
 1

The Key Wrap Validation System

Original: June 20, 2014

Timothy A. Hall

National Institute of Standards and Technology

Information Technology Laboratory

Computer Security Division

 2

TABLE OF CONTENTS

1 Introduction ... 4
2 Scope... 4
3 Conformance ... 4
4 Definitions and Abbreviations .. 5

4.1 Definitions ... 5
4.2 Abbreviations ... 5

5 Design Philosophy of Key Wrap Validation System 6
6 Key Wrap Validation System (KWVS) Test ... 6

6.1 Configuration Information... 7
6.2 The Validation Test for the Authenticated Encryption Function 8

6.2.1 KW-AE ... 8
6.2.2 KWP-AE .. 9
6.2.3 TKW-AE... 10

6.3 The Validation Test for the Authenticated Decryption Function 11
6.3.1 KW-AD ... 11
6.3.2 KWP-AD .. 12
6.3.3 TKW-AD .. 14

Appendix A References .. 15

 4

1 Introduction
This document, The Key Wrap Validation System (KWVS), specifies the procedures for
validating implementations of the AES Key Wrap (KW), AES Key Wrap with Padding
(KWP) and TDEA Key Wrap (TKW) authenticated encryption (AE) and authenticated
decryption (AD) algorithms as specified in NIST SP 800-38F, Recommendation for Block
Cipher Modes of Operation: Methods for Key Wrapping [1]. The KWVS is designed to
perform automated testing on Implementations Under Test (IUTs).

This document defines the purpose, the design philosophy, and the high-level description
of the validation process for KW, KWP and TKW. The requirements and administrative
procedures to be followed by those seeking formal validation of an implementation of
NIST SP 800-38F are presented. The requirements described include a specification of the
data communicated between the IUT and the KWVS, the details of the tests that the IUT
must pass for formal validation, and general instruction for interfacing with the KWVS.

Sets of KW, KWP and TKW test vectors are available at
http://csrc.nist.gov/groups/STM/cavp/documents/mac/kwtestvectors.zip.

2 Scope

This document specifies the tests required to validate IUTs for conformance to the AES
Key Wrap (KW), AES Key Wrap with Padding (KWP) and TDEA Key Wrap (TKW) as
specified in [1]. When applied to an IUT, the KWVS provides testing to determine the
correctness of the implementation of the KW, KWP or TKW algorithm specifications. As
detailed in the standard, there is both an authenticated encryption function and an
authenticated decryption function. A separate test suite has been designed for each of these
functions and verifies that an IUT has implemented the components of the function
according to the specifications in the standard.

3 Conformance

The successful completion of the tests contained within the KWVS is required to be
validated as conforming to the NIST SP 800-38F standard. Testing for the cryptographic
module in which KW, KWP or TKW is implemented is defined in FIPS PUB 140-2,
Security Requirements for Cryptographic Modules [2].

http://csrc.nist.gov/groups/STM/cavp/documents/mac/kwtestvectors.zip

 5

4 Definitions and Abbreviations

4.1 Definitions

DEFINITION MEANING

authenticated decryption
function

The function of KW, KWP or TKW that decrypts the purported ciphertext
into corresponding plaintext and verifies the authenticity and integrity of
the data. The output is either the plaintext or an indication that the
plaintext is not authentic (FAIL).

authenticated encryption
function

The function of KW, KWP or TKW that encrypts plaintext into ciphertext
and provides a means for the associated authenticated decryption function
to verify the authenticity and integrity of the data.

designated cipher
function

The underlying block cipher, along with a key encryption key, used for
authenticated encryption. It may be either the forward transformation or
the inverse transformation.

forward transformation The permutation of blocks that is determined by the choice of a block
cipher and a key.

inverse transformation

The inverse of the permutation of blocks that is determined by the choice
of a block cipher and a key.

key-encryption key The key for the underlying block cipher of KW, KWP or TKW. May be
called a key-wrapping key in other documents.

key-wrap algorithm A deterministic, symmetric-key authenticated-encryption algorithm that
is intended for the protection of cryptographic keys. Consists of two
functions: authenticated encryption and authenticated decryption.

4.2 Abbreviations

ABBREVIATION MEANING

AD Authenticated decryption

AE Authenticated encryption

AES Advanced Encryption System

AESAVS Advanced Encryption System Algorithm Validation System

 6

CIPHK The designated cipher function with key-encryption key K

CIPH-1
K The inverse of the designated cipher function with key-encryption key

K

FIPS Federal Information Processing Standard

KEK key-encryption key

KW AES Key Wrap

KWP AES Key Wrap with Padding

TKW TDEA Key Wrap

IUT Implementation Under Test

5 Design Philosophy of Key Wrap Validation System

The KWVS is designed to test conformance to KW, KWP and TKW specifications rather
than provide a measure of a product’s security. The validation tests are designed to assist
in the detection of accidental implementation errors and are not designed to detect
intentional attempts to misrepresent conformance. Thus, validation should not be
interpreted as an evaluation or endorsement of overall product security.

The KWVS has the following design philosophy:

1. The KWVS is designed to allow the testing of an IUT at locations remote to
the KWVS. The KWVS and the IUT communicate data via REQUEST and
RESPONSE files. The KWVS also generates SAMPLE files to provide the
IUT with a sample of what the RESPONSE file should look like.

2. The testing performed within the KWVS uses statistical sampling (i.e., only
a small number of the possible cases are tested); hence, the successful
validation of a device does not imply 100% conformance with the standard.

6 Key Wrap Validation System (KWVS) Test

The KWVS tests the implementation of the KW, KWP and TKW algorithms for
conformance to the NIST SP 800-38F standard. When applied to an IUT, the KWVS
provides testing to determine the correctness of the implementation of the authenticated
encryption and/or the authenticated decryption function specifications. A separate test
suite has been designed for each of these functions. The validation test suite for each
function verifies that an IUT has implemented the components of the function according to

 7

the specifications in the standard.

The key wrap algorithm validation process requires additional prerequisite testing of the
underlying block cipher, whether AES or TDEA. The prerequisite block cipher testing
must use a fundamental mode of operation – any of the ones in NIST SP 800-38A,
Recommendation for Block Cipher Modes of Operation: Methods and Techniques [3],
except counter mode – that exercises the forward cipher function (forward transformation),
inverse cipher function (inverse transformation) or both, depending upon which are used in
the key wrap algorithm. If the IUT supports both authenticated encryption (AE) and
authenticated decryption (AD), then both the forward and inverse cipher functions
(transformations) must be tested. Example: an IUT supports KW-AE and KW-AD with
the AES-128 forward transformation as the designated cipher function. The prerequisite
testing must cover both the AES-128 forward and inverse transformations.

6.1 Configuration Information

To initiate the validation process of the KWVS, a vendor submits an application to an
accredited laboratory requesting the validation of its implementation of the KW, KWP or
TKW algorithm. The vendor’s implementation is referred to as the Implementation Under
Test (IUT). The request for validation includes background information describing the
IUT along with information needed by the KWVS to perform the specific tests. More
specifically, the request for validation includes:

1. Cryptographic algorithm implementation information

 a. Vendor Name;

 b. Product Name;

 c. Product Version;

 d. Implementation in software, firmware, or hardware;

 e. Processor and Operating System with which the IUT was tested if the IUT is
implemented in software, or Processor if the IUT is a firmware
implementation;

 f. Brief description of the IUT or the product/product family in which the IUT
is implemented by the vendor (2-3 sentences); and

2. Configuration information for the KWVS tests.

 a. Algorithms supported – KW, KWP or TKW

 b. Authenticated Encryption (AE) and/or Authenticated Decryption (AD)

 c. Designated cipher function (CIPH)

 8

 1. KW and KWP – AES cipher function (i.e., forward transformation) and/or
AES inverse cipher function (i.e., inverse transformation)

 2. TKW – TDEA cipher function (i.e., forward transformation) and/or TDEA
inverse cipher function (i.e., inverse transformation)

 d. Key lengths supported

 1. KW and KWP – 128, 192 and 256.

 2. TKW – N/A since only one key length approved.

 e. Five plaintext lengths for testing

 1. KW – two lengths that are non-zero multiples of 128 bits (two semiblock
lengths), two that are odd multiples of the semiblock length (64 bits), and the
largest supported plaintext length less than or equal to 4096 bits.

 2. KWP – four lengths that are multiples of 8 bits and the largest supported
length less than or equal to 4096 bits.

 3. TKW – two lengths that are non-zero multiples of 64 bits (two semiblock
lengths), two that are odd multiples of the semiblock length (32 bits) and the
largest supported length less than or equal to 4096 bits.

6.2 The Validation Test for the Authenticated Encryption Function

6.2.1 KW-AE

A separate request file is generated for each supported combination of designated cipher
function and AES key length. For example, KW_AE_128.req is the file name for KW-AE
using the AES-128 forward transformation as the designated cipher function;
KW_AE_192_inv.req is the file name for KW-AE using the AES-192 inverse
transformation as the designated cipher function.

Within each request file, there is a section for each of the five plaintext lengths. Each
section has 100 trials. Each trial (or count) has two input values: a key (K) and a plaintext
(P). The IUT uses these values to generate the ciphertext (C). For example, the start of a
section in KW_AE_128.req would look like this:

[PLAINTEXT LENGTH = 128]

COUNT = 0
K = 681da528a1e9d2c74efb885e8d8c9b7d
P = 52aac5595d471bb91aea4b98ccc21123

COUNT = 1
.
.

 9

.

All of the values generated by the IUT are stored in the response file in the format specified
in the sample file. There shall be a response file for every request file. The corresponding
lines in KW_AE_128.rsp would be this:

[PLAINTEXT LENGTH = 128]

COUNT = 0
K = 681da528a1e9d2c74efb885e8d8c9b7d
P = 52aac5595d471bb91aea4b98ccc21123
C = d938b5b6bad14eecae3e3f488d933fff3ea95ff5cb666bec

COUNT = 1
.
.
.

The KWVS will verify the correctness of the IUT’s values by comparing them to the
known values generated by the KWVS. If they match, the KWVS records a value of
PASSED; otherwise, the KWVS records a value of FAILED.

6.2.2 KWP-AE

The validation test for KWP-AE is essentially identical to that for KW-AE. Again, a
separate request file is generated for each supported combination of designated cipher
function and AES key length. For example, KWP_AE_192.req is the file name for
KWP-AE using the AES-192 forward transformation as the designated cipher function;
KWP_AE_256_inv.req is the file name for KWP-AE using the AES-256 inverse
transformation as the designated cipher function.

Within each request file, there is a section for each of the five plaintext lengths. Each
section has 100 trials. Each trial (or count) has two input values: a key (K) and a plaintext
(P). The IUT uses these values to generate the ciphertext (C). For example, the start of a
section in KWP_AE_192.req would look like this:

[PLAINTEXT LENGTH = 8]

COUNT = 0
K = 55daa2b3417a8ffae202e28f68d15065c707045d81c21bd7
P = ca

COUNT = 1
.
.
.

 10

All of the values generated by the IUT are stored in the response file in the format specified
in the sample file. There shall be a response file for every request file. The corresponding
lines in KWP_AE_192.rsp would be this:

[PLAINTEXT LENGTH = 8]

COUNT = 0
K = 55daa2b3417a8ffae202e28f68d15065c707045d81c21bd7
P = ca
C = 669ff8e71d9bb69b962b57acf3ca38b9

COUNT = 1
.
.
.

The KWVS will verify the correctness of the IUT’s values by comparing them to the
known values generated by the KWVS. If they match, the KWVS records a value of
PASSED; otherwise, the KWVS records a value of FAILED.

6.2.3 TKW-AE

The validation test for TKW-AE is essentially identical to that for KW-AE and KWP-AE.
TKW supports only a single TDEA key length, so a separate request file is generated for
each supported designated cipher. For example, TKW_AE.req is the file name for
TKW-AE using the TDEA forward transformation as the designated cipher function;
TKW_AE_inv.req is the file name for TKW-AE using the TDEA inverse transformation as
the designated cipher function.

Within each request file, there is a section for each of the five plaintext lengths. Each
section has 100 trials. Each trial (or count) has two input values: a key (K) and a plaintext
(P). The IUT uses these values to generate the ciphertext (C). For example, the start of a
section in TKW_AE_inv.req would look like this:

[PLAINTEXT LENGTH = 64]

COUNT = 0
K = d4e2fd089696709594a4616ba22dd9ea5f7b8a9d989adabb
P = a1f88bab6f450dd5

COUNT = 1
.
.
.

All of the values generated by the IUT are stored in the response file in the format specified
in the sample file. There shall be a response file for every request file. The corresponding

 11

lines in TKW_AE_inv.rsp would be this:

[PLAINTEXT LENGTH = 64]

COUNT = 0
K = d4e2fd089696709594a4616ba22dd9ea5f7b8a9d989adabb
P = a1f88bab6f450dd5
C = 244b1d08047c40451f23fa13

COUNT = 1
.
.
.

The KWVS will verify the correctness of the IUT’s values by comparing them to the
known values generated by the KWVS. If they match, the KWVS records a value of
PASSED; otherwise, the KWVS records a value of FAILED.

6.3 The Validation Test for the Authenticated Decryption Function

6.3.1 KW-AD

A separate request file is generated for each supported combination of designated cipher
function and AES key length. For example, KW_AD_128.req is the file name for KW-AD
using the AES-128 forward transformation as the designated cipher function. Note that if
the forward transformation is the designated cipher function (CIPHK), then the inverse
transformation is used in the authenticated decryption function, since the KW-AD function
always uses the inverse of the designated cipher function, denoted CIPH-1

K.

KW_AD_192_inv.req is the file name for KW-AD using the AES-192 inverse
transformation as the designated cipher function, which means that the KW-AD function
calls the AES-192 forward transformation internally.

Within each request file, there is a section for each of the five plaintext lengths. Each
section has 100 trials. Each trial (or count) has two input values: a key (K) and a ciphertext
(C). The IUT uses these values to recover the plaintext (P) and verify the authenticity of
the data. For example, the start of a section in KW_AD_128.req would look like this:

[PLAINTEXT LENGTH = 128]

COUNT = 0
K = bc4ebbe0c61a487569290f7491f07fb8
C = ff0e62d10b92be910afa5512e8946b482dcb0a57bf2bf15e

COUNT = 1
.

 12

.

.

Note that the ciphertext input is one semiblock (64 bits) longer than the plaintext length.
All of the values generated by the IUT are stored in the response file in the format specified
in the sample file. There shall be a response file for every request file. The corresponding
lines in KW_AD_128.rsp would be this:

[PLAINTEXT LENGTH = 128]

COUNT = 0
K = bc4ebbe0c61a487569290f7491f07fb8
C = ff0e62d10b92be910afa5512e8946b482dcb0a57bf2bf15e
P = 939a378cb7ee4398cf2364f3506d723d

COUNT = 1
.
.
.

For the Authenticated Decryption test, 20 out of the 100 trials per plaintext length have
ciphertext values that are not authentic; that is, they fail authentication. For a trial where
the IUT determines that the ciphertext fails to authenticate, the value FAIL is returned
instead of the plaintext. For example:

.

.

.
COUNT = 3
K = 37658f2799b944c127c06d2ac57756c8
C = ecde0610df7b21bcbc49fb044009251be3ee87ed673439bd
FAIL

COUNT = 4
.
.
.

The KWVS verifies that the correct responses are returned by the IUT. If they match, the
KWVS records a value of PASSED; otherwise, the KWVS records a value of FAILED.

6.3.2 KWP-AD

The validation test for KWP-AD is essentially identical to that for KW-AD. A separate
request file is generated for each supported combination of designated cipher function and

 13

AES key length. For example, KWP_AD_192.req is the file name for KW-AD using the
AES-192 forward transformation as the designated cipher function. Note that if the
forward transformation is the designated cipher function (i.e., CIPHK), then the inverse
transformation is used in KWP-AD, since KWP-AD always uses the inverse of the
designated cipher function, denoted CIPH-1

K.

KWP_AD_256_inv.req is the file name for KWP-AD using the AES-256 inverse
transformation as the designated cipher function, which means that the KWP-AD function
calls the AES-256 forward transformation internally.

Within each request file, there is a section for each of the five plaintext lengths. Each
section has 100 trials. Each trial (or count) has two input values: a key (K) and a ciphertext
(C). The IUT uses these values to recover the plaintext (P) and verify the authenticity of
the data. For example, the start of a section in KWP_AD_192.req would look like this:

[PLAINTEXT LENGTH = 8]

COUNT = 0
K = 2ba5871a33716da20105b609e7bc0c91e847a61aac52fb16
C = c6b3e9d3fb374029722441c6f08a6996

COUNT = 1
.
.
.

Note that the ciphertext input is two semiblocks long. All of the values generated by the
IUT are stored in the response file in the format specified in the sample file. There shall be
a response file for every request file. The corresponding lines in KWP_AD_128.rsp would
be this:

[PLAINTEXT LENGTH = 8]

COUNT = 0
K = 2ba5871a33716da20105b609e7bc0c91e847a61aac52fb16
C = c6b3e9d3fb374029722441c6f08a6996
P = 07

COUNT = 1
.
.
.

For the Authenticated Decryption test, 20 out of the 100 trials per plaintext length have
ciphertext values that fail authentication. For a trial where the IUT determines that the
ciphertext fails to authenticate, the value FAIL is returned instead of the plaintext. For
example:

 14

.

.

.
COUNT = 2
K = e2ef0e67ebcb1d73383611c82913124b8b1bc83506a21024
C = e3bbd26e5b6a031d518957dd64286e98
FAIL

COUNT = 3
.
.
.

The KWVS verifies that the correct responses are returned by the IUT. If they match, the
KWVS records a value of PASSED; otherwise, the KWVS records a value of FAILED.

6.3.3 TKW-AD

The validation test for TKW-AD is nearly identical to that for KW-AD and KWP-AD.
TKW supports only a single TDEA key length, so a separate request file is generated for
each supported designated cipher. For example, TKW_AD.req is the file name for
TKW-AD using the TDEA forward transformation as the designated cipher function. Note
that if the forward transformation is the designated cipher function (i.e., CIPHK), then the
inverse transformation is used in TKW-AD, since TKW-AD always uses the inverse of the
designated cipher function, denoted CIPH-1

K.

TKW_AD_inv.req is the file name for TKW-AD using the TDEA inverse transformation
as the designated cipher function, which means that the TKW-AD function calls the TDEA
forward transformation internally.

Within each request file, there is a section for each of the five plaintext lengths. Each
section has 100 trials. Each trial (or count) has two input values: a key (K) and a ciphertext
(C). The IUT uses these values to recover the plaintext (P) and verify the authenticity of
the data. For example, the start of a section in TWP_AD_inv.req would look like this:

[PLAINTEXT LENGTH = 64]

COUNT = 0
K = e3a77f4b7ac02ea03198d3e607cf20a955aac44af52ff060
C = 6368be85c3c8dbd05156b519

COUNT = 1
.
.
.

 15

Note that the ciphertext input is one semiblock (32 bits) longer than the plaintext length.
All of the values generated by the IUT are stored in the response file in the format specified
in the sample file. There shall be a response file for every request file. The corresponding
lines in TKW_AD_inv.rsp would be this:

[PLAINTEXT LENGTH = 64]

COUNT = 0
K = e3a77f4b7ac02ea03198d3e607cf20a955aac44af52ff060
C = 6368be85c3c8dbd05156b519
P = 3a72755de0f3b528

COUNT = 1
.
.
.

For the Authenticated Decryption test, 20 out of the 100 trials per plaintext length have
ciphertext values that fail authentication. For a trial where the IUT determines that the
ciphertext fails to authenticate, the value FAIL is returned instead of the plaintext. For
example:

.

.

.
COUNT = 2
K = 33c808b242c8a6973f8b7520db586ae9c828853acd438f06
C = 01b72d953f74c090af730af2
FAIL

COUNT = 3
.
.
.

The KWVS verifies that the correct responses are returned by the IUT. If they match, the
KWVS records a value of PASSED; otherwise, the KWVS records a value of FAILED.

Appendix A References

[1] Recommendation for Block Cipher Modes of Operation: Methods for Key
Wrapping, Special Publication 800-38F, National Institute of Standards and
Technology, December 2012.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

 16

[2] Security Requirements for Cryptographic Modules, FIPS Publication 140-2,

National Institute of Standards and Technology, May 2001.

[3] Recommendation for Block Cipher Modes of Operation: Methods and Techniques,
Special Publication 800-38A, National Institute of Standards and Technology,
December 2001.

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

	1 Introduction
	2 Scope
	3 Conformance
	4 Definitions and Abbreviations
	4.1 Definitions
	4.2 Abbreviations

	5 Design Philosophy of Key Wrap Validation System
	6 Key Wrap Validation System (KWVS) Test
	6.1 Configuration Information
	6.2 The Validation Test for the Authenticated Encryption Function
	6.2.1 KW-AE
	6.2.2 KWP-AE
	6.2.3 TKW-AE

	6.3 The Validation Test for the Authenticated Decryption Function
	6.3.1 KW-AD
	6.3.2 KWP-AD
	6.3.3 TKW-AD

	Appendix A References

