-adversaryhe cannot predict any bit of that future output
sequence that he has not already seen. The complementaty assurance is called
Backtracking Resistance.

4.

Pseudorandom

A process or data produced by a process is said to be pseudorandom when the outcome is
deterministic, yet also effectively random as long as the internal action of the process is
hidden from observation. For cryptographic purposes, “effectively” means “within the
limits of the intended cryptographic strength.” Note: Non-cryptographic use of
“pseudorandom” has less stringent meanings for “effectively.”

4.

Pseudorandom Number Generator

See Deterministic Random Bit Generator.

16



ANS X9.82, Part 3 - DRAFT - March 2005

4,
Public Key

In an asymmetric (public) key cryptosystem, that key of an entity’s key pair that is publicly
known.

4,

Public Key Pair

In an asymmetric (public) key cryposystem, the public key and associated private key.
4.

Random Number

For the purposes of this standard, a value in a set that has an equal probability of being
selected from the total population of possibilities and hence is unpredictable. A random
number is an instance of an unbiased random variable, that is, the output produced by a
uniformly distributed random process.

4.
Random Bit Generator (RBG)

A device or algorithm that outputs a sequence of binary bits that appears to be statistically
independent and unbiased.

4,
Random Number Generator (RNG)

A device or algorithm that can produce a sequence of random numbers that appears to be
from an ideal random distribution.

4.
Reseed

To aquire additional bits with sufficient entropy for the desired security strength.
4,

Security Strength
A number associated with the amount of work (that is, the number of operations) that is
required to break a cryptographic algorithm or system; a security strength is specified in

bits and is a specific value from the set (112, 128, 192, 256). The amount of work needed
is 2 raised to the security strength.
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4,
Seed

Noun : A string of bits that is used as input to a Deterministic Random Bit Generator
(DRBG). The seed will determine a portion of the internal state of the DRBG, and its
entropy must be sufficient to support the security strength of the DRBG. [New]

Verb : To aquire bits with sufficient entropy for the desired sccurity strength. These bits
will be used as input to a DRBG to determine a portion of the initial internal state. Contrast
with reseed.

4
Seed Period

The period of time between initializing a DRBG with one seed and reseeding that DRBG
with another seed.

4.

Sequence

An ordered set of quantities.
4,

Shall

Used to indicate a requirement of this Standard.

4.
Should

Used to indicate a highly desirable feature for a DRBG that is not necessarily required by
this Standard.

4,
Statistically Unique

A value is said to be statistically unique when it has a negligible probability to occur again
in a set of such values. When a random value is required to be statistically unique, it may
be selected either with or without replacement from the sample space of possibilities; this
is in contrast to when a value is required to be unique, as then it must be selected without
replacement.

4
String

See Sequence.
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4,
Supporting Functions

The set of functions in an RBG that are needed for assurance of correct operation but that
do not change the internal state. /An example of a Supporting Function is the known
answer tests that are run at startup on a DRBG.l

4,
Unbiased

A bitstring (or number) that is chosen from a sample space is said to be unbiased if all
potential bitstrings (or numbers) have the same probability of being chosen. Contrast with
biased.

4,
Unpredictable

In the context of random bit generation, an output bit is unpredictable if an adversary has
only a negligible advantage (that is, essentially not much better than chance) in predicting
it correctly.

4,
Working State

A subset of the internal state that is used by a DRBG to produce pseudorandom bits at a
given point in time. The working state (and thus, the internal state) is updated to the next
state prior to producing another string of pseudorandom bits.

18
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5 Symbols and abbreviated terms

The following abbreviations are used in this document:

Abbreviation Meaning
AES Advanced Encryption Standard.

ANS American National Standard

ANSI American National Standards Institute.
ASC Accredited Standards Committee

DRBG Deterministic Random Bit Generator.
ECDLP Elliptic Curve Discrete Logarithm Problem.
FIPS Federal Information Processing Standard.
HMAC Keyed-Hash Message Authentication Code.
NRBG Non-deterministic Random Bit Generator.
RBG Random Bit Generator.

TDEA Triple Data Encryption Algorithm.

The following symbols are used in this document.

Symbol Meaning

+ Addition

(X1 Ceiling: the smallest integer > X. For example, [5] = 5, and
[5.3] =6.

XeY Bitwise exclusive-or (also bitwise addition mod 2) of two
bitstrings X and Y of the same length.

XY Concatenation of two strings X and Y. X and Y are either both
bitstrings, or both octet strings.

ged (x,y) The greatest common divisor of the integers x and y.

len (@) The length in bits of string a.

x mod n The unique remainder » (where 0 < r < n-1) when integer x is
divided by n. For example, 23 mod 7 = 2.
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Used in a figure to illustrate a "switch" between sources of
@ input.
{ay, ..a} The internal state of the DRBG at a point in time. The types

and number of the @; depends on the specific DRBG.

o' A string of x zero bits.
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6 General Discussion and Organization

Part 1 of this Standard (Random Number Generation, Part 1: Overview and Basic
Principles) describes several cryptographic applications for random numbers, specifies the
characteristics for random numbers and random number generators, and provides
mathematical and cryptographic background information on the concept of randomness.
Random bit generators are used for the generation of random numbers. Part 1 specifies
requirements for random bit generators that are applicable to both non-deterministic
random bit generators (NRBGs) and deterministic random bit generators (DRBGs). In
addition, Part 1 also introduces a general functional model and a conceptual cryptographic
Application Programming Interface (API) for random bit generators.

Part 2 of this Standard (Entropy Sources) discusses entropy sources used by random bit
generators. In the case of DRBGs, the entropy sources are required to seed and reseed the
DRBG.

Part 4 of this Standard (Random Bit Generator Constructions) provides guidance on
combining components to construct random bit generators.

This part of the Standard (Random Number Generation, Part 3: Deterministic Random Bit
Generator Mechanisms) specifies Approved DRBG mechanisms. A DRBG mechanism is
an RBG component that utilizes an algorithm to produce a sequence of bits from an initial
internal state that is determined by an input that is commonly known as a seed. Because of
the deterministic nature of the process, a DRBG mechanism is said to produce
“pseudorandom” rather than random bits, i.e., the string of bits produced by a DRBG
mechanism is predictable and can be reconstructed, given knowledge of the algorithm, the
seed and any other input information. However, if the input is kept secret, and the
algorithm is well designed, the bitstrings will appear to be random. A process or data
produced by a process is said to be pseudorandom when the outcome is deterministic.

The seed for a DRBG mechanism requires that sufficient entropy be provided during
instantiation and resceding (see Parts 2 and 4 of this Standard). While a DRBG mechanism
may conform to this part of the Standard (i.e., Part 3), an implementation cannot achieve
the goals specified in Part 1 unless the entropy input source is included as specified in Part
4. That is, the security of an RBG that uses a DRBG mechanism is a system
implementation issue; both the DRBG mechanism and its entropy input source must be
considered.

Throughout the remainder of this document, the term “DRBG mechanism™ has been
shortened to “DRBG”.

The remaining sections of this part of the Standard are organized as follows:

— Section 7 provides a functional model for a DRBG that particularizes the functional
model of Part 1.

— Section 8 provides DRBG concepts and general requirements.
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— Section 9 specifies the DRBG functions that will be used to access the DRBG
algorithms specified in Section 10.

— Section 10 specifies Approved DRBG algorithms.

— Section 11 addresses assurance issues for DRBGs.
This part of the Standard also includes the following normative annexes:

— Annex A specifies additional DRBG-specific information.

— Annex B provides conversion routines.

— Annex C discusses security considerations for selecting and implementing DRBGs.
The following informative annexes are also included:

— Annex D discusses the functional requirements specified in Part 1 as they are
fulfilled by this part of the Standard.

— Annex E provides a discussion on DRBG selection.

— Annex F provides example pseudocode for each DRBG.

— Annex G provides a bibliography for related informational material.
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7 DRBG Functional Model
7.1 Functional Model

Part 1 of this Standard provides a general functional model for random bit generators
(RBGs). Figure 1 particularizes the functional model of Part 1 for DRBGs.

Perscmalizadion
Siing Nomte Eniropy Igui Additional gt
b
Trdamal Siate Indamal Siade
Instapdiade Resesd
h 4 3 X
Tnbermal Stade
Tbernal Stabe Transition Pundion
Geaveate
X Eirex
Ouipui Generation Tat ]
FPunation
Rehon Pseuderandom Owiput

Figure 1: DRBG Model

7.2 Functional Model Components
7.21 Introduction

Part 1 of this Standard provides general functional requirements for random bit generators.
These requirements are discussed briefly in this section. Annex D provides a discussion of
how each functional requirement in Part 1 is fulfilled by the requirements for DRBGs in
this part of the Standard.
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7.2.2 Entropy Input

The entropy input. as discussed in Part 1 is provided to a DRBG Jor the seed (see Section
£.4.2). The entropy input and the seed shall be kept sceret. The secrecy of this information
provides the basis for the security of the DRBG. Ata minimum, the entropy input shall
provide the requested amount of entropy for a DRBG. Appropriate sources for the entropy
input are discussed in Parts 2 and 4 of this Standard.

The DRBGs. as specified in this part of the Standard and further discussed in Part 4. allow
for some bias in the entropy input. Whenever a bitstring containing entropy is required by
the DRBG. a request is made that indicates the minimum amount of entropy to be returned;
the request may obtain entopy input bits from a buffer containing reaclily available entopy
bits or may cause entropy input bits to be created. The request may be fulfilled by a
bitsting that is equal to or greater in length to the requested entropy. The DRBG expects
that the returned bitstring will contain at least the amount of entropy requested. Additional
entropy beyond the amount requested is not required, but is desirable.

7.2.3 Other Inputs

Other information may be obtained by a DRBG as input. This information may or may not
be required to be kept secret by a consuming application; however, the security of the
DRBG itself does not rely on the secrecy of this information. The information should be
checked for validity when possible.

During DRBG instantiation. a nonce is required and is combined with the entropy input to
create the initial DRBG seed. Criteria for the nonce are provided in Section 8.5.2.

This Standard recommends the insertion of a personalization string during DRBG
instantiation; vwhen used, the personalization string is combined with the entropy bits and a
nonee to ereate the initial DRBG seed. The personalization string shall be unique for all
instantiations of the same DRBG type (e.g., Hash_DRBG). See Section 8.5.3 for additional
discussion on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.5.4 for a discussion of this input.

7.2.4 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG uses or acts upon. The internal state
contains both administrative data and data that is acted upon and/or modified during the
generation of pseudorandom bits (i.e., the working state). The contents of the internal state
is dependent on the specific DRBG and includes all information that is required to produce
the pseudorandom bits from one request to the next.

7.2.5 The Internal State Transition Function
An internal state transition function handles the DRBG s internal state. The DRBGs in this
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Standard have four separate state transition functions:

1. During the initial instantiation of the DRBG, a seed is created and is used to
determine the initial internal state.

2. Each request for pseudorandom bits produces the requested bits using the current
internal state and determines a new internal state that is used for the next request of
bits.

3. When an application determines that reseeding of the DRBG is required, a reseed
function creates a new seed and determines a new internal state for the next request
for pseudorandom bits.

4. When a consuming application or a testing process no longer requires an
instantiation, the internal state is released.

7.2.6 The Output Generation Function

The output generation function of a DRBG produces pseudorandom bits that are a function
of the internal state of the DRBG and any input that is introduced while the internal state
transition function is operating. These pseuodorandom output bits are deterministic with
respect to the input information. Any formatting of the output bits prior to output is
determined by a particular implementation.

7.2.,7 Support Functions

The support functions for a DRBG are concerned with assessing and reacting to the health
of the DRBG. The health tests are discussed in Sections 9.7 and 11.4.
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8. DRBG Concepts and General Requirements
8.1 Introduction

This section provides concepts and general requirements for the implementation and use of
a DRBG. The DRBG functions are explained and requirements for an implementation are
provided.

8.2 DRBG Functions and a DRBG Instantiation

8.2.1 Functions

A DRBG requires instantiate, uninstantiate, generate, and testing functions. A DRBG may
also include a reseed function. A DRBG shall be instantiated prior to the generation of
output by the DRBG. The instantiate function initializes the internal state using a seed; the
uninstantiate function zeroizes (i.e.. erases) the internal state. The generate tunction
generates pseudorandom bits upon request. The reseed function modifies the internal state
using a new seed. The testing function is intended to test the continued “health” of the
DRBG.

8.2.2 DRBG Instantiations

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA
private keys and AES keys) and should be separately instantiated for each purpose.
However, it may not always be practical for an application to use multiple instantiations.
For example, if an application cannot support multiple instantiations (e.g., because of
memory restrictions), then the same instantiation could be associated with generating both
RSA keys and AES keys.

A DRBG is instantiated

using a seed and may be

reseeded; when reseeded, Instantiate: Initialize with seed,

the seed shall be )
different than the seed ! Seed period 1
used for instantiation. I(Opt) y—" Ty l

Each seed defines a seed
period for the DRBG
instantiation; an
instantiation consists of [ (Opt.) Reseed with seed |
one or more seed periods
that begin when a new ; Seed periods ton
seed is acquired (see
Figure 2).

8.2.3 Internal States

Seed period 2

During instantiation, an Figure 2: DRBG Instantiation
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initial internal state is derived from the seed. The internal state for an instantiation
includes:

1. Working state:

a. One or more values that are derived from the seed and become part of the
internal state; these values must usually remain secret, and

b. A count of the number of requests since the last seed or reseed.
2. Administrative information (e.g., security strength provided by the DRBG).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. Each DRBG
instantiation shall have its own internal state. The internal state for one DRBG
instantiation shall not be used as the internal state for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide
new pseudorandom bits. A DRBG may also be implemented to transition in response to
internal or external events (e.g., system interrupts) or to transition continuously (e.g.,
whenever time is available to run the generator).

A DRBG implementation may be designed to handle multiple instantiations. Sufficient
space must be available for the expected number of instantiations, i.e., sufficient memory
must be available to store the internal state associated with each instantiation.

8.2.4 Security Strengths Supported by an Instantiation

The DRBGs specified in this Standard support four security strengths: 112, 128, 192 or
256 bits. The actual security strength supported by a given instantiation depends on the
DRBG implementation and on the amount of entropy provided to the instantiate function.
Note that the security strength actually supported by a particular instantiation may be less
than the maximum security strength possible for that DRBG implementation (see Table 1),
For example, a DRBG that is designed to support a maximum security strength of 256 bits
may be instantiated to support only a 128-bit security strength,

Table 1: Possible Instantiated Security Strengths

Maximum Designed 112 128 192 256
Security Strength

Possible Instantiated 112 112, 128 112,128,192 | 112, 128, 192,
Security Strengths 256

A security strength for the instantiation is requested by a consuming application during
instantiation. and the instantiate function obtains the appropriate amount of entropy for the
requested security strength. Any security strength may be requested. but the DRBG will
only be instantiated to one of the four security strengths above. depending on the DRBG
implementation. A requested security strength that is below the |12-bit security strength or
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is between two of the four security strengths will be instantiated to the next highest level
(e.g.. a requested security strength of 96 bits will result in an instantiation at the 1 12-bit
security strength).

Following instantiation. requests can be made to the generate function for pseudorandom
bits. For each generate request. a security strength to be provided for the bits is requested.
Any security strength can be requested up to the security strength of the instantiation. ¢.g.,
an instantiation could be instantiated at the 128-bit security strength. but a request for
pseudorandom bits could indicate that a lesser security strength is actually required for the
bits to be generated. The generate function checks that the requested security strength does
not exceed the security strength for the instantiation. Assuming that the request is valid, the
requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a sceurity strength ol 112
hits, and another purpose requires a sccurity streneth of 256 bits, then the DRBG shall be
instantiated to support the 256-bit sccurity strength.

8.3 DRBG Boundaries

As a convenlence, this Standard uses the notion of a “DRBG boundary” to explain the
operations of a DRBG and its interaction with and relation to other processes: a DRBG
boundary contains all DRBG functions and intemnal states required for a DRBG. A DRBG
boundary is entered via the DRBG's public interfaces. which are made available to
consuming applications.

Within a DRBG boundary,

I. The DRBG internal state and the operation of the DRBG functions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary. The
internal state shall be contained within the DRBG boundary and shall not be
accessed by non-DRBG functions.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cryptographic primitive as long as the DRBG’s internal
state and the DRBG functions are not affected.

A DRBG’s functions may be contained within a single device, or may be distributed across
multiple devices (see Figures 3 and 4). Figure 3 depicts a DRBG for which all functions
are contained within the same device. In this case. there is a single DRBG boundary,
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Figure 4 provides an example of
DRBG functions that are distributed DREG Boundary
across multiple devices. In this case. J—_
each device has a DRBG sub- Iostantiste ——9 oo
boundary that contains the DRBG — — i
functions implemented on that device. Resed ||  Resed
and the boundary around the entire _— Fimcton
DRBG consists of the aggregation of =
sub-boundaries providing the DRBG RequestBits L [1|  ooreree
functionality. The use of distibuted
DRBG functions may be convenient Tt ==l Test
for restricted environments (€.g.. DREG:=—]  Funcilon E
smart card applications) in which the
N . Uninsianita® .
primary use of the DRBG does not DRBG || Uninstantiae
require repeated use of the instantiate
or reseed functions.
Each DRBG boundary orsub- Figure 3: DRBG Functions within a Single
boundary shall contain a test function Device

to test the “health” of other DRBG

functions within that boundary. Although the sced is shown in the figures as originating
outside the DRBG boundary, it may originate from within the boundary. Part 4 discusses
the construction of an RBG that includes both the DRBG and the entropy input for the
seed.

Sead

e e
I |
| |
I * '
i |

: Ur;ulu:f:h s Proiecied Stais |
| unc Funciion Cenerain Test =
{ Function | | Function |
|
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} Funciion Funection %
| |
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DRBG Boundary

Figure 4: Distributed DRBG Functions
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Distributed DRBG boundaries shall be subject to the following:

1. Any DRBG boundary or sub-boundary that includes an instantiate function shall
include uninstantiate, generate and test functions to facilitate health testing. Note
that in this case, the generate function may not be the “primary” generate function
for the DRBG. For example, for a smart card application, it may be necessary to
distribute the DRBG [unctions so that the smart card contains only the generate
tunction, along with its associated testing (unction. In this case, the instantiate
function may reside on the system that initializes the smart card; the generate and
uninstantiate functions are used on this system during the testing of the instantiate
function.

2. A DRBG boundary or sub-boundary containing a generate function shall include a
test function.

3. A DRBG boundary or sub-boundary that contains a reseed function shall include
generate and test functions to facilitate health testing. Note that as in case 1, the
generate function may not be the “primary” generate function for the DRBG.

When DRBG functions are distributed, appropriate mechanisms shall be used to protect
the confidentiality and integrity of the internal state or parts of the internal state that are
transferred between the distributed DRBG sub-boundaries. The confidentiality and
integrity mechanisms and sccurity strength shall be consistent with the data to be protected
by the DRBG’s consuming application (see SP 800-57).

8.4 Seeds
8.4.1 General Discussion

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and
determine the initial internal state that is used when calling the DRBG to obtain the first
output bits.

Reseeding is a means of recovering the secrecy of the output of the DRB( if a seed or the
internal stale becomes known. Periodic reseeding is a good countermeasure to the potential
threat that the seeds and DRBG output become compromised. [n some implementations
(e.g.. smartcards). an adequate reseeding process may not be possible. In these cases. the
best policy might be to replace the DRBG, obtaining a new seed in the process (e.g.. obtain
a new smart card).

8.4.2 Generation and Handling of Seeds

The seed and its use by a DRBG shall be generated and handled as follows:

1. Seed construction for instantiation: The seed material used to determine a seed for
instantiation consists of one to three components: entropy input, a nonce and a
personalization string. Entropy input shall always be used in the construction of a
seed; requirements for the entropy input ave discussed in item 3. Except as noted
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below. a nonce shall also be used:
requirements for the nonce are

discussed in Section 8.5.2. This Entropy Nonce R
Standard also recommends the Input String
inclusion of a personalization
string: requirements for the
personalization string are Opt.
discussed in Section 8.3.3. dr,
Depending on the DRBG and the
source of the entropy input, a
derivation function is required to

Seed

derive a seed from the seed
material. Figure 5 depicts the Figure 5: Seed Construction for Instantiation
general seed construction process

for instantiation.

When tull entropy input is readily available. the DRBGs based on block cipher
algorithms (see Section 10.2) may be implemented without a derivation function..
When implemented in this manner, a nonce is not used as shown in Figure 5. Note.
however, that the personalization string could contain a nonce, if desired.

The goal of this seed construction is to ensure that the seed is statistically unique.

2. Seed construction for reseeding:
The seed material for reseeding _
consists of three components: one I“Stt":t“:' A?’lt’l?t‘i’::;l
of the current values from the Value Input Tnput
internal state!, new entropy input
and additional input. The internal
state value and the entropy input
are required; requirements for the
entropy input are discussed in
item 3. The additional input is
optional; requirements for the Seed
additional input are discussed in

Entropy

Section 8.5.4. Asin item 1. a

derivation function may be Figure 6: Seed Construction for Reseeding
required for reseeding. See item |

for further guidance.

3. Entropy requirements for the entropy input: The entropy input for the seed shall
contain sufficient entropy for the desired level of security. Additional entropy may
be provided in the nonce or the optional personalization string during instantiation.
or in the additional input during reseeding, but this is not required. Entropy

L : 1
! See each DRBG specitation for the value thal is useg
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contained in the seed components shall be distributed across the seed (e.g., by an
appropriate derivation function).

The entropy input shall have entropy that is equal (o or greater than the security
strength of the instantiation. Note that the use of more entropy than the minimum
value will offer a security “cushion”. This may be useful if the assessment of the
entropy provided in the entropy input is incorrect. Having more entropy than the
assessed amount is acceptable; having less entropy than the assessed amount could be
fatal to security. The presence of more entropy than is required, especially during the
instantiatiation, will provide a higher level of assurance than the minimum required
entropy.

Seed length: The minimum length of the seed depends on the DRBG and the
security strength required by the consuming application. See Section 10.

Entropy input source: The source of the entropy input may be an Approved NRBG,
an Approved DRBG (or chain of Approved DRBGs) that is seeded by an Approved
NRBG, or another source whose entropy characteristics are known. Further
discussion about the entropy input is provided in Part 4 of this Standard.

Entropy input and seed privacy: The entropy input and the resulting seed shall be
handled in a manner that is consistent with the security required for the data
protected by the consuming application. For example, if the DRBG is used to
generate keys, then the entropy inputs and seeds used to generate the keys shall be
treated at least as well as the key.

Reseeding: Generating too many outputs from a seed (and other input information)
may provide sufficient information for successfully predicting future outputs unless
prediction resistance is provided (see Section 8.6). Periodic reseeding will reduce
security risks, reducing the likelihood of a compromise of the data that is protected
by cryptographic mechanisms that use the DRBG.

Seeds shall have a finite seedlife (i.e., the length of the seed period); the maximum
seedlife is dependent on the DRBG used. Reseeding is accomplished by 1) an
explicit reseeding of the DRBG by the application, or 2) by the generate function
when prediction resistance is requested (see Section 8.6) or the limit of the seedlife
is reached. An alternative to reseeding is to create an entirely new instantiation.

Reseeding of the DRBG shall be performed in accordance with the specification
for the given DRBG. The DRBG reseed specifications within this Standard are
designed to produce a new seed that is determined by both the old seed and newly-
obtained entropy input that will support the desired security strength.

Seed use: DRBGs may be used to generate both secret and public information. In
either case, the seed and the entropy input from which the seed is derived shall be
kept secret. A single instantiation of a DRBG should not be used to generate both
secret and public values. However, cost and risk factors must be taken into account
when determining whether different instantiations for secret and public values can
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be accommodated.

A seed that is used to initialize one instantiation of a DRBG shall not be intentially
used to reseed the same instantiation or used as a seed for another DRBG
instantiation.

A DRBG shall not provide output until a seed is available, and the internal state
has been initialized.

9. Seed separation: Seeds used by DRBGs shall not be used for other purposes (e.g.,
domain parameter or prime number generation).

8.5 Other Inputs to the DRBG
8.5.1 Discussion

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input and a4 nonce to
derive a seed (see Section 8.4, item 1). When pseudorandom bits are requested and when
reseeding is performed, additional input may be provided (see Section 8.5.4).

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or application. For example, the input could be derived directly
from values entered by the user or application, or the input could be derived from
information introduced by the user or application (e.g., from timing statistics based on key
strokes), or the input could be the output of another DRBG or an NRBG.

8.56.2 Nonce

A nonce is required (o construct a seed during instantation. The nonce shall be either:
a. A random value with at least 64 bits ol entropy (i.c.. a min-entropy of 64 bits),
b. A non-random value that is guaranteed to never repeat. or

¢. A non-random value that is expected to repeat no more otten than a 64-bit random
string would be expected to repeat.

For case a, the nonce may be acquired from the same source as the entropy input or as part
of the entropy input. In this case the seed could be constructed from just the entropy input
and the optional personalization string. where the entropy for the entropy input is equal to
or greater than security strength + 64 bits.

8.5.3 Personalization String

During instantiation, a personalization string should be used to derive the sced (see

Section 8.4). The intent of a personalization string is to differentiate this DRBG

instantiation from all the others that might ever appear. The personalization string should

be set to some bitstring that is as unique as possible. and may include secret information.

The value of any secret information contained in the personalization string should be no
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greater than the claimed strength of the DRBG, as the DRBG's cryptographic mechanisms
(specifically, its backtracking resistance and the entropy provided in the entropy input) will
protect this information from disclosure. Good choices for the personalization string
contents include:

1. Device serial numbers,

Public keys,

User identification,

Private keys,

PINs and passwords,

Secret per-module or per-device values,
Timestamps,

Network addresses,

R A

Special secret key values for this specific DRBG instantiation,

>

. Application identifiers.

. Protocol version identifiers.
12. Random numbers. and
13. Nonces.

8.5.4 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional and may be either secret or publicly known; its
value is arbitrary, although its length may be restricted, depending on the implementation
and the DRBG. The use of additional input may be a means of providing more entropy for
the DRBG internal state that will increase assurance that the entropy requirements are met.
If the additional input is kept secret and has sufficient entropy, the input can provide more
assurance when recovering from the compromise of the seed or one or more DRBG
internal states.

8.6 Prediction Resistance and Backtracking Resistance

Figure 7 depicts the sequence of DRBG internal states that result from a given seed. Some
subset of bits from each internal state are used to generate pseudorandom bits upon request
by a user. The following discussions will use the figure to explain backtracking and
prediction resistance. Suppose that a compromise occurs at State,, where State contains
both secret and public information.
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Seed ——| State, || State, | * * * State, ,

State, ; State,,||State | * * ¢

| State, I

Figure 7: Sequence of DRBG States
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Backtracking resistance can be provided by :

1. Ensuring that the internal state transition function of a DRBG is a one-way

function, or

2. Using the DRBG to generate an additional new DRGB working state before
responding to the next request for bits. I'or example. when bits are generated, the
working state is updated; unless the update process uses a onc-way function.
backtracking resistance is not vel provided. By performing an additional update of
the internal state before another request for bits is serviced. backtracking resistance
is provided (i.c.. the working state is updated twice between requests).

All DRBGs in this Standard have been designed to provide backtracking resistance.
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random; if the adversary knows only part of the future output sequence, it adversirshe
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Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded
between DRBG requests. That is, an amount of entropy that is sufficient to support the
security strength of the DRBG (i.¢., an amount that is at least equal to the security sirength)

| must be added to the DRBG in a way that ensures that knowledge of the currentprevious
DRBG internal state does not allow an adversary any useful knowledge about future
DRBG internal states or outputs.
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DRBG Functions

General Discussion

The DRBG functions in this Standard are specified as an algorithm and an “envelope™ of
pseudocode around that algorithm. The pseudocode in the envelopes check the input
parameters. obtain input not provided by the input parameters. access the appropriate
DRBG algorithm and handle the internal state. A function need not be implemented using
such envelopes, but the function shall have equivalent functionality.

In the specifications of this Standard. the following pseudo-functions are used. These
functions are not specifically defined in this Standard, but have the following meaning:

9.2

Get_entropy: A function that is used to obtain entropy input. The function call is
(status, entropy input) = Get_entropy (security_strength, min_entropy _inpul_length.
max entropy input_length), which requests a string of bits (entropy_input) with at
least security strength bits of entropy. The length for the string shall be equal to or
greater than min_entropy_input length bits, less than or equal to

max_entropy input length bits. A status code is also returned from the function.

Block_Encrypt: A basic encryption operation that uses the selected block cipher
algorithm. The function call is output_block = Block_Enerypt (Key, input_block). For
TDEA, the basic encryption operation is called the forward cipher operation; for AES.
the basic encryption operation is called the cipher operation. The basic encryption
operation is equivalent to an encryption operation on a single block of data using the
ECB mode.

Instantiating a DRBG

A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function shall:

1. Check the validity of the input parameters,

2. Determine the security strength for the DRBG instantiation,

3. Determine any DRBG specific parameters (e.g., elliptic curve domain parameters),
4. Obtain entropy input with entropy sufficient to support the security strength,

Obtain the nonce.

N W

Determine the initial internal state using the instantiate algorithm, and

7. Return a state_handle for the internal state to the consuming application.

Let working _state be the working state for the particular DRBG, and let
min_entropy_input _length. max_entropy input length, and
highest_supported_sccurity strengih be defined for each DRBG (see Section 10).
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The following or an equivalent process shall be used to instantiate a DRBG.
Input from a consuming application:

1. requested instant i 1 : A requested i for the
instantiation. DRBG implementations that support only one ri do not
require this parameter; however, any application using the DRBG must be aware of
this limitation.

2. prediction_resistance_flag: Indicates whether or not prediction resistance may be
required by the consuming application during one or more requests for
pseudorandom bits. DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user of a
consuming application must determine whether or not prediction resistance may be
required by the application before electing to use such a DRBG implementation. If
the prediction_resistance_flag is not needed (i.e., because prediction resistance is
always or never performed), then the input parameter and step 2 may be omitted,
and the prediction resistance _flag may be omitted from the internal state in step
1l.

3. personalization_string: An optional input that provides personalization information
(see Sections 8.4 and 8.5.3). The maximum length of the personalization string
(max_personalization_string length) is implementation dependent, but shall be <
2% bits. If a personalization string will never be used, then the input parameter and
step 3 may be omitted, and step 9 may be modified to remove the personalization
string.

5. DRBG specific_input_parameters : Any additional parameters that are allowed for
a specific DRBG (see Section 10). The use of the DRBG-specific input parameters
is discussed for the DRBG instantiate algorithms. If a DRBG or a DRBG
implementation does not use these parameters, then step 5 may be omitted.

Required information not provided by the consuming application:

Comment: This input shall not be provided
by the consuming application
r iring the instanti
1. entropy_input: Input bits containing entropy. The maximum length of the
entropy input is implementation dependent, but shall be < 2% bits.
' ilied i i i h
| l1 hall I
hall
Output to a consuming application:

1. status: The status returned from the n. The status will indicate
SUCCESS or an ERROR. If an ERROR is indicated, either no state handle or an
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invalid state_handle shall be returned. A consuming application should check the
status to determine that the DRBG has been correctly instantiated.

2. state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

Information retained within the DRBG boundary:

The internal state for the DRBG, including the working state, sccurity sirength, and
prediction_resistance_flag (see Section 10).

Process:
Comment: Check the validity of the input
parameters.

1. Ifrequested instantiation security strength > highest_supported security
strength, then return an ERROR.

2. If prediction _resistance flag is set, and prediction resistance is not supported, then
return an ERROR.

3. Ifthe length of the personalization_string > max_personalization_string_length,
return an ERROR.

4. Set security strength to the nearest security strength greater than or equal to
requested_instantiation securily strengith.

Comment: The following step is required by
the Dual EC_DRBG when multiple curves
are available (see Section 10.3.2.2.2), and by
the MS_DRBG (see Section 10.3.3.2.3).
Otherwise, the step should be omitted.

5. Using securify strengihand DRBG specific_input_parameters (if available), select
appropriate DRBG parameters.

Comment: Determine the minimum entropy
requirement and obtain the entropy input.

6. (status. entropy inpury = Get_entropy (security strength.
min_entropy input length. maximum entropy _inpui_length).

7. 1f an ERROR is returned in step 6, return an ERROR.

8. Obtain a nonce Comment: This step shall include any
appropriate checks on the acceptability of the
nonce. See Section 8.5.2.

Comment: Call the appropriate instantiate
algorithm in Section 10 to obtain values for
the initial yeorking state using the

entropy input. the nonce. the
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Instantiate algorithm (ent '
/ it met

Comment: Set up the initial internal state.

10. Get a state_handle that will be used to locate the internal state for this instantiation.
If an unused internal state cannot be found, return an ERROR.

11. Set the internal state indicated by state handle to the initial values: working_state,
rity st and prediction_resistance_flag, as appropriate.

12. Return SUCCESS and state_handle.
9.3 Reseeding a DRBG Instantiation
The reseeding of an instantiation is not required, but is recommended whenever an

application and implementation are able to perform this process. Reseeding will insert
additional entropy into the generation udoran its. Reseeding may be:

¢ explicitly requested by an application,
¢ performed when prediction nce is requested by an application,

o triggered by the ¥ nction when a predetermined number of pseudorandom
outputs have been produced (i.¢., at the end of the seedlife), or

o triggered by external events (e.g., whenever sufficient entropy is available).

If a reseed capability is not available, a new DRBG instantiation may be created (see
Section 9.2).

The reseed fu shall:
1. Check the validity of the input parameters,
2. Obtain entropy input with entropy sufficient to support the sccu , and

3. Using the reseed algorithm, combine the current working state with the new
entropy input d to determine the new working state.

Let working state be the working state for the particular DRBG, and let
min_entropy input length ! t be defined for each DRBG (see
Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.
Input from a consuming application:

1) state_handle: A pointer or index that indicates the internal state to be reseeded.
This value was returned from the instantiate ion specified in Section 9.2.
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2) additional_input: An optional input. The maximum length of the additional_input
(max_additional_input_length) is implementation dependent, but shall be < 25
bits. If additional_input will never be used, then the input parameter and step 2
may be omitted, and step 5 may be modified to remove the additional _input.

Required information not provided by the consuming application:

Comment: This input shall not be provided
by the consuming application in the input
parameters.

1. entropy_input: Input bits containing entropy. The maximum length of the
entropy _input is implementation dependent, but shall be < 2% bits.

2. Internal state values required by the DRBG for reseeding, including the
working_state, securiny strength and prediction_resistance_flag, as appropriate.

Output to a consuming application:

1. status: The status returned from the function. The stafus will indicate SUCCESS or
an ERROR.

retained within the DRBG boundary:

Replaced internal state values (i.e., the working_state).

Process:

Comment: Get the current internal state and
check the input parameters.

1. Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or unused internal state, return an ERROR.

2. If the length of the additional _input > max_additional_input_length, return an
ERROR.

Comment: Get the new working state

Comment: Save the new values of the internal
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state.

6. Replace the working state in the internal state indicated by state_handle with the
new values.

7. Return SUCCESS.
9.4 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding (see
Sections 9.2 and 9.3). The generate function shall:

1. Check the validity of the input parameters,

2. If'the instantiation needs additional entropy because the end of the seedlife has
been reached or prediction resistance is required, call the reseed function to obtain
sufficient entropy.

3. Generate the requested pseudorandom bits using the generate algorithm.

4. Update the working state.

5. Return the requested pseudorandom bits to the consuming appication.
Let outlen be the length of the output block of the cryptographic primitive (see Section 10).
The following or an equivalent process shall be used to generate pseudorandom bits.

Input from a consuming application:
1. state_handle: A pointer or index that indicates the internal state to be used.

2. requested number of bits: The number of pseudorandom bits to be returned from
the generate function. The max_number_of bits_per_request is defined for each
DRBG in Section 10.

3. requested sccurity sirength: The security strength to be associated with the
requested pseudorandom bits. DRBG implementations that support only one
security strength do not require this parameter; however, any application using the
DRBG must be aware of this limitation.

4. prediction_resistance request: Indicates whether or not prediction resistance is to
be provided prior to the generation of the requested pseudorandom bits to be
generated. DRBGs that are implemented to always or never support prediction
resistance do not require this parameter. However, the user of a consuming
application must determine whether or not prediction resistance may be required by
the application before electing to use such a DRBG implementation. If the
prediction_resistance_request parameter is not needed, then the input parameter
and step 5 may be omitted ; in addition, step 7 may be modified to remove the
check for the prediction resistance request

5. additional input: An optional input. The maximum length of the additional input
(max_additional _input_length) is implementation dependent, but shall be < 2%
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bits. If additional _input will never be used, then the input parameter, step 4,
and the additional input input parameter in step 8 may be omitted.

Required information not provided by the consuming application:

1. Internal state values required for generation, including the working_state,
‘ ret and prediction resistance flag, as appropriate.

Output to a consuming application:

1.  status: The status returned from the function. The status will indicate SUCCESS
or an ERROR.

2. pseudorandom_bits: The pseudorandom bits that were requested.
Information retained within the DRBG boundary:

Replaced internal state values (i.e., the working_state).
Process:

Comment Get the internal state and check the
input parameters.

1. Using state_handle, obtain the current internal state for the instantiation. If
state_handle indicates an invalid or unused internal state, then return an ERROR.

2. Ifrequested number of bits > max_number_of bits per_request, then return an
ERROR.

3. If requested secur rength > the secur rength indicated in the internal
state, then return an ERROR.

4. If the length of the additional input > max_additional_input_length, then return an
ERROR.

5. If prediction resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR.

6. Reset the reseed required flag.

Comment: Get the requested pseudorandom
bits.

7. Ifreseed required flag is sei, or if prediction_resistance_request is set, then

nt: n n

7.1 s = Reseed (siu ndl i
l 1 i n ERROR, r RROR.
7.3 Using state handle, obtain the new internal state.
7.4 additional_input = the Null string.
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7.5 Reset the reseed required flag.

Comment: Request the generation of
pseudorandom_bits using the appropriate
generate algorithm in Section 10.

8 (status. pseudorandom bits, working_state) = Generate_algorithm
(working state. requested number of bits. additional _input).

9. If status indicates that a reseed is required before the requested bits can be
generated. then

9.1 Set the reseed_required flag.
9.2 Gotostep7.

10. Replace the old working_state in the internal state indicated by state _handle with
the new working_state.

11. Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not available, then steps 6 and 7 may be omitted; replace step 8 by:

Using the working_state in the internal state, any additional _input and the value of
requested_number of bits, obtain pseudorandom_bits and the new working_state from
the DRBG generate algorithm. If a reseed is required before the requested bits can be
generated, then return an indication that the DRBG instantiation can no longer be used.

9.5 Removing a DRBG Instantiation

The internal state for an instantiation may need 1o be “released”. This may be required, for
example, following health testing of the instantiation function. The uninstantiate function
shall:

1. Check the input parameter for validity.
2. Empty the internal state.

The following or an equivalent process shall be used to remove (i.c., uninstantiate) a
DRBG instantiation:

Input from a consuming application:
1. state_handle: A pointer or index that indicates the internal state to be “released™.
Output to a consuming application:

1. status: The status returned from the [unction. The status will indicate SUCCESS or
FAILURE.

Information retained within the DRBG boundary:
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An empty internal state.

Process:
1. If state_handle indicates an invalid state, then return FAILURE.
2. Erase the contents of the internal state indicated by state_handle.
3. Return SUCCESS.

9.6 Auxilliary Functions
9.6.1 Introduction

Derivation functions are internal functions that are used during DRBG instantiation and
reseeding to either derive internal state values or to distribute entropy throughout a
bitstring. Two methods are provided. One method is based on hash functions (see Section
9.6.2), and the other method is based on block cipher algorithms (see 9.6.3). The block
cipher derivation function uses aa CBC_MAC that is specified in Section 9.6.4.

9.6.2 Derivation Function Using a Hash Function (Hash_df)
The hash-based derivation function hashes an input string and returns the requested

number of bits. Let Hash (...) be the hash function used by the DRBG, and let outlen be its
output length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input string: The string to be hashed.

2. no_of bits to return: The number of bits to be returned by Hash_df. The
maximum length (max number of bits) is implementation dependent, but shall be
< (255 x outlen). no_of bits to return is represented as a 32-bit integer.

Output:
1. status: The status returned from Hash_df. The status will indicate SUCCESS or
ERROR.

2. requested bits : The result of performing the Hash_df.
Process:
1. If no_of bits to return> max_number of bits, then return an ERROR.

2. temp = the Null string.
3. len= lrno_of_blts_m_return—‘ '

outlen
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4. counter = a 32-bit binary value representing the integer "1".
5. Fori=1tolendo
5.1 temp = temp || Hash (counter || no_of bits_to return || input_string).
5.2 counter = counter + 1.
6. requested bits = Leftmost (no_of bits to_return) of temp.
7. Return SUCCESS and requested_bits.
9.6.3 Derivation Function Using a Block Cipher Algorithm
Let Block_Cipher_Hash be the function specified in Section 9.6.4. Let Let outlen be its
output block length, and let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input_string: The string to be operated on. This string shall be a multiple of 8 bits.

2. no_of bits_to return: The number of bits to be returned by Block_Cipher_df. The
maximum length (max_number_of bits) is 512 bits for the currently approved block cipher
algorithms.

Output:
1. status: The status returned from Block_Cipher_df. The status will indicate
SUCCESS or ERROR.

2. requested bits : The result of performing the Block_Cipher_df.

Process:

1. If (number _of bits to_return > max_number of bits), then return an ERROR.

2. L=len (input_string)/8. Comment: L is the bitstring represention of
the integer resulting from len (input_string)/8.
L shall be represented as a 32-bit integer.

3. N=number of bits_to return/8. ~ Comment : N is the bitsting represention of
the integer resulting from
number of bits_to_return/8. N shall be
represented as a 32-bit integer.

Comment: Prepend the string length and the
requested length of the output to the
input_string.

3. S=L|| N\ input string || 0x80.
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Comment : Pad S with zeros, if necessary.
While (len (S) mod outlen) =0, S = S || 0x00.

Comment : Compute the starting value.

5. temp = the Null string.

i=0. Comment : i shall be represented as a 32-bit
integer.

K = Leftmost keylen bits of 0x010203...1F.

8. While len (temp) < keylen + outlen, do

9.

8.1 V=i ooen-ten® Comment: The integer represenation of i is
padded with zeros to outlen bits.

8.2 temp = temp || Block_Cipher_Hash (K, (IV || 5)).
83 i=i+1.

Comment: Compute the requested number of
bits.

K = Lefimost keylen bits of temp.

10. X = Next outlen bits of temp.

11.
12.

13.
14.

9.6.4

Input:

temp = the Null string.

While len (temp) < number_of bits to_return, do

12.1 X = Block_Encrypt (K, X).

12.2 temp=temp || X.

requested_bits = Leftmost number_of bits_to_return of temp.

Return SUCCESS and requested_bits.
Block_Cipher_Hash Function

Let outlen be the length of the output block of the block cipher algorithm to be used.

The following or an equivalent process shall be used to derive the requested number of
bits.

1. Key: The key to be used for the block cipher opeation.
2. data_to hash: The data to be operated upon. Note that the length of data_to_hash
must be a multiple of outlen. This is guanteed by steps 4 and 8.1 in Section 9.6.3.

Output:
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1. output block: The result to be returned from the Block_Cipher_Hash operation.

Process:

outlen

1. chaining value = 0 Comment: Set the first chaining value to outlen zeros.
2. n=len (data to hash) outlen.
3. Split the data_to_hash into n blocks of outlen bits each forming block, to block,.
4. Fori=1tondo
4.1 input_block= chaining value @ block; .
4.2 chaining value = Block_Encrypt (Key, input_block).
output_block = chaining_value.
6. Return output block.
9.7 Self-Testing of the DRBG

9.7.1 Discussion

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (health testing). The testing function within a
DRBG boundary (or sub-boundary) shall test all DRBG functions within that boundary.
Four function configurations are possible within a single DRBG boundary or sub-
boundary:

1. Instantiate, generate, uninstantiate and test (unctions,

2. Generate and test functions,

3. Reseed, generate and test functions,

4. Instantiate, generate, reseed, uninstantiate and test functions.

DRRBG health testing shall be performed prior to the first instantiation of the DRBG, at
periodic intervals and on-demand. Bits generated during health testing shall not be output
as pseudorandom bits.

Implementations may differ on the meaning of periodic testing. For implementations that
have continuous power. periodic testing is performed. for example. every hour or every
day or every time the DRBG is accessed. For implementations that do not have continuous
power (e.g.. power is available for only short periods of time). periodic testing is
performed at power-up.

Two levels of DRBG health testing are allowed: 1) extensive tests? that are conducted
when sufficient time is available, and 2) minimal tests that are conducted when little time
is available for testing. Table 2 summarizes when extensive versus minimal DRBG health
testing is petformed. All DRBG implementations shall conform to one of the three cases
listed in the table. When testing is performed on-demand. extensive testing shall always be

. ) . 48 o .
2 This is not intended to be as extensive as implementaron validation tests; see Section 11.
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conducted. For testing performed prior to the {irst instantiation or periodically. extensive

testing

shall be conducted either 1) prior to the first instantiation (case 1), or 2) shall be

conducted periodically (case 2), or 3) shall be conducted both prior o the first instantiation
and periodically (case 3). In all cases, a configuration for a function shall not be used
operationally until it has been tested.

Table 1 : Health Testing Intervals and Levels of Testing

Prior to first Periodic On-Demand
instantiation
Case 1 Extensive Minimal Extensive
Case 2 Minimal Extensive Extensive
Case 3 Extensive Extensive Extensive

In general, each of the DRBG functions shall be tested as follows:

L.

Instantiate tunction: Fixed values for the entropy input shall be used during testing;
the fixed values shall not be used during normal operations.

Extensive testing: Each possible configuration of security strength,
prediction_resistance_flag and DRBG _specific_input_parameters shall be tested
(depending on which input parameters are implemented). Representative values and
lengths of the personalization_string shall be used. In addition, the error handling
for each input parameter and for an error in obtaining the entropy_input shall be
tested (e.g., the entropy _input source is broken).

Minimal testing: A minimal test shall include a single secuity strengih; a single
set of DRBG specific_input_parameters; a single representative value for the
personalization_string (depending on which parameters are implemented); if
prediction resistance is possible, this capability shall also be tested. 1" the
combination of security stength and DRBG specific input parameters passes the
health test. then this combination of parameters may be used operationally by the
instantiate function. 1f minimal testing is performed prior to the first instantiation.
the error handling for each input parameter and for an error in obtaining the
entropy input shall be tested (e.g.. the entropy _input source is broken).

Generate (unction: Known values for the internal state shall be used.

Extensive testing: Each possible conliguration of requested_security strength and
prediction_resistance_request shall be tested (depending on the input parameters
that are implemented); representative values and lengths for

requested_number_of bits and additional_input (if allowed) shall be used. Testing
shall include setting the reseed counter to meet or exceed the reseed interval in
order to check that the implementation is reseeded or that the DRBG is “shut
down”. In addition, the error handling for each input parameter shall be tested.

Minimal testing: A minimal test shall include a single value for the

49




ANS X9.82, Part 3 - DRAFT - March 2005

requested_sccurily strength and single representative values for the
requested_number_of bits and additional_input (depending on which parameters
are implemented); if the prediction resistance_request inpul parameter is available,
a request for prediction resistance shall be tested. [ the combination of

requested security stength and prediction_resistance_request (it appropriate)
passes the health test, then this combination of parameters may be used
operationally by the generate function. If minimal testing is performed prior to the
first instantiation, and if the requested security strength input parameter is used. a
test of the error handling for an invalid requested security strength shall be
conducted.

Reseed function: Fixed values for the entropy input shall be used during testing;
the fixed values shall not be used during normal operations.

Extensive testing: Internal states with all possible configurations of

security strength and prediction_resistance_flag shall be tested (depending on the
input parameters that are implemented); representative values of additional _input
shall be used if additional input can be provided. In addition, the error handling for
each input parameter and for an error in the entropy_input shall be tested (e.g., the
entropy input source is broken).

Minimal testing: A minimal test shall include the test of a single security strength
and prediction_resistance flag (if appropriate). and a representative
additional_input (if allowed). 1[ the combination of secuwrity stength and
prediction resistance flag (if appropriate) passes the health test. then this
combination of parameters may be used operationally by the reseed function. If
minimal testing is performed prior to the first instantiation. the error handling tor
each input parameter and for an error in the enfropy_input shall be tested (e.g., the
entropy_input source is broken).

Uninstantiate function: Check the error handling for an invalid state_handle, as a
minimum. If possible, check that the internal state has been "emptied".

Errors occurring during testing shall be perceived as complete DRBG failures. The
condition causing the failure shall be corrected and the DRBG re-instantiated before
requesting pseudorandom bits (also see Section 9.8).

Instantiate, Generate, Uninstantiate and Test Functions

As specified in Section 8.3, any DRBG boundary (or sub-boundary) that includes an
instantiate (unction shall also include uninstantiate, generate and testing functions within
that boundary. Note that this configuration does not include a reseed function. The testing
function shall:

Select a combination of valid instantitate and generate input parameters and an
appropriate fixed value for the entropy_input. Note that for minimal testing, only
one combination of instantiate and generate parameters would be used.
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2. Request an instantiation using a valid set of instantiate input parameters, obtaining
the (fixed) entropy _input, setting the internal state and returning a state_handle for
the internal state.

3. Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters.

4. Check that the generated pseudorandom bits match expected values. |1 th
n n lu h i (

Repeat from step 1 until all valid combinations have been tested.

6. Test the error handling for the instantiate, generate and uninstantiate (un s (as
appropriate, see Section 9.7.1). he functions d h ror handlit
r h

7. Uninstantiate the internal state used for testing.

[f th r h n in meter i1
| u r ]
9.7.3 Generate and Test within a Single DRBG Sub-boundary

As specified in Section 8.3, any DRBG boundary ndary that includes a generate
tion shall also include a testing ion. his configuration
pt lete DR it he instan uninstan incti re |
resent. The testing ion shall:

1. Select a combination of valid generate input parameters to be used and an
appropriate fixed value for the internal state. Note that for minimal testing, only
one combination generate parameters would be used

2. Using a state_handle for the selected internal state, request the generation of
pscudorandom bits.

3. Check that the generated pseudorandom bits match expected values. [[' (]
1 1 It not mat h I rt th

4. Repeat from step 1 until all valid combinations have been tested.

5. Test the error handling for the generate function (as appropriate, see Section 9.7.1).
1t ar u not h r n rectl h

1t th \ i ut parar rs th
I 1

9.7.4 Reseed, Generate and Test within a Single DRBG Sub-boundary

As specified in Section 8.3, any DRBG boundary 1 u that includes a reseed
ion shall include generate and testing functions. i i t
lete DR L I ti n
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present. The testing function shall:

1.

Select a combination of valid reseed and generate input parameters, an appropriate
fixed value for the internal state, and an appropriate fixed value for the
entropy_input. Note that for minimal testing, only one combination of reseede and
generate parameters would be used

Using a state_handle for the selected internal state, request a reseed of the
instantiation using a valid set of reseed input parameters, obtaining the
entropy input, and setting the new value of the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters.

Check that the generated pseudorandom bits match expected values. If the
generated and expected values do not match, the test fails: abort the test.

Repeat from step 1 until all valid combinations have been tested.

Test the error handling for the reseed and generate functions (as appropriate, see
Section 9.7.1). If any of the functions do not handle error handling correctly. abort
the test.

If the test was not aborted. each combination of input parameters thal was selected in step
1 may be used operationally.

9.7.5

Instantiate, Uninstantiate, Generate, Reseed and Test Functions

This contiguration contains all DRBG functions within the same device. The testing
function for a DRBG boundary that includes all DRBG functions shall:

1.

Select a combination of valid instantitate, generate and reseed input parameters,
and appropriate fixed values for the entropy input for both the instantiate and
reseed functions. Note that for minimal testing, only one combination of instantiate,
generate and reseed parameters would be used

Request an instantiation using a valid set of instantiate input parameters, obtaining
the (fixed) entropy input, setting the internal state and returning a state_handle for
the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters. If prediction resistance is requested, a fixed value
for the entropy input shall be used.

Using a state_handle, request a reseed of the instantiation using a valid set of
reseed input parameters, obtaining the (fixed) entropy input, and setting the new
value of the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters. If prediction resistance is requested, a fixed value
for the entropy input shall be used.
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6. Check that the generated pseudorandom bits match expected values. |1 the
generated and expected values do not match, the test fails: abort the test.

7. Repeat from step 1 until all valid combinations have been tested.

8. Test the error handling for the instantiate, generate, reseed and uninstantiate
[unctions (as appropriate, see Section 9.7.1). [f any of the functions do not handle
error handling cotrectly. abort the test.

9. Uninstantiate the internal state used for testing.

If the test was not aborted, each combination of input parameters that was selected in step
| may be used operationally.

9.8 Error Handling

The expected errors are indicated for each DRBG function (see Sections 9.2 - 9.5) and for
the derivation functions in Section 9.6. The error handling routines should indicate the
type of error. For catastrophic errors (e.g., entropy input source failure), the DRBG shall
not produce further output until the source of the error is corrected.

Many errors during normal operation may be caused by an application’s improper DRBG
request. In these cases, the application user is responsible for correcting the request within
the limits of the user’s organizational security policy. For example, if a failure indicating
an invalid requested security strength is returned, a security strength higher than the DRBG
or the DRBG instantiation can support has been requested. The user may reduce the
requested security strength if the organization’s security policy allows the information to
be protected using a lower security strength, or the user shall use an appropriately
instantiated DRBG.

Failures that indicate that the entropy source has failed or that the DRBG failed health
testing (see Sections 9.7 and 11.4) shall be handled as complete DRBG failures. The
indicated DRBG problem shall be corrected, and the DRBG shall be re-instantiated before
the DRBG can be used to produce pseudorandom bits.
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10 DRBG Algorithm Specifications

Several DRBGs are specified in this Standard. The selection of a DRBG depends on
several factors, including the security strength to be supported and what cryptographic
primitives are available. An analysis of the consuming application’s requirements for
random numbers shall be conducted in order to select an appropriate DRBG. A detailed
discussion on DRBG selection is provided in Annex E. Pseudocode examples for each
DRBG are provided in Annex F. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Annex B.

10.1 Deterministic RBGs Based on Hash Functions
10.1.1 Discussion

A hash DRBG is based on a hash function that is non-invertible or one-way. The hash
DRBGs specified in this Standard have been designed to use any Approved hash function
and may be used by applications requiring various sccurity strengths, providing that the
appropriate hash function is used and sufficient entropy is obtained for the seed. The
following are provided as DRBGs based on hash functions:

1. The Hash_DRBG specified in Section 10.1.2.
2. The HMAC DRBG specified in Section 10.1.3.

The maximum security strength that could be supported by each hash function when used
in a DRBG is equal to the number of bits in the hash function output block. However, this
Standard supports only four security strengths: 112, 128, 192, and 256. Table 3 specifics
the values that shall be used for the (unction envelopes and DRBG algorithm for each
Approved hash function. The specifications in this Standard assume that a single
appropriate hash function will be selected for a DRBG implementation: i.e.. a DRBG
implementation will not contain multiple hash functions from which o choose during
instantiation.

Table 3: Definitions for Hash-Based DRBGs

SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-512
Supported security strengths 112,128 | 112,128, | 112,128, | 112,128, | 112,128,
192 192,256 | 192,256 | 192,256
highest_supported_sccurity strength 128 192 256 256 256
Output Block Length (outlen) 160 224 256 384 512

Required minimum entropy for
instantiate and resced

Minimum entropy input length security strength
(min_entropy_input_length)
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SHA-1 | SHA-224 ‘ SHA-256 ] SHA-384 | SHA-512

Maximum entropy input length < 2% bits
(max_entropy input_length)

Seed length (seedlen) for 440 440 440 888 888
Hash_DRBG

Maximum personalization string < 2% bits
length

(max_personalization_string_length)

Maximum additional_input length < 2% bits
(max_additional_input_length)

max_number_of_bits_per_request < 2" bits
Number of requests between <2%

reseeds (reseed_interval)

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit for using the
smaller hash function; this is also the case for SHA-384 and SHA-512. i.e.. the use of
SHA-256 or SHA-512 instead of SHA-224 or SHA-384, respectively. is preferred. The
value for seedlen is determined by subtracting the count field and one byte of padding from

the hash function input block length; In the case of SHA-1, SHA-224 and SHA 256,

seedlen =512 - 64 - 8 = 440; for SHA-384 and SHA-512, seedlen= 1024 - 128 - 8 = 888.

10.1.2 Hash_DRBG

10.1.2.1 Discussion

Figure 8 presents the normal operation of the Hash_DRBG. The Hash_DRBG requires
the use of a hash function during the instantiate, reseed and generate functions; the same
hash function shall be used in all functions. The hash function to be used shall meet or

exceed the desired security strength of the consuming application.

Implementation validation testing and health testing are discussed in Sections 9.7 and 11.

10.1.2.2 Specifications

10.1.2.2.1 Hash_DRBG Internal State

The internal_state for Hash_DRBG consists of:

1. The working_state:

a. A value (V) of seedlen bits that is updated during each call to the DRBG.

b. A constant C ol secd//e bits that depends on the seed.

c. A counter (reseed_counter) that indicates the number of requests for
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pseudorandom bits since new entropy_input was obtained during instantiation

or reseeding.
2. Administrative information:

a. The security_strength of the
DRBG instantiation.

b. A prediction resistance_flag
that indicates whether or not a
prediction resistance
capability is required for the
DRBG.

The values of ¥ and C are the critical
values of the internal state upon which
the security of this DRBG depends (i.e.,
V and C are the “secret values” of the
internal state).

10.1.2.2.2 Instantiation of Hash_DRBG

Notes for the instantiate function:

The instantiation of Hash_DRBG
requires a call to the instantiate
function specified in Section 9.2; step
9 of that function calls the instantiate
algorithm in this section. For this
DRBG, no

DRBG specific_input_parameters
are required for the instantiate
function specified in Section 9.2 (i.e.,
step 5 should be omitted).

The values of

highest_supported sccurity_strength
and min_entropy_input length are
provided in Table 3 of Section

(Opt.)
additional reseed
v input C  counter

additional
input

1—»

} v v
i enoughbiv 4. Counter; V reseed

' (From 0) E counter
' Hash Pseudorandom Bits
t Function '

|

Figure 8: Hash_DRBG

10.1.1. The contents of the internal state are provided in Section 10.1.2.2.1.

The instantiate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using the
selected hash function. The output block length (outlen), seed length (seedlen) and
appropriate security strengths for the implemented hash function are provided in Table

3 of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithm for

56




Hash_DRBG ANS X9.82, Part 3 - DRAFT - March 2006

this DRBG (see step 9 in Section 9.2).

Input:
1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.3.2.

3. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then steps 1 and 2
may be combined as follows:

seed = Hash_df (entropy input, seedlen).
Output:

1. working state: The inital values for ¥, C and reseed_counter (see Section
10.1.2.2.1).

Process:
1. seed material = entropy_input || nonce || personalization_string.

2. seed = Hash_df (seed material, seedlen).

V= seed.

4. C=Hash_df ((0x00 || V), seedlen). Comment: Preceed V with a byte of
Zeroes.

5. reseed counter = 1.

6. Return ¥, C and reseed _counter as the working state.
10.1.2.2.3 Reseeding a Hash_DRBG Instantiation

Notes for the reseed function:

The reseeding of a Hash_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_entropy input_length are provided in Table 3 of
Section 10.1.1.

The reseed algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using the
selected hash function. The value for seedlen is provided in Table 3 of Section 10.1.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (sce step 5 in Section 9.3):

Input:

1. working state: The current values for V, C and reseed_counter (see Section
10.1.2.2.1).
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2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application. If additional _input will never be provided, then step 1 may be
modified to remove the additional_input.

Output:
1. working_state: The new values for ¥, C and reseed counter.
Process:

1. seed material = 0x01 || V || entropy input || additional _input.

2. seed=Hash_df (seed_material, seedlen).
3. V=seed.
4. C=Hash_df ((0x00 || V), seedlen). Comment: Preceed with a byte of all

Zeros.

5. reseed counter = 1.

6. Return V, C and reseed _counter as the new working_state.
10.1.2.2.4 Generating Pseudorandom Bits Using Hash_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call
to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per_request and outlen are provided in Table 3 of Section 10.1.1.

The generate algorithm:

Let Hash be the selected hash function. The seed length (seedlen) and the maximum
interval between reseeding (reseed_interval) are provided inTable 3 of Section 10.1.1.
Note that for this DRBG, the reseed counter is used to update the value of V' as well as
to count the number of generation requests.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working_state: The current values for ¥, C and reseed_counter (see Section
10.1.2.2.1).

2. requested number_of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application. If additional _input will never be provided, then step 2 may be
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omitted.
Output:

1. status: The status returned from the function. The status will indicate
SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated. In the latter case, either nothing but the
reseed indication shall be returned as output, or a Null string shall be returned
as the returned_bits (see below).

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. working state: The new values for V, C and reseed_counter.
Process:

1. Ifreseed counter> reseed_interval, then return an indication that a reseed is
required.

2. If (additional input# Null), then do

2.1 w = Hash (0x02 || V' || additional _inpuf).

2.2 V= (V+w) mod 254",

returned_bits = Hashgen (requested number_of bits, V).
H =Hash (0x03 || V).

V=(V+H+C+reseed counter) mod gpeediet
reseed_counter = reseed_counter + 1.

Return SUCCESS, returned_bits, and the new values of ¥, C and
reseed_counter for the new working_state.

Hashgen (...):

=i on LAl

Input:

1. requested no_of bits: The number of bits to be returned.

2. V:The current value of V.
Output:

1. returned bits: The generated bits to be returned to the generate function.
Process:

L m= [requested _no_of _ bits-’
' outlen '

2. data=V.
3. W=the Null string.
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4. Fori=1tom
4.1 w; = Hash (data).
42W=W|w.
4.3 data = (data + 1) mod oseedien
5. returned bits = Leftmost (requested _no_of bits) bits of W.

6. Return returned_bits.
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10.1.3 HMAC_DRBG (...) (Opi) additional input
10.1.3.1 Discussion lmmn
HMAC_DRBG uses multiple ———"| UPDATE
occurrences of an Approved keyed hash

Staie
function, which is based on an Approved E., n-
hash function. The same hash function

shall be used throughout. The hash
function used shall meet or exceed the
security requirements of the consuming

application.

Figure 9 depicts the HMAC_DRBG in
stages. HMAC_DRBG is specified

using an internal function (Update). ! l :
This function is called during the e =1
HMAC_DRBG instantiate, generate and ] I ::ﬁ:'l;‘ i | HMAC
reseed algorithms to adjust the internal v !
state when new entropy or additional I samesd

Tterate

input is provided. The operations in the v = ]
top portion of the figure are only B
performed if the additional input is not }
null, Figure 10 depicts the Update Preudorandom blis
function.
10.1.3.2 Specifications stionalinut
10.1.3.2.1 HMAC_DRBG Internal State
. The internal state for HMAC_DRBG
consists of:

UFDATE

1. The working state:

a. The value V of outlen bits,
which is updated each time
another outlen bits of output
are produced (where outlen is

specified in Table 3 of Figure 9: HMAC_DRBG
Section 10.1.1).

b. The Key of outlen bits, which is updated at least once each time that the DRBG
generates pseudorandom bits.

¢. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.
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2. Administrative information:
provided

a. The securiry strength of
the DRBG instantiation.

b. A
prediction_resistance_flag
that indicates whether or Key
not a prediction resistance s
capability is required for =
the DRBG. l

The values of ¥ and Key are the
critical values of the internal state i 1——’ :
upon which the security of this DRBG H [Vi10s01 jpruvided dass]
depends (i.e., ¥ and Key are the
“secret values” of the internal state). H @E’

10.1.3.2.2 The Update Function

(Update) § 1Xer [ eovac |
The Update function updates the \,

internal state of HMAC_DRBG using e B ¥
the provided data. Let HMAC be the

V|| 0x00 || provided daa|

keyed hash function specified in FIPS

198 using the hash function selected . -
. . F 10: HMAC_DRBG Update Funct
for the DRBG from Table 3 in Section SIS - pdate Function

10.1.1.
The following or an equivalent process shall be used as the Update function.
Input:
1. provided data: The data to be used.
2. K: The current value of Key.
3. V: The current value of V.
Output:
1. K:The new value for Key.
2. V: The new value for V.
Process:
1. K=HMAC (X, V| 0x00 || provided_data).
2. V=HMAC(K, V).
3. If (provided data = Null), then return K and V.
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4, K=HMAC (K, V| 0x01 || provided data).
5. V=HMAC (K, V).
6. Return K and V.

10.1.3.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function:

The instantiation of HMAC_DRBG requires a call to the instantiate function specified
in Section 9.2; step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG, no DRBG _specific input parameters are required for the
instantiate function specified in Section 9.2 (i.e., step 5 should be omitted). The values
of highest_supported_security strength and min_entropy_input_length are provided in
Table 3 of Section 10.1.1. The contents of the internal state are provided in Section
10.1.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The ouput block length
(outlen) is provided in Table 3 of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 8 of Section 9.2):

Input:
1. entropy input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.3.2.

3. personalization_string: The personalization string received from the consuming
application. If a personalization string will never be used, then step 1 may be
modified to remove the personalization_string.

Output:

1. working state: The inital values for ¥, Key and reseed counter (see Section
10.1.3.2.1).

Process:
1. seed material = entropy_input || nonce || personalization_string.
2. Key = 0x00 00...00. Comment: outlen bits.
3. V=0x0101...01. Comment: outlen bits.
Comment: Update Key and V.
4. (Key, V)= Update (seed_material, Key, V).

5. reseed counter = 1.
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6. Return V, Key and reseed _counter as the initial working state.
10.1.3.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function:

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_entropy input length are provided in Table 3 of
Section 10.1.1.

The reseed algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The following process or its
equivalent shall be used as the reseed algorithmn for this DRBG (see step 5 of Section
9.3):

Input:

1. working state: The current values for V, Key and reseed counter (see Section
10.1.3.2.1).

2. entropy input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input
string received from the consuming application. If additional input will
never be used, then step 1 may bemodified to remove the additional input.

Output:

1. working state: The new values for V, Key and reseed_counter.
Process:

1. seed material = entropy input || additional input.

2. (Key, V)= Update (seed_material, Key, V).

3. reseed counter=1.

4. Return V, Key and reseed counter as the new working state.
10.1.3.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per request and outlen are provided in Table 3 of Section 10.1.1.

The generate algorithm :

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG. The value for reseed interval is defined in Table 3 of Section
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10.1.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (sce step 8 of Section 9.4):

Input:

1. working_state: The current values for ¥, Key and reseed_counter (see Section
10.1.3.2.1).

2. requested number_of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional input: The additional input string received from the consuming
application. If an implementation will never use additional _input, then step 2
may be omitted. If additional _input is not provided (regardless of whether or
not it will ever be provided), then a Null string shall be used as the
additional_input in step 5.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated. In the latter case, either nothing but the
reseed indication shall be returned as output, or a Null string shall be returned
as the returned bits (see below).

2. returned_bits: The pseudorandom bits to be returned to the generate function.

3. working state: The new values for ¥, Key and reseed counter.

Process:

1. If reseed _counter> reseed_interval, then return an indication that a reseed is
required.

2. If additional _input # Null, then (Key. V) = Update (additional _input. Key. V).

3. temp = Null.

4. While (len (temp) < requested _number_of _bits) do:

4.1 V=HMAC (Key V).
42 temp=temp | V.

5. returned _bits = Lefimost requested_number_of bits of temp.

6. (Key, V)= Update (additional_input, Key, V).

7. reseed counter = reseed_counter + 1.

8. Return SUCCESS, returned_bits, and the new values of Key, V and

reseed counter as the working state).
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10.2 DRBGs Based on Block Ciphers
10.2.1 Discussion

A block cipher DRBG is based on a block cipher algorithm. The block cipher DRBGs
specified in this Standard have been designed to use any Approved block cipher
algorithm and may be used by applications requiring various levels of security, providing
that the appropriate block cipher algorithm and key length are used and sufficient entropy
is obtained for the seed. The following are provided as DRBGs based on block cipher
algorithms:

1. The CTR_DRBG specified in Section 10.2.2.
2. The OFB_DRBG specified in Section 10.2.3.

Table 4 specifies the values that shall be used for the function envelopes and DRBG
algorithm for each Approved block cipher algorithm. The specifications in this Standard
assume that a single appropriate block cipher algorithm and key size will be selected fora
DRBG implementation; i.c., a DRBG implementation will not contain multiple block
cipher algorithms or key sizes from which to choose during instantiation.

Table 4: Definitions for Block Cipher- Based DRBGs

3Key | AES-128 | AES-192 | AES-256 |
TDEA
Supported security strengths 112 112,128 | 112,128, | 112, 128,
192 192, 256
highest_supported_security_strength 112 128 192 256
Output block length (outlen) 64 128 128 128
Key length (keylen) 168 128 192 256
Required minimum entropy for security strength
instantiate and reseed
Seed length (seedlen = outlén + keylen) 232 ‘ 256 ‘ 320 | 384
A derivation function is used:
Minimum entropy input length security strength
(min_entropy_input_length)
Maximum entropy input length < 2% bits
(max_entropy_input_length)
Maximum personalization string < 2% bits
length
(max_personalization_string_length)
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3Key | AES-128 | AES-192 | AES-256
TDEA
Maximum additional_input length < 2% bits
(max_additional_input_length)
A derivation function is not used (full
entropy is available):
Minimum entropy input length seedlen
(min_entropy_input_length) (outlen
+ keylen)
Maximum entropy input length seedlen
(max_entropy input length) (outlen
+ keylen)
Maximum personalization string seedlen
length
(max_personalization_string_length)
Maximum additional_input length seedlen
(max_additional_input _length)
max_number_of bits_per_request <2h <2
Number of requests between reseeds <2% <%
(reseed_interval)

The block cipher DRBGs may be implemented to use the block cipher detrivation
function specified in Section 9.6.3. However, these DRBGs are specified to allow an
implementation tradeoff with respect to the use of this derivation function. If a source for
full entropy input is always available to provide entropy input when requested, the use of
the derivation function is optional; otherwise, the derivation functon shall be used. Table
4 provides lengths required for the entropy input, personalization string and

additional _input for each case.

When full entropy is available, and a derivation function is not used by an
implementation, the seed construction (seeSection 8.4.2) shall not use a nonce.

When using TDEA as the selected block cipher algorithm, the keys shall be handled as
64-bit blocks containing 56 bits of key and 8 bits of parity as specified for the TDEA
engine.

3 The specifications in this Standard do not accommodate the special treatment required for a nonce in this
case
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10.2.2 CTR_DRBG

10.2.2.1 Discussion

CTR_DRBG uses an Approved block
cipher algorithm in the counter mode as
specified in [SP 800-38A]. The same block
cipher algorithm and key length shall be
used for all block cipher operations. The
block cipher algorithm and key length shall
meet or exceed the security requirements of
the consuming application. The values to be
used for the implementation of this DRBG
are specified in Table 4 of Section 10.2.1.

CTR_DRBG is specified using an internal
function (Update). Figure 11 depicts the
Update function. This function is called by
the instantiate, generate and reseed
algorithms to adjust the internal state when
new entropy or additional input is provided.
Figure 12 depicts the CTR_DRBG in three
stages. The operations in the top portion of
the figure are only performed if the
additional input is not null.

10.2.2.2 Specifications

10.2.2.2.1 CTR_DRBG Internal State

The internal state for CTR_DRBG consists
1. The working state:

a.

ANSI X9.82, Part 3 — Draft — March 2005

Figure 11: CTR_DRBG Update

of:

The value V of outlen bits, which is updated each time another outlen bits of

output are produced (see Table 4 in Section 10.2.1).

The Key of keylen bits, which is
output blocks are generated.

A counter (reseed_counter) that
pseudorandom bits since instanti

2. Administrative information:

updated whenever a predetermined number of

indicates the number of requests for
ation or reseeding.

a. The security strength of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG.
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The values of ¥ and Key are the critical
values of the internal state upon which the

. . . (OpD) additienal imput
security of this DRBG depends (i.e., ¥ and
Key are the “secret values” of the internal llf * Null
State)' BLOCK CIFHER
10.2.2.2.2 The Update Function (Update) g
The Update function updates the internal — —-l——
state of the CTR_DRBG using the | UPDATE
provided_data. The values for outlen, keylen Sae
and seedlen are provided in Table 4 of Eey n ol -

Section 10.2.1. The block cipher operation in
step 2.2 uses the selected block cipher
algorithm.

The following or an equivalent process shall
be used as the Update function. ' P .

Input:
1. provided data: The data to be 1

: Teeeed | ! | Block
used. This must be exactly Ko V | counter 5 Encl:;rpt
seedlen bits in length; this length P

is guaranteed by the construction

of the provided data in the Bl 1B 0] - |
instantiate, reseed and generate ‘—*I——’
functions.

Preudorandom hits

2. Key: The current value of Key.

3. V: The current value of V.
Output:

1. K: The new value for Key.
2. V: The new value for V.

Process:
1. temp = Null.
2. While (len (temp) < seedlen) do
21 V=(V+1)mod poutlen Figure 12: CTR_DRBG

2.2 output _block =
Block_Encrypt (Key, V).

2.3 temp = temp | ouput block.
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3. temp = Leftmost seedlen bits of temp.
temp = temp @ provided data.

4

5. Key = Leftmost keylen bits of temp.
6. V= Rightmost outlen bits of temp.
7

. Return the new values of Key and V.
10.2.2.2.3 Instantiation of CTR_DRBG

Notes for the instantiate function:

The instantiation of CTR_DRBG requires a call to the instantiate function specified
in Section 9.2; step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG, no DRBG _specific_input parameters are required for the
instantiate function specified in Section 9.2 (i.e., step 5 should be omitted). The
values of highest_supported security strength and min_entropy_input_length are
provided in Table 4 of Section 10.2.1. The contents of the internal state are provided
in Section 10.2.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.2.2.2.2, and let Block_Cipher_df
be the derivation function specified in Section 9.6.3 using the chosen block cipher
algorithm and key size. The output block length (outlen), key length (keylen), seed
length (seedlen) and security strengths for the block cipher algorithms are provided
in Table 4 of Section 10.2.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG:

Input:
1. entropy input: The string of bits obtained from the entropy input source.

2. nonce: A string of bits as specified in Section 8.5.2; this string shall not be
present when a derivation function is not used.

3. personalization string: The personalization string received from the
consuming application.

Output:

1. working state: The inital values for V, Key and reseed_counter (see Section
10.2.2.2.1).

Process:
1. [fthe block cipher derivation function is available, then

1.1  seed material = entropy input || nonce || personalization_string.
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6.

2. Key=
3.
4
5

1.2 seed material = Block_Cipher_df (seed _material, seedlen).

temp = len (personalization_string).
If temp > seedlen, then return an ERROR.

If (femp < seedlen), then personalization_string =
personalization_string || gseedlen-temp

seed_material = entropy input ® personalization_string.
oFevten, Comment: keylen bits of zeros.
y = geuilen, Comment: outlen bits of zeros.

(Key, V) = Update (seed material, Key, ).

. reseed_counter = 1.

Return V, Key and reseed_counter as the working_state.

Implementation notes:

1.

The decision for

the substeps to be used depends on whether the implementation has full entropy
and is using the derivation function.

2. If a personalization_string will never be provided from the instantiate
and a derivation function will be used, then step 1.1 becomes:

seed material = Block_Cipher_df (entropy_input, seedlen).

3. Ifapersonalization_string will never be provided from the instantiate (unction, a
full entropy source will be available and a derivation function will not be used,
then step 1

10.2.2.2.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed lunction
specified in Section 9.3; step 5 of that lunction calls the reseed algorithm specified in
this section. The values for min_entropy_input_length are provided in Table 4 of
Section 10.2.1.

The reseed algorithm:
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Let Update be the function specified in Section 10.2.2.2.2, and let Block_Cipher_df
be the derivation function specified in Section 9.6.3 using the chosen block cipher
algorithm and key size. The seed length (seedlen) is provided in Table 4 of Section
10.2.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.3):

Input:

1. working_state: The current values for V, Key and reseed counter (see Section
10.2.2.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional input: The additional input string received from the consuming
application.

Output:
1. working state: The new values for V, Key and reseed_counter.
Process:
1. Ifthe block cipher derivation function is available, then
1.1 seed material = entropy_input || additional _input.
1.2 seed _material = Block_Cipher_df (seed_malterial, seedlen).

Else Comment: The block cipher
derivation function is not used
because full entropy is known to be
available.

1.3 temp = len (additional_input).
1.4 If temp > seedlen, then return an ERROR.
1.5 If (temp < seedlen), then additional_input = additional input ||

Oseedlen - temp

1.6 seed material = entropy_input ® additional input.
2. (Key, V)= Update (seed_material, Key, V).
3. reseed counter=1.
4. Return V, Key and reseed_counter as the working_state.

Implementation notes:

1. Step | should consist of either steps 1.1 and 1.2, or steps 1.3 - 1.6. The decision
for the substeps to be used depends on whether the implementation has full
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entropy and is using the derivation function.

2. If additional input will never be provided from the reseed function and a
derivation function will be used, then step 1.1 becomes:

seed_material = Block_Cipher_df (entropy_input, seedlen).

3. If additional input will never be provided from the reseed function, a full entropy
source will be available and a derivation function will not be used, then step 1
becomes

seed material = entropy input.
That is, steps 1.3 — 1.6 collapse into the above step.
10.2.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a
call to the generate function specified in Section 9.4, step 8 of that function calls the
generate algorithm specified in this section. The values for

max _number of bits per request and outlen are provided in Table 4 of Section
10.2.1. If the derivation function is not used, then the maximum allowed length of
additional input = seedlen.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Let Block_Cipher_df be the derivation function specified in Section 9.6.3, and let
Update be the function specified in Section 10.2.2.2.2 using the chosen block cipher
algorithm and key size. The seed length (seedlen) and the value of reseed interval are
provided in Table 4 of Section 10.2.1. Step 4.2 below uses the selected block cipher
algorithm. [f a derivation function is not used for a DRBG implementation, then step
2.2 shall be omitted.

The following process or its equivalent shall be used as generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working state: The current values for V, Key and reseed counter (see Section
10.2.2.2.1).

2. requested_number of bits: The number of pseudorandom bits to be returned
to the generate function.

3. additional_input. The additional input string received from the consuming
application. If additional_input will never be provided, then step 2 may be
omitted.

Output:
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1. status: The status returned from the function. The status will indicate
SUCCESS, indicate that a reseed is required before the requested
pseudorandom bits can be generated, or indicate that the additional input is
too long. If SUCCESS is not returned, either nothing but the reseed indication
shall be returned as output, or a Null string shall be returned as the
returned bits (see below).

2. returned bits: The pseudorandom bits returned to the generate function.
3. working state: The new values for V, Key and reseed counter.
Process:

1. If reseed counter > reseed interval, then return an indication that a reseed is
required.

2. If (additional input # Null), then

Comment: If the length of the additional
input is > seedlen, derive seedlen bits.

2.1 temp = len (additional _input).

Comment: If a block cipher derivation
function is used:

2.2 If (temp > seedlen), then additional_input = Block_Cipher_df
(additional_input, seedlen).

Comment: If the length of the
additional input is < seedlen, pad with
zeros to seedlen bits.

2.3 If (femp < seedlen), then additional_input = additional_input || 0°"*"-

temp

2.4 (Key, V)= Update (additional _input, Key, V).
3. temp = Null.
4. While (len (temp) < requested _number of bits) do:
4.1 V=(V+1)mod 2"
4.2 output block = Block_Encrypt (Key, V).
4.3 temp = temp || ouput block.
5. returned bits = Leftmost requested number of bits of temp.

Comment: Update for backtracking
resistance.

Oseedlen

6. zeros= Comment: Produce a string of
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seedlen zeros.
7. (Key, V)= Update (zeros, Key, V).
8. reseed counter = reseed counter + 1.

9. Return SUCCESS and returned bits; also return Key, V and reseed _counter
as the new working state.
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10.2.3 OFB_DRBG

10.2.3.1 Discussion

OFB_DRBG uses an Approved block cipher
algorithm in the output feedback mode as
specified in [SP 800-38A]. The same block
cipher algorithm and key length shall be
used for all block cipher operations. The
block cipher algorithm and key length shall
meet or exceed the security requirements of
the consuming application. The values to be
used for the implementation of this DRBG
are specified in Table 4 in Section 10.2.1.

OFB_DRBG is specified using an internal
function (Update). Figure 13 depicts the
OFB_DRBG in three stages. The operations
in the top portion of the figure are only
performed if non-null additional input is
provided. Figure 14 depicts the Update
function. This function is called by the
instantiate, generate and reseed algorithms to
adjust the internal state when new entropy or
additional input is provided.Note that
OFB_DRBG is basically the same as
CTR_DRBG, except that the block cipher
mode is OFB rather than CTR.

10.2.3.2 Specifications

10.2.3.2.1 OFB_DRBG Internal State

The internal state for OFB_DRBG consists
of:
1. The working_state:
a. The value ¥, which is updated

each time another outlen bits of
output are produced.

b. The Key, which is updated
whenever a predetermined
number of output blocks are
generated.

¢. A counter (reseed_counter) that
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indicates the number of requests
for pseudorandom bits since V Key
instantiation or reseeding. 1ot time

Trevate

2. Administrative information:

a. The security strength of the DRBG
instantiation.

b. A prediction_resistance flag that
indicates whether or not a
prediction resistance capability is

required for the DRBG. m B Hl
1 ()
The values of V and Key are the critical values

of the internal state upon which the security of

this DRBG depends (i.e., ¥ and Key are the provided datn——» @
“secret values™ of the internal state). |
10.2.3.2.2 The Update Function(Update)

[xes] v |

The Update function updates the internal state

of the OFB_DRBG using the provided data.
The values for outlen, keylen and seedlen are Figure 14: OFB_DRBG Update
provided in Table 4 of Section 10.2.1. The

block cipher operation in step 2.1 uses the

selected block cipher algorithm and key size.

The following or an equivalent process shall be used as the Update function.
Input:
1. provided data: The data to be used.
2. Key: The current value of Key.
3. V: The cutrent value of V.
Output:
1. K: The new value for Key.
2. V: The new value for V.
Process:
1. temp = Null.
2. While (Ien (temp) < seedlen) do
2.1 V= Block_Encrypt (Key, V).
22 temp=temp| V.
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. temp = Leftmost seedlen bits of temp.
temp = temp @ provided_data.

3

4

5. Key = Leftmost keylen bits of temp.
6. V=Rightmost outlen bits of temp.
7

. Return the new values of Key and V.
10.2.3.2.3 Instantiation of OFB_DRBG (...)
This process is the same as the instantiation process for CTR_DRBG in Section
10.2.2.2.3, except that the Update function to be used is specified in Section 10.2.3.2.2.
10.2.3.2.4 Reseeding an OFB_DRBG Instantiation
This process is the same as the reseeding process for CTR_DRBG in Section 10.2.2.2.4,
except that the Update function to be used is specified in Section 10.2.3.2.2
10.2.3.2.5 Generating Pseudorandom Bits Using OFB_DRBG
This process is the same as the generation process for CTR_DRBG in Section 10.2.2.2.5,

except that the Update function to be used is specified in Section 10.2.3.2.2 and step 4
shall be as follows:

4. While (len (femp) < requested _number_of bit) do:
4.1 V= Block_Encrypt (Key, V).
42 temp=temp| V.
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10.3 Deterministic RBGs Based on Number Theoretic Problems
10.3.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. Section 10.3.2 specifies a DRBG based on the elliptic curve discrete logarithm
problem; Section 10.3.3 specifies a DRBG based on a problem related to the RSA problem
of finding roots modulo a composite integer.

10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)
10.3.2.1 Discussion

Dual EC_DRBG is based on the following hard problem, sometimes known as the
“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic
curve of order n, find a such that O = aP.

Dual_EC_DRBG uses a seed that is m bits in length (i.e., seedlen = m) to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on two
points in an elliptic curve group, where the curve is defined over a field approximately 2"
in size. For all the NIST curves given in this Standard, m > 163. Figure 15 depicts the
Dual_EC_DRBG.

seed r

Tnstand. or
nesead only

t N s . r Extract
- @ 6 @Bl pix (s Q) i

additional input ;@_‘, 1 1Y
0 P Q Psendorandom

Bits

¥ additionalinpaut = Bl

Figure 15: Dual_EC_DRBG

The instantiation of this DRBG requires the selection of an appropriate elliptic curve and
curve points specified in Annex A.1 for the desired security strength. The seed used to
determine the initial value (s) of the DRBG shall have entropy that is at least
security_strength + 64 bits. Further requirements for the seed are provided in Section 8.4.

Backtracking resistance is inherent in the algorithm, even if the internal state is
compromised. As shown in Figure 16, Dual_EC_DRBG generates a seedlen-bit number
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for each step i = 1,2,3,..., as follows:
Si= @ X(Si-1 *P))

Ri=o(x(Si *0) ).
Each arrow in the figure represents an Elliptic
Curve scalar multiplication operation, followed
by the extraction of the x coordinate for the
resulting point and for the random output &; and
by truncation to produce the output. Following a
line in the direction of the arrow is the normal
operation; inverting the direction implies the

ability to solve the ECDLP for that specific curve.

An adversary’s ability to invert an arrow in the
figure implies that the adversary has solved the

ANS X9.82, Part 3 - DRAFT - March 20056

R,

Figure 16: Dual_EC_DRBG {(...)
Backtracking Resistance

ECDLP for that specific elliptic curve. Backtracking resistence is built into the design, as
knowledge of S; does not allow an adversary to determine Sp (and so forth) unless the
adversary is able to solve the ECDLP for that specific curve. In addition, knowledge of R
does not allow an adversary to determine S; (and so forth) unless the adversary is able to

solve the ECDLP for that specific curve.

Table 5 specifies the values that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Annex A.1. Note that all
curves except the first three can be instantiated at a security strength lower than its highest
possible security strength. For example, the highest security strength that can be supported
by curve P-384 is 192 bits: however, this curve can alternatively be instantiated to support

only the 112 or 128-bit security strengths).
Table 5: Definitions for the Dual_EC_DRBG

P-224 | B-233 | K-233 | P-256 | B-283 | K-283

Supported security strengths 112 112 112 112, 112, 112,

128 128 128
highest_supported_ 112 112 112 128 128 128
security_strength
Output block length (outlen = 208 216 216 240 264 264
largest multiple of 8 smaller than
seedlen - (13 + log, (the cofactor))
Required minimum entropy for security strength
instantiate and reseed
Minimum entropy input length 224 240 240 256 288 288
kmin_entropy input_length = 8 x
[seedlen/8ly
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P-224 ‘ B-233 | K-233

P-256 | B-283 | K-283

Maximum entropy input length < 2" bits
(max_entropy input length)

Maximum personalization string < 2" bits
length

(max_personalization_string_length)

Maximum additional_input length < 2" bits

(max_additional_input_length)

Seed length (seedlen = m)

224 ‘ 233 | 233

256 | 283 ‘ 283

Appropriate hash functions

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

max_number_of bifs_per_request

outlen x reseed interval

Number of blocks between
reseeding (reseed_interval)

< 10,000 blocks

P-384 ‘ B-409 | K-409 | P-521 ‘ B-571 ‘ K-571
Supported security strengths 112,128, 192 112, 128, 192,256
highest_supported_ 192 256
security_strength
Output block length (outlen = 368 392 392 504 552 552
smallest multiple of 8 larger than
seedlen - (13 + log, (the cofactor))
Required minimum entropy for security_stength
instantiate and reseed
Minimum entropy input length 384 416 416 528 576 576
(min_entropy input_length =8 x
[ seedlen/8 )
Maximum entropy input length < 2" bits
(max_entropy_input_length)
Maximum personalization string < 2" bits
length
(max_personalization_string_length)
Maximum additional_input length < 2" bits
(max_additional_input_length)
Seed length (seedlen = m) 384 | 409 409 521 ‘ 571 | 571
Appropriate hash functions SHA-224, SHA-256, SHA- | SHA-256, SHA-384, SHA-

384, SHA-512 512

81




Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - March 2005

P-384 | B-409 | K-409 | P-521 ‘ B-571 | K-571

max_number_of bits_per_request outlen x reseed_interval

Number of blocks between < 10,000 blocks
reseeding (reseed_interval)

Validation and Operational testing are discussed in Section 11. Detected errors shall result
in a transition to the error state.

10.3.2.2 Specifications

10.3.2.2.1 Dual_EC_DRBG Internal State and Other Specification Details

The internal state for Dual_EC_DRBG consists of:
1. The working state:
a. A value (s) that determines the current position on the curve.

b. The elliptic curve domain parameters (curve_type, seedlen, p, a, b, n), where
curve_type indicates a prime field F, or a pseudorandom or Koblitz curve over
the binary field F,"; seedlen is the length of the seed ; a and b are two field
elements that define the equation of the curve, and n is the order of the point G.
If only one curve will be used by an implementation, these parameters need not
be present in the working_state. If only one type of curve is implemented, the
curve_type parameter may be omitted.

¢. Two points P and Q on the curve; the generating point G specified in FIPS 186-
3 for the chosen curve will be used as P. If only one curve will be used by an
implementation, these points need not be present in the working_state.

d. A counter (block counter) that indicates the number of blocks of random
produced by the Dual_EC_DRBG since the initial seeding or the previous
reseeding.

2. Administrative information:
a. The security sirengih provided by the instance of the DRBG,

b. A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG, and

The value of s is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value™ of the internal state).

10.3.2.2.2 Instantiation of Dual_EC_DRBG

Notes for the instantiate function:

The instantiation of Dual_ EC_DRBG requires a call to the instantiate function
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, specified in Section 9.2; step 9 of that function calls the instantiate algorithm in this
section. For this DRBG, a DRBG-specific input parameter of requested curve_type is
optional (see the definition for curve type in Section 10.3.2.2.1). If only one type of
curve is available, then this parameter may be omitted. If multiple types are available,
then a Prime_field curve will be selected if the parameter is omitted; if a
Prime_field _curve is not available, then a Random_binary_curve will be selected.

In step 5 of the instantiate function, the following step shall be performed to select an
appropriate curve if multiple curves are available.

5. Using requested curve_type (if provided), the security strength and Table 5 in
Section 10.3.2.1, select the smallest available curve that has a security strength
> security strength.

5.1 If requested curve_type is indicated, then select a curve of that type. If no
suitable curve of that type is available for the
requested_security sirength, then return an ERROR.

5.2 Ifa curve type is not requested, then select an appropriate
Prime_field_curve if a suitable curve is available. If no suitable
Prime_field curve is available, then select a Random_binary_curve if a
suitable curve is available. If no suitable Random binary_curve is
available, then select a Koblitz_curve. If no suitable Koblitz_curve is
available, then return an ERROR.

The values for curve type, seedlen, p, a, b, n, P, O are determined by that curve.

The values for highest_supported_security_strength and min_entropy_input_length are
determined by the selected curve (see Table 5 in Section 10.3.2.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. Let seedlen be the
appropriate value from Table 5.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of Section 9.2):

Input:
1. entropy input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specitied in Section 8.5.2.

3. personalization_string: The personalization string received from the consuming
application.

Output:

1. s: The initial secret value for the working_state.
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2. block counter: The initialized block counter for reseeding.
Process:
1. seed material = entropy input || nonce || personalization_string.

Comment: Use a hash function to ensure that
the entropy is distributed throughout the bits,
and s is m (i.e., seedlen) bits in length.

2. s=Hash_df (seed material, seedlen).

Comment: Save all state information.
3. block counter=0.
4. Return s and block counter for the working_state.

Implementation notes:

If an implementation never uses a personalization_string, then steps 1 and 2 may be
combined as follows :

s = Hash_df (entropy_input, seedlen).
10.3.2.2.3 Reseeding of a Dual_EC_DRBG Instantiation

Notes for the reseed function:

The reseed of Dual_EC_DRBG requires a call to the reseed function specified in
Section 9.3; step 5 of that function calls the reseed algorithm in this section. The values
for min_entropy_input_length are provided in Table 5 of Section 10.3.2.1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1.

The following process or its equivalent shall be used to reseed the Dual_EC_DRBG
process after it has been instantiated (see step 5 in Section 9.3):

Input:
1. s: The current value of the secret parameter in the working_state.
2. entropy input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output:
1. s: The new value of the secret parameter in the working_state.

2. block counter: The re-initialized block counter for reseeding.
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Process:

Comment: pad8 returns a copy of s padded
on the right with binary 0’s, if necessary, to a
multiple of 8.

1. seed material = pad8 (s) || entropy_input || additional_input string.
2. s= Hash_df (seed material, seedlen).

3. block _counter =0.

4. Return s and block counter for the new working state.

Implementation notes:

If an implementation never allows additional _input, then step 1 may be modified as
follows :

seed_material = pad8 (s) || entropy_input.
10.3.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Dual EC_DRBG instantiation requires a
call to the generate (unction specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits per request and outlen are provided in Table 4 of Section 10.2.1.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. The value of
reseed_interval is also provided in Table 5.

The following are used by the generate algorithm:

a. pad8 (bitstring) returns a copy of the bitstring padded on the right with binary
0’s, if necessary, to a multiple of 8.

b. Truncate (bitstring, in_len, out_len) inputs a bitstring of in_len bits, returning
a string consisting of the leftmost out len bits of bitstring. If in_len < out_len,
the bitstring is padded on the right with (out_len - in_len) zeroes, and the result
is returned.

¢. x(A) is the x-coordinate of the point 4 on the curve.

d. ¢ (x) maps field elements to non-negative integers, taking the bit vector
representation of a field element and interpreting it as the binary expansion of
an integer. Section 10.3.2.2.4 has the details of this mapping.

The precise definition of @(x) used in steps 6 and 7 below depends on the field
representation of the curve points. In keeping with the convention of FIPS 186-
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2, the following elements will be associated with each other (note that m =
seedlen):

B: eyt |Cmal o |ci|col| , abitstring, with c,.; being lefimost

7 oem2™ 4+ v+ et e € Z;

Fa:cm2™ + ... +c22 +¢2'+ co modp € GF(p) ;

Fb: cpt™ @ ... @t ® it ® o € GFQ2"), when a polynomial basis
is used;

2 22 2m—1 "

Fe: e @ cmaB ® cuaB” @ ... @ cof” e GF(2"), when a normal

basis is used.

Thus, any field element x of the form Fa, Fb or Fc will be converted to the
integer Z or bitstring B, and vice versa, as appropriate.

e. *isthe symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 in Section 9.4):

Input:

1. working state: The current values for s, curve type, seedlen, p, a, b, n, P, Q
and reseed _counter (see Section 10.1.3.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate functione.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from the tunction. The status will indicate
SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated. In the latter case, either nothing but the
reseed indication shall be returned as output, or a Null string shall be returned
as the returned_bits (see below).

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. s: The new value for the secret parameter in the working state.
4, block_counter: The updated block counter for reseeding.

Process:

Comment: Check whether a reseed is
required.
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o~

requested _number _of _bits

L If [block _counter + ’V -D >reseed_interval, then

outlen
return an indication that a reseed is required.
Comment: If additional input is Null, set to

seedlen zeroes; otherwise, Hash_df to
seedlen bits.

If (additional _input_string = Null), then additional _input =0

Else additional_input = Hash_df (pad8 (additional input string), seedlen).
Comment: Produce requested no_of bits,
outlen bits at a time:

temp = the Null string.

i=0.

t=s @ additional _input.

s = o(x(t *P)). Comment: ¢ is to be interpreted as a seedlen-
bit unsigned integer. To be precise, when
curve_type = Prime_field curve, t should be
reduced mod n; the operation * will effect
this. s is a seedlen-bit number.

. r =0(x(s *Q)). Comment: 7 is a seedlen-bit number.
. temp = temp || (rightmost outlen bits of r ).
. additional_input=0 Comment: seedlen zeroes;

additional input string is added only on the
first iteration.

10. block_counter = block_counter + 1.

1

li=i+1.

12. If (len (temp) < requested number_of bits), then go to step 5.

13 returned bits = Truncate (femp, i x outlen, requested_number_of bits).
14. Return SUCCESS, returned bits, and s and block_counter for the

working state.
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10.3.3 Micali-Schnorr Deterministic RBG (MS_DRBG)
10.3.3.1 Discussion

The MS_DRBG generalizes the RSA generator, which is defined as follows: Let ged(x, ¥)
denote the greatest common divisor of the integers x and y, and ¢(») represent the Euler phi
function®. Select », the product of two distinct large primes, and e, a positive integer such
that ged(e, §(n)) = 1. Define f(y) = ° mod n . Starting with a sced yy, form the sequence
yi+1 = f3), and output the string consisting of the g Ig (n) least significant bits of each y;.
These bits are known to be as secure as the RSA function f, and are commonly referred to
as the hard bits.

The Micali-Schnorr generator MS_DRBG uses the same e and » as the RSA generator, but
produces many more random bits per iteration and eliminates the overlap between the state
sequence and the output bits. Each y; € [0, ) is viewed as the concatenation s; || z; of an r-
bit number s; and a k = 1g(n)-r bit number z;. The s; are used to propagate the integer
sequence yi; = s;i° mod n; the z; are output as random bits. » must be at least
2*min{security strength, lg(n)/e}, where security_strength is the desired security strength
of the generator, and e > 63,537. (See Section 10.3.3.2.2). A random r-bit seed sy is used to
initialize the process.

Figure 17 depicts the MS_DRBG. Under the proper assumption, the MS_DRBG is an
example of a cryptographically secure generator, i.¢., one that passes all polynomial-time
statistical tests. The assumption is that sequences of the form s° mod n are statistically the
same as sequences of integers in Z,. This assumption is stronger than requiring the
intractability of the RSA problem. See [1] for a discussion of these concepts and references
to further details.

saed

!sma..m!.muJo
=4

s | p=smodn S = Mfmoerr bis

! e |anpr R .
%um_.@__[ N =mamag e pseudorandon bits
i
If actdliben il tspust = Hiull

Figure 17: MS_DRBG

4 The Euler phi function : ¢(#) = the number of posiéige integers < n that are relatively prime to n. For an
RSA modulus n = pgq, $(n) = (p-1)(g-1).
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For MS_DRBG, the s values are assumed to be r-bit integers, and “statistically the same”
means indistinguishable by any polynomial-time algorithm. Accepting the stronger
assumption allows £ to be a significant percentage of 1g(n). Note that in the specifications,
7 has been redefined as seedlen, and k has been redefined to be outlen in order to be

consistent with the other DRBGs.

The specifications for the MS_DRBG (see Section 10.3.3.2) allow e and £ (i.¢., ourlen) to
be specified. The lengths seedlen and outlen, the RSA modulus #, and the value of the
exponent e are variable within the bounds described below. The bounds are based on the
desired securiry strength for the bits produced. For maximum efficiency, e should be kept
small and outlen should be large. The outlen bits generated at each step are concatenated
to form pseudorandom bitstrings of any desired length. Table 6 provides definitions for
using with the MS_DRBG functions and algorithms.

Table 6: Definitions for MS_DRBG

Ig (n) =2048 Ig (n) = 3072
Supported security strengths 112 112,128
highest_supported_security strength 112 128

Output Block Length (outlen = k)

8 < outlen < min{ lg(n) — 2*security strength,
lg(n) — 2*1g(n)/e

Required minimum entropy for
instantiate and reseed

Minimum entropy input length
(min_entropy_input length)

security strength

Maximum entropy input length
(max_entropy_input_length)

< 2" bits

Maximum personalization string
length
(max_personalization_string_length)

<29 bits

Maximum additional_input length
(max_additional_input_length)

< 2" bits

Number of hard bits (Ig (Ig (n))

11 11

Seed length (seedlen = r)

lg(n) — outlen

Appropriate hash functions

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

max_number_of bits per request

outlen x reseed_interval

Number of blocks of outlen
between reseeds (reseed_interval)

< 50,000 blocks
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10.3.3.2 MS_DRBG Specifications
10.3.3.2.1 Internal State for MS_DRBG

The internal state for MS_DRBG consists of:
1. The working state:
a. The M-S parameters #, e, seedlen and outlen, and

b. An integer S in [0,2°““*") that propagates the internal state sequence from
which pseudorandom bits are derived.

¢. A counter (block counter) that indicates the number of blocks of random
produced by MS_DRBG during the current instance since the previous
reseeding.

2. Administrative information:
a. The security strength provided by the instance of the DRBG, and

b. A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG.

The value of S is the critical value of the internal state upon which the security of this
DRBG depends (i.c., s is the “secret value™ of the internal state).

10.3.3.2.2 Selection of the M-S parameters

The instantiation of MS_DRBG consists of selecting an appropriate RSA modulus 7 and
exponent e; sizes seedlen and outlen for the seeds and output strings, respectively; and a
starting seed.

The M-S parameters 7, seedlen, e and outlen are selected to satisfy the following six
conditions, based on strength:

1. 1<e < ¢(n); ged(e, $(n)) = 1. Comment: ensures that the mapping s — s°
mod n is 1-1.

2. (e x seedlen) > 2*1g(n). Comment: ensures that the exponentiation
requires a full modular reduction.

3. seedlen > 2*security strengih. Comment: protects against a tableization
attack.

4. outlen and seedlen are multiples of 8. Comment: This is an implementation
convenience.

5. outlen>8; seedlen + outlen = lg(n). Comment: all bits are used.

6. n=p*q. Comment: p and q are strong [as in FIPS 186-
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], secret primes .
The M-S parameters are determined in this order:

1. The size of the modulus lg(n) is set first. It shall conform to the values given in
Table 6 for the requested .

2. The RSA exponent e. The implementation should allow the application to request
any odd integer e in the range(l <e < 2 '8P~' _2%2 % 's" | [Comment: The
inequality ensures that e < ¢(n) when an Approved algorithm is used to generate the
primes p and ¢.] If e is not provided during an instantiate request, or requested e =

0 is supplied, the default value =3 should be used.

3. The number outlen of output bits used for each iteration. The implementation
should allow any multiple of 8 in the range 8 < outlen < min{ lg(n) —
P , lg(n) — 2*lg(n)/e } to be requested. However, if a value for
outlen is not provided or requested outlen = 0 is specified, outlen should be
selected as the /argest multiple of 8 integer in the allowable range and within the
range of bits currently known to be hard bits for the RSA problem. That value is
lg(lg(n)), as shown in Table 6. Thus, in all cases, the default value 8 will be used if
requested outlen = 0.

Any values for requested_e and requested_outlen outside these ranges shall be
flagged as errors.

4. Set the size of the seeds: seedlen = lg(n) — outlen.

5. Selection of the modulus n. Two primes p and ¢ of size Y4lg(n) bits, having entropy
at least min_entropy, and satisfying ged (e, (p-1)(g-1)) = 1 shall be generated as
specified in FIPS 186-3. An implementation shall use strong primes as defined in
that document: each of p-1, p+1, g-1, g+1 shall have a large prime factor of at least

bits. [Comment: Any Approved algorithm will generate a
modulus of size lg(#) bits using strong primes of size % lg(n) bits, and will allow
the exponent e to be specified beforehand.]

The difficulty of the RSA problem relies on the secrecy of the primes p and g comprising
the modulus. Whenever private primes are generated, the implementation shall clear
memory of those values immediately after # has been computed. Only the modulus # shall
be kept in the internal state.

10.3.3.2.3 Instantiation of MS_DRBG

Notes for the instantiate function:

The instantiation of MS_DRBG requires a call to the instantiate function specified in
Section 9.2; step § of that function calls the instantiate algorithm in this section. For
this DRBG, two DRBG-specific input parameters may be provided: requested_e and
requested outlen.

The values for highest supported sccurity sirength and min_entropy_input_length
91
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are provided in Table 6 in Section 10.3.3.1.

In step S of the instantiate function, the following steps shall be used to select values
for n, e, seedlen and outlen:

5. Using security _strength, requested e (if provided) and requested_outlen (if
provided), select values for n, e, seedlen and outlen.

5.1

52

53

5.4

5.5

Comment: Determine the modulus size.
If security strength = 112, then Ig (n) = 2048
Else Ig (n) = 3072.
Comment: Select the exponent e.
If requested e < 65337 or is not provided, then e = 65.537
Else
5.2.1 e=requested e.

5.2.2 If (requested e < 3) or(requested_e > 28" - (2 x 2218 or
(requested_e is even), then return an ERROR.

Comment : Select the output length outlen.
If requested_outlen = 0 or is not provided, then outlen = 8
Else
5.3.1 outlen = requested_outlen.

5.3.2 If (outlen < 1) or (outlen > min ( |_lg (n)-2x seczn'iryisrrengrh_l i
|_lg (1) x (1 - 2/e) ) or (outlen is not a multiple of 8), then return
an ERROR.

Comment : Determine the seed length
(seedlen).

seedlen =1g (n) - outlen.
Comment: Get the modulus ».

Using lg (n) and e, get a random modulus #. # shall be the product of
two primes p and ¢ such that :

1) Each has a length of lg (#)/2 bits,
2) Each has at least security_strength + 64 bits of entropy,
3) ged(e, (p-1),(g-1)= 1

4)  (p-1), (pt1),(q-1) and (g+1) shall each have a large prime factor of
at least security_strength bits.
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56 n=pxgq.
57 p=q=0.

Since the values for working state values n, e, and outlen have been determined by
step 5 (above), they need not be provided to nor returned from the instantiate algorithm
in step 9; however, the value of seedlen is required by the instantite algotithm and must
be provided to it.

The instantiate algorithm:
Let Hash (...) be an Approved hash function for the security strengths to be supported.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 in Section 9.2):

Input:
1. entropy input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.5.2.

3. personalization_string: The personalization string received from the consuming
application.

4. seedlen: The length of the seed.
Output:

1. working state: The inital values for S and block_counter (sec Section
10.3.3.2.1).

Process:
1. seed material = entropy_input || nonce || personalization_string.
2. S=Hash_df (seed _material, seedlen).
3. block_counter = 0.
4. Return SUCCESS, S and block_counter for the working_state.

Implementation notes:

If a personalization_string will never be provided, then steps 1 and 2 may be combined as
follows:

S = Hash_df (entropy_input, seedlen).
10.3.3.2.4 Reseeding of a MS_DRBG Instantiation

Notes for the reseed function:

The reseed of MS_DRBG requires a call to the reseed function specified in Section
9.3; step 5 of that function calls the reseed algorithm in this section. The values for
min_entropy input_length are provided in Table 6 of Section 10.3.3.1.
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The reseed algorithm:

Iet Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 6 in Section 10.3.3.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.3):

Input:
1. working state: The current values for seedlen and S.
2. entropy input: The string of bits obtained from the entropy input source.

3. additional input: The additional input string received from the consuming
application.

Output:

1. status: The status of performing this algorihm. For this DRBG, the only status
is SUCCESS.

2. working state: The new values for S and block counter.
Process:

1. seed material =S || entropy input || additional_input.

2. S=Hash_df (seed material, seedlen).

3. block_counter = 0.

4. Return SUCCESS, and the new values of S and block_counter.

Implementation notes:

If additional_input will never be provided, then steps 1 may be modified as follows:

seed _material = S || entropy input.
10.3.3.2.5 Generating Pseudorandom Bits Using MS_DRBG

Notes for the generate function:

The generation of pseudorandom bits using an MS_DRBG instantiation requires a call
to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per request and outlen are provided in Table 6 of Section
10.3.3.1.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 6 in Section 10.3.3.1. The value of
reseed_interval is also specified in Table 6.
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Let pad8 (bitstring) be a function that inputs an arbitrary length bitstring and returns a
copy of that bitstring padded on the right with binary 0’s, if necessary, to a multiple of
8. Note: This is an implementation convenience for byte-oriented functions.

Let Truncate (bits, in_len, out len ) be a function that inputs a bitstring of in_len bits,
returning a string consisting of the leftmost out len bits of input. If in_len < out_len,
the input string is returned padded on the right with out len —in_len zeroes.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 in Section 9.4):

Input:

1. working state: The current values for n, e, seedlen, outlen, S, and
reseed_counter (see Section 10.3.3.2.1).

2. requested_number of bits: The number of pseudorandom bits to be returned to
the generate functione.

3. additional input: The additional input string received from the consuming
application.

QOutput:

1. status: The status returned from thefunction. The status will indicate
SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated. In the latter case, either nothing but the
reseed indication shall be returned as output, or a Null string shall be returned
as the returned_bits (see below).

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. §: The updated secret value in the working state.
4. block _counter: The updated block counter for reseeding.

Process:

Comment: Check whether a reseed is
required.

requested _number _of _ bits

1. If (block counter+(
= outlen

U >reseed interval, then

return an indication that a reseed is required.
2. If (additional _input = Null) then additional input =0

Comment: additional input set to seedlen
Zeroes.

Else additional_input = Hash_df (pad8 (additional input string), seedlen).
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Comment: Hash to seedien bits.

Comment: Produce
requested_number of bits, outlen at a time.

3. temp = the Null string.

4. i=0.

5. s=S® additional_input. Comment: s is to be interpreted as a seedlen-
bit unsigned integet.

6. S=L (s modn)/2""" | Comment: S is a seedlen-bit number.

7. R = (s°mod n) mod 2", Comment: R is an outlen-bit number.

8. temp=temp| R.

9. additional input=0"“"", Comment: seedlen zeroes.

10.i=i+1.

11.block_counter = block_counter+1.

12. If (len (temp) < requested number_of bits), then go to step 6.

13. returned_bits = Truncate (femp, i x k, requested _number_of bits).

14. Return SUCCESS, returned_bits and the values of S and block_counter for the
working state.
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11 Assurance

11.1 Overview

A user of a DRBG for cryptographic
purposes requires assurance that the

generator actually produces random and Design « Evaluation
unpredictable bits. The user needs l l
assurance that the design of the generator,

its implementation and its use to support Standards
cryptographic services are adequate to l

protect the user's information. In addition,
the user requires assurance that the
generator continues to operate correctly.
The assurance strategy for the DRBGs in
this standard is depicted in Figure 18. Operational Tests

The design of each DRBG in this standard
has received an evaluation of its security

properties prior to its selection for Figure 18: DRBG Assurance Strategy
inclusion in this Standard.

Implementation < Validation

The accuracy of an implementation of a DRBG process may be asserted by an
implementer, but this Standard requires the development of basic documentation to
provide minimal assurance that the DRBG process has been implemented properly (see
Section 11.2). An implementation should be validated for conformance to this Standard by
an accredited laboratory (see Section 11.3). Such validations provide a higher level of
assurance that the DRBG is correctly implemented. Validation testing for DRBG processes
consists of testing whether or not the DRBG process produces the expected result, given a
specific set of input parameters (e.g., entropy input). Implementations used directly by
consuming applications should also be validated against conformance to FIPS 140-2.

Operational (i.e., health) tests on the DRBG shall be implemented within a DRBG
boundary or sub-boundary in order to determine that the process continues to operate as
designed and implemented. See Section 11.4 for further information.

A cryptographic module containing a DRBG should be validated (see FIPS 140-2 [8]).
The consuming application or cryptographic service that uses a DRBG should also be
validated and periodically tested for continued correct operation. However, this level of
testing is outside the scope of this Standard.

Note that any entropy input used for testing (either for validation testing or
operational/health testing) may be publicly known. Therefore, entropy input used for
testing shall not knowingly be used for normal operational use.
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11.2 Minimal Documentation Requirements

This Standard requires the development of a set of documentation that will provide
assurance 1o users and (optionally) validators that the DRBGs in this Standard have been
implemented properly. Much of this documentation may be ‘placed in a user’s manual. This
documentation shall consist of the following as a minimumy

¢ Document how the implementation has been designed to permit implementation
validation and operational testing.

¢ Document the type of DRBG (e.g., Hash DRBG, Dual EC_DRBG), and the
cryptographic primitives used (e.g., SHA-256, AES-128).

¢ Document the sccurity strengths supported by the implementation.

e Document features supported by the implemention (e.g., prediction resistance, the
available elliptic curves, etc.).

e In the case of the CTR_DRBG and OFB_DRBG, indicate whether a derivation
function is provided. If a derivation function is not used, documentation shall
clearly indicate that the implementation can only be used when full entropy input is
available.

¢ Document any support functions other than operational testing.

11.3 Implementation Validation Testing

A DRBG process may be tested for conformance to this Standard. Regardless of whether
or not validation testing is obtained by an implementer, a DRBG shall be designed to be
tested to ensure that the product is correctly implemented; this will allow validation testing
to be obtained by a consumer, if desired. A testing interface shall be available for this
purpose in order to allow the insertion of input and the extraction of output for testing.

Implementations to be validated shall include the following:

e Documentation specified in Section 11.2.

e Any documentation or results required in derived test requirements.
11.4 Operational/Health Testing

11.4.1 Overview

A DRBG implementation shall perform self-tests to ensure that the DRBG continues to
function properly. Self-tests of the DRBG processes shall be performed prior to the first
instantiation and periodically, and a capability to perform self-tests on demand shall be
included (see Section 9.7). A DRBG implementation may optionally perform other self-
tests for DRBG functionality in addition to the tests specified in this Standard.

All data output from the DRBG boundary shall be inhibited while these tests are
performed. The results from known-answer-tests (see Section 11.4.2) shall not be output
98
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as random bits during normal operation.

When a DRBG fails a self-test, the DRBG shall enter an error state and output an error
indicator. The DRBG shall not perform any DRBG operations while in the error state, and
no pseudorandom bits shall be output when an error state exists. When in an etror state,
user intervention (e.g., power cycling, restart of the DRBG) shall be required to exit the
error state (see Sections 7.2.7 and 9.8).

11.4.2 Known Answer Testing

Known answer testing shall be conducted prior to the first instantiation and periodically,
and may be conducted on demand. A known-answer test involves operating the DRBG
with data for which the correct output is already known and determining if the calculated
output equals the expected output (the known answer). The test fails if the calculated
output does not equal the known answer. In this case, the DRBG shall enter an error state
and output an error indicator (see Sections 7.2.7 and 9.8).

The generalized known answer testing is specified in Sectlon 9.7. Testing shall be
performed on all DRBG functions implemented.
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Annex A: (Normative) Application-Specific Constants
A.1 Constants for the Dual EC_DRBG

The Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the
elliptic curve. One of the following NIST approved curves and points shall be used in
applications requiring certification under FIPS 140-2. More details about these curves may
be found in FIPS PUB 186-3, the Digital Signature Standard.

A.1.1 Curves over Prime Fields

Each of following mod p curves is given by the equation:
y* =x’-3x + b (mod p)
Notation:
p - Order of the field F}, , given in decimal

r - order of the Elliptic Curve Group, in decimal . Note that r is used here for
consistency with FIPS 186-3 but is referred to as n in the description of the
Dual EC_DRBG (...)

b - coefficient above
The x and y coordinates of the base point, ie generator G, are

the same as for the point P.
A.1.1.1 Curve P-224

p = 26959946667150639794667015087019630673557916\
260026308143510066298881

F = 26959946667150639794667015087019625940457807\
714424391%21682722368061

b = b4050a85 0c04b3ab £5413256 5044b0b7 d7bfd8ba 270b3943
2355ffb4

Px = b70e0cbd 6bb4bf7f 321390b9 4a03cld3 56c21122 343280d6

115cld21
Py = bd376388 b5f723fb 4c22dfe6 cd4375a0 5a074764 44d58199

85007e34
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Ox = 68623591 6elladfa f080a451 477fa27a £21248be 916d3458
ab83a3c9
Qy = 6060018a 24b35be6 caecf3f0 7f2c6b4d3 4e47479%e 55362c8fE

5707adca
A.1.1.2 Curve P-256

p = 11579208921035624876269744694940757353008614\
3415290314195533631308867097853951

¥ = 11579208921035624876269744694940757352999695\
5224135760342422259061068512044369

b= 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e
27d2604b

Px = 6b17d1£f2 el2c4247 f8bcebed 63a440f2 77037d81 2deb33a0l
£4a13945 d898c296

Py = 4fe342e2 fela7f9 8ee7ebda 7c0f9%el6 2bce3357 6b31l5ece
cbb64068 37bf51f5

c97445f4 5cdef9f0 d3e05ele 585£c297 235b82b5 beB8ff3ef
ca67c598 52018192

Ox

)y = b28ef557 ba3ldfcb dd2lac46 e2a%le3c 304f4dicb 87058ada
2cb81515 1e610046

A.1.1.3 Curve P-384

p = 39402006196394479212279040100143613805079739\
27046544666794829340424572177149687032904726\
6088258938001861606973112319

7y = 39402006196394479212279040100143613805079739\
27046544666794690527962765939911326356939895\
6308152294913554433653942643

b=b3312fa7 e23eceTed 988e056b e3f82d19 181d9cbe feB814112 0314088f
5013875a c656398d 8a2edl19d 2a85c8ed d3eczaef

Px = aa87ca22 be8b0537 8eblc7le f320ad74 6eld3b62 8ba79098
59f741e0 82542a38 5502£25d bf55296c 3a545e38 72760ab7

Py = 3617deda 96262c6f 5d9e98bf 9292dc29 £8f4ldbd 289%ald’c
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e9da3113 b5f0b8cO 0a60blce 1d7e819d 7a431d7c 90ealebSf

Ox = 8e722de3 125bddb0 5580164b fe20b8b4 32216a62 926c5750
2ceede3l c47816ed dle89769 124179d0 b6951064 28815065

Oy = 023b1660 dd701d08 39fd45ee c36f9%ee7 b32el3b3 15dc0261
0aalb636 e346df67 1£790£84 c5e09b05 674dbb7e 45c803dd
A.1.1.4 Curve P-521

p = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397656052122559\
64066145455497729631139148085803712198799971\
6643812574028291115057151

¥ = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397655394245057\
74633321719753296399637136332111386476861244\
0380340372808892707005449

b=051953eb 9618elc9 alf929%a2 1lalb6854 Oecea2da7 25b99b31
5f3b8b48 9918ef10 9e156193 95lec7e9 37b1652¢c Obd3bblb
£073573d £883d2c3 4flefd51 £d46b503 £00

Px = c6858e06 b70404e9 cd9%e3ecb 662395b4 429c6481 39053fb5
21f828af 606b4d3d baaldbSe 77efe759 28feldcl 27a2ffa8
de3348b3 cl856ad42 9bf97e7e 31lc2ebbd 66

Py = 11839296 a789%a3bc 0045c8a5 fb42c7dl bd998£54 449579b4
46817afb d17273e6 62c97ee7 2995ef42 640c550b 9013fadl
761353c7 086a272c 24088be9 4769fdl6 650

Ox = 1b9fa3e5 18d683c6 b6576369 4ac8efba ectfabdd £2276171
a4272650 7dd08add 4c3b3fdc lebebbl2 22ddbal7 7£722943
b24c3edf a0f85fe2 4d0c8c0l 591f0be6 f63

Qy = 1£3bdba5 85295d9a 1110d1df 1f9430ef 8442c501 8976134 37¢fD1b8 1dcOb813
2¢8d5¢39 ¢32d0e00 4a3092b7 d327¢0e7 add26d2c Tb69b38f 90666529 1145777 9de

A.1.2 Curves over Binary Fields

For each ficld degree m, a pseudo-random curve (B) and a Koblitz curve (K) are given.

The pseudo-random curve has the form
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E y+xy =x+x+Db,
and the Koblitz curve has the form
E: y*+xy =x+ ax*+ 1, wherea=0or 1.

For each pseudorandom curve, the cofactor is f= 2. The cofactor of each Koblitz curve is f
=2ifa=1lLandf=4ifa=0.

The coefficients of the pseudo-random curves, and the coordinates of the points P and Q
for both kinds of curves, are given in terms of both the polynomial and normal basis
representations, in hex.

NOTE: An implementation may choose to represent coordinates in either basis. However,
in order to gain certification it must demonstrate agreement with the test output vectors,
which have been generated using the normal basis representation for each of the binary
curves.

The order r of the base point P is given in decimal.

Note that 7 is used here for consistency with FIPS 186-3 but is referred to as # in the
description of the Dual_EC_DRBGY(). r is given in decimal

A.1.2.1 Curve K-233

a=2~0

¥y = 34508731733952818937173779311385127605709409888622521\
26328087024741343

Polynomial Basis:

Px = 00000172 32ba853a 7e73lafl 29f22ff4 149563a4 19c26bf5
0adc9dée efad6l2e6

Py = 000001db 537dece8 19b7£f70f 555a67c4 27a8cd9%> flBaebdb
56e0cl110 56faeb6a3

Normal Basis:

Px = 000000fd e76d9dcd 26e643ac 26f1aa90 laal2978 4b71fc07
22b2d056 14d650b3

Py = 00000064 3e317633 155c9e04 47ba8020 a3c43177 450ee036
d6335014 34cac978

Polynomial Basis:

Ox = 000000aa 7178e973 8a6f797a 1c265465 06106896 0a58b3fe
a3afc77f 18404eece

Oy = 0000002d 12a8f3e9 884bf31d 052a8eaf 414b891la 0ad049le
1£9d2576 79248ee?2
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Normal Basis:

Ox = 0000015a 96493d91 e56b5f10 579a7d58 eb895e06 8d94elaf
86d34143 4377548¢

Qy = 0000006b 13a689bb 3730dfd7 ad6486ea ff8ebbcb 9d815981
a%927d2eb 8cfa%p00

A.1.2.3 Curve B-233

r = 69017463467905637874347558622770255558398127373450135\
55379383634485463

Polynomial Basis:
b = 066 647edebc 332c7f8c
0923bb58 213b333b 20e9ced2 81fell5f 7d8f90ad

Px = 000000fa c9dfcbac 8313bb21 39flbb75 S5fef65bc 391£8b36
£8f8eb73 71£d558b
Py = 00000100 6a08a419 03350678 e58528be bfB8albef f867a7ca

36716f7e 01£81052
Normal Basis:
b = 1a0 03e0962d 4f9%a8e40
7¢c904a95 38163adb 82521260 0c7752ad 52233279

Px = 0000018b 863524b3 cdfefb94 f2784e0b 1ll6faac5 4404bcOl
62a363ba b84aldch

Py = 00000049 25df77bd 8b8fflab5 ££519417 822bfedf 2bbd7526
44292c98 c7af6el2

Polynomial Basis:

QOx = 000000chb 50ceO4af fdea6lll aaccfe04 ae5fO0dfe 95a59dbd
cdd4abalc 1126615a

Oy = 0000005b ab8a93a0 5c42caae 1b322bl4 876ec2e0 5c994a25
8e67295e 5808eaf9

Normal Basis:

QOx = 00000055 eaO7clca 4a4312f3 4562737c 257f4fa8 3b9d3d48
8al23cab 238f69a2

Qy = 00000055 d60eal7a 1lcb969a8 3786a82f 8172e889 0261959
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923badbl beeb5702
A.1.2.2 Curve K-283

a =0

r = 38853377844514581418389238136470378132848117337930613\
24295874997529815829704422603873

Polynomial Basis:

Px = 0503213f 78ca4488 3fla3bB8l 62f188e5 53cd265f 23cl567a
16876913 bOc2ac24 58492836

Py = 0lccda38 0flc9e31 8d90£95d 07e5426f e87e45c0 8184698
e4596236 4e341161 77dd2259

Normal Basis:

Px = 03ab9593 £8db09fc 188fld7c 4ac9fcc3 e57fcd3b dbl5024b
212c7022 9deb5fcd9 2ebleat6l

Py = 02118c47 55e7345c d8f603ef 93b98bl0 6fe8854f feb9a3b3
04634cc8 3a0e759f 0c2686bl

Polynomial Basis:

Ox = 0388eeed 1cc5808d 140d5179 76fbalfa 9cl4b886 914387a6
890a9497 £d3370b6 S9cdd3779

Oy = 04d86b99 fed2ecad 1dc9fd77 ed5928ac ef908f97 leb22cf6
8e436df4 dbebel6e b2c2dff4

Normal Basis:

Ox = 004abl7d 72374eb7 dac733d8 83d7b650 eb03ccb9 d6c60197
74f41ef2 1b8elell OfeBaab8
Qy = 07243a25 e2e7e633 7897e8bl 9791¢c813 0317aecf 8clac2a4d

2ac03dac 4afdabe8 ffc9888c
A.1.2.4 Curve B-283

r = 77706755689029162836778476272940756265696259243769048\
89109196526770044277787378692871

Polynomial Basis:
b = 27b680a c8b8596d a5adaf8a 19a0303f
ca97fd76 45309fa2 ab81485a £6263e31l 3b79%a2f5

Px = 05£93925 8db7dd90 el934f8c 70b0dfec 2eed25b8 557eac9c
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80e2e198 f8cdbecd 86b12053

Py = 03676854 fe24141lc b98fe6d4 b20d02b4 516£f£702 350eddbl
826779c8 13f0df45 be8112f4

Normal Basis:
b = 157261b 894739fb 5al3503f 55f0b3fl
0c560116 66331022 01138ccl 80c0206b dafbc951

Px = 0749468e 464eed68 634b21f7 f£61cb700 7018176 bc36a236
4cb8906e 940948ea ad63c35d
Py = 062968bd 3b489%ac5 c%b859da 68475¢c31 Sbafcdci ccd0dc90

5070£624 46£49c05 2£49c08c

Polynomial Basis:

Ox = 06530328 33283d9%e b6ebc03c 2d735ed9 12bdebcl 2e364643
£8e309d9 d55e9440 28190bab

Qy = 03693cd3 8b4e022d ef8lbb7f 949ca7f4 287cbc3d 3aaeB632
a6fea7l9 e0da9998 48211443

Normal Basis:

Ox = 06c2366¢c 8acc000a 5bSléedfc 4cf8a204 b255dd0d e53fl8el
99718e05 47b3845f 000626¢9

Qy = 03667£53 ele528e9 99bfb2cb 9e609116 969d78fb 94a264a9
a2045878 132ca8f5 85b874ef

A.1.2.5 Curve K-409

a=20

r = 33052798439512429947595765401638551991420234148214060\
96423243950228807112892491910506732584577774580140963\
66590617731358671

Polynomial Basis:

Px = 0060f05f 658f49cl ad3ablB89 0f718421 0efd0987 e307c84c
27accfb8 f9f67cc2 c460189%e bSaaaab2 ee222ebl b35540ct
e9023746

Py = 01e36905 Ob7c4ed2 acbaldac bf04299c 3460782f 918ead27
€6325165 e9%eallel3 da5f6cd42 e9c55215 aa%ca27a 5863ec4d8
d8e0286b
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Normal Basis:

Px = 01b559c7 cba2422e 3affel33 43e808b5 5e012d72 écalb7e6
a63aeafb cle3a98e 10calOfcf 98350c3b 7£89a975 4aB8eldcO
713cecda

Py = 016d8c42 052£f07e7 713e7490 eff318ba labdéfef 8a5433c8
94b24f5c 817aeb79 852496fb eeB03ad47 bcB8a2038 78ebflcd
99%afd7d6

Polynomial Basis:

Ox = 0lba%9a6c 2d3ledf6 671ce7dl fléefdab2 7c72ca88 cc3b33e9
b2ef536e 92bcO06ad OcacOdéa 821898c2 847b5d7e 8506£d26
9e5l1dfcc

Qy = 019d9567 d1931672 ab748567 c4fb75a4 e0658b9% bfl7901le
b7d41148 489%ab481 354977ac 390bbb05 a6e782b5 13caald9
02a846ef

Normal Basis:

Ox = 00e8b595 6a3f2ec5 eB8e3e3cf e4c2003a 687feecc ade3lleb
c34d47ef a723dac6 36flefoa cd5ced42 309fc937 fa5460d5
223c3743

Qy = 001f61f2 2a66d942 delll925 dd94da7d 5c02e4c2 23328beb
9019al157 d7b700f6 d8b42316 efeB8193d 68c90cel fe57ad2b
4£690281

A.1.2.6 Curve B-409

¥ = 66105596879024859895191530803277103982840468296428121\
92846487983041577748273748052081437237621791109659798\
67288366567526771

Polynomial Basis:

b = 02la5c2 cB8ee9feb 5c4b%9a75
3b7b476b 7fd6422e £1£3dde67 4761fa%9 déac27c8
a%al197b2 72822f6c d57abb5aa 4f50ae3l 7b13545f

Px = 015d4860 d088ddb3 496b0c60 64756260 44lcdeda £1771d4d
bO1ffe5b 34e59703 dc255a86 8all8051 5603aeab 60794e54
bb7996a7

Py = 0061blcf abbbe5f3 2bbfa783 24edll6a 7636b9cd a7bdl98d
0158aa4f 5488d08f 38514f1f df4b4f40 d2181b36 81lc364ba
0273c706
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Normal Basis:

b = 1244065 1¢3d3772 f7f5alfe
6€715559 e2129bdf a04d52f7 boac7chb3 2cf0ed06
£610072d 88ad2fdc c50c6fde 72843670 £8b3742a

Px = 0Oceacbc 9f475767 dB8e69f3b 5dfab398 13685262 bcacf22b
84c7b6dd 9818997 318c96£f0 761f77c6 02c0l6ce d7c548de
830d708f

Py = 0199d64b aB8f089c6 db0eOb6l e80bb959 34afdlca f2e8be76
dlcbhe9af fc7476df 49142691 ad303902 88aal9%dc c59cl573
aa3c009%a

Polynomial Basis:

Ox = 01920ed2 5ec895fc 704ac0da 05a93ace 25fc9646 ab4533c0
4f759cel ac0e53d8 096b2318 de6fdd0d7 1d2affdé 915e8d7a
e2977127

Oy = 011d1d15 0cl27a29 77b48al7 facBaal3 96985213 3179fcl7
74£9d3db 1f6beed43 d8cO4cce 35f2abf8 022230f6 457£260a
72444bfd

Normal Basis:

Ox = 01b248le 3265c48d 28db6172 95efafd5 77f7d0ed 175ccd9
0fcbl1982 639bc380 eeeB80285 ebefB8a7b la3lb566d 602c07dc
dc85a5ab

Qy = 00d0712d 082d31lba 22497958 bl178993 a2f5dcd4l f14207e4
0f8ccda8 06b637cc £1380320 b6ff9dfd 8e811f14 49cdc23e
2£4823fe

A.1.2.7 Curve K-571

a=20

r = 19322687615086291723476759454659936721494636648532174\
99328617625725759571144780212268133978522706711834706\
71280082535146127367497406661731192968242161709250355\
5733685276673

Polynomial Basis:

Px = 026eb7a8 59923fbc 82189631 £8103fed ac9ca297 0012d5d4
60248048 01841cad 43709584 93b205e6 47da304d bdceb08c
bbdlba39 494776fb 9884717 4dcaB88c7 e2945283 a0lc8972
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Py = 0349dc80 7f4fbf37 4fdaeade 3bcad53l 4dd58cec 9f307a54
ffcelefc 006d8a2c 9d4979c0 acddaea7 4fbebbbd f772aedc
b620b0la Tba7aflb 320430c8 591984f6 Olcddcld 3eflc7a3

Normal Basis:

Px = 004bb2db a418d0db 107adae0 03427e5d 7ccl3%ac b465e593
4f0beal2a b2£3622b c29b3d5b %aa7alfd fd5d8be6 6057c¢c100
8e71e484 bcd98f22 bfB847642 37673674 29%ef2ecS bc3ebcf’

Py = 044cbb57 de20788d 2c952d7b 56c£39%bd 3e890189 84bdl24e
751ceffd 369dd8da c6a59%es6e 745df44d 8220ce22 aa2c852c
fcbbefd49 ebaa98bd 2483e331 80e04286 feaa2530 50caff60

Polynomial Basis:

Ox = 06c62ea8 63120582 6a8e4328 412a3400 Obe7c23f 19982e7f
35164b12 ¢18df503 2997173d 9776babl 2dafe58e 97elaadd
4726eaae 6473c2bc 7e0c2752 fed22ac2 e86fbcfc 00468dc4d

Oy = 070blc34 39bb9845 42f21349 21££78d0 cebefbdb £27£02b5
0f83c658 f29b2076 ac77cB8ac 015beb59c 02d090fb 20aada3s
£4745614 78445d04 fd2ee388 3cbd5508 f7edcfe7 a803dd47

Normal Basis:

Ox = 0le8ceeb 3c73b384 ad828269 7566e3ad bl1573fd 7aff7abd
1af60123 062e560c 1bb66d35 d00cd77e 101e7606 6afcd0c9
8c8826eb 79b91e33 1328701c 9fb5c3ab 01d798af cdfbeab’

Qy = 079d03ff 6£51d98d 467%aa59 97bSleca ezecf2fe bad9ledf
d5df7df7 277bb265 b58bllad 5b916e99 fealef78 49314dfl
0af703bd 1b202c8c fa97760b 27044cl9 ac5d9fb5 65381df3

A.1.2.8 Curve B-571

r = 38645375230172583446953518909319873442989273297064349\
08657235251451519142289560424536143999389415773083133\
88112192694448624687246281681307023452828830333241139\
3191105285703

Polynomial Basis:

b = 2f40e7e 2221£295 de297117
b7£3d62f 5c6a97ff cb8ceffl cdéba8ce 4a%alB8ad
84ffabbd 8efa5933 2be7adé67 56a66e29 4afdl8ba
78ffl2aa 520ed4de7 39bacalc 7ffeff7f 2955727a
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Px = 0303001d 34b85629 6cl6c0d4 0d3cd775 0a93dld2 955fa80a
a5f40fc8 db7b2abd bde53950 £4c0d293 cdd711a3 5b67fbl4
99ae6003 8614f139 4abfa3bd4 c850d927 ele7769c Beec2dl9

Py= 037b£f273 42da639%b 6dccfffe b73d69d7 8c6c27a6 009cbbca 1980£853
3921e8a6 84423e43 bab08ab57 6291afB8f 461bb2a8 b3531d2f
0485cl19 16e2f151 6e23dd3c lad4827af 1b8aclbb

Normal Basis:

b = 3762d0d 47116006 179da356
88eecaccf 59la5cde a7500011 8d9608c5 9132d434
2610lald fb377411 5£586623 £75f0000 1lce61198
3cl275fa 31f5bc9f 4belalOfd 67f01lca8 85c74777

Px = 00735e03 5def5925 cc33173e b2a8ce77 67522bd6 6d278b65
02291612 7dfea9d2 d361089f 0a7a0247 alB84elc7 0d417866
e0fe0feb Off8f2f3 £9176418 f97dl1l7e 624e2015 dfle62a8

Py = 004a3642 0572616c df7e606f ccadaecf c3b76dab Oebl248d
d03fbdfc 9cd3242c 4726beb7 9855e812 deTec5c5 00b4576a
24628048 b6a72d88 0062eed0d dd34b109 6d3acbb6 b0ladad?

Polynomial Basis:

Ox = 0le263e6 afad323f 934e50e4 daObO1l5b 3£6727f4 27701lcc3
0dcdl1145 cl2e3c66 50ccd260 5cedbSaba 609cbacd 3aedfe2d
32de8e64 80303414 dc0907f0 21f8cefd cfb45700 56£8d686

Qy = 06c99cbb 0c686abe d6b7015d e2cbelBa 3f623ae2 c87abda3
d6cd7b78 b37f49cc 5e88de04 b5668dad 2df3f34c 50b8cb56a
3140d87f 8labb42e 919b3f8d 61743ba9 14bcbllb defdabct

Normal Basis:

Ox = Oleced46 40b698fe eb575fcO0 65156c5f £94c277a 5335ela2
28b65c22 aff27777 dl59cfee c7£1270c c84bca33 8f34abdd
6748f592 bf322442 e2ffeffe 9e5a321d cdébde75 a269e745

Olcadda7 5647bba5 8c08b5e2 2b633e3a 5dd3b2c9 5db8lf2d
220cba3d 7a38e692 072b3db2 6465b27a 2abd56b4 2291£982
3a902eb5 038dl62a 7a578d37 8dd0c620 4£722521 b8084dAc

A.2 Test Moduli for the MS_DRBG (...)

Each modulus is of the form n = pg with p=2p, + 1, ¢ = 2q: + 1, where p; and ¢, are
(Ig(n)/2 — 1)-bit primes.
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A.2.1 The Test Modulus n of Size 2048 Bits

The hexadecimal value of the modulus # is:
clla0lf2 5daf396a a927157b af6f504f 78cba324 57b58c6b
£7d85laf 42385cc7 905b06f4 1£6d47ab 1lb3a2cl2 17d14d15
070c9da5 24734ada 2fel7a%95 e600aeda 4f8blab6 96661e40
7d3043ec d1023126 5d8ealdl 81cf23cé dd3dec9e b3fce204
5b9299bb cca63dee 435a2251 ad0765d4 9d29db2e f5abalél
27%9aeb5f 6899fe48 7973e36c 1£fb13086 d9231b6b 925a8495
4bal0fbca feaB844ea 77a9£f852 £86915a4 e7lbdOba b9b269c3
9a7a827a 41311ffa 4470140c 8b6509fe 5dbd3%e3 ec816066
2d036el3 0e07e233 06a39b18 dbOe8efe 64418880 8lac3673
2b4091f6 63690d03 3b486d74 371a20fc 3e2ldbce 7ed0e797
5e¢a44453 cd161d32 e8185204 59896571

A.2.2 The Test Modulus n of Size 3072 Bits

The hexadecimal value of the modulus # is:
c6046ba6 8beaal6l c468a9a7 4da34d64 21398c73 020837c7
d2a4042b dd9a7628 cab8022e 5bc4246f 75da8d26 03da8021
41¢5d112 835e6bdb 57ed799e 28d6fadd c3d0£5b5 £9776c14
0a901bf7 73ae3113 35d0470e da91lb442 dbacé62la cdd324e2
270244d7 cbl55adc 4b77dd94 fafe069d Sb5cc494 86e9febl
c5081190 abb24f54 2d7d21e9 c90453c6 9ac63143 401d6b35
e456ea2f 64ae76f9 2df80328 b48£7962 d5c9b779 b2078496
7d374£02 O6b8afbf 678d7f5f 36c3d84e c9e55c28 7Tce5c668
17ee05b4 1059168f b5c5e2a3 6bc2féce 3b43bdld S6eebddS
70ffe6le 5a7023a9 04d98f8a 96bfaf55 55al2f81 5561b401
63f3a50e alel6a36 3f5cddd4 aldb275c 4£c2d650 dS51fled3
£5£d7631 ca45914f f6fe62a0 be550997 5£6566bb 47¢76276
f4e3b2eb 837bf0Oda 9d824687 042479a3 04147399 2d814a3a
7be7bc3d 06992df6 6c1d7d06 £8cl4lle 2bbb573a 0e278e7a
daa600f3 2577030e 95b73dd9 96b65£98 4740a485 e27138bd

d502522 09bcf005 6640a1b3 bldd97ad 7c187¢04 01ba817d
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ANNEX B : (Normative) Conversion and Auxilliary Routines

B.1 Bitstring to an Integer

Input:

1. by, by..., by The bitstring to be converted.
Output:

1. x The requested integer representation of the bitstring.
Process:

1. Let (b, by ..., b,) be the bits of b from lefimost to rightmost.

2. x="3 2.

i=l
3. Return x.

In this Standard, the binary length of an integer x is defined as the smallest integer n
satisfying x <2".

B.2 Integer to a Bitstring
Input:
1. x The non-negative to be converted.
Output:
1. by, by, ..., b, The bitstring representation of the integer x.
Process:

1. Let (b1, by, ..., bs) represent the bitstring, where 5, = 0 or 1, and b, is the most
significant bit, while b, is the least significant bit.

2. For any integer # that satisfies x < 2", the bits 4; shall satisfy:
x=Y20p,
i=1

3. Return b1, bz, e b,,.

In this Standard, the binary length of the integer x is defined as the smallest integer # that
satisfies x <2".

B.3 Integer to an Octet String

Input:
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1. A non-negative integer x, and the intended length n of the octet string satisfying
2>y,
Output:
1. An octet string O of length » octets.
Process:
1. Let O,, O,,..., O, be the octets of O from leftmost to rightmost.
2. The octets of O shall satisfy:

x =X 250,
fori=1ton.
3. Return O.

B.4 Octet String to an Integer

Input:
1. An octet string O of length » octets.
Output:
1. A non-negative integer x.
Process:
1. Let Oy, O ..., O, be the octets of O from leftmost to rightmost.
2. x is defined as follows:
x =2 25",
fori=1ton.

3. Return x.
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Annex C: (Informative) Security Considerations
C.1 The Security of Hash Functions

[Add a discussion as to why it is OK to use SHA-1 to generate pseudorandom curves of
greater than 80 bits of security. The security strength of a hash function for these
generators is = the output block size. If there is no vulnerability to collision (e.g., when a
hash function is used as an element in a well-designed RNG) and the function is not
invertible, than the strength is = the ouput block size. However, when a hash function is
used as an element in an application/cryptographic service where vulnerability to collisions
is a consideration, then the strength = half the size of the output block.] ]

C.2 Algorithm and Keysize Selection

This section provides guidance for the selection of appropriate algorithms and key sizes. It
emphasizes the importance of acquiring cryptographic systems with appropriate algorithms
and key sizes to provide adequate protection for 1) the expected lifetime of the system and
2) any data protected by that system during the expected lifetime of the data. Also included
is the necessity for selecting appropriate random bit generators to support the
cryptographic algorithms.

Cryptographic algorithms provide different levels (i.c., different “strengths”) of security,
depending on the algorithm and the key size used. Two algorithms are considered to be of
equivalent strength for the given key sizes (X and Y) if the amount of work needed to
“break the algorithms” or determine the keys (with the given key sizes) is approximately
the same using a given resource. The strength of an algorithm (sometimes called the work
factor) for a given key size is traditionally described in terms of the amount of work it
takes to try all keys for a symmetric algorithm with a key size of "X" that has no short cut
attacks (i.e., the most efficient attack is to try all possible keys). In this case, the best attack
is said to be the exhaustion attack. An algorithm that has a "¥" bit key, but whose strength
is equivalent to an "X" bit key of such a symmetric algorithm is said to provide “X bits of
security” or to provide "X-bits of strength". An algorithm that provides X bits of strength
would, on average, take 21T 10 attack, where T is the amount of time that is required to
perform one encryption of a plaintext value and comparison of the result against the
corresponding ciphertext value.

Determining the security strength of an algorithm can be nontrivial. For example, consider
TDEA. TDEA uses three 56-bit keys (K1, K2 and K3). If each of these keys is
independently generated, then this is called the three key option or three key TDEA
(3TDEA). However, if K1 and K2 are independently generated, and K3 is set equal to K1,
then this is called the two key option or two key TDEA (2TDEA). One might expect that
3TDEA would provide 56 x 3 = 168 bits of strength. However, there is an attack on
3TDEA that reduces the strength to the work that would be involved in exhausting a 112-
bit key. For 2TDEA, if exhaustion were the best attack, then the strength of 2TDEA would
be 56 x 2 = 112 bits. This appears to be the case if the attacker has only a few matched
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plain and cipher pairs. However, if the attacker can obtain approximately 2% such pairs,
then 2TDEA has strength that is comparable to an 80-bit algorithm (see [ASCX9.52],
Annex B) and, therefore, is not appropriate for this Standard, since the lowest sccurily
streneth provides 112 bits of security.

The comparable key sizes discussed in this section are based on assessments made as of
the publication of this Standard. Advances in factoring algorithms, advances in general
discrete logarithm attacks, elliptic curve discrete logarithm attacks and quantum computing
may affect these assessments in the future. New or improved attacks or technologies may
be developed that leave some of the current algorithms completely insecure. [ quantum
computing becomes a practical reality, the asymmetric techniques may no longer be
secure. Periodic reviews will be performed to determine whether the stated comparable
sizes need to be revised (e.g., the key sizes need to be increased) or the algorithms are no
longer secure.

When selecting a block cipher cryptographic algorithm (e.g., AES or TDEA), the block
size may also be a factor that should be considered, since the amount of security provided
by several of the modes defined in [SP 800-38] is dependent on the block size3. More
information on this issue is provided in [SP 800-38].

TTable 7 provides associated key sizes for the Approved algorithms and hash functions.

1. Column 1 indicates the sccurity strength provided by the algorithms and key sizes
in a particular row.

2. Column 2 provides the symmetric key algorithms that provide the indicated level of
security (at a minimum), where TDEA is approved in [ASC X9.52], and AES is
specified in [FIPS 197]. The table entry for TDEA requires the use of three distinct
keys.

3. Column 3 provides the comparable security strengths for hash functions that are
specified in FIPS180-2. The hash function entries assume that collision resistance
is required (e.g.. the application uses the hash function for digital signatures). For
applications that are not concerned with collisions. the appropriate application
standard will speciiyv the appropriate hash functions for the security level. For this
Standard. see Section 10.1.1 and Table 3.

4. Column 4 indicates the size of the parameters associated with the standards that use
discrete logs and finite field arithmetic (DSA as defined in ASC X9.30 for digital
signatures, and Diffie-Hellman (DH) and MQV key agreement as defined in [ANS
X9.42], where L is the size of the modulus p, and N is the size of ¢. L is commonly
considered to be the key size for the algorithm, although L is actually the key size
of the public key, and & is the key size of the private key.

5 Suppose that the block size is b bits. The collision resistance of a MAC is limited by the size of the tag and
collisions become probable after 242 messages, if the full b bits are used as a tag. When using the Output
Feedback mode of encryption, the maximum cycle length of the cipher can be at most 2° blocks; the average
cipher length is less than 2° blocks. When using the, Cipher Block Chaining mode, plaintext information is
likely to begin to leak after 22 plocks have been encrypted with the same key.



5. Column 5 defines the value for & (the size of the modulus ») for the RSA algorithm
specified in ANS X9.31 for digital signatures, and specified in ANS X9.44 for key
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establishment. The value of % is commonly considered to be the key size.

6. Column 6 defines the value of f (the size of #, where 7 is the order of the base point
G) for the discrete log algorithms using elliptic curve arithmetic that are specified
for digital signatures in ANS X9.62, and for key establishment as specified in ANS

X9.63. The value of fis commonly considered to be the key size.

Table 7: Equivalent strengths.

Bits of Symmetric Hash DSA, D-H, MQV RSA Elliptic

security key algs. functions Curves

112 3-key TDEA | SHA-224 L =2048 k =2048 f=224
N=224

128 AES-128 SHA-256 L=3072 k=3072 f>256
N=256

192 AES-192 SHA-384 >384

256 AES-256 SHA-512

C.3 Extracting Bits in the Dual_EC_DRBG {(...)

C.3.1 Potential Bias Due to Modular Arithmetic for Curves Over F,

For the mod p curves (i.¢, a Prime field curve ), there is a potential bias in the output due to
the modular arithmetic. This behavior is succinctly explained in Part 1 of this Standard,

and two approaches to correcting the bias are presented there. The Negligible Skew

Method described in Section 14.2.2 of Part 1 is appropriate for the NIST curves, since all
were selected to be over prime fields near a power of 2 in size. Each NIST prime has at
least 32 leading 1's in its binary representation, and at least 16 of the leftmost (high-order)

bits are discarded in each block produced. These two facts imply that there is a small

fraction (< 1/2*) of outlen outputs for which a bias to 0 may occur in one or more bits.
This can only happen when the first 32 bits of an x-coordinate are all zero. As the leftmost
16 bits (at least) are discarded, an adversary can never be certain when a “biased” block

has occurred. Thus, any bias due to the modular arithmetic may safely be ignored.

C.3.2 Adjusting for the missing bit(s) of entropy in the x coordinates.

In a truly random sequence, it should not be possible to predict any bits from previously
observed bits. With the Dual_EC_DRBG (...), the full output block of bits produced by
the algorithm is “missing” some entropy. Fortunately, by discarding some of the bits,

those bits remaining can be made to have nearly “full strength”, in the sense that the
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entropy that they are missing is negligibly small.

To illustrate what can happen, suppose that a mod p curve with m=256 is selected, and that
all 256 bits produced were output by the generator, i.e. that outlen = 256 also. Suppose also
that 255 of these bits are published, and the 256-th bit is kept “secret”. About Y4 the time,
the unpublished bit could easily be determined from the other 255 bits. Similarly, if 254 of
the bits are published, about % of the time the other two bits could be predicted. This is a
simple consequence of the fact that only about 1/2 of all 2™ bitstrings of length m occur in
the list of all x coordinates of curve points.

The situation is slightly worse with the binary curves, since each has a cofactor of 2 or 4.
This means that only about 1/4 or 1/8, respectively, of the m-bitstrings occur as x
coordinates. Thus, the NIST elliptic curves have m-bit outputs that are lacking 1,2 or 3 bits
of entropy, when taken in their entirety.

The "abouts" in the preceding example can be made more precise, taking into account the
difference between 2™ and p, and the actual number of points on the curve (which is
always within 2 * p” of p). For the NIST curves, these differences won't matter at the scale
of the results, so they will be ignored. This allows the heuristics given here to work for any
curve with "about" (2")/f points, where f= 1,2 or 4 is the curve's cofactor.

The basic assumption needed is that the approximately (2")/(2f) x coordinates that do occur
are "uniformly distributed": a randomly selected m-bit pattern has a probability 1/2f of
being an x coordinate. The assumption allows a straightforward calculation,--albeit
approximate--for the entropy in the rightmost (least significant) m-d bits of

Dual EC_DRBG output, with d << m.

The formula is E = - sum {j=0} to {j=2d} [ 2 binomprob(2¢, z, 2%-j)] piloga{p;}.

The term in braces represents the approximate number of (m-d)-bitstrings, which fall into
one of 1+27 categories as determined by the number of times j it occurs in an x coordinate;
z = (2f~1)/2fis the probability that any particular string occurs in an x coordinate; p; =
(7*2/)/2" is the probability that a member of the j-th category occurs. Note that the /=0
category contributes nothing to the entropy (randomness).

The values of £ for d up to 16 are:

log2(): 0 4: 0 entropy: 255.00000000 m-d: 256
log2(f): 0 d: 1 entropy: 254.50000000 m-d: 255
log2(f): 0 d: 2 entropy: 253.78063906 m-d: 254
log2(f): 0 d: 3 entropy: 252.90244224 m-d: 253
log2(f): 0 d: 4 entropy: 251.95336161 m-d: 252
log2(f): 0 d: 5 entropy: 250.97708960 m-d: 251
log2(f): 0 d: 6 entropy: 249.98863897 m-d: 250
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log2(f): 0
log2(f): 0
log2(f): 0
log2(f): 0
log2(f): 0
log2(f): 0
log2(f): 0
log2(f): 0
log2(f): 0
log2(f): 0

log2(f):
log2(f):
log2(f):
log2(f):
log2(f):
log2(f):
log2(f):
log2(f):
log2(f):
log2(f):
log2(f):
log2(f):
log2():
log2(f):
log2(f):
log2(f):
log2(f):

S T T R R R

log2(f): 2

d: 7 entropy:
d: 8 entropy:
d: 9 entropy:

d: 10 entropy:
d: 11 entropy:
d: 12 entropy:
d: 13 entropy:
d: 14 entropy:
d: 15 entropy:
d: 16 entropy:

- 0 entropy:
- 1 entropy:
2 entropy:
: 3 entropy:
: 4 entropy:
. 5 entropy:
. 6 entropy:
: 7 entropy:
- 8 entropy:
: 9 entropy:

T S T T T T T T T T T T T = T ~ VI~V 9

d. 0 entropy:

: 10 entropy:
11 entropy:
- 12 entropy:
: 13 entropy:
: 14 entropy:
: 15 entropy:
- 16 entropy:
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248.99434222 m-d: 249
24799717670 m-d: 248
246.99858974 m-d: 247
245.99929521 m-d: 246
244.99964769 m-d: 245
243.99982387 m-d. 244
24299991194 m-d. 243
241.99995597 m-d: 242
240.99997800 m-d: 241
239.99998900 m-d: 240

254.00000000
253.75000000
253.32398965
252.68128674
251.85475372
250.93037696
249.96572188
248.98298045
247.99151884
246.99576643
245.99788495
244.99894291
243.99947156
242.99973581
241.99986791
240.99993397
239.99996700

m-d: 256
m-d: 255
m-d: 254
m-d: 253
m-d: 252
m-d: 251
m-d: 250
m-d: 249
m-d: 248
m-d: 247
m-d: 246
m-d: 245
m-d: 244
m-d: 243
m-d: 242
m-d: 241
m-d: 240

253.00000000 m-d: 256
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log2(/): 2 d: 1 entropy: 252.87500000 m-d: 255
log2(f): 2 d: 2 entropy: 252.64397615 m-d: 254
log2(f): 2 d: 3 entropy: 252.24578858 m-d: 253
log2(f): 2 d: 4 entropy: 251.63432894 m-d: 252
log2(f): 2 d: 5 entropy: 250.83126431 m-d: 251
log2(f): 2 d: 6 entropy: 249.91896704 m-d: 250
log2(f): 2 d: 7 entropy: 248.96005989 m-d: 249
log2(f): 2 d: 8 entropy: 247.98015668 m-d: 248
log2(f): 2 d: 9 entropy: 246.99010852 m-d: 247
log2(f): 2 d: 10 entropy: 245.99506164 m-d. 246
log2(f): 2 d: 11 entropy: 244.99753265 m-d: 245
log2(f): 2 d: 12 entropy: 243.99876678 m-d: 244
log2(f): 2 d: 13 entropy: 242.99938350 m-d: 243
log2(f): 2 d: 14 entropy: 241.99969178 m-d: 242
log2(f): 2 d: 15 entropy: 240.99984590 m-d: 241
log2(f): 2 d: 16 entropy: 239.99992298 m-d. 240
Observations:

a) Each table starts where it should, at 1, 2 or 3 missing bits;
b) The missing entropy rapidly decreases;

¢) Each doubling of the log2(f)actor requires about 1 more bit to be discarded for the
same level of entropy;

d) For log2(f) = 0, i.e, the mod p curves, d=13 leaves 1 bit of information in every
10,000 (m-13)-bit outputs.

Based on these calculations, for the mod p curves, it is recommended that an
implementation shall remove at least the leftmost, ie, most significant, 13 bits of every m-
bit output, and that the Dual_EC_DRBG (...) be resceded every 10,000 iterations. For the
binary curves, either 14 or 15 of the leftmost bits shall be removed, as determined by the
cofactor being 2 or 4, respectively. Using this value for d in the mod p curves insures that
no bit has a bias from the modular reduction exceeding 1/2**

For ease of implementation, the value of d should be adjusted upward, if necessary, until
the number of bits remaining , m-d= blocksize, is a multiple of 8. By this rule, the actual
number of bits discarded from each block will range from 16 to 19.
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ANNEX D: (Informative) Functional Requirements

[Should this annex be retained? Should it just address those requirements that are
appropriate for DRBGs? |

D.1 General Functional Requirements

The following functional requirements apply to all random bit generators:

1.

The implementation shall be designed to allow validation testing; including
documenting specific design assertions about howt the RBG operates. This shall
include mechanisms for testing ail detectable error conditions.

Implementation validation testing for DRBGs is discussed in Section 11.3.

. The RBG shall be designed with the intent of meeting the security properties in

Part 1, Section 8. This is on a best effort basis, as aspects of some of these
properties are not testable.

Documentation requirement: There shall be design documentation that describes
how the RBG is intended to meet all security properties, including protection from
misbehavior.

The fulfillment of general RBG requirements is discussed in Part 4. Part [. Section
8 includes discussions of backtracking and prediction resistance. RBG output
properties and RBG opetational properties. Part 3-specific requirements are
discussed below. Documentation requirements for RBGs are listed in Section 11.2.

. The RBG shall support backtracking resistance. [l still think this is a wasted

statement. since implied by requirement 2.]

Backtracking resistance has been designed into each DRBG specified in Section
10.

Optional attributes for the functions in an RBG are as follows:

4,

The RBG may be capable of supporting prediction resistance.

An optional prediction resistance capability is specified for the DRBG [unctions in
Section 9.2 - 9.4 and is also discussed in Section 8.6.

D.2 Functional Requirements for Entropy Input

These requirements are addressed in Parts 2 and 4 of this Standard.

D.3 Functional Requirements for Other Inputs

No general function requirements are stated in Part |for other inputs. However. Part 3
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requirements for other input are discussed in Section 7.2.3.

D.4 Functional Requirements for the Internal State

The requirements for the internal state of a RBG are:

1.

The internal state shall be protected in a manner that is consistent with the use and
sensitivity of the outpul.

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. (see Section
8.2.3).

The internal state shall be functionally maintained properly across power failures,
reboots, elc. or regain a secure condition before any output is generated (i.e.,
either the integrity of the internal state shall be assured, or the internal state shall
be re-initialized with a new statistically unique value).

This requirement is outside the scope of this Standard. Fulfilling this requirement
may be addressed, for example, by implementing the DRBG in a FIPS 140-2
validated module. Further discussion of this requirement will be addressed in Part
4.

The RBG shall satisfy the requirements for a particular security strength (from the
set of [112, 128, 192, 256, or potentially unlimited]) in the internal state
components.

Documentation requirement: The security strength provided by the RBG shall be
documented.

Sections 8.4, 9.2, 9.3 and the DRBG algorithms in Section 10 address the
acquisition of sufficent entropy for the seed to satisfy a given security strength.
Documentation requirements are listed in Section 11.2.

D.5 Functional Requirements for the Internal State Transition Function

The requirements for the internal state transition functions of an RBG are:

1.

The deterministic elements of internal state transition functions shall be verifiable
via known-answer testing during installation and/or startup and/or initialization,
and periodic health tests.

A DRBG shall perform self-tests to ensure that the DRBG continues to function
properly. Self tests are discussed in Sections 9.7 and 11.4.

The internal state transition function shall, over time, depend on all the entropy
carried by the internal state. That is, added entropy shall affect the internal state.

This requirement is fulfilled by the design of the DRBGs specified in Section 10.

3. The Internal State Transition Function shall resist observation and analysis via
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power consumption, timing, radiation emissions, or other side channels as
appropriate, depending on the access by an observer who could be an adversary.
What is appropriate (if anything) depends on the details of the implementation and
shall be described by the implementation documentation.

Documentation requirement: This aspect of the design shall be documented.

This requirement is outside the scope of this Standard. Fulfilling this requirement
may be addressed, for example, by implementing the DRBG in a FIPS 140-2
validated module. Part 4 will address this requirement further.

It shall not be feasible (either intentionally or unintentionally) to cause the Internal
State Transition Function to veturn {o a prior state in normal operation (this
excludes testing and authorized verification of the RBG output), except possibly by
chance (depending on the specific design).

This requirement is fulfilled by the design of the DRBGs specified in Section 10.

D.6 Functional Requirements for the Output Generation Function

The functional requirements for the output generation function are:

1.

The output generation function shall be deterministic (given all inputs) and shall
allow known-answer testing when requested.

The determinism of the output generation function is inherent in the DRBG
algorithm designs of Section 10. Known answer testing is discussed in Sections 9.7,
11.3 and 11.4.

The output shall be inhibited until the internal state obtains sufficient assessed
entropy.

Section 8.4 states that a DRBG shall not provide output until a seed is available.
Sections 9.2 - 9.5 request entropy at appropriate times during the instantiate, reseed
and generate functions.

Once a particular internal state has been used for output, the internal state shall be
changed before more output is produced. The OGF shall not reuse any bit from the
subset of bits of the pool that were used to produce output. An ISTF shall either
update the internal state between successive actions of the OGF, or the OGF shall
select independent subsets of bits in the internal state without reusing any
previously selected bits between updates of the internal state by the ISTF. In the
latter case, this process shall update the internal state in order to select a different
set of bits from the “pool” of bits from which output is to be dervied.

Documentation requirement: This aspect of the design shall be documented.

The specifications for the DRBG algorithms in Section 10 include an update of the
internal state prior to returning the requested pseudorandom bits to the consuming
application. Documentation requirements are listed in Section 11.2.
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4. Test output from a known answer test shall be separated from operational output
(e.g., random output that is used for a cryptographic purpose).

Section 11.4.1 states that all data output from the DRBG module shall be inhibited
while operational tests are performed. The results from known-answer tests shall
not be output as random bits during normal operation.

S. The output generation function shall protect the internal state, so that analysis of
RBG outputs does not reveal useful information (from the point of view of
compromise) about the internal state that could be used to reveal information
about other outputs.

The DRBG algorithms specified in Section 10 have been designed to fulfill this
requirement.

6. The output generation function shall use information from the internal state that
contains sufficient entropy to support the required security strength.

Documentation requirement : This aspect of the design shall be documented.

Providing that the seed used to initialize the DRBG contains the appropriate
amount of entropy for the required security strength, the output generation function
in the DRBGs in this Standard have been designed to fulfill this requirement.
Documentation requirements are listed in Section 11.2.

7. The output generation function shall resist observation and analysis via power
consumption, timing, radiation emissions, or other side channels as appropriate.

Documentation requirement: This aspect of the design shall be documented.

This requirement is outside the scope of this Standard. Fulfilling this requirement
may be addressed, for example, by implementing the DRBG in a FIPS 140-2
validated module. Part 4 will discuss this requirement further.

D.7 Functional Requirements for Support Functions

The functional requirements for support functions in Part 1 are:

1. An RBG shall be designed to permit testing that will ensure that the generator
continues to operate correctly. These tests shall be performed at start-up (after
either initialization or re-initialization), upon request and may also be performed
periodically or continuously.

Section 11.4 specifies a requirement for operational (health) testing. A general
method for operational testing is provided in Section 9.7.

2. Output shall be inhibited during power-up, on-request and periodic testing until
testing is complete and the result is acceptable. If the result is not acceptable, the
RBG shall enter an error state.

Section 11.4 specifies that operational testing shall be conducted during power-up,
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on demand and at periodic intervals; this section also specifies that output shall be
inhibited during testing. Section 9.7 specifies operational tests.

Output need not be inhibited during continuous testing unless an unacceptable
result is encountered. When an unacceptable result is thus determined, output shall
be inhibited, and the RBG shall enter an error state.

Continuous testing is not specified for DRBGs.

When an RBG fails a test, the RBG shall enter an error state and output an error
indicator. The RBG shall not perform any operations while in the error state. The
other parts of this Standard address error recovery in more detail, as appropriate.

Section 11.4 specifies this requirement. Sections 9.7 and 9.8 discuss the error
handling process.

. Any other support functions implemented shall be documented regarding their
purpose and the principles used in their design.

Documentation requirements are listed in Section 11.2.
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Some of this may need to be revised, based on
the content of Part 4.

IANNEX E: (Informative) DRBG Selection| B [ﬁmem [ebb]: Page: 126

E.1 Choosing a DRBG Algorithm

Almost no system designer starts with the idea that he's going to generate good random
bits. Instead, he typically starts with some goal that he wishes to accomplish, then decides
on some cryptographic mechanisms such as digital signatures or block ciphers that can
help him achieve that goal. Typically, as he begins to understand the requirements of those
cryptographic mechanisms, he learns that he will also have to generate some random bits,
and that this must be done with great care, or he may inadvertently weaken the
cryptographic mechanisms that he has chosen to implement. At this point, there are two
things that may guide the designer's choice of a DRBG:

a. He may already have decided to include a block cipher, hash function, keyed hash
function, etc., as part of his implementation. By choosing a DRBG based on one of
these mechanisms, he can minimize the cost of adding that DRBG. In hardware,
this translates to lower gate count, less power consumption, and less hardware that
must be protected against probing and power analysis. In software, this translates
to fewer lines of code to write, test, and validate.

For example, a designer of a module that does RSA signatures probably already has
available some kind of hashing engine, so one of the hash-based DRBGs is a
natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash
function, etc., to have certain properties. By choosing a DRBG based on similar
properties of these mechanisms, he can minimize the number of algorithms he has
to trust.

For example, a designer of a module that provides encryption with AES can
implement an AES-based DRBG. Since the DRBG is based for its security on the
strength of AES, the module's security is not made dependent on any additional
cryptographic primitives or assumptions.

The DRBGs specified in this standard have different performance characteristics,
implementation issues, and security assumptions.

E.2 DRBGs Based on Hash Functions

Two DRBGs are based on any Approved hash function: Hash_DRBG, and
HMAC_DRBG. A hash function is composed of an initial value, a padding mechanism
and a compression function; the compression function itself may be expressed as
Compress (I, X), where [ is the initial value, and X is the compression function input. All
of the cryptographic security of the hash function depends on the compression function,
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and the compression is by far the most time-consuming operation within the hash function.

The hash-based DRBGs in this Standard allow for some tradeoffs between performance,
security assumptions required for the security of the DRBGs, and ease of implementation.

E.21 Hash_DRBG

Hash_DRBG is closely related to the DRBG specified in FIPS-186-2, and can be seen as
an updated version of that DRBG that can be used as a general-purpose DRBG. Although
a formal analysis of this DRBG is not available, it is clear that the security of the DRBG
depends on the security of Hashgen. Specifically, an attacker can get a large number of
sequences of values:

Hash (V), Hash (V+1), Hash (V+2), ...

If the attacker can distinguish any of these sequences from a random sequence of values,
then the DRBG can be broken.

E.2.1.1 Implementation Issues

This DRBG requires a hash function, some surrounding logic, and the ability to add
numbers modulo 2°““", where seedlen is the length of the seed. Hash_DRBG also uses
hash_df internally when instantiating, reseeding, or processing additional input. Note that
hash_df requires only access to a general-purpose hashing engine and the use of a 48-bit
counter. The “critical state values” on which the Hash_DRBG depends for its security (V,
C and reseed_counter) require seedlen + outlen + 48 bits of memory®.

E.2.1.2 Performance Properties

Each time that Hash_DRBG is called, a compression function computation is required for
each outlen bits of requested output (or portion thereof), where outlen is the size of the
hash function output block. For example, if outlen = 160, and 360 bits of pseudorandom
data are requested, three compression function calls are made (two to produce the first 320
bits, and a third from which to select the remaining 40 bits. In addition, there is a certain
amount of overhead to updating the state in order to achieve backtracking resistance; this
requires one compression function call and some additions modulo 2°*“*™, plus the update
of reseed_counter. For the above example, a total of four compression function calls are
required, three to generate the requested output bits, and one to update the state.

E22 HMAC_DRBG

HMAC_DRBG is a DRBG whose security is based on the assumption that HMAC is a
pseudorandom function. The security of HMAC_DRBG is based on an attacker getting
sequences of up to 2° bits, generated by the following steps:

temp = the Null string.
While (len (femp) < requested_no_of bits:

S ¥ is seedlen bits long, C is outlen bits long (where1 Qgtlen is the length of the hash function output block),
and reseed counter is a maximum of 48 bits in length.
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V=HMAC (X, V).
temp =temp || V.

The steps in the “While” statement iterate rrequested_no_of_bits/outlen—| times. Intuitively,
so long as ¥ does not repeat, any algorithm that can distinguish this output sequence from
an ideal random sequence can be used in a straightforward way to distinguish HMAC from
a pseudorandom function.

Between these output sequences, both ¥ and K are updated using the following steps
(assuming no additional inputs):

K=HMAC (K, (V| 0x01)) = Hash (opad (X) || Hash (ipad (X) || (V|
¥ =HMAC (K, V) = Hash (opad (K) || (Hash (ipad (X) || V)).

where:

0x01))).

K and V are outlen bits long,

opad (K) is K exclusive-ored with (inlen/8) bytes of 0x5c, for a total of inlen bits,
ipad (K) is K exclusive-ored with (inlen/8) bytes of 0x36, for a total of inlen bits,
outlen is the length of the hash function output block, and

inlen is the length of the hash function input block.
E.2.2.1 Implementation Properties

The only thing required to implement this DRBG is access to a hashing engine. However,
the performance of the implementation will improve enormously (by about a factor of
two!) with either a dedicated HMAC engine, or direct access to the hash function's
underlying compression function. The “critical state values” on which HMAC_DRBG
depends for its security (K and V) take up 2*outlen bits in the most compact form, but for
reasonable performance, 3*outlen bits are required in order to precompute padded values.

E.2.2.2 Performance Properties

HMAC_DRBG is about a factor of two slower than Hash DRBG for long bitstrings
produced by a single request. That is, each outlen-bit piece of the requested pseudorandom
output requires two compression function calls to perform the HMAC computation. Each
output request also incurs another six compression function calls to update the state.

Note that an implementation that has access only to a high-level hashing engine loses
another factor of two in performance; if the performance of the DRBG is important,
HMAC_DRBG requires either a dedicated HMAC engine or access to the compression
function that underlies the hash function. However, if performance is not an important
issue, the DRBG can be implemented using nothing but a high-level hashing engine.
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E.2.3Summary and Comparison of Hash-Based DRBGs
E.2.3.1 Security

It is interesting to contrast the two ways that the hash function is used in these DRBGs:
Hash DRBG:
Hash (7). Hash (V+1). Hash (V+2)...

The only unknown input into the compréssion function used by the hash function is this
sequence of secret values. -+, Since the initial value of the hash function is publicly
known, the adversary is given full knowledge of all but seedfen bits of input into the
compression funetion. and knowledge of the close relationship between these inputs. as
well.

HMAC DRBG:
¥, = HMAC (K. Vo) = Hash (opad (K) || (Hash (ipad (K) || Vy)).
V, = HMAC (K. V;) = Hash (opad (K) || (Hash (ipad (K) || 1))
Vs = HMAC (K. V) = Hash (opad (K) || (Hash (ipad (K) || V5)).

ete

as specified in Annex E.2.2.

The adversary_knows many specific bits of the input to the final compression function
whose output he sees: for SHA-256. the compression function takes a total of 768 bits of
input, and the adversary knows 256 of those bits”. (This is worse for SHA-1 and SHA-
384.) On the other hand, the adversary_doesn't even know the exclusive-or relationships
for ontlen bits of the message input. In the case of SHHA-256. this means that 256 bits are
unknown.

It is clear that Hash DRBG makes stronger assumptions on the strength of the
compression function, although they are not precisely comparable. Specifically,
HMAC DRBG allows an adversary to precisely know many bits of the input to the
compression functions. but not to know complete exclusive-or or additive relationships
between these bits of input.

7 The innermost hash function provides outlen bits of input after its two compression function calls on ipad
(K) and V. The outermost hash function also requires two compression functions: the first operates on opad
(K) and produces outlen bits that are used as the chaining value for the final compression function on the
result from the innermost hash function concatenated with the hash function padding, Therefore, the input to
the final compression function is the length of the chaining value (outlen bits) + the length of the ouput from
the innermost hash function (outlen bits) + the length of the padding (inlen - outlen bits). In the case of SHA-
256, where inlen = 512, and outlen = 256, the lengthfgéhe input to the last compression function is 768 bits,
of which onty the padding bits are known (256 bits).
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E.2.3.2 Performance / Implementation Tradeoffs

The following performance and implementation tradeoffs should be considered when
selecting a hash-based DRBG with regard to the overhead associated with requesting
pseudorandom bits. the cost of actually generating outlen bits (not including the overhead).
and the memory required for the critical state values for each DRBG. The overhead is.
essentially. the cost of updating the state prior to the next request for pseudorandom bits.
The cost of generating each outlen block of bits of output should be multiplied by the
number of outlen-bit blocks of output required in order to obtain the true cost of
pseudorandom bit generation. Both the overhead and generation costs assume that
prediction resistance and reseeding are not required. and that additional input is not
provided for the request: if this is not the case. the costs are increased accordingly. Note
that the memory requirements do not take into account other information in the state that is
required for a given DRBG.

Hash DRBG:

sweellen

Regquest overhead: one compression function and several additions mod 2

Cost for outlen hits of pseudorandom output: one compression function.

Memory required for the critical state values V. C and reseed counter: inlen + outlen +
32 hits,

HMAC DRBG (with access to the hash function’s compression function):

Request overhead: six compression functions®.

Cost for outlen bits of pseudorandom output: two compression funciions.

Memory required lor the critical state values K and 2 3*outlen bits when
precomputation is used .

HMAC DRBG (hash engine access only):

Request overhead: eight compression function calls”.

Cost for outlen bits of pseudorandom output: four compression functions',

Memory required for the critical state values K and V: 2*outlen bits. since
precomputation is unavailable.

For these DRBGs. additional inputs provided during pseudorandom bit generation add
considerably to the request overhead. Instantiation and reseeding are somewhat more
expensive than pseudorandom output generation: however, these relatively rare operations
can afford to be somewhat more expensive to minimize the chances of a successful attack.

8 Two compression (unctions for each HMAC computation. and two compression functions tor
precomputation

9 There are twvo HMAC computations. cach requiring two hash tunction calls Each hash computation
requires bwo compression tunction calls

. 129 . .
19 The single HMAC computation requires four compression functions as explamed in the previous footnote
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E.3 DRBGs Based on Block Ciphers
E.3.1 The Two Constructions: CTR and OFB

This standard describes two classes of DRBGs_based on block ciphers: One class uses the
block cipher in OFB-mode. the other ¢lass uses the CTR-mode. There are no practical
security dilTerences between these two DRBGs: CTR mode guarantees that short eveles
cannot occur in a single output request. while OFB-mode guarantees that short eveles will
have an extremely low probability. OFB-mode makes slightly less demanding
assumptions on the block cipher. but the security of both DRBGs relates in a very simple
and clean way to the security of the block cipher in its intended applications. Thisis a
tundamental difference between these DRBGs and the DRBGs based on hash [unctions.
where the DRBG's security is ultimately based on pseudorandomness properties that do not
form a normal part of the requirements tor hash functions. An attack on any ol the hash-
hased DRBGs does not necessarily represent a weikness in the hash function: however, for
these block cipher-based constructions. a weakness in the DRBG is directly related to a
weakness in the block cipher.

Specifically. suppose that there is an algorithm lor distinguishing the outputs of cither
DRBG from random with some advantage. [ that algorithm exists. it can be used to build
a new aleorithm {or distinguishing the block cipher from a random permutation. with the
same time and memory requirements and advantage.

Because there is no practical security difterence between the two_classes of block-cipher
based DRBGs. the choice between the two constructions is entirels a matter of
implementation convenience and performance. An implementation that uses a block
cipher in OFB. CBC. or full-block CFB muode can easily be used to implement the OFB-
based DRBG construction: an implementation that already supports counter mode can
reuse that hardware or software to implement the counter-mode DRBG. In terms of
performance. the CTR-mode construction is more amenable Lo pipelining and parallelism.
while the OFB-mode construction seems to require slightly less supporting hardware.

E.3.2 Choosing a Block Cipher

While security is not an issue in choosing between the two DRBG constructions, the

choice of the block cipher algorithm to be used is more of an issue. At present. only TDEA
and AES are approved block cipher algorithms, Hewever-the-two-blockeipher DIBG
.‘!qli.‘rll .E. i 1 PRy o Pgas o - P o . c - " 2 5 - -
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Consider a sequence of the maximum permitted number of generate requests. each
producing the maximum number of DRBG outputs from each generate call. Assuming
that the block cipher behaves like a pseudorandom permutation family, the probability of
distineuishing the full sequence ol output byies is:

1. For AES-128. there are a maximum of 22° blocks (i.e., 2% bytes = 2% bits)
generated_per Generate (...) request. 272 otal Generate (...) requests allowed. 2%
wossible kevs. and 2" possible starting blocks.

a. The probability ol an internal collision in a single Generate (...) request is
never higher than about 2%, and so Lhe probability of an internal collision in
any given Generate (...) request is never higher than about 2!, (This applies
only 1o the OFB-mode. but a collision of this kind would result in a very casy
distinguisher.)

b. The expected prabability of an internial collision in a sequence ol 2% random
128-bit blocks is about 277*. Thus. the probability of seeing an internal collision
in anv of the Generate (...) sequences is about 2. This probability is low
enough that it does not provide an efficient way to distinguish between DRBG
outputs and ideal random outputs.

¢. The probability of a key colliding between any Lwo Generate (...) requests in
the sequence of 2% such requests is neyver larger than about 2% This is also

negligible. (For AES-192 and AIIS-236. this probability is even smaller.)

2. Por three-key TDEA with 168-bit kevs and 64-bit blocks. things are a bit dilferent:
There are 2'® Generate (...) requests allowed. and a maximum of 2" blocks (i.e.,
2'® hytes = 2™ bits) generated per Generate (...) request. (Note that this breaks the
more gencral model in this document of assuming 2% innocent operations.) In this

Case:

a. The probubility of an internal collision is never higher than about 2! per
Generate (...) request. and with only 2" guch requests allowed. the probability
of ever seeing such an internal collision in a sequence ol requests is never more
than about 2. (Note thal if more requests are allowed. as required by the 9%
bound assumed elsewhere in the document. there would be an unacceptably
high probability of this event happening at least once. |

The expected probability of an internal collision in a sequence of 2" 64-bit
blocks is about 2%, Thus. the probability of ever seeing an internal collision in
;16 output sequences is still an acceptably low 22 (Note that it more
Generate (...) requests are allowed. there would be_an unacceptably high
probability of this happening. leading to an efficient distinguisher between this
DRBG's outputs and ideal random outputs.

¢. The probability of a key colliding between any two of the 2'° Generate (...)
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~-136

requests is about ,which is negligible.

To summarize: block size matters much more than the choice of DRBG construction that is
used. The limits on the numbers of Generate (...) requests and the number ot output bits
per request require frequent reseeding of the DRBG.  Furthermore, the limits_guarantee
that even with reseeding. an adversary that is given a really long sequence of DRBG
outputs lrom several reseedines cannot_distinguish that output sequence from random
reliablv. The block cipher DRBGs used with TDEA are suitable for low-throughput
applications. but not for applications requiring really laree numbers of DRBG outputs.

For concreteness, if an application is going to require more than 2% output bytes (235
bits) in its lifetime, that application should not use a block cipher DRBG with TDEA
E.3.3 Conditioned Entropy Sources and the Derivation Function

|Some or all of this section probably belongs in Part 4]

I'he block cipher DRBGs are delined to be used in one of two ways for initializing the
DRBG state during instantiation and reseeding: Llither with freeform input strings
conlaining some specilied amount of entropy. or with ull-entropy strings of precisely
specitied leneths The freeform strings will require the use of a derivation function, whereas
the use of full-entropy strings will not. The block cipher derivation function_uses the block
cipher algorithm o compute several parallel CBC-MACs on the input string under a fixed
key and using different [Vs, uses the vesull to produce a key and starting block. and runs
the block cipher in OFB-mode o generate outputs from the derivation function. An
implementation must choose whether o provide full entropy. or to support the derivation
function, This is a high-level system design decision: it alfeets the kinds of entropy
sources that may be used. the sate count or code size of the implementation. and the
interface that applications will have to the DRBG. On one extreme. a very low gate count
desion may use hardware entropy sources that are easily conditioned. such as a bank of
rine oscillators that are exclusive-ored together. tather than Lo support i lot ol complicated
processing on input strings. On the other extreme. a aeneral-purpose DRBG
implementation may need the ability to process [reeform input strings as personalization
strinos and additional inputs: in this case. the block cipher derivation function must be
implemented.

E.4 DRBGs Based on Hard Problems

lhe Dual_EC_DRBG and MS_DRBG base their security on a "hard" number-theoretic
problem. For the types of curves used in the Dual_EC_DRBG. the Elliptic Curve Discrete
Logarithm Problem has no known attacks that are betler than the "meet-in-the-middie"
attacks. with a work factor of sqrt (2™). [n the case of MS_DRBG. which is based loosely
on the RSA problem. the work factor of the best algorithm is more complex to state. but
well-established.

I'hese algorithms are decidedly less efficient to implement than some ol the others.
However. in those cases where security is the utmost concern. as in SSL or [KE exchanges.
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the additional complexity is not usually an issue. Except tor dedicated servers. time spent
on the exchanges is just a small portion of the computational load; overall. there is no
impact on throughput by using a numbet-theoretic algorithm. As for SSL or [PSEC
servers, more and more of these servers are getting hardware support for cryptographic
primitives like modular exponentiation and elliptic curve arithmetic for the protocols
themselves. Thus, it makes sense to utilize those same primitives (in hardware or software)
for the sake of high-security random numbers.

E.4.1 Implementation Considerations

E.4.1.1 Dual_EC_DRBG

Random bits are produced in blocks of bits representing the x-coordinates on an elliptic
curve.

Because of the various security levels allowed by this Standard there are multiple curves
available , with differing block sizes. The size is always a multiple of 8. about 16 bits less
than a curve’s underlying field size. Blocks are concatenated and then truncated, if
necessary, to fulltil a request for any number of bits up to a maximum per call of 10.000
times the block length. The smallest blocksize is 216. meaning that at least 2M bits can be
requested on each call.)

An important detail concerning the Dual EC_DRBG is that every call for random bits.
whether it be for 2 million bits or a single bit, requires that at least one tull block of bits be
produced; no unused bits are saved internally from the previous call. Each block produced
requires two point multiplications on an elliptic curve—a fair amount of computation.
Applications such as IKE and SSL are encouraged to aggregate all their needs for random
bits into a single call to Dual EC DRBG, and then parcel out the bits as required during

the protocol exchange. A C structure, for example, is an ideal vehicle for this. Comment [ebb9]: Page: 134
‘ - Doesn't this violate our guidance somewhere ?

To avoid unnecessarily complex implementations, it should be noted that every curve in
the Standard need not be available to an application. For instance, one may choose to do
arithmetic only over the prime order fields in a software application, or perhaps a particular
binary curve in a hardware application. To improve efticiency. there has been much
research done on the implementation of elliptic curve arithmetic: descriptions and source
code are available in the open literature.

As a final comment on the implementation of the Dual EC_DRBG. note that having fixed
base points offers a distinct advantage for optimization. Tables can be precomputed that
allow nP to be attained as a series of point additions, resulting in an 8 to 10-fold speedup.
ot more, if space permits.

E.4.1.2. Micali-Schnorr

Micali-Schnorr was designed to be a more efficient version of the predecessor algorithm.

the Blum-Blum-Shub (BBS) DRBG. BBS uses the recursion x, = X~ mod n to generate

its state sequence. producing a single pseudorandom bit as the least significant bit of x,.

Later. it was shown that O( In(In #)) ) bits could be taken on each iteration. but this is still a
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very small percentage of those produced. The MS DRBG allows a much larger percentage
of n bits to be used on each iteration, and has an additional advantage in that no output bits
are used to propagate the sequence. It does, however, rely on a stronger assumption for its
security than the intractability of integer factorization.

As ANS X9.82 standard evolved, committee members argued for restricting the number of
bits generated on each exponentiation to O( In(In »n) ) hard bits, as is done in BBS. The
result is that the efficiency argument for choosing MS over BBS doesn’t apply.
Nonetheless, a user does have more options in the choice of parameters.

Micali_Schnorr offers an alternative to Dual EC_DRBG in the class of algorithms based
on a hard problem from number theory, and presents an advantage in its simplicity. All
that’s required for implementation is a routine that computes x* mod #; this can be readily
found in commercial and open source toolkits.
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ANNEX F: (Informative) Example Pseudocode for Each DRBG
F.1 Preliminaries

The internal states in these examples are considered to be an array of states, identified by
state_handle. A particular state is addressed as internal_state (state_handle), where the
value of state handle begins at 0 and ends at n-1, and » is the number of internal states
provided by an implementation. A particular element in the internal state is addressed by
internal _state (state_handle).element.

The pseudocode in this annex does not include the necessary conversions (e.g., integer to
bitstring) for an implementation. When conversions are required, they must be
accomplished as specified in annex B.

The following routine is defined for these pseudocode examples:

Find_state_space (): A function that finds an unused internal state. The function
returns a status (either “Success” or a message indicating that an unused internal state
is not available) and, if status = “Success”, a state_handle that points to an available
internal _state in the array of internal states. If status # “Success”, an invalid
state_handle is returned.

F.2 Hash_DRBG Example

F.2.1 Discussion

This example of Hash. DRBG uses the SHA-1 hash function, and prediction resistance is
supported in the example. Both a personalization string and additional input are allowed. A
32-bit incrementing counter is used as the nonce for instantiation (instantiation nonce); the
nonce is initialized when the DRBG is installed (e.g.. by a call to the clock or by setting it
to a fixed value) and is incremented for each instantiation.

A total of 10 internal states are provided (i.e., 10 instantiations may be handled
simultaneously).

For this implementation, the functions and algorithms are “inline”, i.e., the algorithms are
not called as separate routines from the [unction envelopes.

The internal state contains values for V, C, reseed counter, security strength and
prediction resistance_flag, where V and C are bitstrings, and reseed_counter,

security strength and the prediction_resistance_flag are integers. A requested prediction
resistance capability is indicated when prediction resistance flag = 1. Note: an empty
internal state is represented as {Null, Null, 0, 0, 0}.

In accordance with Table 3 in Section 10.1.1, the 112 and 128 bit security strengths may be
supported. Using SHA-1, the following definitions are applicable for the instantiate,
generate and reseed functions and algorithms:
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1. highest supported sccurity strength =128,

2. Output block length (outlen) = 160.

3. Required minimum entropy for instantiation and reseed = security strengih.

4. Minimum entropy input length (min_entropy_input_lengthy = security strength.
5. Seed length (seedlen) = 440.

6. Maximum number of bits per request (max_number_of bits_per_request) = 5000
bits.

7. Reseed interval (reseed_interval) = 100,000 requests.

8. Maximum length of the personalization string (max_personalization_string_length)
= 500 bits.

9. Maximum length of additional input (max_additional_input string_length) = 500
bits.

10. Maximum length of entropy input (max_entropy_input_length) = 1000.
F.2.2 Instantiation of Hash_DRBG
This implementation will return a text message and an invalid state handle (-1) when an

error is encountered. Note that the value of instantiation nonce is an internal value that is
always available to the instantiate function.

Note that this implementation does not check the prediction_resistance flag, since the
implementation can handle prediction resistance. However, if an application actually wants
prediction resistance, the implementation expects that prediction_resistance_flag =1
during instantiation; this will be used in the generate function in Annex F.2.4.

Instantiate_Hash_DRBG (...):

Input: integer (requested_insiantiation securily strength, prediction_resistance_flag),
bitstring personalization_string).

Output: string status, integer state_handle.
Process:
Comment: Check the input parameters.

1. If (requested_instantiation securify_strength> 128), then Return (“Invalid
requested insiantiation security_strength”, -1).

2. If (len (personalization_string) > 500), then Return (“Personalization_string
too long”, -1).

Comment: Set the securiry sirength to one of
the valid security strengths.
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If (requested_instantiation_security_strength < 112), then security _strength =
112

Else security_strength = 128.
Comment: Get the entropy input.

(status, entropy_input) = Get_entropy (secuvity strengih, security_strength,
1000).

If (status # “Success”), then Return (“Failure indication returned by the
entropy_input source:” || status, -1).

Comment: Increment the nonce: actual coding
must ensure that it wraps when it’s storage
limit is reached.

instantiation nonce = instantiation nonce + 1.

Comment: The instantiate algorithm is
provided in steps 7-11.

seed_material = entropy_input | instantiation nonce || personalization_string.

seed = Hash_df (seed_material, 440).

V= seed.
C = Hash_df ((0x00 || V), 440).
reseed counter = 1.

Comment: Find an unused internal
state and save the initial values.

(status, state_handle) = Find_state_space ().
If (status # “Success™), then Return (status, -1).

internal_state (state_handle) = {V, C, reseed_counter, sccurity_sirengih,
prediction resistance_flag}.

Return (“Success”, state_handle).

The implementation is designed to return a text message as the stafus when an error is

encountered.
Reseed_Hash_DRBG_Instantiation (...):
Input: integer state_handle, bitstring additional input.

Output: string status.
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Process:

Comment: Check the validity of the
state_handle.

1. If ((state_handle > 9) or (internal_state (state_handle) = {Null, Null, 0, 0, 0})),
then Return (“State not available for the state_handle™).

Comment: Get the internal state values
needed to determine the new internal state.

2. Get the appropriate internal_state values, e.g., V=
internal_state(state_handle).V, security strength =
internal _state(state_handle).security strength.

Check the length of the additional input.
3. If (len (additional input) > 500), then Return (“Additional_input too long™).
Comment: Get the entropy _input.

4. (status, entropy_input) = Get_entropy (security strength, security strength,
1000).

3. If (status # “Success”), then Return (“Failure indication returned by the
entropy_input source:” || status).

Comment: The reseed algorithm is provided
in steps 7-11.

seed_material = 0x01 || V|| entropy input || additional input.
seed = Hash_df (seed material, 440).

V =seed.

C = Hash_df ((0x00 || V), 440).

10. reseed counter = 1.

I

Comment: Update the working state portion
of the internal state.

11. Update the appropriate state values.

11.1 internal state (state_handle).V="V.

11.2 internal _state (state_handle).C = C.

11.3 internal _state (state handle.reseed counter = reseed counter.
12. Return (“Success™).

F.2.4 Generating Pseudorandom Bits Using Hash_DRBG

The implementation returns a Nu/l string as the pseudorandom bits if an error has been
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detected. Prediction resistance is requested when prediction_resistance_request = 1.

In this implementation, prediction resistance is requested by supplying
prediction_resistance_request = 1 when the Hash_DRBG function is invoked.

Hash_DRBG (...):

Input: integer (state_handle, requested_no_of bits, vequested_security strengih,
prediction_resistance_request), bitstring additional input.

Output: string status, bitstring pseudorandom_bits.
Process:

Comment: Check the validity of the
state_handle.

1. If ((state_handle > 9) or (state (state_handle) = {Null, Null, 0, 0, 0})), then
Return (“State not available for the state_handle”, Null).

Comment: Get the internal state values.

2. V=internal_state (state_handle).V, C = internal state (state_handle).C,
reseed_counter = internal _state (state_handle).reseed_counter,
security strength = internal_state (state_handle).security strength,
prediction_resistance_flag = internal_state
(state_handle).prediction resistance_flag.

Comment: Check the validity of the other
input parameters.

3. If (requested_no_of bits > 5000) then Return (“Too many bits requested”,
Null).

4. If (requested_security strength> security_strength), then Return (“Invalid
requested _security strength”, Null).

5. If (len (additional_input) > 500), then Return (“Additional input too long”,
Null).

6. If ((prediction resistance request = 1) and (prediction_resistance_flag # 1)),
then Return (“Prediction resistance capability not instantiated”, Null).

Comment: Reseed if necessary. Note that
since the instantiate algorithm is inline with
the functions, this step has been written as a
combination of steps 6 and 7 of Section 9.4
and step 1 of the generate algorithm in
Section 10.1.2.2.4. Because of this combined
step, step 11.4 of Section 7.4.is not required.

7. If ((reseed_counter > 100,000) OR (prediction_resistance_request = 1)), then
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7.1 status = Reseed_ Hash_DRBG_Instantiation (state_handle,
additional _input).
7.2 If (status + “Success”), then Return (status, Null).
Comment: Get the new internal state values.

7.3 V=internal state (state handle).V, C = internal_state (state_handle).C,
reseed_counter = internal_state (state_handle).reseed_counter,
security_strength = internal _state (state_handle).securily_strength,
prediction resistance flag = internal_state
(state_handle).prediction_resistance_flag.

7.4 additional_input = Null.

Comment: Steps 8-16 provide the rest of the
generate algorithm. Note that in this
implementation, the Hashgen routine is also
inline as steps 9-13.

8. If (additional input # Null), then do
7.1 w =Hash (0x02 || V|| additional _input).
7.2 V=(V+w)mod 2*°.

9, ma [requested_no_of_btts-‘.

outlen

10. data=V.
11. W = the Null string.
12.Fori=1tom

12.1 w; = Hash (data).

122 W=W| w:

12.3 data = (data + 1) mod 2%,
13. pseudorandom_bits = Leftmost (requested_no_of bits) bits of .
14. H = Hash (0x03 || V).
15. V=(V+ H+ C + reseed_counter) mod Vil
16. reseed_counter = reseed counter + 1.

Comments: Update the working state.

13. Update the changed values in the sfate.

13.1 internal state (state_handle).V = V.
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13.2 internal_state (state_handle).reseed _counter = reseed counter.
14. Return (“Success”, pseudorandom_bits).
F.3 HMAC_DRBG Example

F.3.1 Discussion

This example of HMAC DRBG uses the SHA-256 hash function. The reseed and, thus,
the prediction resistance is not provided.

A personalization string is allowed, but additional input is not. A total of 3 internal states
are provided. For this implementation, the s and algorithms are written as separate
routines.

The internal state contains the values for V, Key, reseed counter, and 3
where V and C are bitstrings, and reseed counter and are integers.

In accordance with Table 3 in Section 10.1.1, sof 112, 128, 192 and 256
may supported. Using SHA-256, the following definitions are applicable for the instantiate
and generate s and algorithms:

1. highest supported s = 256.

2. Output block (outlen) = 256.

3. Required minimum entropy for instantiation = + 64

4. Minimum entropy input length (min_entropy input length) = +
64 }

Seed length (seedlen) = 440,

6. Maximum number of bits per request (max_number_of bits_per request) = 7500
bits.

7. Reseed_interval (reseed interval) = 10,000 requests.

8. Maximum length of the personalization string (max personalization_string length)
= 100.

9. Maximum length of the entropy input (max entropy input length) = 1000.
F.3.2 Instantiation of HMAC_DRBG
This implementation will return a text message and an invalid state handle (-1) when an error
is encountered.
Instantiate. HMAC_DRBG (...):

Input: integer (requested _instantiation security strength), bitstring
141



ANS X9.82, Part 3 - DRAFT - March 2005

personalization_string.

Output: string status, integer state_handle.

Process:
Check the validity of the input parameters.
1. If (requested_instantiation_securily strength> 256), then Return (“Invalid
requested_instantiation_security strengih”, - 1).
2. If (len (personalization_string)>100), then Return (“Personalization_string
too long”, -1)
Comment: Set the security strengih to
one of the valid security strengths.
3. If (requested vecurity strength <112), then security_strength=112
Else (requested _security strength < 128), then securiry. strength =128
Else (requested _security strength < 192), then securi strength =192
Else security _strength =256.
Comment: Get the entropy_inpti and
the nonce.
4. min_entropy = security sirengih+ 64.
(status, entropy_input) = Get_entropy (min_entropy, min_entropy, 1000).
6. If (status # “Success™), then Return (“Failure indication returned by the
entropy soutce” || status, -1).
Comment: Invoke the instantiate algorithm.
Note that the entropy input contains the
nonce.
7. (V, Key, reseed_counter) = Instantiate_algorithm (entropy_input,
personalization_string).
Comment: Find an unused internal state and
save the initial values.
8. (status, state_handle) = Find_state_space ().
9. If (status # “Success”), then Return (“No available state space” || status, -1).

10. internal_state (state_handle) = {V, Key, reseed_counter, secirily trength}.

11. Return (“Success” and state_handle).

Instantiate_algorithm (...):

Input: bitstring (entropy_input, personalization_string).
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Output: bitstring (¥, Key), integer reseed_counter.

Process:
1. seed_material = entropy_input || personalization_string.
2. Set Key to outlen bits of zeros.
3. Set Vto outlen/8 bytes of 0x01.
4. (Key, V)= Update (seed_material, Key, V).
5. reseed counter = 0.
6. Return (V, Key, reseed_counter).

F.3.3 Generating Pseudorandom Bits Using HMAC_DRBG

The implementation returns a Nu/l string as the pseudorandom bits if an error has been
detected. Ths function uses the Update function specified in Section 10.1.3.2.2.

HMAC_DRBG(...):

Input: integer (state_handle, requested no_of bits, requested security strength).

Output: string (status), bitstring pseudorandom_bits.

Process:

1.

Comment: Check for a valid state handle.

If ((state_handle > 3) ot (internal_state (state_handle) = {Null, Null, 0, 0}),
then Return (“State not available for the indicated state_handle”, Null).

Comment: Get the internal state.

V= internal state (state_handle).V, Key = internal state (state_handle).Key,
security strength = internal_state (state_handle).security_strength,
reseed_counter = internal_state (state_handle).reseed counter.

Comment: Check the validity of the rest of
the input parameters.

. If (requested no_of bits > 7500), then Return (“Too many bits requested”,

Null).

If (requested security strength > security_strength), then Return (“Invalid
requested_security strength”, Null).

Comment: Invoke the generate algorithm.

(status, pseudorandom_bits, V, Key, reseed_counter) = Generate_algorithm
(V, Key, reseed_counter, requested_number_of bits).

If (status # “Success™), then Return (“DRBG can no longer be used. Please re-
instantiate or reseed”, Null).
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Comment: Update the internal state.
11. internal_state (state_handle) = {V, Key, sccurity strength, reseed counter}.
12. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):
Input: bitstring (¥, Key), integer (reseed_counter, requested_number of bits).
Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed_counter.
Process:

1 If (reseed _counter > 10,000), then Return (“Reseed required”, Null, V, Key,
reseed _counter).

2. temp = Null.
3 While (len (temp) < requested no_of bits) do:
3.1 V=HMAC (Key V).
32 temp=temp| V.
4. pseudorandom_bits = Leftmost (requested no_of bits) of temp.
5. (Key, V)= Update (additional_input, Key, V).
6. reseed counter = reseed counter + 1.
7. Return (“Success”, pseudorandom_bits, V, Key, reseed_counter).
F.4 CTR_DRBG Example

F.4.1 Discussion

This example of CTR_DRBG uses AES-128. The reseed and prediction resistance
capabilities are available, and a block cipher derivation function using AES-128 is used.
Both a personalization string and additional input are allowed. A total of 5 internal states
are available. For this implementation, the functions and algorithms are written as separate
routines. The Block_Enerypt function uses AES-128 in the ECB mode.

The nonce for instantiation (instantiation _nonce) consists of a 32-bit incrementing counter
(instantiation_counter) appended to the personalization string. The nonce is initialized
when the DRBG is installed (e.g.. by a call to the clock or by setting it to a fixed value) and
is incremented for each instantiation.

The internal state contains the values for V, Key, reseed counter, sccurify strength and
prediction_resistance_flag, where V and Key are integers, and all other values are integers.

In accordance with Table 4 in Section 10.2.1, security strengths of 112 and 128 may be
supported. Using AES-128, the following definitions are applicable for the instantiate,
reseed and generate functions:
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highest supported security strength = 128.
Output block length (outlen) = 128.
Key length (keylen) = 128.

Required minimum entropy for instantiate and reseed = security_strength.

AW -

Minimum entropy input length (min_entropy input length) = security strength.

Maximum entropy input length (max_entropy input_length) = 1000.

~ o

Maximum personalization string input length
(max_personalization_string_input length) = 500.

8. Maximum additional input length (max_additional _input_length) = 500.
9. Seed length (seedlen) = 256.
10. Maximum number of bits per request (max number_of bits per request) = 4000.

11. Reseed _interval (reseed_intervaly = 100,000 requests.
F.4.2 The Update Function

Update (...):
Input: bitstring (provided data, Key, V).
Output: bitstring (Key, V).
Process:
1. temp = Null.
2. While (len (femp) < 256) do
3.1 V=(+1)mod2'%,
3.2 output_block=AES_ECB_Encrypt (Key, V).
3.3 temp=temp | ouput_block.
4. temp = Leftmost 256 bits of temp.
5 temp = temp ® provided data.
6. Key = Leftmost 128 bits of temp.
7. V=Rightmost 128 bits of temp.

8. Return (Key, V).
F.4.3 Instantiation of CTR_DRBG

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered. Block Cipher_df is the derivation function in Section 9.6.3. and uses AES-
128 in ECB mode as the Block_Encrypt function.
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Note that this implementation does not check the prediction_resistance_flag, since the
implementation can provide prediction resistance. However, if an application actually
wants prediction resistance for a pseudorandom , the implementation expects that
prediction_resistance_flag = 1 during instantiation (i.e., an application may not require
prediction resistance for an instantiation).

Instantiate CTR_DRBG (...):

Input: integer (requested , prediction_resistance_flag),

bitstring personalization_string.

Output: string status, integer state_handle.

Process:

Comment: Check the validity of the input
parameters.

If (requested > 128) then Return (“Invalid
requested ”,-1).

. If (len (personalization_string) > 500), then Return (“Personalization_string
too long”, -1).

If (requested < 112), then =
112
Else. =128.

Comment: Get the entropy input.
(status, entropy input) = Get_entropy ( - :
1000).

. If (status # “Success™), then Return (“Failure indication returned by the
entropy source” || status, -1).

Comment: Invoke the instantiate algorithm.

(V, Key, reseed counter) = Instantiate_algorithm (entropy_input,
personalization_string).

Comment: Find an available internal state and
save the initial values.

(status, state_handle) = Find_state_space ().
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10. If (status # “Success™), then Return (“No available state space” || status, -1).
Comment: Save the internal state.

11. internal _state (state_handle) = {V, Key, reseed counter, security strength,
prediction resistance_flag }.

12. Return (“Success”, state_handle).
Instantiate_algorithm (...):
Input: bitstring (entropy_input, nonce, personalization_string).
Output: bitstring (¥, Key), integer (reseed_counter).
Process:

1. seed material = entropy _input || nonce || personalization_string.

2. seed_material = Block_Cipher_df (seed material, 256).

3. Key=0", Comment: 128 bits.
4. V=08, Comment: 128 bits.
5. (Key, V)= Update (seed_material, Key, V).

6. reseed counter=1.

7. Return (V, Key, reseed _counter).

F.4.4 Reseeding a CTR_DRBG Instantiation
The implementation is designed to return a text message as the status when an error is
encountered.
Reseed_CTR_DRBG_Instantiation (...):

Input: integer (state handle), bitstring additional _input.

Output: string status.

Process:

Comment: Check for the validity of
state_handle.

1. If ((state_handle > 5) or (internal state(state handle) = {Null, Null, 0, 0, 0, }),
then Return (“State not available for the indicated state handle”).

Comment: Get the internal state values.

2. V=internal state (state_handle).V, Key = internal_state (state_handle).Key,
security strength = internal_state (state_handle).security strength,
prediction_resistance flag = internal state
(state_handle).prediction resistance flag.
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If (len (additional inpur) > 500), then Return (“Additional _input too long”).
min_entropy = security strength + 64.

(status, entropy_input) = Get_entropy (min_entropy, min_entropy, 1000).

S

If (status # “Success”), then Return (“Failure indication returned by the
entropy source” || status).

Comment: Invoke the reseed algorithm.

7. (V, Key, reseed_counter) = Reseed_algorithm (V, Key, reseed counter,
entropy input, additional _input).

Comment: Save the new internal state.

8. internal state (state_handle) = {V, Key, reseed_counter, security_strengith,
reseed_counter, prediction resistance_flag}.

9. Return (“Success”).
Reseed_algorithm (...):

Input: bitstring (V, Key), integer (reseed_counter), bitstring (entropy input,
additional _inpuf).

Output: bitstring (V, Key), integer (reseed_counter).
Process:
1. seed material = entropy_input || additional_input.
2. seed material = Block_Cipher_df (seed material, 256).
3. (Key, V)= Update (seed material, Key, V).
4. reseed counter =1.

5. Return (V, Key, reseed counter).
F.4.5 Generating Pseudorandom Bits Using CTR_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been
detected.
CTR_DRBG(...):

Input: integer (state_handle, requested _no_of bits, requested_security strength,
prediction_resistance_request), bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
Process:
Comment: Check the validity of state_handle.

1. If ((state_handle > 5) or (internal_state (state_handle) = {Null, Null, 0, 0, 0}),
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then Return (“State not available for the indicated state_handle”, Null).
Comment: Get the internal state.

2. V=internal state (state_handle).V, Key = internal_state (state_handle).Key,
security_strength = internal_state (state_handle).security_strengih,
reseed_counter = internal_state (state_handle).reseed _counter,
prediction_resistance_flag = internal _state
(state_handle).prediction_resistance_flag.

Comment: Check the rest of the input
parameters.

3. If (requested no of bits >4000), then Return (“Too many bits requested”,
Null).

4. If (requested_security strengih > security_strength), then Return (“Invalid
requested_security strength”, Null).

5. If (len (additional_input) > 500), then Return (“Additional_input too long”,
Null).

6. If ((prediction_resistance_request = 1) and (prediction_resistance_flag # 1)),
then Return (“Prediction resistance capability not instantiated”, Null).

7. reseed required flag=0.
8. If (reseed required flag=1) or (prediction_resistance_request = 1)), then

8.1 status = Reseed CTR_DRBG _Instantiation (state_handle,
additional _input).

8.2 If (status # “Success™), then Return (status, Null).

Comment: Get the new working state values;
the administrative information was not
affected.

8.3 V=internal state (state _handle).V, Key = internal_state
(state_handle).Key, reseed counter = internal_state
(state_handle).reseed_counter.

8.4 additional _input = Null.
8.5 reseed request flag=0.

Comment: Generate bits using the generate
algorithm.

9. (status, pseudorandom_bits, V, Key, reseed_counter) = Generate_algorithm
(V, Key, reseed_counter, requested_number_of bits, additional _input).

10. If (status # “Success™), then
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10.1 reseed required flag = 1.
10.2 Go to step 8.
Comment: Collect bits.

11. internal_state (state_handle) = {V, Key, security_strength, reseed_counter,
prediction_resistance_flag).

Comment: Determine the pseudorandom bits
to be returned.

12. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):

Input: bitstring (¥, Key), integer (reseed_counter, requested _number_of bits)
bitstring addiional _input.

Output: string status, bitstring (returned_bits, V, Key), integer reseed counter.
Process:

1. If (reseed counter > 100,000), then Return (“Failure”, Null, V, Key,
reseed_counter).

2. If (additional input # Null), then
2.1 temp = len (additional_input).
2.2 If (femp > 256), then additional_input = Block_Cipher_df
(additional input, 256).
23 If (temp < 256), then additional_input = additional_input || 0%~ ™.
2.4 (Key, V)= Update (additional_input, Key, V).
3. temp = Null.
4, While (len (temp) < requested_number_of bits) do:
41 V=¥+1)mod2"
4.2 output_block= AES_ECB_Encrypt (Key, V).
4.3 temp=temp | ouput_block.
returned bits = Leftmost (requested number_of bits) of temp.

6, Comment: Produce a string of 256 zeros.

zeros =0
(Key, V) = Update (zeros, Key, V)

reseed_counter = reseed_counter + 1.

o o = IS KA

Return (“Success”, returned_bits, V, Key, reseed_counter).
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F.5 OFB_DRBG Example
F.5.1 Discussion

This example of OFB_DRBG uses 3 key TDEA. Full entropy is available, and a block
cipher derivation function is not used ; therefore. a nonce is not used. Prediction resistance
is supported. A total of 5 internal states are available. A personalization string is allowed
during instantiation, and additional input is allowed during reseeding and a request for
pseudorandom bit generation. For this implementation, the tunctions and algorithms are
written as separate routines. The Block_Encrypt function uses 3 key TDEA in the ECB
mode.

The internal state contains the values for V, Key, reseed counter, security_strength and
prediction_resistance_flag; V and Key are integers; reseed counter, security strength and
prediction resistance_flag are integers.

In accordance with Table 4 in Section 10.2.1, a security strength of 112 is supported. Using
3 key TDEA, the following definitions are applicable for the instantiate, reseed and
generate functions:

1. highest supported_security strength =112,
2. Output block length (outlen) = 64.

3. Key length (keylen) = 168.
4

. Number of bits for entropy input if full entropy is supported and a derivation
function is not used: 232.

5. Minimum entropy input length (min_entropy input length) = min_entropy = 232.
6. Maximum entropy input length (max_entropy input length) = 232.

7. Maximum personalization string input length
(max_personalization_string_input_length) =232.

8. Maximum additional input length (max additional input length) = 232.
9. Seed length (seedlen) = 232.
10. Maximum number of bits per request (max_number of bits per request) = 1000.

12. Reseed interval (reseed_interval) = 10,000 requests.
F.5.2 The Update Function

Update (...):
Input: bitstring (provided data, Key, V).
Output: bitstring (Key, V).

Process:

151



3
4
5.
6

7.

ANS X9.82, Part 3 - DRAFT - March 2005

temp = Null.

While (len (femp) < 232) do

2.1 V=TDEA_ECB Encrypt (Key, V).
22 temp=temp| V.

. temp = Leftmost 232 bits of temp.

temp = temp ® provided data.
Key = Leftmost 168 bits of temp.
¥ = Rightmost 64 bits of temp.
Return (Key, V).

F.5.3 Instantiation of OFB_DRBG

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered.

Note that this implementation does not use the prediction_resistance_flag, since itis
known that prediction resistance is supported. However, if prediction resistance_flag=1,
then a prediction resistance capability is requested for the instantiation.

Instantiate_OFB_DRBG (...):

Input: integer (requested , prediction_resistance_flag),

bitstring personalization_string.

Output: string status, integer state_handle.

Process:
Comment: Check the validity of the input
parameters.
1. If (requested > 112) then Return (“Invalid
requested _ », -1).
2. If (len (personalization_string) > 232), then Return (“Personalization_string
too long”, -1).
3. =112.
Comment: Get the entropy input.
4. (status, entropy_input) = Get_entropy (232, 232, 232).
5. If (status # “Success”), then Return (“Failure indication returned by the
entropy source” || status, -1).
Comment: Invoke the instantiate algorithm.
6. (V, Key, reseed_counter) = Instantiate_algorithm (entropy_input,
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personalization_string).
7. (status, state_handle) = Find_state_space ().
8. If (status # “Success”), then Return (“No available state space” || status, -1).
Comment: Save the internal state.

9. internal state_(state_handle) = {V, Key, reseed_counter, security_strength,
prediction_resistance_flag).

10. Return (“Success”, state_handle).
Instantiate_algorithm (...):

Input: bitstring (entropy _input, personalization_string).

Output: bitstring (V, Key), integer reseed_counter.

Process:
1. seed material = entropy_input ® personalization_string.
2. Key=0'%, Comment: 168 bits.
3. ¥=0% Comment: 64 bits.

4, (Key, V)= Update (seed_material, Key, V).
5. reseed counter =1,
6. Return (“Success”, ¥, Key, reseed_counter).
F.5.4 Reseeding the OFB_DRBG Instantiation
The implementation is designed to return a text message as the status when an error is
encountered.
Reseed OFB_DRBG_Instantiation (...):
Input: integer state_handle, bitstring additional_input.
Output: string status.
Process:

Comment: Check for the validity of
state_handle.

1. If ((state_handle > 5) or (internal_state (state_handley= {Null, Null, 0, 0}),
then Return (“State not available for the indicated state_handle”).

Comment: Get the necessary internal state
values.

2. V=internal state (state_handle).V, Key = internal_state (state_handle) Key,
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security strength = internal state (state_handle).security_strength.
3. If (len (additional input) > 232), then Return (“Additional_input too long”).
Comment: Get the entropy_input.
4. (status, entropy_input) = Get_entropy (232, 232, 232).

5. If (status # “Success™), then Return (“Failure indication returned by the
entropy source” || status).

Comment: Invoke the reseed algorithm.

6. (V, Key, reseed counter) = Reseed_algorithm (V, Key, entropy_input,
additional _input).

7. internal state (state_handle).V =V, internal_state (state_handle).Key = Key,
internal_state (state_handle).reseed_counter = reseed_counter.

8. Return (“Success™).
Reseed_algorithm (...):
Input: bitstring (¥, Key), bitstring (entropy _input, additional _input).
Output: bitstring (¥, Key), integer reseed_counter.
Process:
1. temp = len (additional inpuft).

Comment: If the additional input <232, pad
with zeros.

2. If (temp < 232), then additional_input = additional_input || Q2 temp
3. seed material = entropy input @ additional _input.

4. (Key, V) =Update (seed material, Key, V).

5. reseed counter =1.

6. Return (V, Key, reseed_counter).
F.5.5 Generating Pseudorandom Bits using OFB_DRBG
The implementation returns a Nu// string as the pseudorandom bits if an error has been
detected. Note that prediction resistance is requested when prediction_resistance_request = 1.
OFB_DRBG(...):

Input: integer (state_handle, requested no_of bits, requested_securily sirength,
prediction_resistance_request), bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
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Process:
Comment: Check the validity of state_handle.

1. If ((state_handle > 5) or (internal_state (state_handle)= {Null, Null, 0, 0}),
then Return (“State not available for the indicated state_handle”, Null).

Comment: Get the internal state values.

2. V= internal state (state_handle).V, Key = internal _state (state_handle).Key,
reseed_counter = internal _state (state_handle).reseed_counter,
security strength = internal_state (state_handle).security_strength,
prediction_resistance_flag = internal_state
(state_handle).prediction_resistance  flag.

Comment: Check the rest of the input
parameters.

3. If (requested_no_of bits >1000), then Return (“Too many bits requested”,
Null).

4. If (requested_security strength> security_strength), then Return (“Invalid
requested_security_strength”, Null).

5. If (en (additional_input) > 232), then Return (“Additional _input too long”,
Null).

6. 1f (prediction_resistance_request = 1) and (prediction_resistance_flag # 1)),
then Return (“Invalid prediction_resistance_request”, Null).

7. reseed_required flag = 0.
8. If ((reseed required flag = 1) or (prediction _resistance_request = 1)), then do
Comment: Reseed.

8.1 status = Reseed OFB_DRBG_Instantiation (state_handle,
additional input).

8.2 If (status # “Success”), then Return (status, Null).

8.3 V= internal state (state_handle).V, Key = internal_state
(state_handle).Key, reseed_counter = internal_state
(state_handle).reseed_counter.

8.4 additional input = Null.
8.5 reseed required_flag = 0.

9. (status, pseudorandom_bits, V, Key, reseed _counter) = Generate_algorithm
(V, Key, reseed_counter, requested_number_of bits, additional input).

10. If (status = “Success™), then
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10.1 reseed required flag = 1.
10.2 Go to step 8.

11. internal_state (state_handle) = {V, Key, security_strength, reseed_counter,
prediction_resistance_flag).

12. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):

Input: bitstring (¥, Key), integer (reseed_counter, requested_number_of bits),
bitstring additional _input.

integer (state_handle, requested_number_of bits).
Output: string status, bitstring returned_bits.
Process:
1. If (reseed counter > reseed_interval), then Return (“Reseed required”).
2. If (additional input # Null), then
2.1 temp = len (additional_input).

2.2 If (tfemp < seedlen), then additional input = additional _input || grecdien-

temp

2.3 (Key, V)= Update (additional_input, Key, V).
3. temp = Null.
4. While (len (temp) < requested_number_of bits) do:
4.1 V==TDEA_ECB_Encrypt (Key, V).
42 temp=temp|| V.
returned_bits = Lefimost (requested number_of bits) of temp.
zeros = 077, Comment: Produce a string of seedlen zeros.
(Key, V)= Update (zeros, Key, V)

reseed counter = reseed counter + 1.

S

Comment: Save the new values of ¥, Key and
reseed counter.

9. Return (“Success”, returned bits, V, Key, reseed_counter).
F.6 Dual_EC_DRBG Example

F.6.1 Discussion
This example of Dual_EC_DRBG allows a consuming application to instantiate using any
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of the recommended elliptic curves, depending on the security strength. A reseed capability
is available, but prediction resistance is not available. Both a personalization_string and
additional _input are allowed. A total of 10 internal states are provided. For this
implementation, the algorithms are provided as inline code within the [unctions.

The nonce for intantiation (instantiation nonce) consists of a random value with 64-bits of
entropy; the nonce is obtained by a separate call to the Get_entropy routine.

The internal state contains values for s, curve type, seedlen, p, a, b, n, P, Q, block_counter
and security strength. In accordance with Table 5 in Section 10.3.2.1, security strengths of
112, 128, 192 and 256 may be supported. SHA-256 has been selected as the hash function.
The following definitions are applicable for the instantiate, reseed and generate functions:

1. highest_supported security strength = 256.

2. Output block length (outlen): See Table.

3. Required minimum entropy for instantiation and reseed = security strengih,
4. Minimum entropy input length (min_entropy input_length): See Table.

3. Maximum entropy input length (max_entropy_input_length) = 1000.

6. Maximum personalization string length (max_personalization_string length) =
500.

7. Maximum additional input length (max_additional _input length) = 500.
8. Seed length (seedlen): See Table.

9. Maximum number of bits per request (max number_of bits_per request) =
1000.

10. Reseed interval (reseed interval) = 10,000.
F.6.2 Instantiation of Dual_EC_DRBG
This implementation will return a test message and an invalid state handle (-1) when an
ERROR is encountered. A DRBG-specific parameter requested curve type is required

(rather than optional) for this implementation for a consuming application to select a curve
type. Hash_df is specified in Section 9.6.2.

Instantiate_Dual EC_DRBG (...):

Input: integer (requested instantiation security_strength), bitstring
personalization_string, integer requested_curve_type.

Output: string status, integer state_handle.
Process:

Comment : Check the validity of the input
parameters.
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1. If (requested > 256) then Return (“Invalid
requested v strength”, -1).

2. If (len (personalization_string) > 500), then Return (“personalization string
too long”, -1).

3. If ((requested curve_type # Prime_field curve) and (requested _curve type #
Random_binary_curve) and (requested curve type # Koblitz curve)), then
Return (“Valid curve type not specified”, -1).

Comment : Determine an m that is appropriate
for the requested strength; this will depend
on curve_type.

4. If (requested curve type = Prime_field curve), then

Comment : Choose one of the prime field

curves
4.1 If (requested <112), then
{ = 112; seedlen =224; outlen = 208;
min_entropy_input len =224}

Else if (requested < 128), then
{. = 128; seedlen =256, outlen = 240;
min_entropy_input_len =256}

Else if (requested <192), then
{ = 192;, seedlen =384, outlen =368;
min_entropy input len = 384}

Else { = 256;, seedlen = 521; outlen = 504,

min_entropy input len = 528}.

4.2 Select elliptic curve P-seedlen, if available. If this curve is not available,
then Return (“Prime_field curve of the correct length not available”, -1).

5. If (requested curve type # Prime field curve), then

Comment: choose one of the binary or
Koblitz curves.

5.1 If (requested_ strength < 112), then
{ = 112; seedlen = 233; outlen =216,
min_entropy input len =240}
Else if (requested strength < 128), then
{ = 128; seedlen = 283; outlen = 264;
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min_entropy_input_len =288}

Else if (requested strength <192), then
{ =192; seedlen = 409, outlen = 392;
min_enropy input length = 416}
Else { =256; seedlen = 571; outlen = 552,
min_enropy input length =576}
52 p=0.

5.3 If (curve_type = Random binary curve), then select elliptic curve B-
seedlen; if this curve is not available, then Return
(“Random_binary curve of the correct length not available”, -1).

Else select elliptic curve K-seedlen; if this curve is not available, then
Return (“Koblitz_curve of the correct length not available”, -1).

Set the point P to the generator G for the curve, and set # to the order of G.
Set the corresponding point Q from Annex A.1.
Comment: Request entropy_input.

. (status, entropy_input) = Get_entropy ( A
min_entropy_input length, 1000).

. If (status # “Success™), then Return (“Failure indication returned by the
entropy_input source:” || status, -1).

(status, ) = Get_entropy (64, 64, 1000).

. If (status # “Success”), then Return (“Failure indication returned by the
source:” || status, -1).

Comment : Perform the instantiate algorithm.
. seed _material = entropy input || personalization_string.
.5 = Hash_df (seed material, seedlen).
_counter = 0.

Comment: Find an unused internal state and
save the initial values.

. (status, state_handle) = Find_state_space ().
. If (status = “Success”), then Return (status, -1).

. internal_state (state_handle) = {s, curve_type, m, p, a, b, n, P, O,
k_counter,

. Return (“Success”, state_handle).
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F.6.3 Reseeding a Dual_EC_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.

Reseed_Dual EC_DRBG_Instantiation (...):

Input: integer state_handle,string additional input_string.

Output: string status.

Process:

=N w

8.
9.

Comment: Check the input parameters.

. If ((state_handle > 10) or (internal_state (state_handle).security strength = 0)},

then Return (“State not available for the state_handle”).
If (len (additional input) > 500), then Return (“Additional_input too long”).

Comment: Get the approptiate state values for
the indicated state_handle.

s = internal state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security_strength = internal_state
(state_handle).security_strength.

Comment: Request new entropy input with
the appropriate entropy and bit length.

(status, entropy input) = Get_entropy (security strengith,
min_ entropy_input_length, 1000).

If (status # “Success”), then Return (“Failure indication returned by the
entropy source:”|| status).

Comment: Perform the reseed algorithm.
seed_material = pad8 (s) || entropy_input || additional_input.
s = Hash_df (seed_material, seedlen).
block counter = 0.

Comment: Update the changed values in the
state.

internal_state (state_handle).s = s.

internal_state.block_counter = block_counter.

10. Return (“Success”).
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F.6.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

The implemenation returns a Null string as the pseudorandom bits if an error is
encountered.

Dual EC_DRBG (...):
Input: integer (state_handle, requested_security_strengih, requested_no_of bits),
bitstring additional _input.
Output: string status, bitstring pseudorandom_bis.
Process:
Comment: Check for an invalid state_handle.

1. If ((state handle > 10) or (internal_state (state_handle) = 0)), then Return
(“State not available for the state_ handle”, Null).

Comment: Get the appropriate state
values for the indicated state_handle.

2. s=internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security_strength = internal _state
(state_handle).security_strength, P = internal_state (state_handle).P, Q =
internal_state (state_handle).Q, block_counter = internal state
(state_handle).block_counter.

Comment: Check the rest of the input
parameters.
3. If (requested_number_of bits > 1000), then Return (“Too many bits
requested”, Null).

4. If (requested_security_strength > securify strength), then Return (“Invalid
requested_strength”, Null).

5. If (len (additional_input) > 500), then Return (“Additional_input too long”,
Null).

Comment: Check whether a reseed is
required.

requested _number _of _bits

-‘> 10,000, then
outlen

6. If (block counter +[

6.1 Reseed Dual EC_DRBG_Instantiation (state_handle,
additional _input).

6.2 additional_input = Null.
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6.3 s =internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security_strength = internal _state
(state_handle).security strength, P = internal_state (state_handle).P, Q
= internal_state (state_handle).Q, block_counter = internal_state
(state_handle).block counter.

Comment: Execute the generate algorithm.
7. 1f (additional input = Null) then additional input =0
Comment: additional _input set to m zeroes.
Else additional _input = Hash_df (pad8 (additional input), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:

8. temp = the Null string.

9. i=0.

10. t=s ® additional input.

11. 5 = @(x(t * P)).

12.7 = @(x(s * Q)).

13. temp = temp || (rightmost outlen bits of r ).

Oxeedlen

14. additional _input= Comment: seedlen zeroes; additional input

is added only on the first iteration.
15. block_counter = block counter + 1.
16.i=i+1.
17. If (len (temp) < requested_no_of bits), then go to step 11.
18. pseudorandom_bits = Truncate (femp, i x outlen, requested no_of bits).

Comment: Update the changed values
in the state.

19. internal _state.s = s.
20. internal_state.block _counter = block_counter.
21. Return (“Success”, pseudorandom_bits).

F.7 MS_DRBG Example

F.7.1 Discussion

This example of MS_DRBG allows a consuming application to request specific values for
e and outlen. A reseed capability is available, but prediction resistance is dependent on the
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user’s system. Both a personalization_string and additional_input are allowed. A total of 5
internal states are provided. For this implementation, the handling of the DRBG-specific
parameters and the algorithms are provided as separate routines.

The nonce for intantiation consists of a random value with 64-bits of entropy; the nonce is
obtained by increasing the call for entropy bits via the Get_entropy call by 64 bits (i.e.. by
adding 64 bits to the security strength value).

The internal state contains values for n, e, seedlen, outlen, S, block_counter,
security strength and prediction_resistance_flag.

In accordance with Table 6 in Section 10.3.3.1, security strengths of 112 and 128 may be
supported. SHA-1 has been selected as the hash fi unction. The following definitions are
applicable for the instantiate, reseed and generate functions :

1. highest supported sccurity sirength: Depends on the requested sccurity strength.
2. Output block length (outlen): 8, unless otherwise requested using requested_outlen.

3. Required minimum entropy for instantiation = security strength + 64 (includes the
randm nonce).

4. Required minimum entropy for reseed = securify strength.

5. Minimum entropy input length (min_entropy input_length). min_entropy.

6. Maximum entropy input length (max_entropy_input_length) = 5000 bits.

7. Maximum personalization string length (max - personalization_string_length) = 500
bits.

8. Maximum additional input length (max_additional _input_length) = 500 bits.

9. Number of hard bits = 11.
10. Seed length (seedlen): 1g () - 8.

11. Maximum number of bits per request (max_number_of bits_per_request) =
200,000 bits.

12. Reseed interval (reseed_interval) = 25,000 blocks of outlen bits.
F.7.2 Instantiation of MS_DRBG

This implementation will return a test message and an invalid state handle (-1) when an
ERROR is encountered. DRBG-specific parameters (requested_e and requested_outlen)
are provided that will allow a consuming application to optionally select the values for e
and outlen. Hash_df is specified in Section 9.6.2.

If prediction_resistance_flag = 1, then a prediction resistance capability is requested for
the instantiation. If the user’s system is capable of handling prediction resistance (e.g., a

source of randomness is readily available), the user has been instructed to indicate the
ability to provide prediction resistance by setting prediction_resistance_capability = 1
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during system configuration.

Let Get_random_modulus be a function that gets a random modulus » that meets the
criteria specified in Section 10.3.3.2.3, step 5.5.

Instantiate_MS_DRBG (...):

Input: integer (requested instantiation security strength,

prediction resistance_flag), bitstring personalization_string, integer
(requested e , requested outlen).

Output: string status, integer state_handle.

Process:

L.

If (requested _instantiation security strength> 128), then Return (“Invalid
requested_ instantiation security strength”, -1).

If ((prediction_resistance flag = 1) and (prediction_resistance_capability #
1)), then Return (“Cannot support prediction resistance”, -1).

If (len (personalization_string) > 500), then Return (“Personalization_string
too long”, -1).

If (requested _ instantiation security strength < 112), then security_strength =
112

Else =128.

(status, n, e, seedlen, outlen) = Get_DRBG_specific_parameters
( , requested e, requested_outlen).

Comment: Get entropy input.

min_entropy = security strength + 64.
(status, entropy input) = Get_entropy (min_entropy, min_entropy, 5000).

If (status # “Success”), then Return (“Failure indication returned by the
entropy source”, -1).

(S, block counter) = Instantiate_algorithm (entropy input,
personalization_string, seedlen).

Comment: Find an empty state in the state
space.

10. (status, state_handle) = Find_state_space ().

11. If (status # “Success ), Return (status, -1).
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Comment: Store all values in state .

12. internal_state (state_handle) = {n, e, seedlen, outlen, S, block counter,
security_strength, prediction_resistance_flag}.

13. Return (“Success ”, state_handle).
Get DRBG_specific_parameters (...).
Input: integer (security_strength, requested_e, requested outlen).
Output: string (status), integer (n, e, seedlen, outlen).
Process:
Comment: Determine modulus size (i.e.,
1g(n).
1. If (security strength =112)then modulus_size = 2048
Else modulus_size = 3072.
Comment: Select the exponent e.
2. If (requested e = 0) or is not provided, then e =3
Else
2.1 e =requested e.

22 If((e <3)or (e> (25" - (2 x 2"2'¥"))) or (e mod 2 = 0)), then
Return (“Invalid requested_e”, -1).
Comment: Determine outlen.

3. If (requested_outlen = 0 ) or is not provided, then ourlen =8
Else
3.1 outlen = requested_outlen.

3.2 If ((outlen < 1) or (outlen > min (L lg(n) — 2*security strength IR
lg(n) * (1 —2/e) 1) or (outlen mod 8 # 0)), then Return
(“Inappropriate value for requested_outlen”, -1).

4. seedlen = modulus size — outlen. Comment: Determine the seed length.
Comment: Select the modulus .
5. (status, n) = Get_random_modulus (modulus_size, e).

6. If (status # “Success ), then Return (“Failed to produce an appropriate
modulus”, -1).

7. Return (“Success”, n, e, seedlen, outlen).
Instantiate_algorithm (...):
Input: bitstring (entropy_input, personalization_string), integer seedlen.
165



ANS X9.82, Part 3 - DRAFT - March 2005

Output: integer (S, block_counter).

Process:
1. seed material = entropy_input || personalization_string.
2. S=Hash_df (seed material, seedlen).
3. block counter=0.

4. Return (S, block_counter).
F.7.3 Reseeding an MSDRBG Instantiation

The implementation is designed to return a text message as the status when an error is
returned.
Reseed_MS_DRBG (...):

Input: integer state _handle, bitstring additional input.

Output: string status.

Process:

1. If ((state_handle > 5) or (internal_state (state_handle).security strength=0)),
then Return (“State not available for the indicated state_handle ™).

Comment: Get the required state values for
the indicated state handle.

2. S=internal_state(state_handle).S, seedlen=
internal_state(state_handle).seedlen, security strength = internal_state
(state_handle).security strength.

3. If (len (additional input) > 500), then Return (“Additional input too long *, -
1).

4. min_entropy = security strength.

5. (status, entropy_input) = Get_entropy (min_entropy, min_entropy, 5000).

6. If (status # “Success”), then Return (“Failure indication returned by the
entropy_input source 7).

7. (S, block_counter) = Reseed_algorithm (entropy_input, additional_input, S,
seedlen).

8. inmternal state (state_handle).S = S, internal_state (state_handle),
block _counter = block counter.

9. Return (“Success™).
Reseed_algorithm (...):
Input: bitstring (entropy input, additional input), integer (S, seedlen).
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Output: integer (S, block counter).
Process:
1. seed _material = S || entropy input || additional _input.
2. S=Hash_df (seed material, seedlen).
3. block counter=0.
4. Return (S, block _counter).
F.7.4 Generating Pseudorandom Bits Using MS_DRBG
The implementation returns a Nul/ string as the pseudorandom bits if an error is
encountered. If prediction resistance is needed, then prediction_resistance request = 1.
MS_DRBG (...):

Input: integer (state handle, requested no_of bits, requested security strength,
prediction resistance request), bitstring additional input.

Output: string status , bitstring pseudorandom_bits.
Process:

1. If ((state_handle > 5) or (internal_state (state_handle).security_strength = 0)),
then Return (“State not available for the indicated state_handle >, Null).

Comment: Get the appropriate stafe for the
indicated state_handle.

2. S = internal state (state handle).S, n = internal_state (state_handle).n, e =
internal state (state_handle).e, outlen = = internal state (state_handle).outlen,
seedlen = internal state (state_handle).seedlen, security_strength =
internal state (state_handle).security strength, block_counter = internal state
(state_handle).block counter, prediction_resistance flag = internal_state
(state_handle). prediction_resistance_flag.

3. Hf (requested no of bits> (25000 x outlen)), then Return (“Too many bits
requested”, Null).

4. If (requested_security strength > security strength), then Return (“Invalid
requested_security _strength”, Null).

5. If (len (additional _input) > 500), then Return (“Additional_input too long”,
Null).

6. If ((prediction_resistance request = 1) and (prediction_resistance_flag # 1)),
then Return (“Prediction resistance capability not instantiated”, Null).

7. reseed required flag=0.
If (reseed required flag = 1) or (prediction resistance request = 1)), then
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8.1 status = Reseed_MS_DRBG (state handle, additional inpuf).

8.2 S =internal state (state_handle).S, block_counter = internal state
(state_handle).block_counter.

8.3 additional input = Null.
8.4 reseed request flag=0.

9. (status, pseudorandom_bits, S, block_counter) = Generate_algorithm (7, e,
seedlen, outlen, S, block_counter, requested _number_of bits,
additional _input).

10. If (status # “Success™), then
10.1 reseed required flag=1.
10.2 Go to step 8.
11. internal_state.S = S, internal_state.block_counter = block_counter.
12. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):

Input: integer (n, e, seedlen, outlen, S, block counter, requested number of bits),
bitstring additional input.

Output: string status, bitstring pseudorandom_bits.
Process:

1. If ((reseed counter + Pequested pumber _of _bifs D > 25,000] , then
- outlen

Return (“Reseed required”, Null).
2. If (additional input = Null), then additional input =0

Else additional _input = Hash_df (pad8 (additional input), seedlen).
3. temp = the Null string.
4. i=0.
5. s=S® additional input.
6. S=1[(s"modn)/2%en] Comment: S is an seedlen-bit number.
7. R = (s° mod n ) mod 27" Comment: R is an outlen-bit number.
8. temp=temp| R
9. additional input=0°°""",
10.i=i+1.
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11. block counter = block_counter+1.
12. If (len (temp) < requested_no_of bits), then go to step 6.
13. pseudorandom_bits = Truncate (temp, i x outlen, requested _no_of bits).

14. Return (“Success”, pseudorandom_bits).
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