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Abstract

The National Security Agency (NSA) is providing hardware simulation support and
performance measurements to aid NIST in their selection of the AES algorithm. Although
much of the Round 1 analysis focused on software, much more attention will be directed
towards hardware implementation issues in the Round 2 analysis. As NIST has stated, a
common set of assumptions will be essential in comparing the hardware efficiency of the
finalists. This paper presents a technical overview of the methods and approaches used to
analyze the Round 2 candidate algorithms (MARS, RC6, RIJNDAEL, SERPENT and
TWOFISH) in 0.5um CMOS-based hardware. Both design procedures and architectures
will be presented to provide an overview of each of the algorithms and the methods used.
To cover a wide range of potential hardware applications, two distinct architectures will be
targeted for comparison, specifically a medium speed, small area iterated version and a
high speed, large area pipelined version. The standard design approach will consist of
creating hardware models using VHDL and an underlying library of cryptographic
components to completely describe each algorithm. Once generated, the model can be
verified for correctness through simulation and comparison to test vectors, and synthesized
to a common CMOS hardware library for performance analysis. Hardware performance
data will be collected for a variety of design constraints for each of the algorithms to ensure
a wide range of measured data. A summary report of the findings will be presented to
demonstrate algorithm performance across a wide range of metrics, such as speed, area,
and throughput. This report will provide a common baseline of information, which will
enable NIST and the community to compare the hardware performance of the algorithms
relative to one another.
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1 Introduction
The National Security Agency (NSA) agreed to provide technical support to the National Institute of Standards and
Technology (NIST) in the form of an analysis of the hardware performance of the Round 2 Advanced Encryption
Standard (AES) algorithm submissions. This analysis consisted of the design, coding, simulation and synthesis of
the five algorithms using the procedure outlined below. Throughout this evaluation, NSA has taken care to assure
that best design practices were used and that all algorithms received equal treatment. No attempt was made to
optimize any particular design, but care was taken to find the best configuration for each algorithm. Cross-validation
measures during design and simulation were used to overcome the subjective effects of the design process and to
ensure that all designs receive the same amount of attention. The results of this analysis should provide an accurate
measure of the hardware performance of each algorithm relative to the others. Undoubtedly more optimized (and
hence better performing) implementations of these algorithms can be designed, so the individual score of any
particular algorithm is not very valuable outside the context of this environment. The point of this analysis is to
provide a controlled setting in which a meaningful comparison can be made.

Based on a mathematical description of the Round 2 algorithms, and C code reference models when necessary for
clarification, NSA designers fully described each of the algorithm submissions in a hardware modeling language.  A
review by a team of design engineers followed the initial design stage to reduce the effects of coding style on
performance. Using commercially available analysis, simulation and synthesis tools, NSA design engineers have
performed simulations to produce performance estimates based on each of the hardware models. In order to provide
a wider perspective on the performance of the algorithms, two different architectures or applications were simulated
for each algorithm: an iterative version to provide a medium speed operation at minimal area/transistor count, and a
pipelined version to provide optimum speed operation, but at the cost of a larger area. This report is a summary of
the performance of the Round 2 AES candidate algorithms, and will compare and contrast the results of the analysis.

2 Hardware Design Background

2.1 Design Guidelines
For this analysis effort, one of the main goals was to provide an unbiased comparison of the algorithms in hardware,
specifically in Application Specific Integrated Circuits (ASICs). To that end, the overhead found in typical hardware
implementations, such as a robust user-interface, was minimized to reduce the impact on the overall performance of
the algorithms. The user-interface is the Input/Output (I/O) connections and logic needed to take the plaintext and
key and present them to the algorithm, and take the output ciphertext and present it off the chip. All inputs and
control signals were registered in a common interface in order to provide uniformity across all of the algorithms,
with fixed setup and hold times identical for all algorithms. A wide variety of architectures could be used to
implement a given algorithm. In order to restrict all possible choices and yet capture valuable data points, two
fundamental architectures were chosen: iterative and pipelined. All algorithms were designed in each architecture
style. There are several variations on these approaches, including multiple copies of an iterative implementation for
parallel processing, a partially pipelined implementation, or a combination of these hybrids (multiple copies of a
partially pipelined implementation). The approach chosen will depend on the needs of the system, but these
variations will likely result in performance within the ranges given by the iterative and fully pipelined
implementations. However, these optimizations were beyond the scope of this study.

2.1.1 Target Applications

2.1.2 Iterative Architecture
The iterated approach to implementing the algorithm focuses on providing a medium to low speed version of the
algorithm, with efforts placed on limiting the physical size of the hardware. In this instance of the algorithm, one
step is performed per clock period, with the output of the previous step being used as the input to the next step. Data
is only placed on the output after the required number of algorithm rounds has been completed.
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2.1.3 Pipelined Architecture
The pipelined approach to implementing an algorithm centers on providing the highest throughput to the design,
sacrificing area to obtain the level of performance needed. In the case of pipelining, all of the steps in computing the
algorithm are cascaded into a single design, with each stage feeding the next stage. The latency remains the same as
in the iterated case, but the throughput is increased significantly as new data is placed on the output on every clock
cycle. Pipelining has been shown to be an effective method of dramatically increasing the throughput capabilities of
a given algorithm. However, it comes at the expense of limiting the number of cryptographic modes that can be
supported at the maximum throughput rate. For example, since the latency of an encryption cycle remains the same
as an iterative case, there is no throughput advantage when using feedback modes such as Cipher Block Chaining
(CBC). High performance applications, such as high speed network encryption, will require the increase in
throughput, and as a result, often focus on a non-feedback mode of operation such as counter mode to obtain
performance.1

2.2 Parameter Description
There are many design parameters that can be reported for each design implementation. Some parameters will have
much more significance in a given application or environment than others. This evaluation reports on these
parameters as a method of comparison among the five algorithms, and does not claim that any single parameter has
been fully optimized. The following is a description of the parameters being reported. Some have a direct impact or
relation to performance metrics (e.g. throughput) and some are simply a function of the algorithm itself (e.g., I/O
requirements). Algorithm performance in each of the evaluation categories will be documented for each algorithm
submission.

2.2.1 Area
As an estimate based on an available MOSIS library, the results of the synthesis area reporting will consist of pre-
layout area estimates of the algorithm. Although potentially different from a post-layout estimate, the area reported
by Synopsys (version 1999.10) will provide a relative comparison of each of the algorithm submissions. Generally,
the two varieties of architectures-– iterative and pipeline -– will be on the extremes of area with the iterative being
the smallest, and the pipelined being the largest.

2.2.2 Throughput
In most cases, throughput is directly proportional to area; as area decreases, throughput decreases. As with area, the
iterative and pipelined architectures will report the extremes of throughput. Iterative architectures will have much
lower throughput rates since there is a minimum amount of hardware, and it is re-used on multiple clock cycles of
execution. Thus, the throughput is limited by the amount of hardware reuse. More specifically, it is limited by the
number of rounds in a codebook algorithm. On the other hand, a pipelined architecture dedicates hardware for
performing all calculations in any given clock cycle. This maximizes throughput by allowing data to be written and
read from the device on every clock. In this case, throughput is a function of the worst-case delay in any one given
stage of the algorithm. Throughput will be reported for both iterative and pipelined architectures.

2.2.3 Transistor Count
Transistor count is a more specific measure than area and is often more useful. While transistor count is somewhat
dependent on the design library being used, it is a useful method of comparing the algorithms since they were
compiled using the same library. In addition, the transistor count will be a more useful figure than area when
estimating programmable logic implementations since these devices typically report the number of useable gates
(which is also directly related to transistor count). Based on the synthesized netlist (from Synopsys), an additional
report describing the number of transistors required to implement the algorithm will be provided.

2.2.4 Input/Outputs (I/O) Required
With the goal of consistency among algorithms, the I/O was fixed identically for all algorithms. However, since this
parameter is highly useful to hardware designs, it will still be reported.
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2.2.5 Key Setup Time
The key setup time refers to the amount of time required before subkey expansion is ready to execute. Some
algorithms use the user-supplied key directly in the subkey expansion thereby reducing the key setup time to zero.
Others require some pre-calculation or translation of the key prior to subkey expansion steps. Key setup times will
be examined to assess the overhead of each algorithm in establishing a usable key.

2.2.6 Algorithm Setup Time
Similar to key setup time, the algorithm setup time reports the minimum amount of time before an algorithm is
ready to process data. Time to create look-up tables, etc. will fall in this category. None of the evaluated algorithms
contained an algorithm setup time greater than zero.

2.2.7 Time to Encrypt One Block
This paramter will address minimum latency times for each of the algorithm submissions. The time to encrypt one
block, measured in nanoseconds, is a function of two parameters: the worst-case path delay between any two
registers, and the number of rounds in the algorithm.

2.2.8 Time to Decrypt One Block
As above, this parameter will address minimum latency times for each of the algorithm submissions. Decryption
does not always require identical processing as encryption. Therefore, the time required to decrypt one block is
reported.

2.2.9 Time to Switch Keys
Originally, this parameter was included as a measure to encompass both key setup time and algorithm setup time
overhead. However, since none of the evaluated algorithms contained an algorithm setup time, this parameter is
identical to key setup time. Therefore, it will not be reported further in this document.

3 Methodology

3.1 Standard Design Flow
The design process followed a common methodology used by ASIC designers. The process started with the
documentation supplied by the algorithm authors and was completed with a gate-level schematic, which included
the performance metrics data. A complete ASIC development would require physical layout and fabrication. These
steps were beyond the scope of this effort. However, the performance metrics data obtained here closely matches
that which would be found from actual fabrication and testing. Previous efforts using these tools have correlated
estimated performance from the schematic to the actual testing. Figure 1 shows the steps in the design flow.

Algorithm
Specification

VHDL
Model

Functional
Simulation

Synthesis Data Extraction

Figure 1 Standard Design Flow
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3.1.1 VHDL code generation
VHSIC Hardware Description Language (VHDL)

VHDL modeling is analogous to programming simulations in C code and follows much of the same syntax.
However, unlike a behavioral description of the algorithm, VHDL (IEEE 1076) specifies how the algorithm will be
implemented in hardware. Using this hardware language, NSA designers fully described the hardware necessary to
implement each of the algorithm submissions. Performance metrics, such as speed, area, etc. (see below) can be
estimated from the hardware description using available analysis and computer aided design (CAD) tools.
There are different styles in which to code VHDL models, offering various levels of abstraction. For this evaluation,
the designers used the register transfer logic (RTL) coding style. For this style, the placement of registers and
corresponding logic between registers is chosen by the designer and is determined at the VHDL code level. There
are many different methods for identifying an optimized placement of registers. Ideally, there would be an equal
amount of logic delay between registers for all stages of the design. However, in order to simplify the design cycle
and to be consistent among all algorithms, the designers chose a common placement of registers, even if this
placement is not fully optimized. Specifically, the output of each “round” (as defined by the algorithm authors) is
registered for both a key schedule round and an algorithm round.

3.1.2 Simulation and Verification
NSA followed the design phase with a functional VHDL simulation of the designs using the Synopsys VHDL
System Simulator (VSS) to verify the correct operation of the algorithm. The test vectors submitted to NIST for each
algorithm were applied to assure that the design was working as intended. Specifically, the Variable Key and
Variable Text tests were performed for each algorithm implementation and mode (e.g., iterative encrypt, pipelined
decrypt, etc.). The modeled algorithm output was also compared with the C code model supplied to provide an
added assurance that the simulation was operating as expected.

3.1.3 Code review
NSA had one or more engineers design the VHDL for each algorithm submitted. Initial hardware designs were
straightforward implementations of the core algorithm. Following completion of each initial design, an informal
group of engineers met to review and provide feedback for the design. Improvements and alternatives to the initial
design were examined to determine potential benefits from differing architecture approaches (area compression,
pipelining, etc.). Variants of the design that improve the performance of the algorithm were then programmed for
comparison.

3.1.4 Synthesis
Gate-level synthesis of the algorithm utilized the Synopsys Design Compiler to produce a functionally equivalent
schematic in hardware.  A MOSIS-specific technology library was used to generate a gate-level schematic of the
design and provide more accurate area and timing estimates, as if the design were to be implemented in an
integrated circuit (IC). The MOSIS library is based on a publicly available fabrication facility’s model of a specific
CMOS process (0.5um), thus giving real performance metrics for an available ASIC line. The VHDL model can be
re-targeted to any supported hardware or field programmable gate array (FPGA) design libraries.

The synthesis process can generate a wide range of implementations depending on the constraints provided to the
synthesis tool. For example, one implementation may minimize area while another may minimize delay time. In
hardware synthesis, the two fundamental parameters are time and area. These parameters are directly related. As
delay time decreases, area increases. Timing and area curves that further illustrate this point are shown in subsequent
sections. The constraints provided for each algorithm synthesis routine were maintained consistently. Therefore,
differences among algorithm synthesis results will be a function of the logic required (algorithm specific) and the
synthesis tool’s ability to meet the given constraints.

3.1.5 Documentation
In addition to a summary report containing performance data, both design notebooks and VHDL documentation will
be provided to NIST for evaluation. The design notebooks will contain reporting information for all of the hardware
data that was collected, with all algorithms, designs, and architectures represented. The VHDL models and their
testbenches (for simulation verification) will also be included.
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3.2 Synthesis Analysis

3.2.1 Function Characterization
Although the hardware design of the algorithms followed a top-down approach, the synthesis portion of the analysis
proceeded from the bottom of the design up through the hierarchy. In order to obtain an accurate picture of the
performance of the sub-blocks and functions in this type of analysis, a sweep was performed on each of the
functional blocks to graphically depict performance versus design constraints. Specifically, the timing constraints,
such as output delay and clock frequency, of each of the blocks were varied to observe the performance output of the
block. The results of the sweep make up the characterization for that particular block. All subsequent blocks of the
hierarchy will be analyzed using these methods.

3.2.2 Cryptographic Library
With characterization curves for each of the sub-blocks complete, five speed grade implementations were selected to
cover the performance range of the block. A variety of key performance points were selected to reflect requirements
for both high speed and small area. Figure 2 shows typical timing and area curves following a sweep of maximum
delay time constraints. These curves allow design engineers to select specific implementations of a given function.
Specifically, five implementations, or speed grades, were chosen for each function. In this example, the five selected
implementations are noted in the figure, and they represent one minimum time delay, one minimum area, and three
other points that have desired characteristics such as large area savings for a small increase in delay time.
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Figure 2 Sample Function Sweep

The five implementations were selected only for the functions of each of the algorithms, and then assembled into a
cryptographic library. Each library contained implementations of all the functions required to build the given
algorithms.



8

3.2.3 Block Level Characterization
Continuing with the bottom up approach, the higher level blocks underwent the same performance sweep as
described for the function level. The design constraints were varied across the entire range of the block to fully
describe the performance curve of the block. At each iteration of the synthesis process, components (e.g., functions)
were selected from the cryptographic library based on the required speed and performance. Performance curves at
the block level encompassed components of several different speed grades depending on design constraints. At the
top level, the characterization curve reflected the performance of the entire design across a wide range of design
constraints.

4 General Architecture Approach

4.1 Top Level Architecture
The design of each algorithm started with a common top level architecture that is well suited for virtually any
codebook algorithm. The generalized top level architecture consists of an Interface, an Algorithm block, a Key
Schedule block and a Controller. Figure 3 shows a block diagram of the architecture.

Done

Interface

Controller

Algorithm

Expanded 
Key

Control 
Signals

Control 
Signals

Chip Boundary
Ciphertext

Plaintext Key

Key 
Schedule

Figure 3 Top Level Architecture

The Interface serves to register all data inputs. This is consistent with the hardware design methodology of placing
registers at the chip boundary, thus minimizing strict setup-and-hold timing requirements. In some cases, the
interface also provides minimum functionality, such as padding keys when appropriate. The Key Schedule performs
the generation of subkeys to be used in by the Algorithm. This includes any required key setup as well as the
expansion itself. The Algorithm performs the actual encryption or decryption of data provided from the Interface
using the subkeys from the Key Schedule. For iterative implementations, the Algorithm and Key Schedule
implement a single round with internal feedback datapaths; the pipelined implementations expand these sections to
include as many implementations of a round as required by the particular algorithm. Finally, the Controller provides
any necessary control signals for maintaining proper synchronization among the various blocks.

5 Algorithm Evaluation
A description of how each algorithm was architected is given for both the pipelined and iterative cases.  Any
nuances of how the rounds were simulated and the key schedule implemented are also given along with specific
examples of approaches to reduce redundancy or streamline the design. Following the architecture for each of the
algorithms, each section will provide a summary of the results of the hardware analysis for the individual algorithm.
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A table of performance parameters is then provided for two different key sizes -- the 128 bit and a hybrid that
combines all three key sizes in one key schedule that can be controlled for any particular key size. In some cases, the
combined three-in-one key schedule must make compromises to achieve the greater degree of flexibility. Each of the
performance parameters is described in more detail in Sections 6-7, along with comparisons across the five
algorithms.

5.1 MARS

5.1.1 Architecture
The MARS algorithm requires several different types of rounds2. Specifically, there are unkeyed forward mixing,
keyed forward transformation, keyed backwards transformation and unkeyed backwards mixing rounds, as well as
pre-addition and post-subtraction. The mixture of keyed and unkeyed rounds resulted in the requirement for
complex control and data flow operations between the Key Schedule and Algorithm blocks. Specifically, a complex
control situation results from the fact that subkeys are required immediately for the pre-addition stage, whereas the
next subkeys are not required until the eight unkeyed forward mixing rounds are completed. This architecture
presented some unique timing and data synchronization issues.

5.1.1.1 Pipelined Key Schedule
As with all pipelined implementations, the subkey from each round must be registered. However, for MARS, the
subkeys are not utilized on consecutive clock cycles, making additional pipelined storage necessary. The updated
key schedule of MARS following AES Round 1 allowed for separating the 40 subkeys into groups of 10. The
VHDL model takes advantage of this operation by adding pipelined storage for groups of 10 subkeys, only as long
as necessary, rather than creating pipelined storage for all 40 subkeys. This reduced the total number of registers
required. Additionally, the pipelined registers are controlled by a latch signal rather than updating on every clock.
Again, this reduced the number of registers by removing redundancy.

5.1.1.2 Pipelined Algorithm
Relative to the intricacies of the key schedule, the pipelined algorithm implementation is straightforward. It consists
of six different types of rounds, each one with its own registered output: one key addition, eight unkeyed forward
mixings, eight keyed forward transformations, eight keyed backwards transformations, eight unkeyed backwards
mixings and one key subtraction. This makes a total of 34 rounds to complete the algorithm.

5.1.1.3 Iterative Key Schedule
The MARS algorithm key schedule generates 10 subkeys at a time. Therefore, the traditional iterative methodology
of a single round implementation for generating a single subkey (or set of subkeys as required by a single algorithm
round) did not apply. Instead, a single round implementation per 10 subkeys was generated resulting in a key
expansion round iterated four times for one encryption cycle. This presents some additional logic overhead for
iterative applications in that a “round” generates 10 subkeys simultaneously rather than the exact amount needed by
the algorithm at a given stage. (In the case of MARS, two 32-bit subkeys are required per keyed round in the
cryptographic core.) In addition to the subkey expansion overhead, there is a storage overhead for the remaining
subkeys. Also, decryption requires a full expansion of subkeys prior to beginning data processing. Therefore, the full
set of 40 subkeys is stored in registers.

5.1.1.4 Iterative Algorithm
The iterative algorithm is consistent with the pipelined algorithm in its relative simplicity when compared to the key
schedule. There is a single register for all rounds. The input to the register depends on the round number. For
example, the input for the first round of encryption is the key addition round result; for the second round it is the
unkeyed forward mixing round result and so on.

Subkeys are presented to the algorithm block as an array of all 40 subkeys. This differs from other iterative
algorithm implementations that present only one subkey at a time. The rationale for this design was to eliminate
duplicate logic in both the Key Schedule block and Algorithm block. Due to the timing gaps in the application of
subkeys and the fact that all 40 subkeys are generated prior to decryption processing, it was considered
advantageous to allow a 40 element bus to connect the two blocks.

5.1.1.5 Effects of Single Key Sizes
For MARS, the effects of implementing single key sizes is limited to the key expansion portion only. Both the
algorithm and number of rounds will remain constant across key size.  The effect of using the single key size was
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marginal because the core function that changes was initializing T.  This was relatively minor compared the much
larger STIR/SBOX function which was independent of the key length.

5.1.2 MARS 3-in-1 Results

Min. Max. Min. Max.
Area (um2) 52,717,560 127,432,766 670,181,619 1,333,099,627
Transistor Count 734,751 1,950,277 9,340,818 20,667,308
Input/Outputs Required 520 520 520 520
Throughput (Mbps) 29.06 56.71 1123.89 2189.16
Key Setup Time Encrypt (ns) 9553 27470 3718 10206.23
Key Setup Time Decrypt (ns) 9553 27470 3718 10206.23
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 2256.92 8600.1928 1987.98 3872.26
Time to Decrypt One Block(ns) 2256.92 8600.1928 1987.98 3872.26

Parameter
Iterative 3in1 Pipelined 3in1

Table 1 MARS Summary

5.1.3 MARS 128 Bit Key Results

Min. Max. Min. Max.
Area (um2) 51,986,292 126,827,662 669,735,987 1,332,658,283
Transistor Count 724,403 1,941,371 9,334,605 20,661,116
Input/Outputs Required 520 520 520 520
Throughput (Mbps) 29.06 56.71 1123.89 2189.16
Key Setup Time Encrypt (ns) 9553 27429 3712 10199
Key Setup Time Decrypt (ns) 9553 27429 3712 10199
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 1987.98 3872.26 1987.98 3872.26
Time to Decrypt One Block(ns) 1987.98 3872.26 1987.98 3872.26

Parameter
Iterative 128-Bit Pipelined 128-Bit

Table 2 - MARS 128 Bit Key Summary

5.2 RC6

5.2.1 Architecture
The following provides a high level description of the major blocks in the RC6 algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook.

5.2.1.1 Pipelined Key Schedule
The RC6 key schedule is pipelined using a slightly different method than the other algorithms. Since a significant
number of computations for the key schedule are required before any expanded keys are generated, the architecture
takes advantage of the run-up by performing the expansion at the start of the pipeline. Only a single copy of the
expansion hardware is required, but additional registering is needed to maintain the keys on a time dependent basis,
discarding keys from previous stages (i.e., the keys have already been used). Keys are then passed from register to
register to follow the data in the pipeline.
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5.2.1.2 Pipelined Algorithm
The pipelined implementation “unrolls” the stages of the algorithm into a pipeline, following the algorithm
description for function ordering and naming conventions. Combination functions are used to perform cases where
distinct operations need to be performed in encrypt and decrypt. For example, the pre-add will contain both addition
and subtraction to accommodate both cases. A similar condition exists in the algorithm round function, with slightly
different functions needed for encrypt and decrypt. However, synthesis optimization can take advantage of common
operations, such as the multiply, to reduce the total number of operators needed.

5.2.1.3 Iterative Key Schedule
The iterative key schedule is designed to perform a single round of expansion per clock. Expanded keys are fed to
the algorithm block after the controller initiates a start signal. However, the key setup has been designed to compute
single or multiple steps of the run-up in a single clock, depending on the performance needed by the rest of the
system. A load cryptovariable (i.e., load key) signal from the controller will initiate the key setup. Once complete,
the expansion can be started.

5.2.1.4 Iterative Algorithm
The RC6 iterative algorithm closely reflects the pipelined version. The same round instance is called repeatedly to
process input data. The encrypt and decrypt are symmetrical with respect to operations performed in a similar
manner (e.g., pre-add, round, post-add), so the same block can be called without additional overhead.

5.2.1.5 Effects of Single Key Sizes
The effects of single key sizes on RC6 were confined mostly to the key expansion portions of the algorithm.  The
core algorithm section was not greatly affected by a difference in key size, and the only noticeable changes occurred
in the top-level algorithm design where different I/O requirements were used.  The key expansion portions, however,
showed the greatest changes in performance and area as a result of implementing different key sizes.  In fact, every
single layer in the key schedule design was affected by using a single key implementation.  For the most part, these
differences were a result of additional muxing and associated logic in the 3 in 1 case.  However, there also exists a
slightly greater memory requirement for storing larger keys along with associated look-up tables used to compute
the array of sub-keys.  These differences in area and performance, although minor at the lower levels, were greatly
enhanced by the large number of iterations necessary to create the expanded keys.

5.2.2 RC6 3-in-1 Results

Min. Max. Min. Max.
Area (um2) 16,027,545 21,660,006 318,931,799 592,088,503
Transistor Count 248,686 430,436 7,304,500 16,055,292
Input/Outputs Required 520 520 520 520
Throughput (Mbps) 54.94 103.98 1192.47 2170.96
Key Setup Time Encrypt (ns) 8,139.00 15,348.96 3,659.51 6,922.53
Key Setup Time Decrypt (ns) 8,139.00 15,348.96 3,659.51 6,922.53
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 1233.2 2329 1179.2 2146.8
Time to Decrypt One Block(ns) 1233.2 2329 1179.2 2146.8

Parameter
Iterative 3in1 Pipelined 3in1

Table 3 RC6 3-in-1 Summary
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5.2.3 RC6 128 Bit Key Results

Min. Max. Min. Max.
Area (um2) 13,966,637 19,248,830 285,334,063 453,248,223
Transistor Count 217,008 307,247 6,853,619 11,611,314
Input/Outputs Required 520 520 520 520
Throughput (Mbps) 59.68 102.83 1216.38 2196.67
Key Setup Time Encrypt (ns) 5,742.00 13,776.64 3,728.50 6,897.64
Key Setup Time Decrypt (ns) 5,742.00 13,776.64 3,728.50 6,897.64
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 1,244.80 6,674.62 1,165.40 2,104.60
Time to Decrypt One Block(ns) 1,244.80 6,674.62 1,165.40 2,104.60

Parameter
Iterative 128-Bit Pipelined 128-Bit

Table 4 RC6 128 Bit Key Summary

5.3 RIJNDAEL

5.3.1 Architecture
The following provides a high level description of the major blocks in the RIJNDAEL algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook.

5.3.1.1 Pipelined Key Schedule
The RIJNDAEL key schedule is based on a sliding window approach as described in the algorithm specification.
Multiple key sizes are based on the n-1 element and the n-k element (32 bit word organized), where k is 4,6, or 8,
depending on key size. The key expansion is a linear combination of the elements, so a similar function can be used
on the decrypt function to “unexpand” the keys in a reverse direction. Such an approach allows for an increase in the
key agility without sacrificing significant amounts of area to store all of the expanded keys. The encryption
expansion can start immediately, with the first words of the initial key being used as expanded key. The setup time
for this case is zero. During the decryption, the key is expanded to the last key, stored, and then the pipeline is run to
create the previous expanded key until the last decrypt key is generated, which is the initial key. Keys are generated
at a rate of four 32 bit words per round, regardless of key size, to keep up with the requirements of the algorithm
block. Additional registers are used to maintain sufficient previous keys to generate the next four words of expanded
key. Keys are pulled from the bank of registers which make up the sliding window and supplied to the algorithm as
sub-keys. S-Boxes are re-used, without a performance penalty, to minimize the size impact of having additional S-
Boxes.

5.3.1.2 Pipelined Algorithm
The RIJNDAEL algorithm pipeline consists of a sequential mapping of the steps of the algorithm to registered
stages in hardware. Each stage reflects a single round of the algorithm. The primary advantage to pipelining in this
manner is the significant increase in throughput. RIJNDAEL was architected such that both the encrypt and decrypt
functions could be performed with the same pipeline. This approach needed a static pipeline that could perform both
functions, so the algorithm round functions contained in the package will serve a dual role by providing cases for
encrypt and decrypt within the same function. The pipeline structure reflects changes in direction, such as requiring
a pre-add on the encryption (first round) versus decryption requiring a post-add on the last round.

5.3.1.3 Iterative Key Schedule
The iterative version of the key schedule focuses on reducing the area of the key expansion, so only a single copy of
the expansion is maintained. For encryption, as in the pipelined case, the expansion starts immediately, with no key
setup required. The keys are expanded every round, producing the four 32 bit words of key required. As each new
key is created and stored, the old key is overwritten.

In the case of decryption, the algorithm requires a setup time to effectively run the algorithm to the last key. This
serves as the starting point for all decryptions using that key. This value will also be stored so it can be referenced on
each new decryption to eliminate key setup for every new decryption.
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5.3.1.4 Iterative Algorithm
The algorithm block uses the same functionality as described in the pipeline but does not re-use some of the
combination functions used to construct the pipeline. Instead, the function calls are made explicitly, depending on
encryption/decryption to provide the widest possible range of hardware re-use. The function calls in the encrypt and
decrypt directions are not symmetrical. The algorithm processes the state data on each round, performing only one
step of the algorithm per round.

5.3.1.5 Effects of Single Key Sizes
With the RIJNDAEL architecture, the algorithm portion of the design is effected by the key size implementation and
will see performance increases across the various implementations. Differences in speed and area will be seen as
muxing and control logic can be reduced with single key size implementations. Since RIJNDAEL varies the number
of rounds, a proportional reduction in pipelined algorithm area is observed for each of the individual key sizes
versus the hybrid (3-in-1) design. Moreover, key size plays a much smaller role in the performance of the key
scheduling section. Performance metrics such as area and speed can be isolated in the single key size
implementations and measured independently. For the 128 bit key size, the increase in performance across both the
lower level functions and higher level upper blocks did not significantly impact the overall performance in speed
and area, although there were performance increases. The 3-in-1 design re-used many of the key scheduling logic
blocks as possible to reduce overhead, and as a result, only slight differences could be found between the 3-in-1
design and the 128 bit key design. For instance, in the 128-bit key size, there were a larger number of S-boxes
required versus individual implementations of the 192-bit and 256-bit key sizes. The amount of overhead associated
with a 3-in-1 design did not appear to impact the key schedule design greatly as compared to the 128 bit key size,
but for the other sizes, larger differences can be found.

5.3.2 RIJNDAEL 3-in-1 Results

Min. Max. Min. Max.
Area (um2) - 24,158,661 46,362,850 307,129,513 471,996,329
Transistor Count - 481,002 1,029,054 4,190,611 7,130,697
Input/Outputs Required - 520 520 520 520

128 Bit 190.05 447.55 4026.42 5337.78
192 Bit 158.38 372.96 4026.42 5337.78
256 Bit 135.75 319.68 4026.42 5337.78
128 Bit 0 0 0/29.28* 0/44.76*
192 Bit 0 0 0/29.28* 0/44.76*
256 Bit 0 0 0/29.28* 0/44.76*
128 Bit 286 673.5 233.99 318.63
192 Bit 343.2 808.2 262.83 374.33
256 Bit 400.4 942.9 277.25 402.18

Algorithm Setup Time (ns) - 0 0 0 0
128 Bit 286 673.5 239.8 317.9
192 Bit 343.2 808.2 287.76 381.48
256 Bit 400.4 942.9 335.72 445.06
128 Bit 286 673.5 239.8 317.9
192 Bit 343.2 808.2 287.76 381.48
256 Bit 400.4 942.9 335.72 445.06

Iterative 3in1 Pipelined 3in1

Throughput (Mbps)

Key Size 
Selected

Time to Encrypt One Block (ns)

Time to Decrypt One Block (ns)

Key Setup Time Encrypt (ns)

Key Setup Time Decrypt (ns)

Parameter

* Note: Both Key Setup/Key Agility times provided, as they are different for this algorithm

Table 5 RIJNDAEL 3-in-1 Summary
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5.3.3 RIJNDAEL 128 Bit Key Results

Min. Max. Min. Max.
Area (um2) 20,739,239 33,851,050 262,721,033 419,886,025
Transistor Count 275,485 641,681 3,660,325 4,292,749
Input/Outputs Required 520 520 520 520
Throughput (Mbps) 271.13 605.77 4200.85 5745.06
Key Setup Time Encrypt (ns) 0.00 0.00 0/26.6* 0/33.96*
Key Setup Time Decrypt (ns) 211.30 472.10 226.87 333.26
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 211.3 472.1 222.8 304.7
Time to Decrypt One Block(ns) 211.3 472.1 222.8 304.7

Parameter
Iterative 128-Bit Pipelined 128-Bit

* Note: Both Key Setup/Key Agility times provided, as they are different for this algorithm

Table 6 - RIJNDAEL 128 Bit Key Summary

5.4 SERPENT

5.4.1 Architecture
The following provides a high level description of the major blocks in the SERPENT algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook.

5.4.1.1 Pipelined Key Schedule
The SERPENT algorithm implements a simple expansion function for the key scheduling. The exclusive-or based
function allows for quick computation and does not require key setup in the encrypt direction. Pipelining is
maximized as this approach utilizes a sliding window approach, where only a small number of previous expanded
keys are needed to compute the next sub-keys. However, for decryption, a key setup time is required to compute the
starting point for the key expansion, which is the last set of W registers. The decrypt pipeline computes the previous
set of W registers based on the current set, as the exclusive-or based expansion can be reversed easily. To save
storage in this design, the keys are computed at each stage, with the decrypt case requiring a block of logic at the
beginning to find the last subkeys. The SERPENT pipelined key schedule provides two successive keys to each
round of the algorithm on expansion. The algorithm will then select the correct key based on the current
encryption/decryption mode. The additional key allows for the rounds that require two keys to operate.

5.4.1.2 Pipelined Algorithm
The pipelined SERPENT algorithm block contains a structural model of the unraveled rounds of the algorithm. Four
distinct functions are needed to implement both the encrypt and decrypt operations. The core algorithm round
functions are the same for 30 rounds of the algorithm, with an internal mux/demux to select the encrypt or decrypt
mode. The first two rounds of encrypt and last two rounds of decrypt distinguish the cases where the pipeline is re-
routed. The encrypt will bypass the two special rounds of the decrypt while the decrypt will bypass the two special
rounds of encrypt. The latency will remain the same as no extra rounds are added. The pipeline will select and re-
route based on the current mode of encryption or decryption.

5.4.1.3 Iterative Key Schedule
The SERPENT iterative key schedule uses a single copy of the expansion function to generate the sub-keys, one at a
time. Area can be significantly reduced by using the same hardware repeatedly. Additional key setup will be
required in the decrypt direction to allow for the run-up to the last key of the expansion.

5.4.1.4 Iterative Algorithm
The iterative algorithm uses the same functions as the pipeline, with the same round instance referenced repeatedly
to perform the main processing of the algorithm. The special case rounds are selected by the state machine within
the iterative block to determine encrypt/decrypt direction, and consequently, which pre/post add functions to
perform.
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5.4.1.5 Effects of Single Key Sizes
Within the implementation of the SERPENT algorithm, the key size is padded to 256 bits internally, so the effects of
varying key sizes have negligible impact on the performance metrics of the design. Consequently, only the 3-in-1
cases is provided.

5.4.1.6 Key Setup Reduction
An alternative method of calculating the last 8 32-bit words of the decrypt key schedule has been offered as a viable
alternative to running the full encrypt initial expand function to extract these keys.  It was noted by several
individuals at the third AES conference that the last 8 words of the key expansion could be determined by exclusive
OR'ing key bits of the initial CV and effectively jumping to the last keys in a single step.  Not only is this much
faster, but surprisingly it comprises less area than the initial expand function which was reported on earlier.  The
table below compares this decrypt modification to the initial expand function

Approach
Best Case 

Timing Area
Original (Unrolled method) 212.55 16,856,672

Improved (Single Step) 6.95 12,901,915
Table 7 - SERPENT Key Setup Reduction Summary

5.4.2 SERPENT 3-in-1 Results

Min. Max. Min. Max.
Area (um2) 13,779,834 23,274,086 210,124,852 438,561,500
Transistor Count 204,617 345,483 3,298,104 5,741,469
Input/Outputs Required 520 520 520 520
Throughput (Mbps) 102.00 202.30 5298.01 8030.11
Key Setup Time Encrypt (ns) 19.77 39.21 18.98 22.91
Key Setup Time Decrypt (ns) 672.18 1333.14 212.55 365.58
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 510.08 775.18 510.08 773.12
Time to Decrypt One Block(ns) 510.08 775.18 510.08 773.12

Parameter
Iterative 3in1 Pipelined 3in1

Table 8 SERPENT Summary

5.5 TWOFISH
The following provides a high level description of the major blocks in the TWOFISH algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook.

5.5.1 Architecture
A useful property of the TWOFISH architecture was the relatively large amount of design block re-use. Both the
Key Schedule and Algorithm utilized many of the same functions. While this does not result directly in a direct
increase in performance, since key expansion and encryption are performed in parallel, it does simplify the hardware
coding process. As stated, common coding techniques and processes were used for developing each algorithm
design resulting in areas available for improvement in a more highly optimized design. In the case of TWOFISH, a
smaller design could be created by taking advantage of the function re-use. However, as with most hardware trade-
offs, this area optimization would come at the expense of performance and complex control mechanisms.
Another feature of TWOFISH is the lack of initial key runup prior to subkey expansion. In addition, the key
schedule is not a feed-forward design. Each round of key schedule is independent of the previous round. This unique
characteristic allowed for a Key Schedule that does not require a setup time for either encryption or decryption.
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In the TWOFISH algorithm, the first step of encryption is a pre-whiten function, In hardware, this is simply an
exclusive-OR. The pre-whiten step is performed during the same clock cycle as the first subkey expansion which
generates the pre-whiten subkey. This was possible because the XOR function did not create a critical path concern
since the main algorithm rounds incorporate an integer addition that is more complex. The result was the ability to
load data and key in the same clock cycle, thereby reducing the overall time for encryption by one clock cycle.

5.5.1.1 Pipelined Key Schedule
In order to allow for either encryption or decryption, both pre-add and post-add subkeys are generated during the
first pipeline stage. The post-add key is buffered through a pipelined delay until needed in the final processing step.
Since one of the input parameters is the round number which is fixed for a given pipelined round there is an
optimization or pre-calculation in each pipelined round.

5.5.1.2 Pipelined Algorithm
The algorithm is an efficient unrolling of stages because encryption and decryption are nearly identical. In addition,
the symmetry allows for similar processing in both the encrypt and decrypt directions.

5.5.1.3 Iterative Key Schedule
As in the pipelined key schedule, the iterative design requires buffering of the post-add subkey until it is needed in
the final processing step. However, this buffering is not required to be implemented in pipelined stages. The key
schedule round is generalized such that the round number is not a fixed constant as in the pipelined case. This does
not allow synthesis optimization of each round, but does save area since only one hardware block is instantiated.

5.5.1.4 Iterative Algorithm
The differences between encryption and decryption are minor such that the additional hardware to support either
process in a single round adds minimal area.

5.5.1.5 Effects of Single Key Sizes
The performance of TWOFISH changes with key size. The permutations in both the key schedule round and
algorithm round depend on the key size. There is one additional permutation function for 192-bit keys versus the
128-bit keys, and two additional permutation functions for 256-bit keys. The effect is increasing the critical path for
longer key sizes. Therefore, the timing and area increase with key size, and performance is decreased slightly. The
performance of the 3-in-1 implementation is comparable to the 256-bit key implementation since the critical path is
identical with the exception of some multiplexing to switch in data of smaller key sizes. A feature of the 3-in-1
hardware implementation is the ability to over-clock the same piece of hardware in cases where only 128-bit keys
are being used since in such cases the critical path is actually shorter than the worst-case path (256-bit key case).
The timing and throughput numbers of the 3-in-1 implementation reported here use this feature.
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5.5.2 TWOFISH 3-in-1 Results

Min. Max. Min. Max.
Area (um2) - 12,700,019 23,044,514 187,058,851 343,109,723
Transistor Count - 182,533 377,599 2,666,940 5,750,915
Input/Outputs Required - 520 520 520 520

128 Bit 59.50 104.60 1429.00 2278.00
192 Bit 50.00 90.96 1164.00 1957.00
256 Bit 42.95 80.51 977.20 1718.00
128 Bit 42.48 65.36 0/65.63* 0/127.42*
192 Bit 61.28 106.78 0/65.63* 0/127.42*
256 Bit 79.49 149 0/65.63* 0/127.42*
128 Bit 42.48 65.36 0/65.63* 0/127.42*
192 Bit 61.28 106.78 0/65.63* 0/127.42*
256 Bit 79.49 149 0/65.63* 0/127.42*

Algorithm Setup Time (ns) - 0 0 0 0
128 Bit 1223.2 2151.2 1123.8 1791
192 Bit 1407.2 2559.6 1307.8 2199.4
256 Bit 1589.8 2980 1490.4 2619.8
128 Bit 1223.2 1223.2 1123.8 1791
192 Bit 1407.2 1407.2 1307.8 2199.4
256 Bit 1589.8 1589.8 1490.4 2619.8

Throughput (Mbps)

Key Size 
Selected

Time to Encrypt One Block (ns)

Time to Decrypt One Block (ns)

Key Setup Time Encrypt (ns)

Key Setup Time Decrypt (ns)

Parameter
Iterative 3in1 Pipelined 3in1

 * Note: Both Key Setup/Key Agility times provided, as they are different for this algorithm

Table 9 TWOFISH Summary

5.5.3 TWOFISH  128 Bit Key Results

Min. Max. Min. Max.
Area (um2) 9,158,239 16,110,756 121,705,687 225,298,323
Transistor Count 134,997 264,058 1,785,286 3,783,973
Input/Outputs Required 520 520 520 520
Throughput (Mbps) 60.84 105.14 1341.44 2273.53
Key Setup Time Encrypt (ns) 60.87 105.2 0/47.29* 0/91.86*
Key Setup Time Decrypt (ns) 60.87 105.2 0/47.29* 0/91.86*
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 1217.4 2104.00 1126 1908.4
Time to Decrypt One Block(ns) 1217.4 2104.00 1126 1908.4

Parameter
Iterative 128-Bit Pipelined 128-Bit

* Note: Both Key Setup/Key Agility times provided, as they are different for this algorithm

Table 10 - Twofish 128 Bit Key Summary



18

6 Performance Results – 3-in-1 Design

6.1 Summary
A table summarizing the results and performance metrics is given below for algorithm comparison. These
comparison values are given only for the combined key size design, which implements a selectable 128-bit, 192-bit,
or 256-bit key in the same device.

MARS RIJNDAEL RC6 SERPENT TWOFISH
Area (um2) 127,432,766 46,361,993 21,660,006 23,274,086 23,044,514
Transistor Count 1,950,277 1,029,046 430,436 345,483 377,599
Input/Outputs Required 520 520 520 520 520
Throughput (Mbps) 56.7 443.2 103.8 202.3 104.6
Key Setup Time Encrypt (ns) 9553 0 8139 19.77 61.16
Key Setup Time Decrypt (ns) 27470 288.8 8139 672.18 61.16
Algorithm Setup Time (ns) 0 0 0 0 0
Time to Encrypt One Block (ns) 2256.9 288.8 1233.2 632.6 1223.2
Time to Decrypt One Block(ns) 2256.9 288.8 1233.2 632.6 1223.2

Algorithm
Parameter

Table 11 Iterated Summary

MARS RIJNDAEL RC6 SERPENT TWOFISH
Area (um2) 1,333,099,627 471,996,329 554,268,739 438,561,500 343,109,723
Transistor Count 20,667,308 7,130,697 9,013,872 5,741,469 5,750,915
Input/Outputs Required 520 520 520 520 520
Throughput (Mbps) 2189 5163 2171 8030 2278
Key Setup Time Encrypt (ns) 3718 0 3660 18.98 0
Key Setup Time Decrypt (ns) 3718 233.99 3660 212.55 0
Algorithm Setup Time (ns) 0 0 0 0 0
Time to Encrypt One Block (ns) 1988 248 1179 510 1123
Time to Decrypt One Block(ns) 1988 248 1179 510 1123

Algorithm
Parameter

Table 12 Pipelined Summary
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6.2 Performance Comparisons

6.2.1 Iterative Area

Figure 4 Iterative Comparison – 3-in-1 Area

From the graph, one can see that the RC6 algorithm provides the smallest area in the fastest configuration of the
iterative design (maximum area), but TWOFISH provides the smallest device overall (minimum area). In the
iterative case, RIJNDAEL provides the highest performance in terms of throughput, but as evidenced by the graph,
incurs a slightly higher area penalty. All numbers shown are total area and consist of the algorithm, key schedule,
interface, and controller blocks combined.
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6.2.2 Iterative Transistor Count

Figure 5 - Iterative 3-in-1 Transistor Count

Figure 5 provides the total number of transistors required to build the algorithms in the iterative design. A minimum
and maximum version are provided to show the range of the architectures. Also provided are breakdowns by design
block to provide insight as to the size required for some of the major components. Clearly, the algorithm and key
schedule blocks comprise the majority of each design. In addition, the key schedule is often larger than the
algorithm. The smallest design in the iterative case is the TWOFISH algorithm, with RC6 and SERPENT only
slightly larger. The largest design is MARS especially evident in the maximum (largest area and throughput)
version. RIJNDAEL requires a slightly higher transistor count than the low three (TWOFISH, RC6 and SERPENT),
but as the following graphs will indicate, there is a significant increase in the maximum throughput achieved.
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6.2.3 Iterative Throughput

Figure 6 3-in-1 Iterative Comparison - Throughput

From Figure 6, one can see that the RIJNDAEL algorithm provides the highest level of throughput for all of the
algorithms in the iterative case; its throughput ranges from 316 to 443 Mbps depending on the key size. SERPENT
follows with a throughput of about half that of RIJNDAEL, and provides 202 Mbps. The remaining algorithms fall
into the range of 60 to 100Mbps. Although not shown on this graph, the minimum clock period for SERPENT is
actually smaller than RIJNDAEL, but for RIJNDAEL, the reduced number of rounds (as compared to SERPENT)
significantly impacts the throughput achieved.
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Figure 7 - Iterative Throughput vs. Area Comparison

Figure 7 describes the relationship and trade-offs between the throughput performance versus the amount of
hardware area required to attain that level of performance. In this graph, the optimal place to be is the upper left
corner, where throughput is maximized, while area is minimized. The graph shows that the majority of the
algorithms follow a fairly linear trend. For an increase in area, there is a corresponding increase in throughput. On
the higher end, it can be noted that RIJNDAEL achieves the highest throughput performance. More significantly, its
increase in throughput is achieved at a smaller area increment relative to the other algorithms. Boosting the
throughput for RIJNDAEL does not appear to have as significant an impact on area as the other algorithms. On the
lower end, MARS has a smaller performance improvement compared to area savings; the percent change in area is
greater than the percent change in throughput. Specifically, for MARS a 59% increase in area yields a throughput
increase of only 49% whereas a 13% increase in RIJNDAEL area yields a 56% increase in throughput. The
remaining algorithms (RC6, TWOFISH and SERPENT) achieve a slightly greater throughput increase than cost of
area increase.

To elaborate on the performance and area trade-offs, the following table summarizes the expected throughput per
unit area.

Speed 1 Speed 2 Speed 3 Speed 4 Speed 5
MARS 0.45 0.38 0.37 0.38 0.55 52%
RC6 4.49 4.58 4.16 3.39 3.55 35%
RIJNDAEL128 15.89 14.60 11.41 10.98 8.16 95%
RIJNDAEL192 13.24 12.17 9.51 9.15 6.80 95%
RIJNDAEL256 11.35 10.43 8.15 7.85 5.83 95%
SERPENT 6.80 7.15 7.52 6.48 5.89 28%
TWOFISH128 4.98 4.52 4.51 4.09 3.86 29%
TWOFISH192 4.33 4.02 4.06 3.77 3.60 20%
TWOFISH256 3.83 3.63 3.70 3.49 3.38 13%

Configuration
Algorithm

%Change  
(high-low)

Table 13 – 3-in-1Throughput Bits per Unit Area (in bits/sq. um)
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In Table 13, each of the algorithms are represented for the 3-in-1 case, and when varying modes are available (e.g.,
RIJNDAEL, TWOFISH), throughputs are included for the 3-in-1 design running in each of the key sizes. The
configurations represent the varying speed grades of the design, where speed 1 is the fastest, highest area design.
Conversely, speed5 is the slowest, least area intensive design. Each entry represents the amount of throughput (in
bits/sec) that an algorithm will return given a 1 square micron unit of area. RIJNDAEL provides the highest
throughput per area and also the greatest increase in throughput from the low speed to high speed, with an increase
of 95%.

6.2.4 Iterative Key Setup Time (Encrypt)

Figure 8 - 3-in-1 Iterative Key Setup (Encrypt)

From Figure 8, it is evident that there is a wide range in the amount of time required for key setup. The highest times
fall mainly with RC6 and MARS, with both being shown on the graph as off-scale. While the RC6 and MARS key
expansion schedules are very efficient, they require a complex initial key setup thus reducing the key agility.
RIJNDAEL uses the user supplied key directly in the first round of the algorithm, thus, there is no key setup time in
the encrypt direction.  SERPENT has a very minimal key setup time for encryption as well. The TWOFISH key
setup time is relatively significant in the iterative case since minimum area is the primary constraint. Therefore, a
single key schedule round (which produces 64 bits of subkey) is implemented, and data must be passed through this
round twice in order to produce the full 128 bits required in the first round pre-whiten stage.
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Figure 9 - Iterative Key Setup vs. Area (Encrypt)

Figure 9 combines both the key setup time and iterative area into a single graph for analysis. In this instance, the
area represented is the hardware area required by the key schedule only, and does not contain the remaining blocks
in the design. The optimal place in this graph is in the lower left corner, with key setup time and area both
minimized. Both MARS and RC6 are off the scale of the graph, and as a result, are not shown. The circled region
highlights the minimal area for all algorithms’ key schedules, and shows the relative performance of the RIJNDAEL
and TWOFISH, the two smallest iterative key schedules. RIJNDAEL provides a zero setup time in the encrypt
direction, but as the graph indicates, provides this significant performance at a slightly increased area cost over the
smallest TWOFISH implementations. While even the smallest SERPENT implementations require more area, the
key setup time is smaller than TWOFISH.
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6.2.5 Iterative Key Setup Time (Decrypt)

Figure 10 - 3-in-1 Iterative Key Setup Comparison

Figure 10 shows the dependence of key setup time on the direction of the algorithm processing. TWOFISH, RC6,
MARS remain constant in either encrypt or decrypt directions. In the decrypt direction, the last subkeys (relative to
encrypt subkey order) must be generated prior to beginning the decryption process. RIJNDAEL and SERPENT are
adversely impacted since their key schedules are derived from a feed-forward architecture in which the next subkey
depends on the previous subkey thus requiring the entire key expansion to be executed prior to decryption. This
greatly increases the key setup times and reduces the key agility in the decrypt direction. A transformation is
possible for SERPENT which can significantly reduce this decrypt setup time, and a brief discussion and estimates
are provided in 5.4.1
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Figure 11 - Iterative Key Setup vs. Area (Decrypt)

As in Figure 9, this graph combines the key setup time and area performance metrics, but examines the decrypt
direction. In the cases where all of the keys are not generated beforehand, algorithms will have to create the last
subkeys before processing can begin. It’s interesting to note the effect that the decrypt key setup has on several of
the algorithms. Both RIJNDAEL and SERPENT setup times are increased significantly over their corresponding
encrypt direction. TWOFISH remains constant in both directions and switches easily between the two. With the
same area highlighted as in Figure 9, the dramatic increase in key setup can be observed. However, further analysis
with the SERPENT key scheduling has introduced a transformation which can significantly decrease the setup time.
Details are provided in 5.4.1
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6.2.6 Iterative Time to Encrypt

Figure 12 - Iterative 3-in-1 Latency Comparison (Encrypt)

Figure 12 provides details on the latency of each of the algorithms in the encrypt direction. The total latency
considers the time to setup the key as well as the time to encrypt. The algorithm portion represents the time, in
nanoseconds, that is required to encrypt a block of data. For algorithms that have key setup, the time required for
establishing subkeys used in the encryption is provided as well. RIJNDAEL has the minimum latency of all
algorithms of 288 ns for 128-bit keys (404 ns for 256-bit keys). RC6 and MARS have latency values that are off the
scale of this figure due to the lengthy key setup time.
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6.2.7 Iterative Time to Decrypt

Figure 13 - Iterative 3-in-1 Latency Comparison (Decrypt)

Figure 13 shows a similar result as Figure 12, but in the decrypt case the effects of key setup can be seen more
readily. RIJNDAEL provides the smallest latency with its reduced number of rounds and fast round time. Even with
the decrypt key setup included, RIJNDAEL still provides the lowest latency. As SERPENT provided a runner-up to
RIJNDAEL in the encrypt direction, it can be seen that the increased latency of the key setup puts SERPENT in the
mid-range of TWOFISH for overall latency. However, with the transformation that can be applied to SERPENT’s
key setup, the overall total will once again fall below TWOFISH in overall latency.
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6.2.8 Pipelined Area

Figure 14 - Pipelined 3-in-1 Area Comparison

Figure 14 demonstrates the maximum and minimum areas attained for each of the pipelined algorithms. The
minimum area represents the point where further area reduction was not achievable by the synthesis tool whereas the
maximum area represents the point where further increases in area did not result in a faster design. The majority of
the algorithms fall into the 400-500M sq. um range, with TWOFISH being the smallest design. MARS did not
follow the range and is significantly higher in this metric.
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6.2.9 Pipelined Transistor Count

Figure 15 - Pipelined 3-in-1 Transistor Count

Figure 15 shows the minimum and maximum transistor counts required to implement the pipelined algorithms. Also
included are the breakdowns by design block. In this case, an additional block, named key setup, is provided to show
the percentage of transistor count dedicated to key setup in the cases where large size required a separate
architecture block.
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6.2.10 Pipelined Throughput

Figure 16 - 3-in-1 Pipelined Throughput Comparison

Figure 16 describes the range of throughput values attainable for each of the algorithms. The maximum throughput
represents the pipelined case in its largest and fastest configuration. The minimum throughput is also a pipelined
case, but represents the throughput using the smallest configuration of the pipeline. SERPENT achieves the greatest
throughput at 8.03 Gbps. RIJNDAEL is approximately 35% slower at 5.16 Gbps. RC6, TWOFISH and MARS are
within 5% of each other ranging from 2.17 Gbps (RC6) to 2.28 Gbps (TWOFISH).

Figure 17 - Pipelined 3-in-1 Throughput vs. Area Comparison
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Figure 17 displays the relationship between the pipelined throughput and the area of the algorithm portion of the
design. In this case, the better performance is realized in the upper left corner of the graph, minimizing area and
maximizing throughput. A dotted line is shown to show the rough linear correlation between the amount of
resources (i.e, area) required for a given throughput level. In this case, considering the areas of the algorithm
portions to be approximately equal, SERPENT provides the highest level of performance followed by RIJNDAEL.

To elaborate on the performance and area trade-offs, the following table summarizes the expected throughput per
unit area.

Speed 1 Speed 2 Speed 3 Speed 4 Speed 5
MARS 10.75 11.24 10.24 8.72 8.73 29%
RC6 19.08 22.51 21.40 18.56 17.15 31%
RIJNDAEL 21.14 28.60 27.12 24.93 26.36 35%
SERPENT 37.52 37.24 34.19 35.36 52.59 54%
TWOFISH128 17.30 14.72 15.57 17.37 14.04 24%
TWOFISH192 14.48 12.77 13.79 15.58 12.95 22%
TWOFISH256 12.47 11.28 12.39 14.13 12.02 25%

Configuration
Algorithm

%Change  
(high-low)

Table 14 - 3-in-1 Throughput Bits Per Unit Area (bps/sq. um)

In, each of the algorithms are represented for the 3-in-1 case, and when varying modes are available (e.g.,
RIJNDAEL, TWOFISH), throughputs are included for the 3-in-1 design running in each of the key sizes. The
configurations represent the varying speed grades of the design, where speed 1 is the fastest, highest area design.
Conversely, speed5 is the slowest, least area intensive design. Each entry represents the amount of throughput (in
bits/sec) that an algorithm will return given a 1 square micron unit of area. In this pipelined case, SERPENT
provides the highest throughput per area and also the greatest increase in throughput from the low speed to high
speed, with an increase of 54%.

6.2.11 Pipelined Key Setup Time (Encrypt)

Figure 18 - Pipelined 3-in-1 Key Setup Comparison (Encrypt)

Pipelined Key Setup Comparison (3-in-1)
Encrypt

36603718

0
20
40

60
80

100
120
140

MARS RC6 RIJNDAEL SERPENT TWOFISH

Algorithm

K
ey

 S
et

u
p

 T
im

e 
(n

s)

128 Bit Key

192 Bit Key

256 Bit Key



33

Figure 18 shows the key setup times required by the algorithms in the pipelined case. Note in this case RIJNDAEL
and TWOFISH both produce zero setup times. The pipelined implementation of TWOFISH allows for parallel key
run-up blocks, and as a result, eliminates the setup time through shared hardware resources. SERPENT follows with
minimal key setup time. While pipelining methods were able to reduce the overall key setup times, MARS and RC6
still have excessive key setup times relative to RIJNDAEL, TWOFISH and SERPENT.

Figure 19 - Pipelined 3-in-1 Key Setup vs. Area (Encrypt)

Figure 19 describes the relationship between encrypt key setup time and the amount of hardware area required to
implement the performance listed. For this case, MARS and RC6 are off of the scale, with the remaining algorithms
shown for various modes of the 3-in-1 design. TWOFISH and RIJNDAEL provide the minimal amount key setup
time at zero, but overall, TWOFISH obtains the performance with less hardware resources. Similar performance in
terms of area can be seen with SERPENT, but as the circled area shows, there is a slight increase in setup time
required.
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6.2.12 Pipelined Key Setup Time (Decrypt)

Figure 20 - Pipelined 3-in-1 Key Setup Comparison (Decrypt)

Figure 20 provides details on key setup times in the decrypt direction for the pipelined designs. TWOFISH provides
the best performance in this area with no setup time in either encrypt or decrypt directions. As in the iterative case,
the key setup time for RIJNDAEL and SERPENT increase in the decrypt direction relative to their corresponding
encrypt direction setup times. Again, as in the iterative cases for SERPENT, the setup time in the decrypt direction
can be reduced significantly, making SERPENT and TWOFISH comparable in the pipelined key setup cases. The
times represent minimum times for all algorithms.

Pipelined Key Setup Comparison (3-in-1)
Decrypt

36603718

0
50

100
150
200
250
300
350
400

MARS RC6 RIJNDAEL SERPENT TWOFISH

Algorithm

K
ey

 S
et

u
p

 T
im

e 
(n

s)

128 Bit Key

192 Bit Key

256 Bit Key



35

Figure 21 - Pipelined 3-in-1 Key Setup vs. Area (Decrypt)

Figure 21 summarizes the relationship between the amount of time required to generate subkeys for an algorithm
and the amount of area required to implement the key setup. The algorithm portion is not included in this analysis.
The optimal place for performance in this case is the lower left corner of the graph, with both key setup time and
area minimized. The circled area highlights the performance variation for roughly the same area. In this case,
TWOFISH provides the best level of performance for area in the decrypt direction. However, as stated previously,
improvements to the SERPENT key scheduling in decrypt places it at almost the same level as TWOFISH (0 ns
TWOFISH vs. 6.95 ns SERPENT). See section Key Setup Reduction for details on the SERPENT modification.
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6.2.13 Pipelined Time to Encrypt

Figure 22 - Pipelined 3-in-1 Latency Comparison

Figure 22 describes the latency associated with propagating through the entire pipelined algorithms. Key setup and
algorithm execution times are shown separately, but are most significantly notable in MARS and RC6 which are off
scaled to 5706 ns and 4839 ns, respectively. (Note: Numbers above MARS and RC6 total times.) The minimum
latency was realized by RIJNDAEL at 248 ns (128-bit key).
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6.2.14 Pipelined Time to Decrypt

Figure 23 - Pipelined 3-in-1 Latency Comparison (Decrypt)

Figure 23 shows the total latency through each of the pipelined devices, including both key setup time and algorithm
propagation times. RIJNDAEL provides the shortest total latency in total time, even with the additional setup time
required in the decrypt direction. Key setup times for SERPENT and RIJNDAEL appear to be comparable, but the
smaller number of rounds in RIJNDAEL reduces the total latency and provide better performance than SERPENT in
this area. (check values for RC6 and MARS for accuracy, then insert comment as appropriate if, for example, the
printed off scale number is for the key setup only vs. the total latency)

7 Performance Results – 128 Bit Key Design

7.1 Summary
A table summarizing the results and performance metrics is given below for algorithm comparison. These
comparison values are given only for the 128-bit key size implementation. The effects of a single key size –
especially a key size less than the maximum of the 3-in-1 case – are most notable in RIJNDAEL and TWOFISH
since the number of rounds and internal round structure, respectively, are changed.

MARS RIJNDAEL RC6 SERPENT TWOFISH
Area (um2) 126,827,662 33,851,050 19,248,830 23,274,086 16,110,756
Transistor Count 1,941,371 641,681 307,247 345,483 264,058
Input/Outputs Required 520 520 520 520 520
Throughput (Mbps) 56.71 605.77 102.83 202.33 105.14
Key Setup Time Encrypt (ns) 9553 0 5742 19.77 60.87
Key Setup Time Decrypt (ns) 9553 211.3 5742 672.18 105.2
Algorithm Setup Time (ns) 0 0 0 0 0
Time to Encrypt One Block (ns) 2256.92 211.3 1244.8 632.64 1217.4
Time to Decrypt One Block(ns) 2256.92 211.3 1244.8 632.64 1217.4

Algorithm
Parameter

Table 15 Iterated Summary
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MARS RIJNDAEL RC6 SERPENT TWOFISH
Area (um2) 1,332,658,283 419,886,025 453,248,223 438,561,500 225,298,323
Transistor Count 20,661,116 4,292,749 7,536,366 5,741,469 3,783,973
Input/Outputs Required 520 520 520 520 520
Throughput (Mbps) 2189.16 5745.06 2196.67 8030.11 2273.53
Key Setup Time Encrypt (ns) 3712 0 3728.5 18.98 0
Key Setup Time Decrypt (ns) 3712 226.87 3728.5 212.55 0
Algorithm Setup Time (ns) 0 0 0 0 0
Time to Encrypt One Block (ns) 1987.98 222.8 1165.4 510 1126
Time to Decrypt One Block(ns) 1987.98 247 1165.4 510 1126

Algorithm
Parameter

Table 16 Pipelined Summary

7.2 Performance Comparisons

7.2.1 Iterative Area

Figure 24 - Iterative 128 Bit Key Area Comparison

Figure 24 highlights the change in area for the 128-bit key iterative design. The circled area indicates the algorithms
with significant area reductions compared with the 3-in-1 implementation. For the minimum area implementation of
RC6, RIJNDAEL and TWOFISH, the area reduction for the 128-bit key only version is 10%, 14% and 28%,
respectively. SERPENT and MARS are relatively unchanged.
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7.2.2 Iterative Transistor Count

Figure 25 - Iterative 128 Bit Key Transistor Count Comparison

Figure 25 reflects the number of transistors required to implement the 128 bit key iterative design for all five
algorithms. The totals include all of the major blocks in the iterative design, including the algorithm, key scheduling,
interfacing, controller, and any expansion required. The minimum and maximum refer to the minimum and
maximum area implementations. The circled area in the figure shows algorithms which exhibit a change in the
transistor count between the 128-bit key and 3-in-1 implementations. The RC6, RIJNDAEL, and TWOFISH
algorithms require fewer transistors to implement the 128-bit design by 13%, 43% and 26%, respectively, for the
minimum area versions. SERPENT and MARS remain relatively unchanged.
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7.2.3 Iterative Throughput

Figure 26 - Iterative 128 Bit Key Throughput Comparison

Figure 26 presents the iterative throughput values obtained for the 128 bit key size designs. The circled area
highlights RIJNDAEL’s increase in throughput from 450Mbps to 600Mbps. In this algorithm and design, the key
schedule was the limiting factor in performance, so the reduction in the overhead and complexity necessary for a 3-
in-1 design significantly boosted iterative throughput performance. The remaining algorithms were very similar to
the 3-in-1 results.
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Figure 27 - Iterative 128 Bit Key Throughput vs. Area Comparison

Figure 27 shows the combined statistics of throughput and area for the iterative 128-bit key size version of the
algorithms. The optimal location to be on the graph is in the upper left corner where throughput is maximized while
area is minimized. As in the 3-in-1 case, RIJNDAEL shows the highest throughput overall, and achieves this at an
area which is comparable to RC6, SERPENT and TWOFISH. As in the 3-in-1 case, MARS shows a very low
throughput and a very large area.

To elaborate on the performance and area trade-offs, the following table summarizes the expected throughput per
unit area.

Speed 1 Speed 2 Speed 3 Speed 4 Speed 5
MARS 0.446 0.379 0.365 0.385 0.554 52%
RC6 5.760 5.428 4.893 4.552 3.693 56%
RIJNDAEL 17.895 17.283 20.358 18.076 14.947 36%
SERPENT 6.804 7.151 7.525 6.482 5.892 28%
TWOFISH 4.978 4.517 4.510 4.086 3.857 29%

Configuration
Algorithm

%Change  
(high-low)

Table 17 - 128 Bit Key Throughput Per Unit Area (bps/sq. um)

In Table 18, each algorithm is represented for the 128 bit key size design. The configurations represent the varying
speed grades of the design, where Speed 1 is the fastest, highest area design. Conversely, Speed5 is the slowest, least
area intensive design. Each entry represents the amount of throughput (in bits/sec) that an algorithm will return
given a 1 square micron unit of area. In this iterative case, RIJNDAEL still provides the highest throughput per area
and for this case, the low end of RIJNDAEL is higher than the best throughputs for the remaining algorithms. The
percent change column illustrates the increase is in throughput per area performance from the worst ratio (typically
Speed 5) to the best ratio (typically Speed 1) for a given algorithm. It is interesting to note that MARS is the only
algorithm that does not show an increasing ratio from Speed 5 to Speed 1. This characteristic of MARS makes it
complicated and difficult to find an optimal hardware design.
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7.2.4 Iterative Key Setup Time (Encrypt)

Figure 28 - Iterative 128 Bit Key Setup Comparison

Figure 28 provides a look at the iterative key setup for the 128-bit key design. In this case, the only significant
change over the 3-in-1 case is the reduction of the key setup time for RC6. All other algorithms remain unchanged.

Figure 29 - Iterative 128 Bit Key Setup vs. Area Comparison
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Figure 29 highlights the key setup versus area performance of the algorithms. Combining both parameters into a
single graph, the optimal place for an algorithm to appear is in the lower left corner, with both key setup time and
area minimized. Differences between this graph and the 3-in-1 design are primarily in the area reduction of
SERPENT and TWOFISH. Both areas are reduced significantly, but as the circled area indicates, RIJNDAEL
provides the best performance in this metric. MARS and RC6 are off-scale due to relatively long key setup times.

7.2.5 Iterative Key Setup Time (Decrypt)

Figure 30 - Iterative 128 Bit Key Key Setup Comparison (Decrypt)

Figure 30 highlights the 128 bit key setup time for the decrypt direction. In this case, the RIJNDAEL times are
reduced as compared to the 3-in-1 design. The TWOFISH key setup time is consistent with the TWOFISH128
statistic for the 3-in-1 case which outperforms the 192 and 256 bit performance. As in Figure 28, RC6 key setup
times are also reduced.
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Figure 31 - Iterative 128 Bit Key Setup vs. Area Comparison (Decrypt)
Figure 31 examines the key setup versus area trade-off in the 128-bit key designs. From the encrypt direction, the
positions of RIJNDAEL and TWOFISH have reversed, with TWOFISH providing the better performance for a
given area.
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7.2.6 Iterative Time to Encrypt

Figure 32 - Iterative 128 Bit Key Latency Comparison (Encrypt)

For the iterative 128-bit key case, RIJNDAEL sees the largest improvement in total latency for the encrypt direction
over the 3-in-1 design. Improvements in the round time appear to improve performance significantly. MARS and
RC6 go off-scale due to their relatively large key setup times.
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7.2.7 Iterative Time to Decrypt

Figure 33 - Iterative 128 Bit Key Latency Comparison (Decrypt)

Figure 33 describes the relationship between the five algorithms for total decrypt latency. As in the previous graph,
RIJNDAEL sees the largest improvement with the 128 bit key size and provides the lowest latency for decryption.
MARS and RC6 go off-scale due to their relatively large key setup times.
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7.2.8 Pipelined Area

Figure 34 - Pipelined 128 Bit Key Area Comparison

Figure 34 shows the relationship of 128 bit key area across all five algorithms. In this case, the area required by
TWOFISH is reduced dramatically over the corresponding 3-in-1 implementation, as shown in the graph. Also, RC6
and RIJNDAEL see reductions in total area.
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7.2.9 Pipelined Transistor Count

Figure 35 - Pipelined 128 Bit Key Transistor Count

As in the case of pipelined area, RC6, RIJNDAEL, and TWOFISH see significant reductions in transistor counts
over the 3-in-1 designs while SERPENT and MARS remain the same size.
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7.2.10 Pipelined Throughput

Figure 36 - Pipelined 128 Bit Key Throughput Comparison

An area to bring to light on Figure 36 is the increase in throughput of RIJNDAEL for 128 bit key sizes. Although
SERPENT remains the highest throughput at 8 Gbps, RIJNDAEL is increased to approximately 6 Gbps in this
design. The minimum throughput for TWOFISH is increased since the minimum throughput for the 3-in-1 case is
the smallest throughput for the 256-bit key version. All other algorithms remain unchanged.

Figure 37 - Pipelined 128 Bit Key Throughput vs. Area Comparison
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In Figure 40, the optimal location on the chart is the upper left where throughput is maximized while area is
minimized. The only significant change for this metric relative to the 3-in-1 statistics is the movement of
RIJNDAEL towards the upper left – an improvement. However, the best implementation of SERPENT still
outperforms RIJNDAEL for this metric.

To elaborate on the performance and area trade-offs, the following table summarizes the expected throughput per
unit area.

Speed 1 Speed 2 Speed 3 Speed 4 Speed 5
MARS 10.754 11.236 10.235 8.717 8.728 29%
RC6 19.289 18.550 18.363 18.632 17.053 13%
RIJNDAEL 33.371 43.988 42.239 36.060 38.529 32%
SERPENT 37.523 37.243 34.185 35.356 52.587 54%
TWOFISH 14.535 14.298 15.299 17.076 16.050 19%

Configuration
Algorithm

%Change  
(high-low)

Table 18 - 128 Bit Key Throughput Per Unit Area

In Table 18, each of the algorithms are represented for the 128 bit key size design The configurations represent the
varying speed grades of the design, where speed 1 is the fastest, highest area design. Conversely, speed5 is the
slowest, least area intensive design. Each entry represents the amount of throughput (in bits/sec) that an algorithm
will return given a 1 square micron unit of area. In this pipelined case, SERPENT still provides the highest
throughput per area and also the greatest increase in throughput from the low speed to high speed, with an increase
of 54%. With reduced overhead in RIJNDAEL for the 128 bit key size, the maximum throughput of RIJNDAEL in
bits per area starts to approach the high with SERPENT.

7.2.11 Pipelined Key Setup Time (Encrypt)

Figure 38 - Pipelined 128 Bit Key Key Setup Comparison (Encrypt)

There are no significant changes in key setup times for encryption.
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Figure 39 - Piplined 128-Bit Key Setup vs. Area Comparison (Encrypt)

Figure 39 shows the trade-off between key setup time and area for the encrypt direction. In this graph, the high end
design of TWOFISH (circled) has been reduced from 185M (3-in-1 design)  to 119M sq. um (128-bit design). The
area performance of TWOFISH in this case has improved to where the largest design of TWOFISH falls at the
smallest design of SERPENT, but still at a setup time of 0ns. RIJNDAEL’s key setup time remains at 0 ns with
approximately the same area as the 3-in-1 design, but as the circled region highlights,  does not provide the same
level of performance as TWOFISH. In the RIJNDAEL 128-bit design, the number of key scheduling functions that
are used is equal to the worst case number of functions required for the 3-in-1 design. Consequently, there is no
significant savings in area. However, the 192-bit and 256-bit do not require as many function blocks as compared to
the 3-in-1 and 128-bit designs.
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7.2.12 Pipelined Key Setup Time (Decrypt)

Figure 40 - Pipelined 128 Bit Key Setup Comparison (Decrypt)

In Figure 40, the most significant time reduction is with the RIJNDAEL algorithm. The remaining algorithms are
unchanged.

Figure 41 - Pipelined 128-Bit Key Setup vs. Area Comparison (Decrypt)
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Figure 41 shows the trade-off between key setup time and area for the decrypt direction. In this graph, the high end
design of TWOFISH (circled) has been reduced from 185M (3-in-1 design)  to 119M sq. um (128-bit design). The
area performance of TWOFISH in this case has improved to where the largest design of TWOFISH falls at the
smallest design of SERPENT, but at a much improved setup time of 0ns. RIJNDAEL improves key setup time by
about 4% with little or no change in area, as some of the multiplexing overhead is elminated. In the RIJNDAEL
128-bit design, the number of key scheduling functions that are used is equal to the worst case number of functions
required for the 3-in-1 design. Consequently, there is no significant savings in area. However, the 192-bit and 256-
bit do not require as many function blocks as compared to the 3-in-1 and 128-bit designs.

7.2.13 Pipelined Time to Encrypt

Figure 42 - Pipelined 128 Bit Key Latency Comparison (Encrypt)

Like the key setup time, the most significant change in the time required to encrypt a block when moving from the
3-in-1 design to the 128-bit key design is a sizeable improvement in the results for RIJNDAEL – approximately
10% improvement. MARS also improved by greater than 10%. However, its total latency remains off-scale and
unusually high relative to RIJNDAEL, SERPENT and TWOFISH.
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7.2.14 Pipelined Time to Decrypt

Figure 43 - Pipelined 128 Bit Key Latency Comparison (Decrypt)

With reductions in both algorithm and key setup for decryption, RIJNDAEL provides the lowest latency for all of
the algorithms, with SERPENT following at approximately 700 ns.

8 Summary
This paper has presented an overview of the methods and architectures used for the AES hardware comparison. The
primary characteristics used for design tradeoffs in hardware engineering are area and timing. As such, each
algorithm was examined from the standpoint of minimum area (iterative architecture) and maximum throughput
(pipelined architecture). Further, statistics and data based on area and timing were emphasized and illustrated for
each algorithm.

The results (in Section 5.5.3) show vital parameters for both the iterative and pipelined architectures of each
algorithm that can be used to evaluate relative performance. The designs were not optimized for any one parameter,
but rather they serve as a good testbench scoring of all the algorithms relative to one another, given the same
commonly used hardware design practices and procedures

A comparison was made between two varieties of implementations, namely a 3-in-1 where the key size is selectable
to 128-bit, 192-bit or 256-bit, and a 128-bit only version. The results between the two implementations were not
dramatic for MARS, RC6 or SERPENT. However, RIJNDAEL and TWOFISH showed some improvements worth
noting for several metrics such as iterative throughput and overall area.

It should be emphasized that any data point based on a single parameter (e.g. transistor count or throughput) is a
relatively narrow view of the algorithm’s overall performance or rating. For example, an algorithm with the best
transistor count and acceptable throughput may have a very long key setup time thus reducing key agility. For this
reason, there was no attempt to rank algorithms in order. Rather, it is left to the cryptographic community to
establish a consensus of the most important parameters – in combination or alone – and to draw appropriate
conclusions from the data provided herein.
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