
Public Comments Regarding
The Advanced Encryption Standard (AES)

Development Effort

Round 2 Comments
[in response to a notice in the September 15, 1999 Federal Register

(Volume 64, Number 178; pages 50058-50061)]

Updated comments will be posted at http://csrc.nist.gov/encryption/aes/round2/pubcmnts.htm.

Commenter (#) (MM/DD/YYYY) Page
(If a comment was submitted on behalf of an organization, the
organization’s name is listed first; otherwise, the individual
commenter’s name is listed first.)

John Savard (1) (08/10/1999) 3

John Savard (2) (08/10/1999) 5

Casey Sybrandy (08/18/1999) 6

John Macdonald (09/01/1999) 7

David Oshel (1) (09/23/1999) 8

John Eichler, CertifyIt, Inc. (1) (09/27/1999) 9

Cornelius Sybrandy, Concurrent Technologies Corp. (1) (09/28/1999) 10

Cornelius Sybrandy, Concurrent Technologies Corp. (2) (09/28/1999) 11

JP, Patterson Programming (1) (09/29/1999) 12

John Eichler, CertifyIt, Inc. (2) (09/27/1999) 14

JP, Patterson Programming (2) (09/30/1999) 16

JP, Patterson Programming (3) (10/1/1999) 17

Doug Whiting, Hi/fn (1) (10/05/1999) 18

Don Johnson, Certicom (1) (10/15/1999) 20

Matthew Fisher (10/26/1999) 21

Lars Knudsen, University of Bergen, Norway (10/27/1999) 26

Albert Yang (11/01/1999) 27

Ted Goldstein, Brodia.com (11/16/1999) 28

Ron Rivest, Matt Robshaw, Lisa Yin (11/29/1999) 29

Jeffrey Streifling (1) (12/05/1999) 31

ii

Eva Bozoki, PATCO (12/26/1999) 34

Eric Boesch (12/27/1999) 35

Roger Schlafly (01/11/2000) 36

Lily Chen, Motorola (01/14/2000) 38

Yasuyoshi Kaneko, Telecom. Advancement Org. of Japan (01/17/2000) 39

Frank Constantini, L-3 Communications (01/26/2000) 41

Chip McGrogan, L-3 Communications (01/26/2000) 42

Nick Weaver (1) (02/18/2000) 43

Craig Partridge, BBN Technologies (1) (03/14/2000) 45

Craig Partridge, BBN Technologies (2) (03/14/2000) 46

August Zajonc (03/16/2000) 48

Manfred Spraul (03/20/2000) 49

Simon Esmaili (03/21/2000) 50

Gideon Samid, D&G Sciences (04/09/2000) 51

Storage Technology Corp., Jim Hughes (04/15/2000) 52

Robin Lee Powell (04/17/2000) 53

Nick Weaver (2) (04/17/2000) 54

Mark Atwood (04/17/2000) 58

Hironobu Suzuki (04/18/2000) 59

Frank Burkhardt (04/18/2000) 60

Rob Neal (04/18/2000) 61

Anne Anderson (04/18/2000) 62

Rob Gerlach (04/18/2000) 63

Patrick Gardella, Whetstone Logic, Inc. (04/18/2000) 64

Kevin Bealer (04/19/2000) 65

Simson Garfinkel (04/18/2000) 66

Keyur Mithawala (04/19/2000) 67

Jim Gopinathan, ATMEL Smart Card ICs (04/19/2000) 68

iii

Dr. Tom Holroyd (04/20/2000) 69

Ray Van De Walker, R.G. Van De Walker, Inc. (04/20/2000) 70

Dave-aes@bfnet.com (04/20/2000) 71

Douglas Gwyn, U.S. Army Research Laboratory (04/21/2000) 72

Kenneth Broll, MyProof.com (04/23/2000) 73

Sid Sidner, ACI Worldwide (04/24/2000) 74

Dan Stromberg (04/25/2000) 75

Brent Kelly, Computer Sciences Corp. (04/26/2000) 76

Nick Weaver (3) (04/27/2000) 77

David Eppstein, UC Irvine Dept. of Info. & Comp. Sci. (04/29/2000) 79

Anping Li (05/02/2000) 80

Mike Lake, Wordcraft Int’l Ltd. (05/04/2000) 81

Jeffrey Streifling (2) (05/04/2000) 82

Greg Rose, Qualcomm Australia (05/07/2000) 85

Gideon Yuval, Microsoft (05/08/2000) 86

David Oshel (2) (05/09/2000) 87

Joan Daemen, Vincent Rijmen (05/10/2000) 88

Carlisle Adams, Entrust Technologies Ltd. (05/11/2000) 89

Ross Anderson, Eli Biham, Lars Knudsen (05/11/2000) 90

Sam Simpson, MIA Ltd. (05/12/2000) 91

R. Venkatesh, Tata Infotech Ltd. (05/12/2000) 95

Håvard Raddum, University of Bergen, Norway (05/12/2000) 97

Simon Wigzell, Orc Software (05/12/2000) 98

David Oshel (3) (05/12/2000) 99

Paulo Barreto (1) (05/14/2000) 100

Paulo Barreto (2) (05/14/2000) 102

Niels Ferguson, Bruce Schneier, David Wagner, Doug Whiting (05/14/2000) 104

Brian Wong (05/14/2000) 106

iv

Tom Phinney (U.S. Tech. Advisor for IEC/SC65C), Honeywell (05/14/2000) 107

David Crick (05/14/2000) 110

Yaro Charnot, Identikey (Australia) Pty Ltd (05/15/2000) 113

Ali Selcuk, Univ. MD Baltimore County (05/14/2000) 116

Ken Tindell (05/15/2000) 117

Scott Contini (05/16/2000) 118

Intel Corp. Network Communications Group, Jesse Walker (05/15/2000) 119

Doug Whiting, Hi/fn (2) (05/15/2000) 124

Don Johnson, Certicom (2) (05/15/2000) 125

RSA Laboratories, Burt Kaliski (05/15/2000) 127

Rich Schroeppel (05/15/2000) 128

John Worley, Hewlett Packard Labs (05/15/2000) 150

Mattias Lenartsson (05/15/2000) 151

Ralph Hoefelmeyer, Next Generation Network Security Services (05/15/2000) 152

Dag Arne Osvik, University of Bergen, Norway (05/16/2000) 153

Don Johnson, Certicom (3) (05/16/2000) 155

2

3

From: "John Savard" <sewardconsulting@v-wave.com>
To: <AESRound2@nist.gov>
Subject: Comments on MARS
Date: Tue, 10 Aug 1999 13:53:39 -0600
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 4.72.3155.0
X-MimeOLE: Produced By Microsoft MimeOLE V4.72.3155.0

10245-151st Street
Edmonton, Alberta
CANADA
T5P 1T6

(780) 444-3599

The choice of MARS as one of the five candidate ciphers to proceed to Round 2 of the
AES process has surprised a number of people, as they have viewed that particular
block cipher as inelegant or unwieldy.

I do not find the choice of MARS as a finalist surprising, as I consider security to be the
most important characteristic that the block cipher chosen as the AES must have, and I
think the unique design of MARS, with its unkeyed forward mixing and unkeyed reverse
mixing stages will indeed help to protect MARS against future attacks.

I also note that several candidates, of which MARS is the only one to proceed to Round
2, had minor changes proposed for them. The changes proposed to MARS are claimed
to make it harder to invert the key schedule and determine the original key from the
subkeys. This will be useful in connection with what follows.

An obvious naive criticism of MARS is that, since the forward mixing and reverse mixing
stages of MARS are unkeyed, they do not seem to contribute as much to its security as
they should for the amount of processing they involve.

The rationale behind these stages being unkeyed, is, of course, a reasonable and
understandable one. If the subkeys used for keying these stages contain information
about the subkeys used for the cryptographic core stages of MARS, they could, however
unlikely it may seem, provide a basis for an attack on MARS. At least, the presence of
such subkeys would make the analysis of MARS much more complicated, creating
uncertainty about its security.

If the mixing stages were keyed, I envisage that they would be keyed as follows: the
copy of the 32-bit subblock used to index into the four S-boxes, before being used for
that purpose, would be replaced by itself XOR a subkey. This would require 16
additional subkeys. Let us designate them as subkeys 40 through 55, with subkey 40
used in the first forwards mixing round, and so on (i.e., subkey 48 would be used in the
first reverse mixing round).

To remove the concerns associated with placing the mixing stages under the control of
the key, it would be sufficient to ensure that there is no way to determine the other 40
subkeys from the 16 subkeys used for that purpose.

4

I propose that the subkey generation process of MARS (as it now stands, after the
"tweak") be modified as follows to achieve this.

After the generation of subkeys 30 through 39, the elements of the temporary array with
15 elements (T[0] through T[14]) are to be modified as follows:

T[0] = T[0] xor subkey 6
T[1] = T[1] xor subkey 8
 .
 .
 .
T[11] = T[11] xor subkey 28

and

T[12] = T[12] xor subkey 1
T[13] = T[13] xor subkey 2
T[14] = T[14] xor subkey 3

This uses only subkeys generated in iterations preceding the final one, and excludes the
subkeys modified for use in multiplication, and provides additional non-invertibility. (This
is only one of several possible alternatives. One could perform no extra step, and rely on
the non-invertibility existing in the present key generation algorithm, or one could seek to
achieve greater non-invertibility through more elaborate measures, for example involving
performing a MARS encryption of a constant with the subkeys generated so far, the
other new subkeys being zero.)

Then, two additional iterations of the process used to generate subkeys in groups of 10
will be performed (the first one with j=4, the second with j=5; it may be advisable to
change "4i+j" to "8i+j" in the description of the key generation process to accomodate
this) but each time only the first 8 additional subkeys will be used.

If this key schedule is seen as adequate to avoid introducing additional attacks, this
modification of MARS would ensure that all the steps in a MARS encryption make their
full contribution to its security.

John J. G. Savard

5

From: "John Savard" <sewardconsulting@v-wave.com>
To: <AESRound2@nist.gov>
Subject: MARS
Date: Tue, 10 Aug 1999 16:22:03 -0600
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 4.72.3155.0
X-MimeOLE: Produced By Microsoft MimeOLE V4.72.3155.0

10245-151st Street
Edmonton, Alberta
CANADA
T5P 1T6

(780) 444-3599

In a previous communication, I suggested the following:

(begin quote)
I propose that the subkey generation process of MARS (as it now stands, after the
"tweak") be modified as follows to achieve this.

After the generation of subkeys 30 through 39, the elements of the temporary array with
15 elements (T[0] through T[14]) are to be modified as follows:

T[0] = T[0] xor subkey 6
T[1] = T[1] xor subkey 8

6

To: AESround2@nist.gov
Date: Wed, 18 Aug 1999 05:19:42 -0700
From: " " <csybrandy@my-deja.com>
X-Sent-Mail: off
X-Mailer: MailCity Service
Subject: AES Algorithm Selection
X-Sender-Ip: 147.160.10.21
Organization: My Deja Email (http://www.my-deja.com:80)

One thing that should be considered is how well an algorithm is suited for Palm Pilots
and such. One question could be which is cheaper, memory or hardware multipliers? If
memory is cheaper, Rijndeal or Twofish may be very suitable. If hardware multipliers
are cheaper, then RC6 is your best bet. As for MARS and Serpent, I am not sure about
either along these lines. I have not looked at Serpent in depth and MARS requires both
a multiplier and memory.

Casey Sybrandy

--== Sent via Deja.com http://www.deja.com/ ==--
Share what you know. Learn what you don't.

7

From: jmm@elegant.com (John Macdonald)
Subject: AES criteria
To: AESround2@nist.gov
Date: Wed, 1 Sep 1999 18:52:42 -0400 (EDT)
Cc: jmm@elegant.com
X-Mailer: ELM [version 2.4 PL23]

It has been suggested by Bruce Schneier in his Crypto-Gram newsletter that comments
on cryptographic requirements from users is as important for your consideration as the
mathematical analysis of the particular algorithms that are being considered.

I work for a small company (<20 people, < $10M annual sales) that licenses distributed
system adminstration programs. This is a natural for using cryptography:

 - protect info in transit that deals with security repated issues
 - authorize remote control and update of the distributed facets

For our purposes, there are 3 criteria that are important. The first two are relevant to
your contest:

 (1) encryption must be in software: our code runs on many
different Unix platforms, we don't want to deal with
providing hardware interfaces to those many different
platforms and we can't be requiring customers to be adding
and maintaining hardware to their systems

 (2) it must be reasonably efficient on workstation-class machines

These two requirements are ones that you are seem to be targetting well with your
current process. Please continue to treat them as important. Our third criteria is
unfortunately outside your mandate:

 (3) we can't afford to treat foreign sales differently, or to
have any extra paperwork. Export controls mean that we use
trivial encryption instead of any serious encryption. We
cannot afford to have a secure US/Canada release of our
software and a separate unsecured release for the rest of the
world. Applying for export licenses for each foreign sale
would be even worse.

While this final requirement is not within your mandate, it means that we, like most other
small companies, will be unable to make use of the winning candidate.

--
objects: | John Macdonald
 Think of them as data with an attitude. | jmm@elegant.com

8

X-Sender: doshel@soli.inav.net
Date: Thu, 23 Sep 1999 22:01:28 -0500
To: AESRound2@nist.gov
From: "David C. Oshel" <dcoshel@pobox.com>
Subject: I am pro-Rijndael

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

I tend to be pro-Rijndael because it is royalty-free, Belgian (i.e., it has a politically neutral
provenance, unlike the U.S. and Euro corporate or U.S., English, Israeli, etc. national
contributions), appears extremely competent and is frankly very easy to implement. I
intend to consider Rijndael seriously in those few applications I may work on that benefit
from competent obfuscation, regardless of how the AES competition turns out. Although
the competition is interesting, I feel the practice will tend to be based on less formal,
indeed, even irrelevant, considerations than the cryptology has been so far.

David C. Oshel dcoshel@pobox.com
Cedar Rapids, Iowa http://pobox.com/~dcoshel/
``Tension, apprehension and dissension have begun.'' - Duffy Wyg& in Alfred
Bester's _The Demolished Man_

-----BEGIN PGP SIGNATURE-----
Version: PGPfreeware 6.0.2i for non-commercial use

iQA+AwUBN+rplvxWvgP9KeXyEQLsaQCRAWejb9yWlTAXzWbgYSk5ttVecACcDl9Z
occpqPJFGEZcxwrNBgLuv2U=
=fCeo
-----END PGP SIGNATURE-----

9

From: certifyit@alltel.net
Date: Mon, 27 Sep 1999 09:37:34 -0500
X-Mailer: Mozilla 4.61 [en] (WinNT; U)
X-Accept-Language: en
To: AESround2@nist.gov
Subject: Intellectual property concerns with AES

To: NIST

I recently went to look at some software concerning one of the finalist candidates for the
AES. From reading what was on the NIST web site, I assumed that such software would
be in the public domain. What I found was that the software I downloaded contained
copyright notices. I sent an e-mail message asking about this to an author of the
algorithm and got back a one sentence response saying simply "I don't know". This did
not seem to me to be a very adequate response to my inquiry.

What concerns me is that the finally decided upon algorithm, while itself might be free of
patent/copyright constraints as per NIST requirements, might have "efficient"/"optimal"
software/hardware implementations still protected by such patent/copyright holders. I
believe this should be of concern to NIST also.

What I suggest is that NIST formulates an approach similar to the GNU copyleft concept
which is covering more and more software these days. (See http://www.fsf.org/ and
more specifically http://www.fsf.org/copyleft/copyleft.html for more information on this
type of protection.) This type of protection basically says that any implementation
derived from any other implementation is still under the constraint of being fully open
software.

It seems to me that it would be beneficial for NIST to look into this matter more carefully
to insure that after an AES algorithm is decided upon, it still remains free in all
implementations for anyone to use.

Sincerely,

John Eichler
CertifyIt@Alltel.net

10

From: "Sybrandy, Cornelius" <sybrandc@ctc.com>
To: "'AESround2@nist.gov'" <AESround2@nist.gov>
Subject: Adding additional rounds to make a cipher more secure
Date: Tue, 28 Sep 1999 16:21:35 -0400
X-Mailer: Internet Mail Service (5.5.2448.0)

There are circumstances where the addition of an extra round within a cipher is
necessary for it's security. For example, if rc6 were suceptable to an attack that could
break all 20 rounds, the addition of a 21st or 22nd round may be an option. However,
because of the different designs of the algorithms, some have more rounds than others.
Let's say that two algorithms, A and B run at the same speed. Algorithm A uses 20
rounds, while Algorithm B uses 8. Overall they run at the same speed, however each
round of B takes much longer than a round of A. This means that if an extra round were
added to B, it would have a more significant effect on the speed of the cipher than if one
round were added to A. Since this is a simple way to make a cipher a bit more secure,
this may be a point of consideration when deciding on an AES finalist.

Cornelius A Sybrandy
Concurrent Technologies Corporation
100 CTC Drive
Johnstown, PA 15904
Phone: (814) 269-6587
"Imagination is more important than knowledge. Knowledge is limited.
Imagination encircles the world."
Albert Einstein

11

From: "Sybrandy, Cornelius" <sybrandc@ctc.com>
To: "'AESround2@nist.gov'" <AESround2@nist.gov>
Subject: AES and Palm Pilots or hardware
Date: Tue, 28 Sep 1999 16:35:11 -0400
X-Mailer: Internet Mail Service (5.5.2448.0)

One of the criteria for AES is that the selected algorithm performs well in smart-cards
and other hardware solutions. One aspect of this is the cost of the hardware to
accomodate the cipher. One example could be RC6 vs. Twofish. RC6 relies heavily on
multiplications, which require relatively expensive multipliers. Twofish, on the other
hand, uses two tables. If memory is more expensive, than RC6 should be used. If a
multiplier is more expensive, than Twofish is used. Simply put, it's nice to see which
algorithm is the fastest in hardware, but which one is the cheapest to implement in
hardware or in products such as Palm Pilots.

Cornelius A Sybrandy
Concurrent Technologies Corporation
100 CTC Drive
Johnstown, PA 15904
Phone: (814) 269-6587
"Imagination is more important than knowledge. Knowledge is limited.
Imagination encircles the world."
Albert Einstein

12

From: "Patterson Programming" <stealth@scotlandmail.com>
To: <AESround2@nist.gov>
Subject: Re: Twofish
Date: Wed, 29 Sep 1999 09:33:05 -0400
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 4.72.3110.1
X-MimeOLE: Produced By Microsoft MimeOLE V4.72.3110.3

To whom it may concern,

I write to inform you of an issue regarding Twofish, one of the AES candidates. Having
reviewed the paper by Counterpane Systems, I find that the key element used in the
algorithm Twofish is virtually identical to the one I used in an algorithm of my own
design. It is relevant to me because I provided a paper copy of a reference
implementation of my algorithm LeapFrog to Mr. Schneier in the Fall of 1996. Note that
the said algorithm was provided to him prior to the AES call for papers. The algorithm is
not patented, but the reference implementation is registered with the U.S. Copyright
Office. Ref: http://lcweb.loc.gov/copyright Registration numbers: TXu 763-698 and TXu
796-545. Reputable people would attest to the fact that deposits were sent to
Counterpane Systems prior to the call for papers. As stated, the algorithm is not
patented, I object to the fact that any reference to my design was, I believe, intentionally
omitted from his papers. Note that while the two algorithms are not identical, and
Twofish uses some elements not employed in my design, an unbiased look at the two
designs (knowing that my design was seen by the designers of Twofish) should lead to
questions. A simple example follows:

From the S-box function in Twofish:

 y0 = q1[q0[q0[y2;0] Xor l1;0] Xor l0;0]
 y1 = q0[q0[q1[y2;1] Xor l1;1] Xor l0;1]
 y2 = q1[q1[q0[y2;2] Xor l1;2] Xor l0;2]
 y3 = q0[q1[q1[y2;3] Xor l1;3] Xor l0;3]

(q0 and q1 are fixed permutations on 8-bit values)

Ref: http://www.counterpane.com/twofish-paper.html

From the main function in LeapFrog:

 * get the T variables
 T1 = A1(p1), T2 = A2(p2), T3 = A3(p3), T4 = A4(p4)

 * note the T variable order
 p5 = p5 Xor A1(A1(T2 Xor T3) Xor T4)
 p6 = p6 Xor A2(A2(T1 Xor T4) Xor T3)
 p7 = p7 Xor A3(A3(T4 Xor T2) Xor T1)
 p8 = p8 Xor A4(A4(T3 Xor T1) Xor T2)

13

 p5 = (p5 + T1) And FF
 p6 = (p6 + T2) And FF
 p7 = (p7 + T3) And FF
 p8 = (p8 + T4) And FF

I find it interesting that the significant element of my design was employed in Twofish for
both the key-expansion code and the main function. Also, the Twofish paper notes that
using only random S-boxes would be about as secure as optimized boxes. And there are
other references that lead me to believe that he was mentally trying to distinguish
Twofish from LeapFrog. I may inform many individuals in the cryptographic community of
my concerns and let them judge for themselves. I guess I should rename my algorithm
Onefish, as it looks more like Twofish than Blowfish does. Please reply if you have any
questions.

Regards,
jp

Patterson Programming

14

From: certifyit@alltel.net
Date: Wed, 29 Sep 1999 13:21:30 -0500
X-Mailer: Mozilla 4.61 [en] (WinNT; U)
X-Accept-Language: en
To: AESround2@nist.gov
Subject: Follow-up to Intellectual property concerns with AES

To NIST,

The following scenarios might indicate possible problems that could
arise in the future.

Scenario 1: A new Motorola microprocessor comes out with a feature that
permits microprogramming an instruction which combines the exclusive OR
operation with a shift such that I can effectively make a new "custom"
instruction which then my software can take advantage of. I copyright
my new "more efficient" code for the AES and offer to license it to
anyone (for a fee, of course) who is interested in doing the job faster
using that processor.

Scenario 2: Philips introduces a new programmable logic array that is an
eight-pin DIP chip which permits me to implement the AES algorithm in
such a manner that I can process over 500,000,000 bytes per second. The
chip sells for $1.95 in quantities of 100. Being astute, I want to
patent my implementation and then sell the chip for $50.00 each to
makers of all computers to incorporate on their motherboards.

Scenario 3: The year is 2020 and the patent on the AES algorithm has
long since run out. Two years ago the new quanta/quantum (i.e., light
combined with certain a quantum-mechanic effects) process had been
perfected. The new technology allows, depending on how many parallel
units on the chip that are utilized, up to 5 trillion operations per
second with a theoretical of 87.6 trillion operations per second
possible. (Moore's Law just flew south!) NIST has openly admitted that
the original AES algorithm is likely to fall with 2 years or sooner.
People have started turning to "quad-AES" as an alternative that is
predicted to last for at least another 25 years. The corporation that
came up with the quad-AES scheme has patented their new scheme because
of a unique twist (in a "stroke of genius") in the technique they use
but under the covers, it still uses the old original AES encryption
method just done multiple times.

In scenarios like the above, the approach to just put the AES algorithm
into the public domain may not cover the future use(s) of this algorithm
properly. It is rather suggested that NIST licenses its use under
something similar to the GNU licensing agreement where any further
developments must, because they are based upon a licensing agreement, be
done with making such developments available to everyone else under the
same licensing agreement.

15

The main point here is that either a patent and/or copyright may be used
advantageously via the proper licensing agreement to insure the openness
of use of the AES algorithm. Therefore it is suggested that NIST
actually license this technology (in a similar manner to how NASA
licenses its technology) to anyone who desires to utilize it. This
approach, it is believed, better fulfills the "spirit" of what NIST is
trying to accomplish.

Sincerely,

John Eichler
CertifyIt, Inc.

16

From: "Patterson Programming" <stealth@scotlandmail.com>
To: <AESround2@nist.gov>
Subject: Clarification of previous message.
Date: Thu, 30 Sep 1999 09:46:26 -0400
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 4.72.3110.1
X-MimeOLE: Produced By Microsoft MimeOLE V4.72.3110.3

Hello,

I am writing to clarify one item regarding the message I sent you on 9/29/99 in reference
to Twofish. Clarification: the only implementation of LeapFrog that was published was in:
TXu 876-599. The original implementation (identified in my previous message) was used
only to test the round function. The one listed in this message employs alterations to the
key-expansion routine, as well as whitening. (to create a secure implementation) I am
sure Counterpane Systems was sent a copy of the original papers, but I cannot verify
that the revised implementation was sent. However, it is not relevant because the round
function from LeapFrog that may have been generalized to Twofish has not been revised
since 1996. It may not be important, but I wanted to advise you.

Regards,

JP
Patterson Programming

17

From: "Patterson Programming" <stealth@scotlandmail.com>
To: <AESround2@nist.gov>
Subject: Twofish
Date: Fri, 1 Oct 1999 08:29:59 -0400
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 4.72.3110.1
X-MimeOLE: Produced By Microsoft MimeOLE V4.72.3110.3

X-MIME-Autoconverted: from 8bit to quoted-printable by email.nist.gov id IAA08950

Regarding Twofish and LeapFrog:
Re-reading my posts regarding this issue, I suspect that some could make incorrect
inferences from my statements. I may have reacted too strongly. I only wanted to point
out that Twofish’s substitution stage using a parity function and compound look-ups is
not a novel idea. (If that is what they meant in the Twofish paper) Cryptography is not
my main interest, so please take my comments for what they are worth.

Regards,
JP

Patterson Programming

18

X-Sender: foti@csmes.ncsl.nist.gov
X-Mailer: QUALCOMM Windows Eudora Pro Version 3.0.5 (32)
Date: Tue, 05 Oct 1999 12:23:35 -0400
To: AESround2@nist.gov
From: DWHITING@hifn.com (by way of Jim Foti <jfoti@nist.gov>)
Subject: RE: Twofish

Jim, could you please add this to the AES public comments for Twofish?

Bruce, could you post it on sci.crypt?

As a member of the Twofish design team, I (Doug Whiting) wanted to respond to a
recent postings on sci.crypt about similarities between Twofish and "Leapfrog" (from JP
of Patterson Programming). I am not trying to comment at all on whether Leapfrog is a
good or bad idea: indeed, I have far too little information (or time) to make such a
determination. However, it did not have any influence on the design of Twofish.

The Twofish design borrowed several ideas from previous ciphers. In each case, where
it was done consciously, we openly gave credit to the previous inventors. Most
advances in the field of cryptology come by building on the previous work of others.

In fact, I was the one who came up with the 8-bit S-box construction in Twofish. Bruce
Schneier was an important part of the team, but he had no influence in that part of the
design. Until I saw learned of the posting last week, I had never heard of Leapfrog nor
seen any of its design elements. Thus, while there may be similarities (and I will show
below that there are very significant differences) between this Twofish element and the
Leapfrog construction, they are totally coincidental at most.

Last week, after seeing the sci.crypt posting, I queried Bruce about the Leapfrog paper
that was sent to him several years ago. He has no recollection of it at all. Bruce
routinely receives such unsolicited cipher descriptions, and he almost always discards
them unread. This fact is not a criticism of Leapfrog, merely as a measure of how busy
Bruce is with "paying customers". Even if he had read it, he never told me anything
about it, so it could not have influenced my design.

Further, let's look at the elements in question. Here is the equation for an 8-bit Twofish
S-box, in the 128-bit key case:
 y0 = q1[q0[q0[y[2,0]] Xor L[1,0]] Xor L[0,0]]
The L[i,j] values are key material bytes that DO NOT CHANGE for a given key. Thus,
this mapping from a single byte of y2 to y0 is an 8-bit to 8-bit nonlinear mapping (S-box),
fixed for a given key. In other words, this mapping can be precomputed as a small (256-
byte) lookup table for each key. This S-box precomputation is used to speed up certain
Twofish implementations.

Now, contrast this with the Leapfrog excerpts provided:
 * get the T variables
 T1 = A1(p1), T2 = A2(p2), T3 = A3(p3), T4 = A4(p4)

19

 * note the T variable order
 p5 = p5 Xor A1(A1(T2 Xor T3) Xor T4)
 p6 = p6 Xor A2(A2(T1 Xor T4) Xor T3)
 p7 = p7 Xor A3(A3(T4 Xor T2) Xor T1)
 p8 = p8 Xor A4(A4(T3 Xor T1) Xor T2)

 p5 = (p5 + T1) And FF
 p6 = (p6 + T2) And FF
 p7 = (p7 + T3) And FF
 p8 = (p8 + T4) And FF

This is a Feistel-like structure, in which p1..p4 are used to modify p5..p8. Note that the
chained table lookup in question is data dependent, not key dependent. This is an
inference I draw from the usage, since, if p1..p4 were instead fixed key material, the
equation reduces to a simple xor/add of a key-dependent constant. Thus, the
modification to p5..p8 cannot be precomputed in any reasonably sized table (unless
16MBytes is reasonable). The change to p5..p8 is very linear, as is common in Feistel
structures.

In other words, Leapfrog apparently uses this construction as a diffusion mechanism.
This may be a very nice idea, but it is dramatically different construction than Twofish,
which uses the S-box and the MDS matrix for diffusion. More abstractly, Twofish uses
chained S-boxes as follows:
 y = f(x,Key) // x,y are 8 bits each
while Leapfrog does
 y = y ^ F(p1,p2,p3,p4). // y, p1..p4 are 8 bits each
That f and F are somewhat similar is not surprising -- block ciphers are almost always
built out of running things through S-boxes and then combining with xor or add.
SAFER+ does something very similar, as do E2 and LOKI97. In fact, looking across
rounds (as opposed to within a round), almost every block cipher looks something like
this, including DES.

The fact is that Twofish uses 8x8 key-dependent S-boxes. The Leapfrog construction is
nothing of the sort. Key-dependent S-boxes are a crucial design element to add security
to Twofish. Chaining a fixed S-box with key material xors is a very simple way to achieve
this, although there may be other or better methods.

In any case, as noted in the sci.crypt posting, there is no patent involved, so Twofish is
still available as a public domain cipher. Further, since I never had access to any
information about Leapfrog, there is no possible copyright issue either.

We are happy to give credit where credit is due, but it seems like the inventor of
Leapfrog has dramatically misinterpreted both Twofish and its design team.

Sincerely,

Doug Whiting, CTO, Hi/fn
dwhiting@hifn.com

20

From: DJohn37050@aol.com
Date: Fri, 15 Oct 1999 14:49:33 EDT
Subject: AES, ANSI X9F1, and future resiliency
To: AESround2@nist.gov
X-Mailer: Windows AOL sub 41

NIST,
When I presented my submission on "Future Resiliency: A Possible New AES Criterion"
to ANSI X9F1, there was a general consensus (we took an informal vote) that NIST
should include this criterion in its selection process. Participants include representatives
from banks, auditors, vendors and government.
Don Johnson

21

From: matthew.fisher@convergys.com
X-Lotus-FromDomain: CVG
To: vincent.rijmen@esat.kuleuven.ac.be, daemen.j@protonworld.com,
 rja14@cl.cam.ac.uk, biham@cs.technion.ac.il, lars.knudsen@ii.uib.no,
 kelsey@counterpane.com, schneier@counterpane.com, daw@cs.berkeley.edu
cc: aesround2@nist.gov
Date: Tue, 26 Oct 1999 12:40:05 -0400
Subject: Weakness in Rijndael/Serpent key schedule?

Sirs,

Is the fact that a Rijndael key can be recovered via the XOR of two Cipher Keys and the
XOR of the Round Keys important?

'Serpent' also seems to have this property. Given the XOR of two keys K1,K2 then the
XOR of the prekeys w[0..131] could be determined. Now if an attacker knows the XOR
of {k0,k1, ...,k131 } for the round keys, it is straight forward to determine K1 and K2.

This property doesn't seem relevant to DES.

This property seems to violate the 'Prudent Rules of Thumb for Key-Schedule Design' in
'Related Key Cryptanalysis of 3-WAY, Biham-DES,CSA,DES-X, NEWDES, RC2 and
TEA' by Kelsey, Schneier and Wagner. That paper states that 'Key schedules should be
specifically designed to resist differential related-key attacks.'

I have not been able to create a practical attack based on this analysis. How an attacker
could get the XOR of the round keys but not the keys themselves is certainly a mystery.

thanks,
--Matthew

I posted the following to sci.crypt. I was hoping for commets on the idea.

A comment on the key schedule for Rijndael.

Hello sci.crypt,

I believe I have found a weakness in the key schedule for Rijndael. I turn to this august
body for confirmation or harsh refutation of my theory. A quick note on my credentials; I
am only an amateur cryptographer but a long time professional computer scientist. This
post is a follow up to the ‘Curious Keys in Rijndael’ post.

Abstract

22

In this paper the block cipher Rijndael is analyzed. Rijndael is submitted as a candidate
for the Advanced Encryption Standard. The cipher has variable key and block length.
This paper focuses on the key length of 128 bits with the block length of 128 bits. The
Rijndael cipher is an iterated ten round block cipher for this case. Here it is shown, the
Cipher Key can be recovered if an attacker has the ‘exclusive or’ of several Round Keys.
Moreover, one byte of key recovery can be mounted on Rijndael for certain key
relationships and strange chosen cipher texts.

This note is just the beginning of the full paper I am working on. If it turns out that I
goofed up then this posting will save me the work

I will use the notation adopted in ‘The Rijndael Block Cipher’ by Joan Daemen and
Vincent Rijmen. To understand the attack, you will have to read ‘The Rijndael Block
Cipher.’

To begin with, it can be easily shown that if an attacker can gain the XOR of several
Round Keys the Cipher Key may be obtained for many cases.

Here is an example of recovering a Cipher Key by knowing the XOR of the Round Keys.
I have abbreviated the example to the last four bytes of the Cipher Key. The rest may
be obtained by having a more Round Key XOR. A total of four sequential Round Key
XOR is enough to obtain the entire Cipher Key.

Here are the keys and Round Key 0 and the first four bytes of Round Key 1. The Round
Keys are stored in a structure called W. W has four bytes per entry. The W[0..3]
structure would be the first Round Key for Nk =4 and Nb = 4.

Key K1 = c6 81 4b e2 54 bd 7c e1 01 31 56 0f 67 87 aa 3c
Key K2 = 7e 6b fb fb f6 df 1c 87 bf de 72 47 66 59 88 59

W Byte K1 K2 Xor

00 00 198 126 184
00 01 084 246 162
00 02 001 191 190
00 03 103 102 001

01 00 129 107 234
01 01 189 223 098
01 02 049 222 239
01 03 135 089 222

02 00 075 251 176
02 01 124 028 096
02 02 086 114 036
02 03 170 136 034

03 00 226 251 025
03 01 225 135 102
03 02 015 071 072
03 03 060 089 101

23

04 00 063 104 087
04 01 034 086 116
04 02 234 116 158
04 03 255 105 150

It can be seen from the Rijndael key schedule that the bytes of W[4] are a combination
of the bytes of W[0] and bytes of W[3]. The formula is:

W[4] = W[0] ^
 SubByte(RotByte(W[3]) ^ Rcon[1]

Where ^ is XOR and Rcon is a fixed set of round constants. Thus due to the RotByte
the formula for the first byte of W[4][0] is

W[4][0] = W[0][0] ^ SubByte(W[3][1]) ^ Rcon[1]

Now for two keys K1 and K2 the XOR of W[4][0] is

W1[4][0] ^ W2[4][0] =
 W1[0][0] ^ W2[0][0] ^
 SubByte(W1[3][1]) ^ SubByte(W2[3][1])

The Rcon is canceled by the XOR.

In our example, the attacker knows

W1[0][0] ^ W2[0][0] = 184

And

W1[4][0] ^ W2[4][0] = 87

And thus

W1[0][0] ^ W2[0][0] ^ W1[4][0] ^ W2[4][0] =
 184 ^ 87 = 239

And thus

239 = SubByte(W1[3][1]) ^ SubByte(W2[3][1])

Also the attacker know

W1[3][1] ^ W2[3][1] = 102

Given the XOR of the inputs, 102, and the XOR of the outputs, 239, into a bijective S-
box, it is trivial to calculate the possible inputs. For the example, the only possible inputs
for the Rijndael S-box are

225 and 135

24

225 ^ 135 = 102
S(225) ^ S(135) = 248 ^ 23 = 239

Now the attacker knows that the W1[3][1] must be a 225 or a 135. Since, the Cipher
Key is copied into W[0..3], the attack knows one of the key bytes. All of the other bytes
can be obtained in a similar manor. To get W[0..2], more Round Key XOR are needed.

This proves that given only the XOR of the Round Keys an attacker can recover the
entire Cipher Key. How an attacker would gain such information is unknown. A possible
method is that power or time analysis would reveal some relative measure but not
an actual key. This relative measure might somehow be combined for two keys to
create an XOR of the Round Keys without revealing the actual values.

Here we go with the byte recovery attack.

For a chosen cipher text, related key attack the conditions are:

1. An implementation using Nb = 4 and Nk =4 i.e. 128 bit key and 128 bit
block
2. Two Cipher Keys in Rijndael such that K1 == K2 except for the first
byte i.e. K1[0] != K2[0]
3. A relationship between K and K1 such that the Round Key (RK) W1[36][3]
== W2[36][3]
4. Two cipher text, C1, C2 such that C1 XOR RK1(11) == C2 XOR RK2(11). RKy(x) is
Round Key number x for key y. C1 will be generated under K1 and C2 will be generated
under K2. This requirement is that the cipher texts must be equal before the last round
key application in the tenth round of Rijndael.

If the above conditions are met, one byte of the tenth Round Key can be found with high
probability usually one half. Since, the Cipher Key can be constructed from any Round
Key, the remaining bytes of the tenth Round Key can be guessed. Once a full Round
Key is guessed, the Cipher Key can be generated and tested against one known plain
text cipher text pair. The guessing and testing process will have to be done on about
2^120 Round Keys. 2^120 is obviously must faster than 2^128 thus the attack is faster
than exhaustive search.

The relationship between the keys is quite awkward but is certainly possible. I written a
simple program to generated keys matching the above criteria.

Here is the attack on Cipher Key K1.
1. Given the two cipher texts C1 and C2 from above. XOR C1 and C2. The result will
be the RK1(11) XOR RK2(11)
2. Due to the awkward relationship between the keys and the key schedule for Nk = 4,
information about the RK1(10) can be gained from RK1(11) XOR RK2(11).
3. The Round Key sub structure W1[40] will contain four bytes. The first, A, and fourth,
D, bytes of W1[40] are related by the Rijndael S-Box.
4. The relationship is that A is the XOR of inputs into the S box and D is the XOR of the
outputs.
5. Typically, only one pair of inputs/outputs meets the criteria. Thus byte one of
W1[39] must be one of the pair. This gives a 50% chance of guessing the byte. W1[39]
is in RK1(10).

25

6. Guessing the other 2^120 bits can be done by exhaustive search.

How an attacker could gain the required information is unknown. The above attack
appears to be entirely theoretical. It is interesting none the less.

Several possible extensions exist for this attack. Here is one possible extension. It
appears that a given XOR input has a limited set of output XOR for the eleventh Round
Key. If the set of output XOR is small in comparison to 2^128 then a table look up attack
could be mounted. The table would contain all possible XOR outputs and the
corresponding keys for a particular input XOR, K1 ^ K2. An attack would then randomly
XOR cipher text from two related keys. The results of the cipher text XOR would be
looked up in the table and the keys tried. When two cipher texts were equal in the last
round before the key XOR, the proper entry would be found and thus the Cipher Key
would be found in the table.

Got all that? ;-)

--Matt

Matthew E Fisher
mfisher@magicnet.net

--
NOTICE: The information contained in this electronic mail transmission is
intended by Convergys Corporation for the use of the named individual or
entity to which it is directed and may contain information that is
privileged or otherwise confidential. If you have received this electronic
mail transmission in error, please delete it from your system without
copying or forwarding it, and notify the sender of the error by reply email
or by telephone (collect), so that the sender's address records can be
corrected.

26

X-Authentication-Warning: apal.ii.uib.no: larsr owned process doing -bs
Date: Wed, 27 Oct 1999 00:02:30 +0200 (MET DST)
From: Lars Ramkilde Knudsen <larsr@ii.uib.no>
To: matthew.fisher@convergys.com
cc: vincent.rijmen@esat.kuleuven.ac.be, daemen.j@protonworld.com,
 rja14@cl.cam.ac.uk, biham@cs.technion.ac.il, lars.knudsen@ii.uib.no,
 kelsey@counterpane.com, schneier@counterpane.com, daw@cs.berkeley.edu,
 aesround2@nist.gov
Subject: Re: Weakness in Rijndael/Serpent key schedule?

> Is the fact that a Rijndael key can be recovered via the XOR of two Cipher
> Keys and the XOR of the Round Keys important?

I don't think so, no.

> 'Serpent' also seems to have this property. Given the XOR of two keys
> K1,K2 then the XOR of the prekeys w[0..131] could be determined. Now if an
> attacker knows the XOR of {k0,k1, ...,k131 } for the round keys, it is
> straight forward to determine K1 and K2.
> This property doesn't seem relevant to DES.

No, but on the other hand, the exor of two DES cipher keys gives immediately the exor
of all round keys, which is probably worse. This is not the case for Rijndael and Serpent.

> I have not been able to create a practical attack based on this analysis.
> How an attacker could get the XOR of the round keys but not the keys
> themselves is certainly a mystery.

Assume you find an algorithm which on input a number of plaintext-ciphertext pairs
encrypted under two randomly chosen and unknown keys, returns the exor of the round
keys (and/or the master keys).
This algorithm can be used to find a single key.
Run the algorithm but where you choose one of the keys yourself at random.
You can then compute plaintext-ciphertext pairs using the key you know and feed these
to your algorithm together with pairs encrypted under a secret key K. Then you get the
round keys of key K, and you have broken the cipher.

-Lars

27

From: "Albert Yang" <albert@achtung.com>
To: AESround2@nist.gov
Date: Mon, 1 Nov 1999 16:55:59 -0800
Subject: Home made tweaks
Priority: normal
X-mailer: Pegasus Mail for Win32 (v3.12a)

First, I think you guys are doing a great job. I don't usually say that to any group with a
.gov...

As for the multi-algorithm vs. single debate, here's an offshoot of it.

I like Serpent, it's slow but like a vault, if it doesn't get picked, I still will probably use it in
most of my personally developed applications. If Mars or Twofish got picked, they are
great, but I can't remember all that, and I am afraid that I would screw up the
implementation of it. I seriously doubt that any of the 5 are going to be broken, that's not
where the weaknesses are going to be. It's going to be implementation, and that's
where I screw up.

So for that reason, I like RC6. I can fit it on a napkin, and still wipe my mouth. Easy to
remember, and it has a good family history so I'm a bit more confident in it.

Here's the thing though; I'm thinking, if I need a bit more security, I might just use RC6
and make it 384 bits, and up the number of rounds. It's a cipher I know, it's a cipher I
trust, and I can just up the rounds and the key size.

Same with Rijndael. 10 rounds is not enough to make me sleep well at night, so if it got
picked, I'd crank it up to 16 or 20 rounds. Double like Lars says is good for me.

So is that something you guys are addressing or considered addressing? The
homebrewed stuff. I take AES algorithms, and tweak it up myself? I think comparison of
speed is not fair for this reason alone. What if the designers of Serpent had picked only
8 rounds? Then it would be fast. But they picked 32, so it's slow. What if Rijndael was
32 rounds?

Right now, I'm thinking, it doesn't matter which one wins, I will probably use Serpent
straight out of the bottle, or RC6 with 32 rounds and maybe a beefed up key, or Rijndael
with 20 or 32 rounds.

I can't be alone on this line of thinking I suspect...

Regards,
Albert

28

Date: Tue, 16 Nov 1999 00:34:37 -0800
From: Ted Goldstein <tedg@ricochet.net>
Reply-To: tedg@transactor.net
X-Mailer: Mozilla 4.07 [en] (Win95; I)
To: AESround2@nist.gov, tgoldstein@brodia.com
Subject: Issues for AES

One of the interesting issues regarding AES is multiple utilitiy. DES has been used for
many years in authentication schemes as well as encryption schemes. This
becomes especially important in smartcards, where the multiple utility is a necessity.

Ted Goldstein
CTO, Brodia.com

29

X-Originating-IP: [152.163.204.201]
From: "Matt Robshaw" <matt_robshaw@hotmail.com>
To: AESround2@nist.gov
Subject: comment
Date: Mon, 29 Nov 1999 01:21:34 PST

Dear NIST AES team,

As you will no doubt be aware, Lars Knudsen and Willi Meier have written a paper
entitled "Correlations in RC6". Since the posting of this paper to the AES discussion
forum there appears to have been little discussion on the implications of this excellent
work. We would therefore like to take this opportunity to let you know our own thoughts
on this paper.

In our report "The Security of RC6" (which was published on August 20, 1998 and is
available via www.rsa.com) we provide a thorough investigation of the security of RC6.
We primarily used the techniques of differential and linear cryptanalysis, and while we
also considered some other techniques, we felt that linear cryptanalysis would likely
provide the most successful avenue for the attacker. In particular we gave a clearly
reasoned and conservative estimate that an attack on 16 rounds of RC6 using around
2^{119} known plaintexts should be expected. (See Table 15, on page 51 of the report
cited above.)

By vulnerable we assumed that not only could RC6 be distinguished from a random
permutation using this amount of plaintext but in fact we followed established
cryptanalytic practice in assuming that the full encryption key (or its equivalent) could be
recovered! Taking this into account, and feeling that the simplicity of RC6 had allowed us
to establish a good intuitive and empirical understanding of the cipher during the design
phase, we fixed the number of rounds of RC6 to be 20.

What is very interesting to us is that the results of Knudsen and Meier so closely match
our own expectations for the security of RC6. Their innovative extension and
generalization of the earlier results of Vaudenay et al. give a remarkably similar result to
our own: they have concluded that around 2^{119} plaintexts can be used to attack 15
rounds of RC6. While the attack they outline may not be quite as effective as the attack
on RC6 that we already believe exists, it does seem to provide excellent confirmation
that our own analysis is broadly in line with that conducted independently by other
researchers.

We think that there are still some unanswered questions about the style of statistical
analysis used for the estimates in their attack, particularly in its extrapolation from very
few rounds to a large number of rounds. We hope that this will be an area for continued
research. Indeed, many of the same questions are open for the closely-related technique
of linear cryptanalysis on which we based our own estimates for the security of RC6.
However we are encouraged that, independently, the two techniques give very similar
results and they increase our confidence that both sets of estimates for the strength of
RC6 are as accurate as current analytical techniques allow.

30

We look forward to hearing of any more results on the security of RC6 and we
encourage others to explore and analyze the cipher. Certainly we believe that we have
been successful with our secondary design rationale after security - that of
keeping the cipher simple. Only in this way is it possible to encourage independent
research, to facilitate analysis by cryptographers other than the designers, and to
provide an accurate estimate of the security offered by a cipher. We feel that this is
vitally important when the time allowed for such independent analysis during the second
round of the AES schedule is so limited.

Yours sincerely,

Ron Rivest
Matt Robshaw
Lisa Yin

__
Get Your Private, Free Email at http://www.hotmail.com

31

From: Jeffrey Streifling <jss@icrossroads.com>
To: AESround2@nist.gov
Subject: Consideration of RC6
Date: 5 Dec 1999 15:02 -0700

Disclaimer: I have just been investigating RC6; I have no special interest in it.

I've been looking at RC6 as one of the most interesting of the AES candidates. It has
rather a peculiar set of advantages and disadvantages in regards to implementation
issues. It is an extremely concise algorithm and avoids lookup tables and special cases.
It makes use of common instructions in most processors. However, it does use
multiplication instructions which are hard to emulate in microcontroller environments. If
there is to be only one AES algorithm, the use of the multiply would probably mean that
it would have to go based on performance and implementation issues in small
environments. (As an engineer familiar with the instruction sets on several
microcontrollers, I know I would hate the job of producing a small implementation of
this.) Here I assume that all remaining algorithms are reasonably sound
cryptographically and that the remaining selection procedure will be based on
implementation issues.

RC6 turns out to be very useful, almost uniquely useful, though in several environments
where none of the other algorithms can apply.

- Suppose I am given the job of producing a small wrapper
 program for a security sensitive application. The
 wrapper is going to be put through a very heavy security
 audit, and as such, needs to keep the number of lines of
 code to a minimum. RC6 can be embedded in very small
 programs, facilitating easy audit ("It's obviously
 correct!") and testing. Other algorithms will need
 more lines of code to implement specialized logic and
 lookup tables. It takes a considerable amount of effort
 to verify the correctness of implementations of the
 other algorithms as their correctness is not always
 obvious.

- Suppose I want to implement a one-time password calculator
 in a programmable calculator (e.g., an HP 48) to take on
 the road to access home office facilities through untrusted
 network terminals (think of "Internet Cafes", truck stop
 facilities, airport "web booths", libraries, and the like).
 RC6 can be implemented fairly easily in anything that
 supports multi-base arithmetic; I don't even want to think
 about trying to squeeze TWOFISH or SERPENT into these
 environments, even as much as I like them.

- Suppose I want to implement a quick mechanism for disguising
 some critical piece of information like a credit card number
 in a script/interpreted program on a machine that doesn't

32

 already have a library for that purpose. RC6 is the natural
 winner: 10 lines of code will encrypt, another 10 will
 decrypt, and another 10 will schedule the key if necessary.
 It all just goes in line and I'm done. I don't want to think
 of the tedium of keying a kilobyte worth of hexidecimal
 constants from a book somewhere.

- Suppose I need to verify my implementation quickly in the
 presence of some new bug that gets discovered down the road.
 With RC6, I can quickly check any part of the action by hand.
 The other algorithms require a bit of fiddling -- quick on
 a computer, but messy by hand.

- In general, any application where the algorithm needs to be
 implemented quickly or at low cost, or where the code needs
 to be heavily scrutinized, or where the expense of maintaining
 security sensitive lines of code is high will benefit greatly
 from RC6.

I think that if at all possible, algorithm simplicity should be one of the factors in the AES
decision. I personally think that RC6 is a hands-down winner in this arena, and if it is
posssible to choose more than one AES candidate for the standard, RC6 should
definately be one of the chosen algorithms (assuming that some new theoretical result
doesn't break it in the interim...) (Even if there was only to be one algorithm, I would still
vote for RC6 for the above reasons, but I could understand why it would face opposition
from smart-card software authors.)

As for how the requirements for AES compliance should be stated in the presence of
multiple approved algorithms, I think that a distinction should be made between "client
compliance" and "server compliance" (change the terminology to suit). Servers (things to
whom people need to authenticate, messaging hubs, and any kind of software package
where it might be possible to implement multiple algorithms) should be required to
implement all algorithms; clients (smart cards, hand-held computers/palmtops,
calculators, etc) should have their choice of implementing any one algorithm. Then
clients and servers could reliably communicate, as well as two servers. (Any kind
node in a messaging system where full-mesh connectivity is desired would automatically
be subject to the server requirement, including applications for the Internet). I would like
to be able to implement the algorithms in question on a programmable calculator (e.g.,
for testing or maybe to reduce the number of items in my pocket) while a smart card
author would like to be able to cram basic functionality into a 50 cent controller. Different
algorithms will be suited to our purposes, and it would be nice to permit as wide a
variety of implementations as possible.

I think that at this point, with only five candidates left, that the only reason candidates
should be eliminated is for cryptographic weakness. It would be straightforward to
implement all five algorithms in any loadable computer software (witness today's
multigigabyte hard drives!), which would provide the most flexibility for small devices
which need to interact with them. Perhaps algorithms could be eliminated if it could be
shown that there could be no environment to which they would be uniquely best suited
(i.e., they are redundant). RC6 should definately not be eliminated. Multiple

33

standardized algorithms will provide insurance against future theoretical breakthroughs
which might compromise the security of one, maybe two, but not all algorithms.

Once again, if at all possible, please include RC6 in the final AES standard. A simple
cipher that can be implemented almost anywhere would provide valuable future
flexibility!

Thank you
Jeffrey Streifling
<jss@icrossroads.com>

34

Date: Sun, 26 Dec 1999 21:20:58 -0500
From: Eva Bozoki <eva@fortresstech.com>
X-Mailer: Mozilla 4.5 [en] (Win95; U)
X-Accept-Language: en
To: AESRound2@nist.gov
CC: aharon <aharon@fortresstech.com>, dennis <dennis@fortresstech.com>
Subject: Comments on Round 2 White Paper

This is a vendor-oriented response on the question of "How many AES algorithms?" Jim
Foti raised in his recent email and which is discussed in the Round-2 Issues White
Paper.

I assume that out of the final AES candidates there will be more then one that meets the
requirements. More then likely, beyond satisfying the basic security requirements, they
will have different advantages making them equally good candidates under different
circumstances (efficiency, security, margin tradeoff, hardware/software implementability,
etc). For that reason, probably the votes of the committee can not be and will not be
unanimous. Rather then choosing 1 out of 2 or more almost equally good candidates,
why not allow vendors and their customers to make the choice from a pool of approved
algorithms according to how they perceive their needs and preferences? (Naturally, if
only one algorithm would satisfy all the requirements, my arguments are not valid.)

I don't think that the use of different algorithm would necessarily cause interoperability
problems. There are three scenarios:

1. Each encryption product is manufactured to use one and only one algorithm out of the
pool. It is ordered and manufactured for a given need and Network, where all the used
crypto products has the same communication protocol and the same encryption
algorithm.
2. The User of the encryption product (in the role of the Crypto Officer?) is allowed and
able to switch between algorithms, thus the same product is portable from one Network,
using algorithm-1, to another Network that uses algorithm-2. Also, it makes it possible
and easy for a Company that purchased encryption products to switch from one
algorithm to another if their need or their confidence changes.
3. The encryption product can automatically recognize the algorithm in the incoming
messages and use the same algorithm, much like the IPSEC protocol does.

In none of the above scenarios is the same message encrypted with more then 1
algorithm, thus approving multiple AES algorithm will not increase the probability of
breaking any one of them.

Finally, saying that public confidence would be shaken if any of the approved AES
algorithms would be broken sounds silly. What if the single AES algorithm is broken? In
that case not only the public confidence, but also much more would be broken.

.Eva Bozoki
PATCO
Scientific Advisor to Fortress Technologies

35

Date: Mon, 27 Dec 1999 16:54:12 +0100
From: Eric Boesch <ebo@dannet.dk>
X-Mailer: Mozilla 4.7 [en] (WinNT; I)
X-Accept-Language: en
To: AESround2@nist.gov
Subject: Modes of operation

1. PCBC is desirable for fast verification of ciphertext integrity.

 The need for checksums to verify message integrity is commonplace,
 even in unencrypted network applications. CBC and CFB MACs
 authenticate their plaintext only -- they do not authenticate their
 ciphertext. Using PCBC allows you to simultaneously generate
 ciphertext and a MAC that can be applied to the ciphertext, at
 little extra cost.

 PCBC's behavior is simple, unforgiving, and often desirable: all
 errors propagate forward indefinitely.

2. Why output feedback mode instead of counter mode?

 Output feedback involves XORing the plaintext with an independent
 codestream E(IV),E(E(IV)),E(E(E(IV))),.... If the block size is
 128 bits and E() is a random one-to-one mapping, then you can
 expect, by the birthday paradox rules, to have your codestream
 repeat after about 2^64 blocks on average. If the encryption
 function is secure, then under no circumstances does output
 feedback appear to offer significant advantages over an appropriate
 use of counter mode, where the plaintext is XORed with
 E(IV),E(IV+1),E(IV+2),....

36

X-Sender: schlafly@pop.mindspring.com
X-Mailer: QUALCOMM Windows Eudora Light Version 3.0.6 (32)
Date: Tue, 11 Jan 2000 04:37:20 -0800
To: AESround2@nist.gov
From: Roger Schlafly <real@ieee.org>
Subject: AES round 2 comment

Comment on NIST AES process

There have been rumors that NIST is considering multiple winners for the AES. I think
this is a very bad idea.

When NIST announced the DES about 25 years ago, it was radical. It introduced to the
public the idea that a cipher algorithm could be public and standardized, while all the
secrecy was in the keys.

While DES has been intensely attacked over the years, it has held up rather well. It
delivers the security it promises, more or less. NIST and IBM are to be
congratulated for their outstanding contribution to the science of cryptology, for
convincing both academics and the public that cryptography can be an open process,
and for a huge positive impact on computer security.

Now that DES needs to be replaced with AES, NIST has taken the process one step
farther by using an open competition to find a state-of-the-art cipher. This is admirable.
The five finalists are all outstanding, and any one of them should make for a great AES
(provided the various concerns are addressed, of course).

But now I am troubled by the possibility that NIST may weaken in its resolve in the face
of political pressure. Some people seem to have ideological or business reasons for
opposing a standard. Or maybe they still have not accepted the fact a cipher can
have an open specification and still be secure.

If NIST chooses multiple winners, then it will be a failure of the AES process. People will
assume that no cipher was fully satisfactory, or that NIST could not make a decision. If
that happens, a lot of people will continue to use DES or triple-DES. Interoperability will
become difficult or impossible. Many resources will be wasted by people who want to
implement each algorithm in order to get full compliance. Others will find full compliance
too expensive, and end up not complying at all. Some people will think that they have to
implement some sort of algorithm selection protocol in order to make full use of AES.
While there are some theoretical arguments that such a selection protocol can increase
security, it is much more likely that flawed protocols will decrease security. Others will be
encouraged to iterate or nest the ciphers on the theory that if one cipher is not good
enough for NIST then it is not good enough for them either.

The ANSI X9F1 committee had a resolution in favor of NIST considering future resilience
in the AES process, whatever that means. Attempts to gain support for a motion to
recommend multiple AES winners apparently failed. I would not assume that the ANSI
X9F1 committee wants multiple AES winners unless it actually passes a motion that

37

recommends multiple AES winners. I would have voted in favor of considering future
resiliency, but against adopting multiple standards.

So why would there be resistance to a single AES winner? Here is the opposition that
comes to mind.

1. Those who naively think that more ciphers means more security.

2. Those who are ideologically opposed to standards.

3. Those with business interests contrary to a single AES standard.

4. Those who think having both US and foreign designed winners would be more
politically acceptable.

It is the large key space that gives the diversity of ciphers. If we needed more ciphers,
then you could add a couple of key bits. But 256 key bits is plenty already. If political
considerations warrant the choice of a second cipher, then perhaps one could be
designated a "runner-up" so that it will be available but not obligatory.

Therefore I strongly recommend sticking to the vision of an encryption standard, and
resisting efforts to dilute and weaken it with wishy-washy decisions.

Roger Schlafly

38

From: Chen Lidong-LCHEN1 <LCHEN1@email.mot.com>
To: "'AESRound2@nist.gov'" <AESRound2@nist.gov>
Subject: Re: Request related to FIPS 140-1 and the AES
Date: Fri, 14 Jan 2000 15:26:46 -0600
X-Mailer: Internet Mail Service (5.5.2650.21)

Jim:

We prefer that one algorithm be selected as the final AES algorithm for the following
reasons:

1. It would be best to put efforts into evaluating the security of one algorithm. If more
than one algorithm is selected, then the analysis efforts would not be as focused.

2. If multiple AES algorithms are selected, then security issues related to algorithm
negotiation protocols will need to be considered.

3. It is more cost-effective to implement a single encryption algorithm than to implement
multiple algorithms. Multiple algorithms would require larger, more costly circuits to
support multiple algorithms. These circuits would also be more complex, thus
reducing production yields and increasing testing requirements. Complex circuits are
also more prone to bugs, which can potentially lead to other security issues.

4. Multiple AES algorithms will lead to interoperability issues between different systems.
These issues will require further standardization efforts, which may lead to relatively
long product deployment delays.

5. Customer confidence will be diminished by choosing multiple AES algorithms. It will
be difficult to explain why there are multiple AES algorithms. Also, customers will be
bothered to decide which algorithm is better.

6. Choosing multiple AES algorithms, might increase the possibility of intellectual
property issues. The more algorithms that are selected, the more likely one of them
will have intellectual property issues that will surface at a later date.

Based on the above noted issues, we recommend that NIST select a single
algorithm for the AES algorithm.

Regards,

Lily Chen
Motorola Inc.

1501 W. Shure Dr.
Arlington Heights, IL 60004
(847) 632- 3033

39

Date: Mon, 17 Jan 2000 16:51:36 +0900 (JST)
From: Kaneko Yasuyoshi <kaneko@citron.yokohama.tao.go.jp>
Reply-To: Kaneko Yasuyoshi <kaneko@citron.yokohama.tao.go.jp>
Subject: Some comment
To: AESRound2@nist.gov
X-Mailer: dtmail 1.2.1 CDE Version 1.2.1 SunOS 5.6 sun4u sparc

Dear AES officers

I am Yasuyoshi Kaneko belonging to TAO in Japan.
May I congratulate on the third AES conference, and I hope the final AES
algorithm will be selected without accident.
I also have watched the AES selecting process as many participants in the
world and now I feel there are some points which NIST had better reconsider
and make respond.

1. Estimating Process
The estimating process of AES seems to be more complicated compared with
other contests or other engineering. Because cipher designers and
cryptanalysts are not so completely distinguished that a person may be
sometimes a good or bud designer but other times a bad or good cryptanalyst.
Thus the estimation results, which were gotten by, many cryptanalyst seems
to be a jumble of wheat and tares. After all judging and deciding is due to
NIST, so I ask NIST to continue to be open to present his judging process
and conclusion.

2. Simple design criteria
This simple design criterion was presented before the first AES conference
by NIST, and most of all designers of AES candidate seem to try to satisfy
these criteria. However this idea of simple is against the security because
a simple design structure of cipher may give many chance of cryptanalysis
and this cryptanalysis results give a weak image to these ciphers without
breaking. The idea of simple is difficult to define and it is difficult to
judge which cipher is simple or not (With this reason simple design criteria
has been not excitedly discussed during AES estimating process). A correct
expression may be that clear and united design principle AES algorithm
should have. If final selected AES will seem to be not simple what kind of
explanation will NIST give?

3. Lifetime criteria
I think, as many people think, the lifetime of AES is the most important
thing, which NIST consider and take the responsibility to. NIST seems to
consider that the lifetime of AES is 20-30 years, without any clear comment
on the maintenance plan of AES specification. Maybe there are many threats,
which force AES to change itself. Simple examples are given as follows.
a. Someone finds a week point, which seems to give a chance to break the AES
by a new attack.
b. Someone finds new computing processor or technique, which give an enough
ability to break AES by ciphertext-only attack.

40

c. Someone finds new design technique for keeping security and which
technique seems to be enough attractive that many engineers abandon to use
AES.
 Anyway, when the reliability of AES is fallen the most damage is given to
users and many companies. Maybe royalty free sounds good for every engineer
who consider the design of security system, however if there is no guarantee
for long-time using or some guidance for using the specification of AES,
using AES seems to be very risky selecting for engineers and his companies.
I think that there are 2 things, which NIST should consider and officially
announce the guidance of coping with.
1) Making a usual maintenance plane about key-length and block-size to
present guidance for using the many kind of key-length and block-size.
2) Making an unusual maintenance plane especially considering the cases a.
 The most important thing is 2), because the specification of AES may be
dramatically changed and users of AES may also change the security system as
soon as possible.
 Maybe one practical method of solving risky status is offering some AES
algorithms as some people said, however I think many cipher algorithms will
give much pleasure to cryptanalyst and attacker so that the results of
cryptanalysis contribute to shorten the lifetime of these AES. Moreover if
many kind of standard algorithms are used in each security system, interface
of each system becomes to be more complicated and user-interface also
becomes to be no good.
I think other method is increasing the number of round with an expectation
that the speed of hardware and software will be enough faster than now.
Maybe this method of increasing the round number does not seem to be
attractive way but this method is the most certain way to keep security of
ciphers. Because almost all cryptanalysis depend on the round number and if
the round number increases enough anyone fail to attack any more.
(I think that if trying to use a block cipher for a long period, as an old proverb
says,

There is no royal road to block ciphers. The only thing that we can ask is not "Is AES
secure enough?" but "How many round of AES is secure enough for now?"

 The only problem is changing also the algorithm of key scheduling, so the specification
of key scheduling which makes it possible to increase the number of rounds should be
given. Fortunately the five finalists of Round2 seems to satisfy the flexibility of
changing the round number and the key-scheduling, so anyway my idea is possible to
realize. Moreover it is desirable that the method of this changing specification is
parameterized to easily implement and change its algorithm. It is also need that the
number of round should be periodically (every several years) reexamined to judge
whether the round-number of AES should be changed or not.

I hope that NIST will consider and investigate these three points and will make a public
of his decision at the third AES conference. With every best wish for success for AES3.

Yasuyoshi Kaneko,
Telecommunications Advancement Organization of Japan,
E-mail: kaneko@yokohama.tao.go.jp

41

From: "Costantini, Frank @ CSE" <fcostant@mail.cse.l-3com.com>
To: "'AESround2@nist.gov'" <AESround2@nist.gov>
Cc: "Carter, Matthew @ CSE" <matthew.carter@l-3com.com>,
 "Kozak, Taras @ CSE" <tkozak@mail.cse.l-3com.com>,
 "McGrogan, Chip @ CSE" <emcgrogan@mail.cse.l-3com.com>,
 "Holland, Robert @ CSE" <rholland@mail.cse.l-3com.com>
Subject: AES modes of operation
Date: Wed, 26 Jan 2000 16:01:32 -0500
X-Mailer: Internet Mail Service (5.5.2650.21)

AES Evaluation Group:

While I do not have any specific comments on any of the particular AES candidates, I
would like to propose that NIST evaluate the security of the proposed algorithms when
employed using counter-mode cryptographic operation. Counter-mode has advantages
over OFB, CBC, and ECB modes for high-speed packet-based applications (like ATM),
and as well as packet based communications over bandwidth-restricted channels. This
mode requires little synchronization overhead and allows the keystream to be calculated
in advance of the plaintext (for transmit) and ciphertext (for receive) becoming available.
Furthermore, I would like to propose that the counter mode of operation be included in
any "modes of operation" standard that is produced as part of the AES process.

Thank you for your consideration.

Respectfully,

Frank Costantini
L-3 Communications
Communication Systems-East
1 Federal Street, AE-3C, Camden, NJ 08103
*856-338-3480 Fax: 856-338-3150
email: frank.costantini@L-3COM.com

42

Reply-To: <emcgrogan@mail.cse.L-3COM.com>
From: "Chip McGrogan" <chip.mcgrogan@L-3COM.com>
To: "'Costantini, Frank @ CSE'" <fcostant@mail.cse.L-3COM.com>,
 <AESround2@nist.gov>
Cc: "'Carter, Matthew @ CSE'" <matthew.carter@L-3COM.com>,
 "'Kozak, Taras @ CSE'" <tkozak@mail.cse.L-3COM.com>,
 "'McGrogan, Chip @ CSE'" <emcgrogan@mail.cse.L-3COM.com>,
 "'Holland, Robert @ CSE'" <rholland@mail.cse.L-3COM.com>
Subject: RE: AES modes of operation
Date: Wed, 26 Jan 2000 19:03:53 -0500
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook 8.5, Build 4.71.2377.0
Importance: Normal
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2314.1300

Frank: Great! Keep me up to date on how NIST reacts.

BTW you forgot to mention one big advantage of Counter Mode, particularly for high
data rate applications like ATM - - Since there is no feedback of previous information,
parallel (concurrent) engines can be used to increase the data rate above that of a single
engine. A 48-byte ATM cell payload can be encrypted by three parallel engines, each
encrypting a 16-byte portion of the cell payload in a manner that is interoperable with an
implementation using a single engine.

Keep up the initiative!

Chip

43

From: "Nicholas C. Weaver" <nweaver@CS.Berkeley.EDU>
Subject: Importance of subkey generation time...
To: aesround2@nist.gov
Date: Fri, 18 Feb 2000 14:48:47 -0800 (PST)
X-Mailer: ELM [version 2.5 PL0]

For hardware implementations, subkey generation structures may make a huge
difference. There are several applications which would use cryptographic hardware
(such as an encrypted backbone packet router, or an encrypting server which may
service hundreds or thousands of simultaneous, independently keyed connections)
where the key may be different on almost a block-by-block basis. Furthermore,
depending on the application, the memory bandwidth requirements for storing and
accessing expanded subkeys may be prohibitive, so subkeys would have to be
generated on the fly.

The ability to do fast subkey setup really varies from cipher to cipher. MARS and RC6
both have loop carried dependencies and need to traverse the loop multiple times, which
implies that one can't build a pipeline to generate subkeys. This also makes it
expensive/difficult to do subkey setup concurrent with encryption, as a pipeline capable
of encrypting N independent blocks simultaneously would require N copies of the subkey
generation hardware to encrypt each block with a unique key.

Rijndael and Serpent are pipelineable but the whole set of subkeys will need to be
buffered for decryption because of the reverse order required for decryption subkeys.
Thus, for a N block pipeline, this would require the subkey storage * N buffer space, but
only a single copy of the subkey generation hardware to do decryption. For encryption,
such significant buffering is not required.

Twofish, from a hardware implementor's viewpoint, has the nicest key schedule, since it
can be quickly pipelined and, with the subkeys for each round being independently
generateable, allows both encryption and decryption pipelines to quickly change
subkeys. One would have a pipeline to generate the S-box subkeys, and a second to
generate each round's subkeys. This would allow a single copy of the subkey
generation hardware to support almost full rate encryption OR decryption, with each
block using an independent key.

On another note, as a potential hardware designer, I'd be highly reluctant to support the
idea of multiple "winners". Although I defiantly prefer some implementations (Twofish,
Rijndael) over others (RC6, Serpent, MARS), there is a significant cost in hardware in
having to support multiple ciphers. As a designer, I'd rather support a single, less
elegant cipher over two or three different algorithms.

Undoubtedly multiple final selections will result in protocols which involve supporting all
candidates. Although not a significant problem from a software point of view, this
represents a doubling of the cost from a hardware implementers view if he wishes to
support such protocols.

44

Even if a single winner is less amenable to hardware then one of a group of winners, the
extra cost of having to support multiple winners could instead be spent on doubling the
hardware available (and doubling the hardware performance) of a single winner.

AES shouldn't suffer from the problem inherent in multiple standards of: "That's the
wonderful thing about standards, there are so many to choose from"

--
Nicholas C. Weaver nweaver@cs.berkeley.edu

45

To: aesround2@nist.gov
cc: craigc@pictel.com
Subject: Comment on VLIW & Instruction Level Parallelism
Reply-To: Craig Partridge <craig@aland.bbn.com>
From: Craig Partridge <craig@aland.bbn.com>
Date: Tue, 14 Mar 2000 10:20:43 -0500
Sender: craig@aland.bbn.com

Hi:

I read Craig Clapp's paper on Instruction-Level Parallelism with interest and had a few
comments.

First, I think the Instruction characteristics, while valid for today's slower processors, will
not be true soon. Faster VLIW CPUs are leading to more variable load delays and often
multi-instruction cycle latencies for more classes of instructions. For instance, on the
DEC Alpha a LOAD can take between 2 and 40 some cycles depending on where the
data is located and the speed of the external memory. Integer multiply cycles are also
growing (as long as 10 to 20 cycles). And, interestingly enough, barrel roller operations
(BYTE Extract and shifts) sometimes take more than one cycle.

This suggests that we should think less in terms of particular cycle counts and more in
terms of sums of instruction types along critical paths.

Craig Partridge
Chief Scientist, BBN Technologies

E-mail: craig@aland.bbn.com or craig@bbn.com

46

To: aesround2@nist.gov
cc: Ross.Anderson@cl.cam.ac.uk
cc: biham@cs.technion.ac.il
cc: lars@knudsen.ii.uib.no
cc: brian.gladman@btinternet.com
Subject: comment on Serpent optimized code
Reply-To: Craig Partridge <craig@aland.bbn.com>
From: Craig Partridge <craig@aland.bbn.com>
Date: Tue, 14 Mar 2000 10:39:06 -0500
Sender: craig@aland.bbn.com

Hi folks:

I've been perusing the various AES "optimized" C code solutions and noting that several
of them appear to be under-optimized -- that there's space to make them run faster.

This note is to report on some limited success with the Serpent implementation. Note
that Serpent appears to be very hard to optimize because it is pretty simple -- a series of
simple operations. Very little room for instruction level parallelism or pre-computation.
But I've gotten what appears to be a 15% to 20% per-round improvement in performance
in Round 0 (which is enough to report on and the results would appear to apply to other
rounds).

There are two issues:

- The optimized implementation submitted to NIST uses a huge number of
temporary registers and at least some compilers aren't smart enough to realize when
the temporaries can be recycled. The code is also not written to minimize register
usage. It uses 14 registers when I've been able to rewrite the code to use only 5
registers for round 0. I've also taken Brian Gladman's optimized round 0 code and
tuned it to use 6 registers. You get improved performance on the Pentium and the
DEC Alpha.

The utility of this improvement is not just fewer registers in software -- it can mean
less data carried along the pipeline in harder.

- The optimized implementation treats three parts of a round, namely the round
(RND macros), the transform (another macro) and keying (another macro) as distinct
phases. For instance, you don't do the transform until the round is finished.
However, you can get a lot of instruction level parallelism by merging the transform
and round. Typically some results of the round are available only halfway through a
round and they're often enough for the transform stage to start doing useful
computation. RND00 appears particularly amenable to this optimization but other
rounds should benefit too. For Round 0, this optimization gets a modest win on the
Pentium (subject to register interactions) and a big win on the Alpha (which has far
more available registers).

47

Again, this is not just a software issue -- if you're building hardware the logical thing
to do is treat the round and transform as one combined process.

I hope this is useful,

Craig Partridge
Chief Scientist, BBN Technologies

E-mail: craig@aland.bbn.com or craig@bbn.com

48

Date: Thu, 16 Mar 2000 14:41:26 -0800
From: August Zajonc <azajonc@POMONA.EDU>
Subject: Twofish
To: AESround2@nist.gov
X-MIMEOLE: Produced By Microsoft MimeOLE V5.00.2919.6700
X-Mailer: Microsoft Outlook Express 5.00.2919.6700
X-MSMail-priority: Normal

Developed with care,
usable anywhere.

49

From: "Manfred Spraul" <manfreds@colorfullife.com>
To: <AESRound2@nist.gov>
Subject: public comment
Date: Mon, 20 Mar 2000 13:45:30 +0100
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 5.00.2919.6700
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2919.6700

a few short notes from a non-cryptographer:

- AES supports key sizes of 128 and 192 bits, but SHA-1 and RIPE-MD 160 produce
160 bit keys. Could you define a standard way how to fold/expand the 160-bits into
128/192 bits? Please remember that many non-cryptographers will use AES.

- I would prefer if one algorithm is choosen as the AES [except as below]: This should
increase interoperability and reduce costs.

- Even if Moore's law remains valid for the complete century, 256 bit keys won't be
broken during this century by brute force. And there is no guarantee that throwing more
bits at an alogorithm actually increases the security. Please consider a Double-AES for
the 256-bit key length [e.g split the key into 2 128-bit blocks, and encrypt with 2 different
algorithms] Noone will use 256-bit in smart-cards, so memory/size constraints will be
less important.

--
 Manfred Spraul

50

From: sesmail@neptune.calstatela.edu
Date: Tue, 21 Mar 2000 20:50:21 -0800 (PST)
X-Authentication-Warning: webmail2.calstatela.edu: nobody set sender to
sesmail@neptune using -f
To: webmaster@ams.org, webmaster@entropia.com, info@perfsci.com,
 webmaster@eff.org, AESround2@nist.gov
Reply-To: sesmail@neptune.calstatela.edu
User-Agent: IMP/PHP3 Imap webMail Program 2.0.11
Sender: sesmail@neptune.calstatela.edu
X-Originating-IP: 208.149.1.14

Hi this is Simon Esmaili.

I recently read on the internet that quantum computers might make encryption
techniques based on the multiplication of two huge prime numbers obsolete.

I know of a simple huge number encryption technique. It may or may not be adequate
though. I wouldn't know because I'm fairly ignorant when it comes to encryption.

Step 1: Pick a code.

Step 2: Encode the message.

Step 3: Divide the encoded message into pieces of length n. If the length of the last
piece is less than n, then add encoded random characters until the last piece is also of
length n (it's probably not a good idea to add encoded blank characters in lieu of
encoded random characters).

Step 4: Pick an n by n matrix where each entry in the matrix is a natural number.

Step 5: Multiply each piece/vector of length n by the matrix.

For example,
if
encoded message = "a b c d e f"
n = 3
first row of matrix = "g h i"
second row of matrix = "j k l"
third row of matrix = "m o p"
then
matrix-multiplied encoded message = "ag+bh+ci aj+bk+cl
am+bo+cp dg+eh+fi dj+ek+fl dm+eo+fp".

The matrix acts like a combination lock. If n = 20 and each entry in the matrix is a
natural number between 1 and 10^4 inclusive, then there are (10^4)^(20^2) = 10^1600
such matrices. For each matrix, the inverse must be found and multiplied with the
intercepted message.

51

Reply-To: <Gideon@dgsciences.com>
From: "Gideon" <Gideon@dgsciences.com>
To: <AESround2@nist.gov>
Subject: Formalizing a Response to Allegation and Eventuality of breakdown.
Date: Sun, 9 Apr 2000 14:15:59 -0400
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook IMO, Build 9.0.2416 (9.0.2910.0)
Importance: Normal
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2314.1300

Dear Comments Collectors:

Please add the following comments to the pile:

AES should address both the allegation and the eventuality of any attack which would
considerably accelerate the brute force key search.

Allegation: How to handle raised allegations that the AES has been "broken". What
procedure should be in place to check out those allegations. Who will check it out, how
fast should a response come, and how and where to announce the finding.

Eventuality: In the event that it becomes clear that a productive attack has been
substantiated, it is necessary to invoke a damage audit procedure, damage control, if
possible, and a credible backup plan.

Thank you for taking these points into account.

Gideon Samid
gideon@dgsciences.com

 =-
 D&G Sciences -- Virginia Technology Corporation

 P.O.Box 1022; 6867 Elm St. Suite 200
 McLean Virginia 22101-1022 * U.S.A.

 info@dgsciences.com
 Ph: 703.385.4144 * Fax: 703.591.0847
 =-

52

From: "Hughes, James P. (SNBG)" <HugheJP@nsc-bridge.network.com>
To: "'AESround2@nist.gov'" <AESround2@nist.gov>
Subject: AES Comments.
Date: Sat, 15 Apr 2000 21:16:52 -0500
X-Mailer: Internet Mail Service (5.5.2650.21)

NIST AES Evaluation comments from Storage Technology Corporation.
Jim Hughes, StorageTek Fellow

Please consider my comments on the following areas: A single winner, FPGA
implementation, and a Modes.

- Single winner

I would like to suggest that primary and backup winners will effectively result both
algorithms being required by the market, and once implemented will double the vendor's
liability from a "patent attack".

1. Because customers will perceive the implementation of both the primary and
backup algorithms as a differentiator among competitors, implementing both algorithms
will become mandatory. I believe this will be the case that no matter how the standard
states that the backup is not mandatory. (I agree that all standards that implement AES
should implement algorithm negotiation, and that algorithm agility should be mandated
and part of the certification.)

2. Since vendors will be forced by the market to manufacture both the primary and
backup algorithms, they will be twice as vulnerable to a patent attack.

- FPGA

StorageTek makes extensive use of Field Programmable Gate Arrays and
wishes that the standard algorithm provides the ability to be implemented in a key agile
registered pipeline mode. That is, that the algorithm can be effectively implemented in
the largest currently available FPGA as a registered pipeline and that the key be
changed at least at every 3 blocks without requiring draining the pipe (a requirement to
run ATM traffic).

- Modes

To allow use of high performance encryption, StorageTek would like NIST to
acknowledge "Counter Mode" as a valid method for AES. In addition, StorageTek would
like to highlight security concerns of both Counter mode and CBC-n (n>1) if
cryptographic data integrity is not also present.

Thanks

Jim Hughes
StorageTek Fellow
Storage Technology Corporation
Jim@network.com

53

To: AESround2@nist.gov
Subject: My criterion...
Date: Mon, 17 Apr 2000 20:51:49 -0400
From: Robin Lee Powell <rlpowell@calum.csclub.uwaterloo.ca>

My sole criterion that I would like to see in the AES standard (besides
basic security considerations, of course, but I trust NIST can handle
those) is that the algorithm be available for public use free of charge.
No patents, no licensing, no nothing.

I don't think that's too much to ask, and it's all I really want.

-Robin

--
http://www.csclub.uwaterloo.ca/~rlpowell/ BTW, I'm male, honest.
As a member of the Hans Solo School of Action Before Thought, Welcome,
You've Got Male.

54

From: "Nicholas C. Weaver" <nweaver@CS.Berkeley.EDU>
Subject: Followups to AES conference and my paper
To: aesround2@nist.gov
Date: Mon, 17 Apr 2000 18:13:02 -0700 (PDT)
X-Mailer: ELM [version 2.5 PL0]

This is designed as an addendum, clarification, correction, and expansion on my paper
in AES3 ("An analysis of the AES candidates ameniability to FPGA implementation")
and other issues from the AES 3 conference.

My opinion has changed slightly. I can now comfortably endorse Serpent as well as
Rijndael and Twofish. Although there are some tradeoffs between the three, they are
significantly superior to RC6 and FAR superior to MARS from a hardware viewpoint.

A three sided fair coin to decide between Rijndael, Serpent, and Twofish would produce
an excellent AES winner.

Only a single winner (and possible backup) should be chosen.

Now for more detailed comments:

When considering hardware performance, one should not care about bandwidth (ECB
mode). No matter what algorithm is involved, ANY desirable ECB bandwidth can be
achieved by simply devoting suitable hardware resources to the problem at hand.

Instead, the three factors which should be considered are encryption latency, subkey
agility, and the ability to construct compact implementations.

Latency, the time to encrypt a single block, dominates performance in CFB encryption.
If a paper doesn't discuss latency, CFB encryption bandwidth numbers can be used to
classify the algorithms.

For the candidates, Rijndael has an excellent latency, followed closely by Serpent and
then Twofish. Even with doubling the number of rounds, Rijndael would still be in the
same class, just on the other end of the scale.

RC6 is significantly higher latency, as shown in all the hardware papers presented. This
is because multiplication and rotation are comparatively expensive in hardware when
compared to the fixed S-boxes of Rijndael and Serpent, and the logic to implement the
variable S-box in Twofish.

Finally, all AES hardware papers showed that MARS has an unacceptably high latency.
Even the best MARS implementation, by IBM, in a .18uM process, has worst case CFB
encryption bandwidth of <500 Mb/s. An FPGA implementation of Rijndael or Serpent
should easily reach worst case CFB bandwidth of > 250 Mb/s in a .25 uM process!
Using a $150 part (Virtex 300) available today.

55

Similarly, there appears to be a consensus that subkey agility (the ability to quickly
generate both encryption and decryption subkeys) is necessary for at least some
important applications (IPsec and other encrypted-packet routers).

Note that subkey agility also affects smartcard implementations, as an agile subkey
setup allows for subkey generation to occur concurrently with encryption without taking a
large amount of memory to compute the subkeys into.

Twofish obviously has a completely agile subkey generation scheme, since the subkeys
are generated independently.

Serpent, as it was pointed out by the creators, can have the subkey generation run in
reverse, by starting with the last two elements and running though a reverse pipeline.
Generating the last elements could be done directly, but this computation is probably too
complicated in hardware.

Instead, the last two elements could be generated once and then stored. This imposes
the subkey generation cost once, but thereafter it can be hidden from the application
time. It increases storage requirements by 256b per subkey, but does not increase the
bandwidth required, because the endpoints would be fetched when decryption is
desired, instead of the normal encryption key.

Rijndael has an identical property, although the storage increase is the size of the key
used, (128b, 192b, or 256b).

I don't believe the 3 pass trick (store the A and B states for the 2nd and 3rd pass through
the array) for RC6 actually works unless the L array has the same number of elements
as the S array.

MARS subkey generation is atrocious from a agility viewpoint. Also, the implementation
complexity is absurdly difficult.

Although serpent does have the highest initial requirements if performance is desired, it
was pointed out to me that it has the lowest cost if performance is NOT a concern, by
using one copy of each S-box, a selectable XOR tree, and 4 nibble-loadable shift
registers.

Overall, Rijndael, Serpent, and Twofish are all excellent candidates from a hardware
perspective. RC6 is a poor candidate, due to its intrinsic latency and lack of subkey
agility. MARS is simply atrocious, due to latency and subkey generation issues.

Other Issues: Number of winners.

The general cost of implementing multiple algorithms can best be described as the
square of the number of algorithms, due to additional design complexity, verification,
silicon costs, and the potential of a successful IP attack.

Furthermore, it does not increase the security of the system. If any of the winners is
broken, this would be a significant disaster. Instead, the better solution is "put all your

56

eggs in one bank vault and GUARD THAT VAULT". We should be confident in our
choice, confident to choose a single winner.

Finally, the "Space Probe" Scenario is facetious. We have a long history of flexible
software and field updates (Voyager had a bad bit in memory which was programmed
around, and the OS of the Mars Rover was updated on mars). With current high density,
radiation hard FPGAs, one can design hardware for such environments which is field
updatable if necessary.

A winner and a backup is acceptable, as the backup will undoubtedly only be
implemented if it is activated.

The panel session of the finalists brought up the recommendation of a 256b standard
key length, with 128 and 192b keys being in the spec but "use at your own peril".
Although this increases the cost of key storage and management, it does not affect
subkey cost and is an idea I would endorse as a potential implementer.

Also, the suggestion was made of having Rijndael's number of rounds increased.
Although this would hurt performance, it would still be acceptable in hardware.

Aside: This is a note for those who may be implementing the AES winner in hardware,
and an element to consider when evaluating the hardware reports on the candidates.
(Keywords: AES hardware implementation techniques)

When implementing a hardware design for one of the AES candidates, one should follow
this technique for implementing any candidate. This will maximize the bandwidth, give
nearly minimal latency, and the minimum area required to get to the "best"
area/performance point.

One should implement a single round (single super round for serpent) and pipeline it
internally to run at the desired cycle time. (Formally, this is a C-slow technique, also
called inner round pipelining).

This only adds a small amount of latency when compared to an unpipelined single round
(limited solely to partitioning effects and the setup and hold time of the flip-flops) a small
amount of area (the pipeline registers, which may be free depending on the
implementation technology), while greatly improving bandwidth. If CFB is essential and
the only concern, then simply remove the internal pipeline registers.

If greater bandwidth is needed, simply duplicate this unit. This gives a linear increase in
bandwidth, and the ability to match the desired bandwidth to the optimal silicon area.

NEVER produce an unrolled pipeline. It offers negligible performance benefits (the only
improvement would be a slightly lower latency for a fully unrolled but unpipelined
approach) and only a very small area benefit (a little less control logic and subkey
storage logic). Furthermore, you lose the ability to produce an exact match to the
system requirements.

Finally, for evaluation purposes, it offers an increase in performance which is essentially
an exact multiple of the increased area requirement, so it conveys no additional
information for the evaluation process.

57

Summary: Single winner. Rijndael, Serpent, Twofish good. RC6 bad. MARS horrible.

And hardware implementers: pipeline within a round if you want bandwidth!

--
Nicholas C. Weaver nweaver@cs.berkeley.edu

58

To: AESround2@nist.gov
Subject: Why I feel Twofish should be the AES
From: Mark Atwood <mra@pobox.com>
Date: 17 Apr 2000 18:31:46 -0700
Lines: 17
X-Mailer: Gnus v5.5/Emacs 20.3

I support TwoFish to be selected as the AES. It's flexablity in implementation, in
software, hardware, and in CHEAP hardware is key, I feel, to making the AES truely
ubiquious, in all communication applications.

We are about to enter an era of both exceptionally cheap lowpower wireless devices,
and wireless communications *demands* good encryption, and much much faster
"landline" bit pipes, which demands *fast* encryption.

I feel the Twofish fills those two niches very well, and while the other contenders may be
good at one or the other, they are not good at both, and at software based
implementations as well.

-- Mark Atwood
 Seattle, WA
 206-781-8048

59

From: Hironobu SUZUKI <hironobu@h2np.net>
To: AESRound2@nist.gov
Reply-To: hironobu@h2np.net
Subject: My comment for AES round 2
Date: Tue, 18 Apr 2000 10:56:47 +0900
Sender: hironobu@mail.h2np.net

In AES3, there were many discussions about "performance" of various algorithms on
various CPUs. Some AES developers emphasized good performance on Pentium(pro).
Some paper shows performance on specific CPU, sort of 64bit RISC. Aoki and Lipmaa
showed how to write fast code with MMX instruction set.

It is true that Serpent which is one of AES finalist is slow on today's 32bit CPU. RC6 and
MARS are fast on Pentium Pro. It seems that those algorithm developers target on
Penrium Pro.

Now, we must understand that those CPU are today's CPU, not for after days of AES is
selected.

Remember why MMX was appeared in CPU market. As far as I knew, what reason of
MMX was added to CPU was developed for accelerating multimedia applications and
game on desktop computer.

Pentium III has some extensions for streaming data like as jpeg, mp3, mpeg and so on.
Apple/Motorola developed G4 velocity engine a.k.a AltiVec technology for same reason.
AMD's "3D! NOW" also. Those CPU instruction set and CPU structure was added by
market requirement.

After days of AES is selected, each CPU companies will develop and add new
instruction for AES algorithm by market requirement, a matter of security. They must
say "AES ready!", "AES NOW!" , "AES Velocity!". Also AES algorithm will be integrated
into chipset like a Intel 810 chipset.

I'd like say that we DO NOT overemphasize about performance on today's CPU and
must focus on security for next century because AES must be selected for 21st century.

Thus, from my point of view, SERPENT is a reasonable algorithm for AES.

--hironobu
Hironobu SUZUKI
Independent Software Consultant
hironobu@h2np.net
URL http://h2np.net

60

Date: Tue, 18 Apr 2000 07:47:37 -0500
From: Frank <fhburkha@blue-bird.com>
Reply-To: fhburkha@blue-bird.com
Organization: Blue Bird Body Company
X-Mailer: Mozilla 3.01 (Win95; I)
To: AESRound2@nist.gov
CC: fhburkha@blue-bird.com
Subject: AES

I have been following the search for the new AES for several years, and feel it is time to
put in my two cents worth.

While I am not very knowledgeable in the area of cryptography, I do use it in several of
my programs. I must trust that all 5 candidates are cryptographically secure.

I am writing to you to express my concern about the implementation of AES. Whatever
algorithm you choose needs to be fairly fast on all platforms, in hardware and software.
To elevate either hardware or software over the other would unduly restrict the choices
available to developers. There are (and will continue to be) legitimate needs for both
implementations. In hardware, I am speaking not only about smart cards that can be
produced (profitably) in the 10 cent range, but about highly specialized plugin cards for
computers.

You must choose one and only one AES. To take the easy way out, and choose multiple
winners would cause severe fragmentation in the implementation. Interoperability would
become difficult or impossible. Lots of money and time would be spent trying to insure
that all the AES algorithms are implemented correctly by the developers. This is
something you can not waffle on.

I also believe the code for the complete optimal instillation of AES for all common
platforms should be patent and royalty free. I would like to see it distributed with a GNU
copyleft license, if at all possible.

--
Frank Burkhardt

The above comments are mine, and mine alone.
They may or may not be supported by the company I work for.

61

Date: Tue, 18 Apr 2000 06:08:59 -0600
From: Rob Neal <rob.neal@lmco.com>
Subject: AES round 2 finalist comments
To: AESround2@nist.gov
Reply-to: rob.neal@lmco.com
X-Mailer: Mozilla 4.7 [en] (WinNT; U)
X-Accept-Language: en

Hello,

I understand this is the e-mail address to send comments on the algorithms being
considered for selection as the AES.

I would like to recommend that the algorithm known as 'TWOFISH' be selected.

It would seem to present the best balance between performance and security, and be
the best suited for the intended use.

Thank you,

Rob Neal
rob.neal@lmco.com

62

Sender: Anne.Anderson@East.Sun.COM
Date: Tue, 18 Apr 2000 10:26:04 -0400
From: ANNE ANDERSON <ANNE.ANDERSON@Sun.COM>
Reply-To: aha@acm.org
Organization: Sun Microsystems Laboratories
X-Mailer: Mozilla 4.7 [en] (X11; U; SunOS 5.7 sun4u)
X-Accept-Language: en
To: AESround2@nist.gov
CC: aha@acm.org
Subject: Comment on AES Round 2

Speaking for myself as an implementor of protocols that use cryptography (PKIX,
IPSec), and not as an employee of Sun Microsystems:

Interoperability is very important to internet security. If two platforms need to
communicate over the internet, but have no cryptographic algorithm in common, they will
not be able to communicate securely. Many platforms (smart cards, small devices) do
not have room for more than one algorithm, and I expect such devices to be a larger part
of the market for security as time passes.

For these reasons, I highly recommend choosing ONE AES algorithm. It should be one
that does not have unacceptable performance on smart cards, in software, or in
hardware, but need not be the very fastest.

Anne Anderson
--
Anne H. Anderson Email: aha@acm.org
Sun Microsystems Laboratories
1 Network Drive,UBUR02-311 Tel: 781/442-0928
Burlington, MA 01803-0902 USA Fax: 781/442-1692

63

Date: Tue, 18 Apr 2000 11:19:54 -0400
From: Rob Gerlach <Zen@mail.rit.edu>
Subject: AES Comments...
To: AESround2@nist.gov
Cc: Bruce Schneier <schneier@counterpane.com>
Reply-to: Rob Gerlach <Zen@mail.rit.edu>
Organization: RIT/NTID
X-MIMEOLE: Produced By Microsoft MimeOLE V5.00.2615.200
X-Mailer: Microsoft Outlook Express 5.00.2615.200
X-MSMail-priority: High

Dear Sir/Madam,

I have a comment I'd like to share with you, in regards to the AES Development Effort.

I feel that Twofish, given its speed and currently unbreakable security status, would best
suit my needs as both an end-user and a consumer; at least when compared to the
other AES candidates. I sure hope you'll agree.

The capacity in which I am telling you this is as a 19-year old Information Technology
(IT) Major at Rochester Institute of Technology (RIT), a person interested in Data
Security & Encryption, and as a consumer who often purchases items online.

Please feel free to contact me with any comments or questions you may have.

Many thanks,

-Rob Gerlach :-)
http://www.rit.edu/~rmg4048/resume/
(Please note that the above page is somewhat outdated, and is undergoing a move.
There is only one "broken" link as far as I can tell. I apologize any inconvenience.)

64

Sender: patrick@green.wl.vg
Date: Tue, 18 Apr 2000 12:14:21 -0400
From: Patrick Gardella <patrick@whetstonelogic.com>
Organization: Whetstone Logic, Inc.
X-Mailer: Mozilla 4.7 [en] (X11; U; FreeBSD 5.0-CURRENT i386)
X-Accept-Language: en
To: AESround2@nist.gov
Subject: Comments

I have always felt that the biggest detriment to adequate security is the speed of the
implementation and the system that it takes to run it.

I would like to see that AES work on all systems from the cheapest smart card, to the
highest powered system.

Patrick

Patrick Gardella patrick@whetstonelogic.com
VP-Technology patrick@freebsd.org
Whetstone Logic, Inc. This space intentionally left blank.

65

Date: Wed, 19 Apr 2000 02:10:34 -0400
From: Kevin Bealer <kbealier@stny.lrun.com>
X-Mailer: Mozilla 4.5 [en] (Win98; I)
X-Accept-Language: en,zh,zh-CN,zh-TW,ca
To: AESround2@nist.gov
Subject: comment regarding AES (unofficial)

I would recommend TwoFish, admittedly influenced by having read Schneier's book, and
newsletter.

I would rate the following as the critical important factors in how choice of AES will affect
me (and those like me):

1. Fast internet usable software. This means hardware-feasable for high speed. By the
time the technology reaches users, it will have influenced PC hardware enough...
Hardware solutions will be available before a significant user base is there to "populate"
them.

2. Personal hardware - signatures, financial, and security applications. In a few years,
this will provide the security that signatures, credit card numbers supposedly provide
now. This may be the most sensitive to the choice made here. Personal financial and
identity security is the requirement that prevents most savvy users from stepping up their
reliance on technology.

3. High security will be extremely important to me, not just on personal paranoia, but
also because errors here will be extremely costly. We need to assume enormous
resources, fantasticly high stakes, (NASDAQ is already almost all tech stocks..) DES
was immune to media ignorance effects via semi-obscurity, but today the least "bad tech
news" can create lots of badly written but influential panic stories in the non-trade press.
Crypto/security will be the last technology issue the media/public ever "understands", but
they already fret over it.

4. Patriotic reasons. Although I am not a "conspiracy theorist", there is something
fundamentally American about these people: only in radically democratic societies is
this on the "fiction" shelf. In geek politics, Twofish makes better political sense - it's
author "looks" less conspiratorial.

Thanks for your time,
Kevin Bealer
<kbealier@stny.rr.com>

66

From: "Simson L. Garfinkel" <simsong@vineyard.net>
To: <AESround2@nist.gov>
Subject: Comments on Round 2 encryption candidates
Date: Tue, 18 Apr 2000 23:47:44 -0400
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 5.00.2615.200
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2615.200

To: NIST AES Round 2 Committee <AESround2@nist.gov>
Subject: Comments on Round 2 encryption candidates
From: Simson L. Garfinkel

To the Selection Committee,

My name is Simson Garfinkel. I am the author and co-author of nine books, most of
which are on computer security and/or system design. Most recently, I am the author of
the book "Database Nation" (O'Reilly, 2000). I am also notably the co-author of the
books "Practical UNIX and Internet Security" (O'Reilly, 1996) and "Web Security and
Commerce" (O'Reilly, 1997.)

Although I am not a cryptographer, I do use encryption on a regular basis in my work. I
also do a fair amount of consulting for software designers, telling them how they can use
encryption in their programs.

I am currently engaged as a consultant by a company that is attempting to build strong
encryption into a device that uses the Motorola MC68HC705JB4 microprocessor. This
microprocessor has just 176 bytes of RAM and 4672 bytes of ROM. Even though the
6805 architecture is more than 25 years old, it is still a strong force in the industry today.
The microprocessor is popular because it can be purchased for less than $2 in relatively
small quantities. The application that has been created for this microprocessor leaves
just 64 bytes of RAM available and roughly 1000 bytes of ROM.

I do not believe that our restrictions are unique. Indeed, there are many smart card
applications that could benefit from strong encryption. It is my experience that system
designers usually develop their systems without encryption and then seek to add it as an
afterthought. Therefore, it is likely that many other designers will find themselves in the
situation that I am now in --- trying to fit relatively large algorithms into a relatively tiny
space.

Based on Geoffrey Keating's paper, it would appear that the Rijndael algorithm is the
only AES candidate that will fit in our application. We urge you to strongly consider either
the Rijndael algorithm as it is or else a strengthened version of this algorithm.

Failing that, we would urge you to adopt a standard that supports multiple algorithms.

Thank you for your time.

Simson Garfinkel

67

X-EM-Version: 4, 0, 0, 0
X-EM-Registration: #31E3420614450303B930
X-Mailer: My Own Email v3.5
From: "Keyur Mithawala" <keyur@netexecutive.com>
To: AESround2@nist.gov
Subject: Suggestion...
Date: Wed, 19 Apr 2000 10:40:48 -0600

Hello,
 I am working on a Kerberos based security system for networks. As it is evident, we
all will be using AES standard for our future developments. I will like to explain my
viewpoint for chosing AES algo.

1>> Well, the most important part for an encryption algorithm is SECURITY. Its
hardware demands dont matter much. The hardware will catch up in one or two years,
but this standard will be there atleast for 5 years.

2>> SPEED for LOW AMOUNT DATA. Large level data encryption is useful only for
large corporations. Most users use encryption to encrypt small amounts of data like
passwords, etc. Smart cards also encrypt tiny amounts of data. As a kerberos
programmer, I use encryption to encrypt authentication data.

Thank you,
Keyur

Free email with personality! Over 200 domains!
http://www.MyOwnEmail.com

68

Date: Wed, 19 Apr 2000 17:20:59 +0100
From: "Jim Gopinathan" <jgopinathan@ascic.co.uk>
Organization: ATMEL Smart Card ICs
X-Mailer: Mozilla 4.7 [en] (WinNT; I)
X-Accept-Language: en
To: AESRound2@nist.gov
Subject: Re: AES and Smart Cards

In smartcard applications speed as well as ROM, RAM and EEPROM requirements are
important.

Table 8 in AES3 paper titled "Performance Evaluation of AES Finalists on High-End
Smart Card", provides a summary of the memory and processing requirements on
Toshiba's 8-bit T6N55 smartcard. The information provided is for algorithm
implementations not modified for protection against power analysis, timing attacks and
other similar forms of attack.

Modifying code on 8-bit smartcards for protection against these forms of attack will
significantly increase ROM, RAM and EEPROM requirements. When DES code on 8-bit
HC05 smartcard was modified to be resistant to both timing and DPA attacks, both the
code size and RAM requirement approximately doubled.

No doubt a similar increase in code size will occur when the AES candidates are
modified to be resistant against these forms of attacks on 8-bit smartcards.

The AES candidate eventually selected, when implemented in software on 8-bit
smartcards to be resistant against power analysis and other forms of attacks, must not
occupy a significant portion of the ROM and throughput must meet the current and future
requirements of smartcard applications.

Jim Gopinathan,
ATMEL Smart Card ICs,
East Kilbride,
Scotland.

69

X-Authentication-Warning: ns1.crl.go.jp: Host crlgw1 [133.243.18.250] claimed to be
crlgw1.crl.go.jp
Date: Thu, 20 Apr 2000 13:19:13 +0900 (JST)
From: Tom Holroyd <tomh@po.crl.go.jp>
X-Sender: tomh@holly.crl.go.jp
To: AESround2@nist.gov
Subject: comment from the public

Multiple algorithms. Aside from the political feuding that will be avoided by not picking a
single algorithm, multiple algorithms means that implementors will have to create a
mechanism whereby new algorithms can be swapped in, allowing for easy upgrades in
the future when all of the current AES candidates start showing their age. Mandate
flexibility.

IMO,

Dr. Tom Holroyd
"I am, as I said, inspired by the biological phenomena in which
chemical forces are used in repetitious fashion to produce all
kinds of weird effects (one of which is the author)."

-- Richard Feynman, _There's Plenty of Room at the Bottom_

70

Date: Thu, 20 Apr 2000 09:35:01 -0700 (PDT)
From: Ray Van De Walker <rgvandewalker@yahoo.com>
Subject: Embedded Systems Criteria
To: AESround2@nist.gov

I've designed embedded computer systems for 17 years.

My priority for AES would be:

1. Software efficiency. Processors are now cheap, and in most applications, AES will be
a software-only option. I think this is more important than security, as long as the
algorithms are not total push-overs.

2. Minimal conforming implementations will include at least two standard algorithms, and
all standard algorithms of any previous AES. Security concerns should be addressed,
but encryption is a communication technique. Old software often does not advance.

3. Conforming communication implementations should have a notification and
negotiation function, so that the most secure mutually available algorithm is selected.
The later implementation should notify the earlier of broken algorithms.

4. I strongly favor use of a GNU-style license. Derivative designs will thereby become
public, which aids the public good by reducing costs.

5. The license should explicitly permit reverse engineering and cryptanalysis of any
application, provided that successful attempts are published.

Ray Van De Walker
R.G. Van De Walker Inc.
9181 Crawford Circle
Huntington Beach, CA, USA, 92646

__
Do You Yahoo!?
Send online invitations with Yahoo! Invites.
http://invites.yahoo.com

71

From: dave-aes@bfnet.com
Sender: dave@bfnet.com
To: AESround2@nist.gov
Subject: Comment regarding the AES competition
Date: 20 Apr 2000 15:14:35 -0700
Lines: 7
User-Agent: Gnus/5.070099 (Pterodactyl Gnus v0.99) Emacs/20.4

I am a software designer specializing in custom network server systems. I have many
customers who require real-time encryption in software. I have thoroughly examined the
submissions to AES and believe that Twofish is the most suited to my applications due
to its great software performance. I think that Twofish gives the best security to
performance trade-off of the submissions, and has the most implementation flexibility.
So I support Twofish for AES.

72

Sender: gwyn@ridley.nist.gov
Date: Fri, 21 Apr 2000 10:08:39 -0400
From: "Douglas A. Gwyn" <gwyn@arl.mil>
Organization: U.S. Army Research Laboratory
X-Mailer: Mozilla 4.72 [en] (X11; U; SunOS 5.7 sun4u)
X-Accept-Language: en
To: AESround2@nist.gov
Subject: AES public comment
X-MIMETrack: Itemize by SMTP Server on mail/arl(Release 5.0.3 |March 21, 2000) at
04/21/2000
 10:10:51 AM,

Serialize by Router on mail/arl(Release 5.0.3 |March 21, 2000) at 04/21/2000
 10:11:57 AM,

Serialize complete at 04/21/2000 10:11:57 AM

My only comment at this stage is that the final standard should specify only *one* of the
algorithms, not multiple algorithms. One reason is that that was the original impression
some entrants had when agreeing to waive patent rights etc. Another reason is the
added expense and operational hassle of selecting and indicating a choice of algorithm.
There is no apparent security benefit to multiple algorithms; they are sufficiently similar
that any efficient method of cryptanalysis for one of them is likely to apply to another.

73

From: keb@smrn.com
X-Sender: keb@mail.smrn.com
X-Mailer: QUALCOMM Windows Eudora Version 4.3.1
Date: Sun, 23 Apr 2000 11:12:34 -0800
To: AESround2@nist.gov
Subject: AES candidates

Sirs:
I'm CTO of MyProof.com, a small e-commerce startup with products built upon

strong cryptography. I strongly support TwoFish for the final AES choice.
Sincerely,
Kenneth Broll

74

From: sidners@tsainc.com
To: AESround2@nist.gov
Subject: AES Round 2 public comments
X-Mailer: Lotus Notes Release 5.0.2b (Intl) 16 December 1999
Date: Mon, 24 Apr 2000 13:56:46 -0500
X-MIMETrack: Serialize by Router on lnm002/TSA(Release 5.0.2b (Intl)|16 December
1999) at
 24/04/2000 13:56:51,

Serialize complete at 24/04/2000 13:56:51

I am no cryptographer, but my company is a major software vendor in the international
banking community. We are the leading vendor of computer systems to process
electronic payments. It has been estimated that 40% of the credit and debit card
transactions in the world pass through our systems.

Cryptography is becoming more important in electronic payments - witness the success
of SSL in Internet communications. We see the next major thrust in payments to be
mobile phones, replacing both plastic and cash as the preferred payment mechanism,
first outside the US and then domestically. We expect this to happen over the next 3 to
5 years.

Therefore we are looking for a symmetric key algorithm that is
1) easily implemented in mobile phones
2) fast when encrypting 512 to 4096 byte messages
3) exportable
4) with increasing strength based on key size
5) standard - that is, we would like a single algorithm, to which the industry can build
optimized, provably secure implementations, that will interoperate globally as well as
DES and Triple-DES have.

Like I said, I am no cryptographer, so I am unable to recommend any of the five
submittals. However, Bruce Schneier indicated that you would appreciate comments as
to what criteria are important.

Thank you for your consideration,

Sid Sidner
Senior Engineer, Internet Division

ACI Worldwide, 330 South 108 Avenue, Omaha, NE 68154-2684
Mobile: 402-850-7092 (new!), Other work: 402-778-1851, Fax: 402-778-1840,

sidners@tsainc.com, www.aciworldwide.com
A TSA Company

"Rationality is the servant of intuition."

75

To: AESround2@nist.gov
dcc:
Subject: comment on AES candidates
Date: Tue, 25 Apr 2000 08:49:57 -0700
From: Dan Stromberg - OAC-DCS <strombrg@nis.acs.uci.edu>

So far, I think twofish should become the AES.

I personally am primarily concerned with speed of encryption in software, but an all-
around candidate is best I think.

76

Sender: bkelly@odo.edwards.af.mil
Date: Wed, 26 Apr 2000 11:10:34 -0700
From: Brent Kelly <bkelly@odo.edwards.af.mil>
X-Mailer: Mozilla 4.51C-SGI [en] (X11; I; IRIX 6.5 IP22)
X-Accept-Language: en
To: AESround2@nist.gov
Subject: AES Finalist Comments

Gentlemen:
I support Twofish for the AES, I believe it's combination of security and relative

ease of implementation in either hardwaror software make Twofish the optimum choice. I
do not think there should be multiple standards, as may have been suggested.

Thank You,
Brent
--
 Cedric Brent Kelly Computer Sciences Corp.
 805-277-7677 voice Ridley Mission Control
 805-277-5377 fax Edwards A.F.B., Ca. 93523
 Clear Skies... EMAIL: bkelly@odo.edwards.af.mil

77

Date: Thu, 27 Apr 2000 08:54:31 -0700 (PDT)
From: "Nicholas C. Weaver" <nweaver@cs.berkeley.edu>
To: AESround2@nist.gov
Subject: My last comments
Cc: nweaver@cs.berkeley.edu

This is my LAST feedback note (this time I really mean it).

RC6 keyschedule "hack". It was pointed out to me that the trick is to not just
store and fetch the states of A and B, but copies of the L array, for the second and third
pass through the S array. This does considerably increase the storage and fetching
required (112B instead of 32B for 256b keys), but is still better than fetching all 176B of
fully expanded subkeys. Thus, the savings exist but it is still "not that much".

One could also use this for a smartcard where key setup and encryption are
done concurrently to save memory, but once again, the savings are "not that much" for a
256b key.

Subkey agaility isn't just for hardware, but for smartcards which lack the
resources to store the fully expanded keys.

Also, this is a response of mine on the MARS key schedule, describing how if
one is willing to leave the key schedule potentially open to power and timing attacks, one
can do the string matching & correction of the multiplicative subkeys without requiring
too much resources or time. I use FPGA terms, but ASICs and custom logic also apply.

(Hopefully it will be a moot point, my bias against MARS is clear, but Just in
Case):

For hardware, although I didn't consider the stringmatching portion in detail, I
believe the cost should be fairly minor if performance is not an issue, and even if
performance is a moderate concern. Here is why:

It takes 1 lut to determine if four inputs are all 0 or all 1. (Output is 1 if they are all
the same, otherwise 0). If you AND the results together from several of these, this will
be a 1 if you have an overlap of one input between two luts. (EG, bits 0, 1, 2, 3 into
lut A. 3, 4, 5, 6 into lut B, etc, and then and the outputs all together). Thus, it would only
take 6 LUTs to evaluate a 12 bit run. If one wants fine information on when a run ends, it
takes 1 lut/bit, which isn't that large.

The slow approach would just be to load the key into a shift register and do a
shift & match approach. If faster performance is required, have a couple of additional
outputs which would show where the currently examined run ends, so you could skip 4
for each shift.

EG, if first 4 don't match, skip to the last unique one in that 4. If the first 4 do but
the next 3 don't, skip 4. If the first 7 do but the next one doesn't, skip 7. The additional
logic for this would be very small.

78

Since the MARS hardware requires a barrel rotator, if you are not doing subkey
generation and encryption in the same cycle, you could reuse the block to skip through
the keys.

This does leave the subkey generation potentially open to power or timing
attacks, however, as the work and time are vastly different based on the bit pattern in the
multiplicative keys.

However, the MARS subkey generation in general, even without the string
matching step, poses serious problems if fast subkey generation is desired in hardware,
due to the sequential dependancies.

--
Nicholas C. Weaver nweaver@cs.berkeley.edu
It is a tale, told by an idiot, full of sound and fury, .signifying nothing

79

Date: Sat, 29 Apr 2000 11:44:20 -0700
From: David Eppstein <eppstein@ics.uci.edu>
To: AESround2@nist.gov
Subject: Comment on selection of the algorithm for AES
X-Mailer: Mulberry/2.0.0 (MacOS)

Over the expected lifetime of AES, improvements in technology and algorithms will
surely make performance considerations less of a concern, and security considerations
more of a concern. Therefore, I strongly agree with AES's original charter "The security
provided by an algorithm is the most important factor in the evaluation."

To me this means that, since RC6, Rijndael, Serpent, and Twofish all appear to have
adequate and roughly similar performance, we should choose one that has been more
conservatively overengineered for security, rather than one that has trimmed the number
of rounds to the minimum believed-secure level. I.e., Serpent and Twofish should be
preferred over Rijndael and RC6. Also, to minimize the possibility that any AES cipher is
broken, we should have one and only one algorithm chosen. Taking into account the
requirements of simplicity and key agility, I would be mildly in favor of Serpent over
Twofish.
--
David Eppstein UC Irvine Dept. of Information & Computer Science
eppstein@ics.uci.edu http://www.ics.uci.edu/~eppstein/

80

From: "apli" <apli@btamail.net.cn>
To: <AESround2@nist.gov>
Subject: AES
Date: Tue, 2 May 2000 07:47:16 +0800
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 4.72.3110.5
X-MimeOLE: Produced By Microsoft MimeOLE V4.72.3110.3

Dear Sir:

I have known AES for only a few months since my major in mathematics. As we seen,
the five candidate algorithms selected for AES have made further endeavors on the
security and implements over DES. The progresses as they made, it seems that the
design ideas adopted in the most of these algorithms are yet mainly as one in DES. The
structure of DES have been intensive studied recent years,and is relatively easy to be
attacked. For this it can be seen in the late cryptanalyses papers on these algorithms.
So, the best in the finalist there should be some more new ideas and new structures. If
you intend to call for additional new algorithms in the future some time, I would like to
submit one. Besides, I have an opinion that as the knowledge and technology for
computer have been developing very rapidly the servive period drawn up for one
algorithm of AES should not be too long. The best maybe NIST should make up one
research group to keep research on the algorithms of AES.

 Sincerely yours
 Anping Li

81

X-Sender: mike@mail.pcfax.com
X-Mailer: Windows Eudora Pro Version 3.0 (32)
Date: Thu, 04 May 2000 08:58:08 +0100
To: AESround2@nist.gov
From: Mike Lake <mike.lake@wordcraft.co.uk>
Subject: AES comments

I hope that comments from overseas users are acceptable.

My company is involved with encryption usage in software, firmware and hardware and
for test purposes we have implemented a number of the candidate algorithms.

Our primary desire would be a standard that can be implemented across a wide range of
platforms rather than having multiple standards optimised for each platform. Obviously
we would like to see a high level of security, tight code and fast throughput.

For these reasons we are strongly in favour of the Twofish algorithm - primarily because
of its suitability in the widest range of applications

Best regards

Mike Lake
Chairman: Wordcraft International Limited
Web site: http://www.wordcraft.co.uk

Office: 01283-731400 (International: +44-1283-731400)
Mobile: 07973-432085 (International: +44-7973-432085)

82

From: Jeffrey Streifling <jss@icrossroads.com>
To: AESround2@nist.gov
Subject: Last minute notes
Date: 4 May 2000 18:20 -0600

I sent a message earlier suggesting that simplicity be a deciding factor in the AES
selection process; my choice for simplest candidate was RC6. After reading the AES
papers and comments, it looks like it will probably be discarded along with MARS due to
the inefficiency of the multiply in some environments. If there is a secondary AES pick, it
would make a good choice (due to the fact that its structure is very different from
everything else, and thus unlikely to break simultaneously with the primary pick), but the
idea of a secondary AES pick motivated by security reasons seems a bit costly
compared to the alternative of requiring compliant implementations to parameterize the
number of rounds.

Observe that virtually all modern cryptanalysis of non-linear ciphers breaks at some
number of rounds. When we do differential cryptanalysis, we are able to break up to n
rounds using a particular technique, whereupon our technique becomes more expensive
than brute-force, or otherwise runs out of theoretical gas. Similarly, more rounds
disguise linear bias, causing linear cryptanalysis to require more plaintext. Other kinds
of cryptanalysis run out of gas after a particular number of rounds; it is exceedingly rare
to find a break of a cipher that can simultaneously solve any number rounds of said
cipher in general with equal ease. The point to note is that security in all cases has
hinged on the number of rounds. Therefore, a simple way to future proof an AES
selection is to require implementations to parameterize the number of rounds. If
somebody breaks 100 rounds of AES, we give 'em 200. If somebody breaks 150
rounds, crank it to 300! It may be disconcerting and dog slow, but guaranteed to be
interoperable with smart-cards and other limited environments where in practice only
one AES candidate will be implemented regardless of how many are chosen. (If the
plan is to switch to a backup cipher, then we suddenly have the huge problem of
redeployiny hardware, smart-cards, etc, that only actually implemented the primary
candidate.) Furthermore, compliance would have already been tested; there would be
no need to wait through overhead of getting new products out when time may be of
the essence (supposing some future break of N rounds proves dangerously practical).
Cranking Rijndael or RC6 to thousands of rounds might possibly seem ugly compared to
having a backup, but it would be able to function for a few years while a new standard
was created. The advantanges would be (1) guaranteed instant switchover -- just poke
in the new desired number of rounds and (2) guaranteed ubiquitous availability -- it is
reusing the machinery already deployed. Furthermore, creating the replacement cipher
after the hypothetical lethal break would permit it to take advantage of the new
crypographic techniques suggested by the break, which would make it a better solution
than any backup we can propose now.

Therefore, implementations to be certified AES-compliant should be required to let users
change the number of rounds (along with the key -- configuration is already required),
although it clearly should default to the standard value. Note that this would recommend
choosing RC6, Rijndael, or Serpent since MARS and Twofish do not have
parameterized round count.

83

Then again, MARS and Twofish are already the two ciphers which suffer from excessive
complexity. My personal order of preferences for the AES2 candidates based on
complexity is
(1) RC6
(2) Rijndael
(3) Serpent
(4) Twofish
(5) MARS
(and therefore don't be surprised that I think that at least one of RC6 and Rijndael should
be in the standard).

Reflecting on the possibilities, then, of various single or multiple candidate choices, it
occurs to me that the reasons the NIST should choose a possible secondary candidate
for the AES is not security, which would better be accomplished with a larger number of
rounds (to allow instant, ubiquitous switch-over as described above), but rather
implementation flexibility to allow AES to exist in some form on more environments that
could be addressed by a single cipher and to permit a wider variety of
security/performance tradeoffs. The secondary cipher, if chosen, should be RC6
because it tends to excel in the environments that make the other ciphers flop (consider
the Java performance, for example). I can't see it becoming the primary AES due to its
difficulty working in low-end microcontrollers and the hardware overhead of the multiplier
(and possibly the poor performance once the number of rounds are increased as may be
indicated by recent cryptanalytic results). Or, if the flexibility argument merits no
consideration, mandate just one cipher for the advantage of maximum interoperability . .
.

What then, of the primary AES choice? The multiplier required by RC6 and MARS
makes them inefficient in a lot of environments; they can probably be dismissed out of
hand (particularly MARS, which was practically ignored in the hardware papers).
Further, the complexity required for the Twofish key schedule makes it a lousy cipher
key agility is required (such as encrypting ATM cells, or hash function constructions),
where the code must be kept simple and easy-to-understand (where the cipher is part of
a larger program that spans a security boundary and thus must be subjected to
extensive, expensive code audits) or where it is otherwise desired to produce a simple
implementation for academic or "one-shot" purposes. Should Twofish be chosen as the
sole AES standard, its key schedule would raise an annoying if surmountable barrier to
simple implementations: you either port existing code from somewhere else, or sit down
and do a fair amount of thinking . . .

As for Rijndael versus Serpent, my preference would be for Rijndael given my bias
toward simple ciphers, although the number of rounds probably needs to be increased a
little bit based on recent cryptanalytic results. I would not say the decision is obvious
from performance considerations, though. More rounds will slow Rijndael, and Dag Arne
Osvik as significantly sped up Serpent and provided directions for future speed-ups.
Furthermore, I think that the AES algorithm, once widely implemented, will be come a
sort of benchmark of computer speed (rather than the other way around), and that
chip manufacturers will focus on making Serpent run fast on their processors as a
marketing tool. For example, if Serpent is chosen as an AES candidate, Biham's bitslice
would probably be added to new processors, significantly speeding up Serpent with
respect to other candidates. Furthermore, Serpent scales marvelously to 64 bit
architectures (and in general, to n-bit architectures in bit-slice implementations), thereby

84

allowing it to improve with age (it is already second-fastest on current 64-bit
benchmarks, and seeing it come out fastest once chipmakers tune their architectures for
AES would not surprise me). It would be useful to increase the number of rounds of
other ciphers to approximately match the security of serpent, whereupon Serpent would
prove quite fast. Serpent has the potential to significantly contribute to the design of
modern microprocessors should it become the chosen standard.

If the NIST chooses a single cipher for the AES, it should probably be Rijndael (an
opinion that I think was mirrored in the conference response papers); my reason for
choosing it would be simplicity. If the NIST chooses two ciphers for AES, it should
choose Serpent as the primary and RC6 as the secondary. It should in any case
parameterize the chosen ciphers with respect to round counts so they can easily be
changed in the field; or, failing that, choose 32-round Serpent as the singular standard
for security reasons.

Actually, any combination of the simpler, round-parameterizable, would be useful -- even
providing Rijndael as a secondary for Serpent would admit some reasonably simple
implementations. Failing all else, it is sufficient to require that the ciphers chosen be
round-parameterizable to function as a life-boat cipher in the event of a break (before a
new cipher is created); all such ciphers are secure given sufficient rounds, and all AES2
ciphers that meet this criterion happen to be simple enough to admit complexity-cheap
implementations.

Jeffrey Streifling
<jss@icrossroads.com

85

X-Sender: ggr2@127.0.0.1
X-Mailer: QUALCOMM Windows Eudora Pro Version 4.2.2
Date: Sun, 07 May 2000 17:29:08 +1000
To: AESround2@nist.gov
From: Greg Rose <ggr@qualcomm.com>
Subject: Suitability of Rijndael without extra rounds
Cc: ggr@qualcomm.com

At the recent AES3 conference, there was much discussion about the number of rounds
of the candidates, particularly Rijndael. There seemed to be a general feeling that
Rijndael had too few rounds for an adequate safety margin.

I disagree with that sentiment. To put it more clearly, I think Rijndael's safety margin is
perfectly adequate against publicly known or hypothesised attacks. Of course it is
possible that some newly discovered or revealed attack might apply to any of the
candidates (and perhaps MARS has a slight advantage in this eventuality). If that
happens, I find it hard to believe that increasing the number of rounds from, say, 10 to
14 in the 128-bit case, will save Rijndael from a devastating new attack.

As support for my opinion, I offer the following three examples:

DES, in which the resistance to differential cryptanalysis is very close to its key-limited
strength, and yet is the most widely deployed and respected encryption algorithm ever.

SKIPJACK, where attacks such as Biham's go right to the edge (31 out of 32 rounds),
and yet it is another apparently successful algorithm.

FEAL, which was designed before differential cryptanalysis was publicly known, had to
have the number of rounds quadrupled before it approached a level of real security
against that "unknown" attack.

Personally, I'd like to see Rijndael, as submitted, adopted as the AES algorithm,
although there's very little between the candidates. I don't think committee-based
micromanagement, about the number of rounds, should be applied to any of the
candidate algorithms (in either direction).

sincerely,
Greg.

Greg Rose INTERNET: ggr@Qualcomm.com
Qualcomm Australia VOICE: +61-2-9181-4851 FAX: +61-2-9181-5470
Suite 410, Birkenhead Point, http://people.qualcomm.com/ggr/
Drummoyne NSW 2047 232B EC8F 44C6 C853 D68F E107 E6BF CD2F 1081 A37C

86

From: Gideon Yuval <gideony@MICROSOFT.com>
To: "'AESround2@nist.gov'" <AESround2@nist.gov>
Subject: protocol stuff
Date: Mon, 8 May 2000 16:18:42 -0700
X-Mailer: Internet Mail Service (5.5.2651.58)

Brian Snow suggested having AES and double-AES specifiable in protocol negotiations.
I would like to add one thing: have the bit-code for AES be 00000..., and the bit-code for
double-AES be 11111...; all codes in the middle should crash _before_ shipping any bits
out. The codes for AES and 2AES should work all the way (& thus be testable all the
way).

87

Delivered-To: fixup-AESround2@nist.gov@fixme
User-Agent: Microsoft Outlook Express Macintosh Edition - 5.01 (1630)
Date: Tue, 09 May 2000 21:50:17 -0500
Subject: Comments on Rijndael, Serpent, Twofish software implementation
From: "David C. Oshel" <dcoshel@mac.com>
To: <AESround2@nist.gov>

I have incorporated Rijndael, Serpent and Twofish in a small file encryption grinder for
Macintosh. This little utility includes a Test routine designed to exhibit simple
characteristics of the program's keystream – produced using the algorithms in question.

While not especially interesting as analysis, the routine does give the algorithms a
workout. The default, "Lite," routine -- basically a species of PrngXor -- completes the
Test routine in about 15 seconds on a Macintosh Powerbook G3 (Bronze). Rijndael
typically concludes the task in 21 seconds, compared to 23 seconds for Serpent, and 1
minute 19 seconds for Twofish.

IMHO, this clearly argues against Twofish in purely software implementations.

The code I used was Brian Gladman's as he had it posted near the end of Round 1, in
other words, the source which #includes "../std_defs.h", pretty nearly straight "out of the
box" and compiled with Metrowerks' C++ compiler.

I did not bother testing RC6 or Mars because there seemed little practical point in using
candidates with reservations about their intellectual property status.

--
David C. Oshel mailto:obsidian@kagi.com
Cedar Rapids, IA http://homepage.mac.com/dcoshel/Obsidian.html
``Tension, apprehension and dissension have begun!'' - Duffy Wyg&, in Alfred
Bester's _The Demolished Man_

88

From: DAEMEN.J@protonworld.com
To: AESround2@nist.gov
Subject: Royalty Statement of the Rijndael Team
Date: Wed, 10 May 2000 13:58:07 +0200
X-Mailer: Internet Mail Service (5.5.2650.21)

At the request of the NIST AES Team, here is an updated Royalty Statement for
Rijndael:

In the case that NIST decides to adopt as AES an algorithm that can be considered as a
variant of Rijndael, the Rijndael team will make no royalty claims whatsoever.

Joan Daemen & Vincent Rijmen

89

From: Carlisle Adams <carlisle.adams@entrust.com>
To: "'AESRound2@nist.gov'" <AESRound2@nist.gov>
Subject: For inclusion in the Round 2 public comments...
Date: Thu, 11 May 2000 12:10:46 -0400
X-Mailer: Internet Mail Service (5.5.2650.21)

Dear NIST AES Selection Committee,

>From reading NIST's Round 1 report, from looking at the public comments received so
far in Round 2, and especially from attending the 3rd AES Conference last month, one
thing in particular strikes me as relatively clear: Rijndael appears to have the fewest
drawbacks of the 5 finalists. There seem to be concerns associated with MARS, RC6,
Serpent, and Twofish. Whether the difficulties involve complexity, performance, overall
design, key agility, suitability for very constrained environments, suitability for tomorrow's
64-bit (or higher) processors, or some other reason, it seems that the choice of any of
these four finalists will end up causing some level of dismay for some group of
implementers. Rijndael, by contrast, appears to have very many "plusses" and very few
"minuses"; it seems to place at least in the middle-of-the-pack (and often places first or
second) on every criterion considered and on every platform proposed. Furthermore -
and to me this is significant - it is the algorithm most often chosen as a favorite by the
submitters when they are asked to pick a candidate other than their own.

As far as I can tell (from both public and private discussions at last month's FSE/AES
conferences), the only minor concern with respect to Rijndael is that its margin of
security may not be high enough for the 50 or 100 years that Ross Anderson proposes
will be the actual lifetime of the AES cipher. Consequently, I recommend adding 4-6
rounds to this algorithm for each of its three sizes (i.e., going from {10, 12, 14} rounds to
{14, 16, 18} or {16, 18, 20} rounds). This should allay any fears regarding security
margin without destroying its substantial performance characteristics on known or
anticipated platforms (that is, it might no longer be the fastest of the candidates, but
neither would it be among the slowest because of its current impressive speed).

In my reading and conversations thus far, I have yet to come across a significant number
of people that would seriously object to Rijndael being selected as the AES cipher,
especially with the addition of a small number of rounds. I have not found this same
level of general acceptance for any of the other candidates. Given that the people
following the AES process are evaluating the ciphers from a multitude of different (and
sometimes opposing) perspectives, with a wide variety of skill sets, backgrounds, and
biases, in my opinion this speaks volumes.

Carlisle Adams

90

X-Authentication-Warning: korkeik.ii.uib.no: larsr owned process doing -bs
Date: Thu, 11 May 2000 23:37:53 +0200 (MET DST)
From: Lars Ramkilde Knudsen <Lars.Knudsen@ii.uib.no>
To: Jim Foti <jfoti@nist.gov>
cc: AESround2@nist.gov
Subject: Re: AES - RE: a question at AES3

Jim,

Serpent is completely royalty-free. We let the patent lapse. Whether you decree 16
rounds or 64, we can't charge anyone a penny.

Neither can anybody else, as far as we can see. Since Serpent resuses the DES
technology (recall that the first version of Serpent even used the DES S-boxes) and
since IBM's patent on DES expired a long time ago, it's unlikely in the extreme that some
third party will come up with a subterranean patent.

This wasn't a deliberate design feature, just a side effect of our decision to stick to tried
and tested primitives.

So we believe that our algorithm is not just the most able to resist attacks involving
cryptanalysis, but also attacks involving IPR.

Best regards
Ross Anderson
Eli Biham
Lars Knudsen

91

From: "Simpson, Sam" <s.simpson@mia.co.uk>
To: aesround2@nist.gov
Subject: Round 2 AES Comments
X-Mailer: Internet Mail Service (5.5.2650.21)
Date: Fri, 12 May 2000 09:46:39 +0100

Dear Selection Committee,

I have watched the AES process with great interest for two years and have finally
decided to write to share my thoughts on the selection of the final algorithm(s). I am a
user & implementor of encryption and have assisted Dr B.Gladman in significantly
improving the original Serpent S-BOX performance [1].

At this late stage I believe that decisions can be made in three key areas, as the
previous round appears to have removed all clearly inappropriate ciphers. I believe any
of the 5 remaining ciphers will make an adequate AES cipher, but it is my belief that
NIST has the opportunity to select an excellent cipher from a choice of two or three.

Security

Security *must* be the primary concern when evaluating these ciphers. An "over-
engineered" cipher will merely be slow until hardware is sufficient for the application, but
an "under-engineered" cipher would render the cipher obsolete (or at a minimum be
subject to the same kind of mistrust as per DES). NIST has declared AES [2]: 'A crypto
algorithm for the 21st century' and security will certainly be the metric by which this
statement is evaluated.

1) AES should rely on tried and tested security constructs. Several ciphers employ
relatively new constructs (MARS & RC6 with data dependent rotations, Twofish &
Rijndael with MDS) which will not be adequately assessed in the two-year time frame.
The strength of RC6 seems to depend solely on DDR and RC6 should therefore be
dropped from further consideration.

2) Algorithms should be clean and easy to evaluate. Again, in the two-year timeframe it
is unlikely that the inner workings of a complex algorithm will be fully assessed (see for
example [3]). From a cryptanalytic perspective both MARS & Twofish are significantly
more complex than the other three algorithms and this should count substantially against
the algorithms.

3) Number of rounds should be over-engineered (as per [4]). RC6 appears to be
significantly under-engineered whilst MARS & Rijndael are slightly under-engineered.
Twofish is over engineered, but Serpent is by far the most over-engineered design.

4) The successful algorithm should not be prohibitively expensive to secure against
"operational" attacks on smartcards.

5) The argument that the heterogeneous structure of MARS adds some security is
plausible, but the benefit seems relatively small compared to 2) above.

92

Platform Applicability

Another important concern when selecting an algorithm is whether it runs on all
necessary platforms. Clearly, an ideal situation is the selection of an AES cipher that is
fully compatible across the full range of potential platforms:

1) My understanding is that MARS & RC6 cannot be implemented on very low-end smart
cards [5]. I assert that neither MARS nor RC6 offer anything particularly special over the
other 3 candidates (RC6 has a very clean design and MARS has the benefit of
heterogeneous structure, but I don't think these benefits are compelling) and should
therefore not be considered for AES.

2) The remaining three ciphers appear to be applicable to all platforms. Rijndael appears
to have the most uniform speed across all hardware and software platforms (discussed
next).

Performance

I believe performance should be used as a metre after the two previous criteria have
been suitably satisfied - without either security or pervasiveness the standard will not be
widely accepted and deployed.

1) Need to consider the whole range of applicable software and hardware
implementations, not just results that suit specific ciphers. Rijndael performs very well
across all platforms; Twofish works well across all platforms apart from Java [6]. It
should also be noted that Twofish is very slow in software when only encrypting one or
two blocks due to the large key-setup overhead.

2) MARS & RC6 require specific support for variable rotations & mod 2^32 multiply and
therefore performance is severely impeded on platforms not providing these instructions
(not only smartcards but also current platforms such as Sun UltraSPARC [7] and
forthcoming platforms such as Intel's IA64 [8]).

3) Does the speed of any of the 5 candidate ciphers prevent it from reasonably being
used across platforms? A Pentium Pro 200Mhz "reference platform" can run the slowest
candidate at 34Mbits/s (approximately the same as DES [1]), whilst a Pentium II running
at 200Mhz obtains 45Mbits/s.

4) Arguably, hardware throughput is most important (for highspeed systems such as
IPSEC and ATM for example). Smartcard operations will usually be low bandwidth (e.g.
challenge response / passphrase encryption and so on) and will therefore not be unduly
affected by a slow cipher.

5) Scope for speed optimisation. Most of the ciphers submitted appear to be near
optimal on the NIST test platform, but one cipher Serpent has shown significant and
continuing improvement due to S-Box optimisation [1], [9]. It is likely that Serpents'
performance could be similarly improved by:

93

 a) Producing more S-Box representations with fewer terms. This would probably
improve the performance across most if not all platforms.

 b) Rearranging S-Box terms to better exploit both processor level parallelism and
"streaming" parallelism (e.g. MMX, SSE, 3Dnow, Altivec and other SIMD units) - see [1]
for example.

6) We can't predict how CPU architectures will look in the future, but the current trend is
the support for multiple pipelines and streaming (e.g. SIMD) instruction sets (see for
example, Pentium III, AMD Athlon and PowerPC Altivec). These types of architectures
would appear to benefit Twofish, Rijndael & Serpent more than RC6 and MARS [8].

7) The MARS and Twofish designers have implemented cipher components that are
available at little or no cost on the specified test platform but may be expensive on other
platforms.

8) Algorithms won't always be implemented in hand optimised assembly code - high-
level language speed is also very important. I note [10] that Serpent has the best high-
level language to assembly ratio.

AES was always going to be a trade-off between security and speed. I believe NIST
correctly laid down the criteria in [11]: "...with a strength equal to or better than that of
Triple DES and significantly improved efficiency". The Twofish teams' comments also
seemed prudent [12]: "While it is impossible to optimize a cipher design for resisting
attacks that are unknown, conservative design and over-engineering can instil some
confidence". We need to recall that even the slowest performing R2 AES candidate,
Serpent, is approximately three times faster than Triple-DES and (is widely believed to
be...) significantly stronger than Triple-DES and the other AES candidate ciphers.

The 5 remaining teams whom submitted AES candidates (predictably...) continue to
assert their own algorithms' security benefits and, whilst they are unable to arrive at a
modus vivendi, they do all appear to agree that Serpent is the most secure candidate,
but then move on to knock it for speed. I suggest, therefore that if NIST is now tied to
picking one of the unamended algorithms then Serpent *has* to be the algorithm of
choice. If NIST is allowing cipher modifications at this point then Rijndael + 3r is
also a strong consideration.

Finally, I must applaud NIST for their openness in selecting AES - this will no doubt
ensure that the successful algorithm will not be subjected to the same mistrust as DES.

Regards,

Sam Simpson B.Sc. (Hons.)
IT Operations Manager
MIA Ltd (UK)

Phone : +44 (0)1438 735478
Fax : +44 (0)1438 726069
e-mail : s.simpson@mia.co.uk

94

References:

[1] B.Gladman, "Serpent", available at
http://www.btinternet.com/~brian.gladman/cryptography_technology/serpent/ind
ex.html

[2] M.E.Smid, "AES - A Crypto Algorithm for the Twentyfirst century", FSE
Workshop, 1998.

[3] M.J.B.Robshaw, Y.L.Yin, "Potential Flaws in the Conjectured Resistance
of MARS to Linear Cryptanalysis", 2000.

[4] E.Biham, "A Note on Comparing the AES Candidates", 1999.

[5] B.Schneier, D.Whiting, "A Performance Comparison of the Five AES
Finalists", 2000.

[6] J.Dray, "NIST performance Analysis of the final round JAVA AES
candidates", 2000.

[7] L.E.Bassham, "Efficiency Testing of ANSI C Implementations of Round 2
Candidate Algorithms for the Advanced Encryption Standard", 2000.

[8] J.Worley, B.Worley, T.Christian, C.Worley, "AES Finalists on PA-RISC and
IA-64: Implementations & Performance".

[9] D.A.Osvik, "Speeding up Serpent", 2000.

[10] B.Gladman, Personal communication, 2000.

[11] "ANNOUNCING REQUEST FOR CANDIDATE ALGORITHM NOMINATIONS FOR
THE
ADVANCED ENCRYPTION STANDARD (AES)", Federal Register, Friday, September
12,
1997.

[12] B.Schneier, J.Kelsey, D.Whiting, D.Wagner, C.Hall, N.Ferguson,
"Twofish: A 128-Bit Block Cipher", 1998.

95

Date: Fri, 12 May 2000 15:46:33 +0530 (IST)
From: "R.Venkatesh" <venky@cse.iitb.ernet.in>
To: AESround2@nist.gov
Subject: AES Comment.

Hello:

I am R.Venkatesh and I research on cryptographic techniques with Tata
Infotech Ltd, India. I attended the AES Round 3 Conference held in New
York City. In my position as Senior Research Associate with the said
Company, I enclose herewith my comments on the Advanced Encryption
Standard.

Thank you.

With warm regards,
for Tata Infotech Ltd.,

(R.VENKATESH)

Script follows ==>>
===

Comments on the Advanced Encryption Standard

Author : R.Venkatesh
Date : May 09,2000

Standardization of the cipherstream

To obtain a cipherstream from a given plaintext stream, the following steps are carried
out.
- Divide the plaintext stream into a number of fixed-size blocks. Each block forms the
basic unit of encryption. In case the last block is not filled completely, perform
appropriate padding at the end of the plaintext stream to ensure that.
- Encrypt each fixed-size block using the encryption core.
- Concatenate the encrypted block to the previously encrypted block to form the
cipherstream.

Suppose the cipherstream alone is received by a decryptor. Then the decryptor will not
be in a position to determine the parameters necessary for successful decryption.
Specifically, some of the additional information needed by the decryptor may be:
- The algorithm identifier that specifies which algorithm was used in encryption
- The block length used in encryption (this could be fixed in certain ciphers such as RC-6
or user-defined in others such as Rijndael).
- The number of rounds (this could be fixed in certain ciphers such as Serpent or user-
defined in others such as RC-6).

96

- The size of the underlying plaintext. This is necessary to find out the amount of padding
done at the end of the plaintext before encryption; this padded string can be discarded
accordingly after decryption.
- The initialization vector, incase other modes of encryption are used (such as Cipher
Block Chain, Cipher Feedback, Output Feedback).

This information is therefore common to the encryption and decryption processes and
could be typically be stored by an encryption process in a descriptor. This descriptor will
be made available to the decryptor in addition to the cipherstream.

It is suggested that a standard be evolved in storing and possibly encoding such
descriptor content. As a consequence, interoperability of different implementations of the
same cipher is ensured. RSA Laboratories has already taken a step in ensuring this at
the level of the cipherblock and the public and private keys by enforcing the Public Key
Cryptography Standard (PKCS). RSA has also specified encodings by relating the
ASN.1 object members for the cipherblock and the keys against their corresponding
PKCS formats. Even in public key cryptography, no such standard has been enforced on
the ElGamal public-key cryptosystem. And the standardization of the Elliptic Curve
Cryptosystem is under way via the PKCS #13.

This standard should be as universal as possible. Then users/developers need not have
to write specific interface functions to fill data members in the objects of other application
standards such as S/MIME, etc.

This evolution need not be done during the decision-making process of the AES
algorithm(s); that process only deals with the encryption core and the basic unit of
information to be encrypted. However as mention was made during the introductory
session, additional modes of encryption would be taken up for the AES algorithm(s).
This could mean one or both of the following:
- New modes similar to the chaining and feedback modes.
- The new standardization scheme suggested above.
(This last suggestion has evolved due to the advice of Dr.Brian Gladman who
specifically mentioned that taking up standardization issues during decision-making of
the AES core(s) could result in a lot of confusion. Instead this should be put forward as
another mode while deciding the AES encryption modes later. Moreover although the
encryption core may be very strong, more often it is an implementation of it that could
pose security loopholes. Consequently the standard has to be designed and security-
audited very carefully before it is put forward).

(Dr.Bruce Schneier has mentioned the suggestion on standardization as an excellent
one when put forward during the concluding stages of the AES Round 3 Conference).

97

Date: Fri, 12 May 2000 13:33:51 +0100 (WEST)
From: Håvard Raddum <haavardr@ii.uib.no>
Reply-To: Håvard Raddum <haavardr@ii.uib.no>
Subject: Something to keep in mind when selecting the AES algorithm
To: AESRound2@nist.gov
X-Mailer: dtmail 1.3.0 @(#)CDE Version 1.4_32 SunOS 5.8 sun4u sparc
X-MIME-Autoconverted: from QUOTED-PRINTABLE to 8bit by email.nist.gov id
HAA02846

In NIST's call for candidates it is pointed out that security will be more important than
performance when judging the candidates. I would like to stress the point that once the
AES algorithm is selected, its security will start getting weaker, and its performance will
start getting better. We already saw several examples of this at AES3, with new and
improved attacks on some candidates and how to speed up the slower candidates. In
other words, the AES standard should be the one with the largest safety margin as long
as it's useable in practice. In my opinion Serpent is the safest AES candidate. Serpent
is also faster than 3DES (NIST's benchmark), and should therefore be selected as the
AES standard.

Håvard Raddum

98

To: AESRound2@nist.gov
Subject: Why we chose Rijndael
Date: Fri, 12 May 2000 14:00:05 +0200
From: Simon Wigzell <simon@orcsoftware.com>
Reply-To: simon@orcsoftware.com
X-Mailer: by Apple MailViewer (2.106)

A short note from one developer concerning why our company chose Rijndael when we
needed encryption

Our program suite, a rather complex one with a server/client environment, uses
encryption for all communication. What we needed was something which was as speedy
as possible for encrypting small chunks of data (typically a couple of hundred bytes),
with no state whatsoever. There is a lot of connections going on; a typical server
recieves maybe a thousand of these packages every minute. This implied that the
encryption had to be really fast to initialize (setting up keys, since we don't have a state
leading to every package having it's own key as far as the server is concerned) and also
being more secure than DES since the financial institutes using our product are very
concerned about security. As the situation is right now the only candidate that is good
enough for us is Rijndael. It is just fast enough and using little enough memory to be
possible for our use (though we don't have much margin).
Some of the speakers at the AES conference said we should disregard the speed issue
(or at the least not concern ourselves too much with it) since in a few years all
computers will be that much speedier, but the problem is that we need something that is
good today, not tomorrow.

For our purposes Rijndael was a given, but that might not be true for others. Irregardless
of whether NIST chooses Rijndael for AES we will continue using it since it is, without
doubt, our best option.

Yours Sincerely,

Simon Wigzell

Simon Wigzell
Cryptologist
Orc Software
http://www.orcsoftware.com

99

Delivered-To: fixup-AESround2@nist.gov@fixme
User-Agent: Microsoft Outlook Express Macintosh Edition - 5.01 (1630)
Date: Fri, 12 May 2000 16:41:20 -0500
Subject: Re: Comments on Rijndael, Serpent, Twofish software implementation
From: "David C. Oshel" <dcoshel@mac.com>
To: <AESround2@nist.gov>

This is a followup on my earlier comment. What I perceived as a problem with Twofish
appears to be a mere documentation issue. Twofish does not like frequent key changes
(in common with Blowfish), at least in my naïve implementation. When I revised my
code following hints from D. Whiting, the performance discrepancies vis-a-vis Rijndael
and Serpent essentially disappeared.

Thanks for your patience,
Dave Oshel

From: David C. Oshel <dcoshel@mac.com>
Date: Tue, 09 May 2000 21:50:17 -0500
To: <AESround2@nist.gov>
Subject: Comments on Rijndael, Serpent, Twofish software implementation

I have incorporated Rijndael, Serpent and Twofish in a small file encryption grinder for
Macintosh. This little utility includes a Test routine designed to exhibit simple
characteristics of the program's keystream – produced using the algorithms in question.

While not especially interesting as analysis, the routine does give the algorithms a
workout. The default, "Lite," routine -- basically a species of PrngXor -- completes the
Test routine in about 15 seconds on a Macintosh Powerbook G3 (Bronze). Rijndael
typically concludes the task in 21 seconds, compared to 23 seconds for Serpent, and 1
minute 19 seconds for Twofish.

IMHO, this clearly argues against Twofish in purely software implementations.

The code I used was Brian Gladman's as he had it posted near the end of Round 1, in
other words, the source which #includes "../std_defs.h", pretty nearly straight "out of the
box" and compiled with Metrowerks' C++ compiler.

I did not bother testing RC6 or Mars because there seemed little practical point in using
candidates with reservations about their intellectual property status.
--
David C. Oshel mailto:obsidian@kagi.com
Cedar Rapids, IA http://homepage.mac.com/dcoshel/Obsidian.html
``Tension, apprehension and dissension have begun!'' - Duffy Wyg&, in Alfred
Bester's _The Demolished Man_

100

From: "Paulo S. L. M. Barreto" <paulo.barreto@terra.com.br>
To: <AESround2@nist.gov>
Subject: Are the existing AES comparisons fair?
Date: Sun, 14 May 2000 10:01:44 -0300
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 5.00.2615.200
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2615.200

Are the existing AES comparisons fair?

We argue on the contrary.

1. Some criteria presented by the finalist submitters are obviously subjective, and hence
hardly relevant.

For instance, comparing the relative cipher complexities on basis of lines of code, as the
MARS submitters propose, is subjected to the characteristics of the notation or
programming language in use. Indeed, a simple-looking line containing a 32-bit integer
multiplication easily becomes a bunch of hacking on platforms that lack multiplication
instructions.

Another example of subjective criterion is the "difficulty to analyze the cipher". The
MARS team states, for instance, that the round function of Rijndael is difficult to analyze.
This assertion is totally irrelevant, as it only reveals that some cryptanalysts could not
find any way to attack the cipher (while others were able to find new results, as is the
case for the Twofish team). In fact, should any of the AES finalists be considered "easy"
to analyze, it would probably be broken by now.

2. Benchmarks were abused in cipher comparisons.

It's surprising to find that some submitters still claim that their proposal is the fastest on
this or that platform, even though the evidence in contrary from all benchmarks
available. Most times, such claims do only hold on a very specific platform and for a
very specific implementation.

This is the case, for instance, for the MARS team claim that MARS is the fastest cipher
when implemented in Java. However, the source of this information is not mentioned.
Which implementation was used for the other ciphers? On which underlying hardware
were the measurements performed for each cipher? (the bytecode may be portable, but
it will certainly execute differently on a Java ring and on a Pentium III).

A curious example is the comparison presented by the Twofish team. Not surprisingly,
Twofish is argued to be faster than the other finalists; however, an implementation
tailored for a particular key (hardwired into the self-modifying code) is quite unusual to
say the least, certainly impractical, and absolutely insecure, as now the security resides
in the code itself. Perhaps this should be considered a variant of Twofish over a
keyspace of cardinality one, not Twofish itself.

101

3. Some arguments put forward against candidate ciphers lack any reasonable
foundation.

This is the case of the MARS team statement that Rijndael's has "a key schedule that
makes it easier to mount power attacks", while no such attack is presented. On the
other hand, this very issue is analyzed in detail elsewhere, and no such weakness is
reported.

Also, the same team makes assertions on security margins without clearly defining the
criteria they used to assess these margins. This contrasts, for instance, with the
procedure adopted by the Twofish team, whose criteria are not only precisely stated, but
also quite reasonable.

4. Sometimes, truncated or out of context statements are advanced.

This is quite misleading. For instace, the RC6 team agrees that analyses on reduced-
round variants are flawed - after quoting a related key attack on reduced-round Rijndael,
and omitting the very fact that this weakness is absent from the full cipher.

5. Other issues.

An argument advanced by the RC6 team as a response to the criticism that RC6 is not
suitable for implementation on cheap smart cards is that such processors will be
obsolete on the long term, so that only more powerful processors should be considered
when comparing the AES candidates. Hopely this would put RC6 on an advantageous
position. However, existing evidence suggests the contrary: RC6 has the worst
performance on the IA64 platform, and is equally bad on the PA-RISC.

The strategy adopted by NIST -- namely, taking *all* existing analyses into account -- is
likely to be the only viable way of correcting these problems, and compare the finalists
with regard to their intrinsic (as opposed to their advertised) merits.

Best regards,

Paulo S. L. M. Barreto.

102

From: "Paulo S. L. M. Barreto" <paulo.barreto@terra.com.br>
To: <AESround2@nist.gov>
Subject: On the multiplicity of AES algorithms
Date: Sun, 14 May 2000 10:23:25 -0300
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 5.00.2615.200
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2615.200

On the multiplicity of AES algorithms.

It hardly makes any sense to speak of a "standard" if several highly dissimilar algorithms
are chosen. It's mere illusion to expect that industry might afford the costly effort of
implementing a second algorithm just in case something happens to the primary cipher.
If the primary cipher is considered effectively strong by all accumulated evidence, there's
no need for a backup cipher. If it's *not* considered strong enough, the psychological
effect is devastating (who can expect any level of confidence in such an algorithm?).
Furthermore, should the primary algorithm be broken there would again be just one AES
cipher, unless three or more algorithm are chosen, making full AES compliance even
more expensive (if viable at all). In practice, industrial applications are most likely to
implement only one of the AES ciphers (interoperability issues dictate that this be the
primary one), making the existence of alternative ciphers a theoretical fact irrelevant to
ensure protection in the realm of those applications.

The suggestion to define the backup as the *same* algorithm with a larger number of
rounds is a far superior idea. It's quickly, easily and cheaply achievable; in fact, it closely
relates to the present industrial solution to the obsolescence of DES, namely, using 3-
DES instead (with the advantage of doubling rather than tripling the processing time).
As a side note, it's interesting that many people recommended using Serpent as
secondary cipher because of its allegedly higher security level compared to the other
AES finalists. However, this level derives precisely from its large number of rounds: 16-
round Serpent is as secure as any other finalist. This provides clear evidence that a
backup cipher consisting of the *same* algorithm with *twice* as many rounds would be
felt as a good choice.

For the sake of comparison, the recent DSS revision is based on a totally different
situation. First, RSA is too widely spread to be ignored; it's a de facto worldwide
standard; including it in the revised document is mere acceptance of this. Second,
ECDSA has clear advantages over conventional DSA; ideally, it should be a full
replacement. But (this is the third point) this is obviously impossible to be achieved
except in the very long term, so DSA should be preserved in the standard. Finally, there
are not many choices for public key algorithms (as opposed to the proliferation of
symmetrical ones), which makes the two standardization processes entirely different.

In conclusion, NIST should select a *single* AES algorithm. If a "backup" cipher is
needed, just double the default number of rounds.

On this light, I would like to manifest my opinion that Rijndael seems to be the only
cipher that performs consistently well on all platforms for which implementations exist
(hardware, smart cards, 32- and 64-bit processors, JVM). Needless to say, its estimated

103

security seems to at least match that of any other finalist, and it's completely in the public
domain.

Best regards,

Paulo S. L. M. Barreto.

104

Posted-Date: Sun, 14 May 2000 10:34:56 -0500 (CDT)
X-Sender: schneier@mail.visi.,com
X-Mailer: QUALCOMM Windows Eudora Pro Version 4.2.0.58
Date: Sun, 14 May 2000 10:33:32 -0500
To: AESround2@nist.gov
From: Bruce Schneier <schneier@counterpane.com>
Subject: AES Comment: The Hitachi patent

Hitachi has two U.S. patents, numbers 4,982,429 and 5,103,479, each of which is
purported to cover "any" encryption system using rotations. These patents were filed in
1988. All of the five AES candidates use some kind of rotation, including Rijndael's
ShiftRow operation. However, for what it's worth, it should be noted that Twofish can be
implemented as a "straight Feistel cipher plus a final permutation, with rotations applied
only within the round function, not in the Feistel XOR path.

The authors of Twofish were unaware of these patents until recently, but the notion that
such a broad claim could be valid seems quite ludicrous. he following well-known pieces
of prior art would seem to at least dramatically limit the scope (if not completely
invalidate) any such claims.

 1) FEAL (1987) uses a rotation in its round function.

 2) Madryga (1984) uses a variable rotation in its round function.

 3) DES (1977) uses a rotation in each round of its key schedule.

 4) DES (1977) uses a bit permutation (of which rotations are a special case) in every
round.

 5) GOST (1989) applies a bit permutation (that is a rotation) in each round after
performing its S-box lookup

 6) The very words "rotor" and encryption have been linked for a long time (e.g., the
Caesar cipher, and Enigma)

The concept of rotation in encryption was clearly neither novel nor unobvious at time
these patents were filed. The fact is that EVERY microprocessor opcode has been
considered for use in encryption, with rotation being just one example.

This particular example is a counter to the "IP attack" argument espoused by some as a
reason to select multiple AES algorithms instead of a single one. It is most likely that IP
attacks, if any, will be based on very broad and ambiguous claims (like those of Hitachi)
that the patent holder attempts to apply to all encryption systems.

Niels Ferguson
Bruce Schneier
David Wagner
Doug Whiting
**

105

Bruce Schneier, CTO, Counterpane Internet Security, Inc. Ph: 408-556-2401
3031 Tisch Way, 100 Plaza East, San Jose, CA 95128 Fax: 408-556-0889
 Free Internet security newsletter. See: http://www.counterpane.com

106

From: "Brian Wong" <makemoneyfast2@netzero.com>
To: <AESround2@nist.gov>
Subject: NIST AES Round 2 Comment
Date: Sun, 14 May 2000 16:31:10 -0400
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook IMO, Build 9.0.2416 (9.0.2910.0)
Importance: Normal
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2314.1300

Comment on NIST AES Process:

While I agree almost entirely with Bruce Schneier's comment regarding Hitachi's
asserted patent coverage of the AES candidates, I would like to comment on one
specific statment made in that document, that being:

>All of the five AES candidates use some kind of
>rotation, including Rijndael's ShiftRow operation.

Rijndael's ShiftRow operation is more accurately described as a byte-wise permutation
on the internal state of the algorithm rather than a rotation or "barrel shift." In most
computer architecture contexts, the term rotation is usually used to denote an operation
working on the individual bits of a machine word or smaller component thereof. No such
operation appears in the specification of the Rijndael algorithm.

Brian Wong

NetZero - Defenders of the Free World
Click here for FREE Internet Access and Email
http://www.netzero.net/download/index.html

107

From: "Tom Phinney" <tom.phinney@attglobal.net>
To: <AESround2@nist.gov>
Subject: Use of AES in Industrial Field Communications
Date: Sun, 14 May 2000 13:45:46 -0700
Organization:
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 5.00.2314.1300
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2314.1300

Background
==========
I am the current U.S. Technical Advisor for IEC/SC 65C, whose scope is Industrial
Communications. I have been involved in the standardization of industrial
communications since 1980, in IEEE 802 and in IEC/SC 65C, both as an editor and as a
significant contributor. I am a mathematician by training, have considerable experience
in design of software, hardware and low-power digital ICs, and have been peripherally
involved in the cypherpunk community.

My comments are with respect to AES use in the context of industrial automation and
process control. Industrial networking in the discrete manufacturing, batch and
continuous process industries is characterized by large numbers of sensors and
actuators (know as "field devices") connected through a hierarchy of concentrators
(bridges, switches and intermediary controllers) to centralized control systems
supervised by human operators.

The number of sensors and actuators in a large system frequently exceeds 10^4, and
sometimes 10^5 devices. Many of these devices are conceptually very simple, such as
limit switches, relays and temperature transmitters. Networking considerations include
multi-device failure modes and cost of connection; in many cases this is complicated by
a potentially hazardous (i.e., explosive) environment which imposes absolute limits on
available power and stored charge.

In the most hazardous environment, which is the market-required design-point for most
process control equipment, the available device power is on the order of 200 - 300 mW
during periods of network transmission, and 30 - 100 mW during the majority of the time
when a networked device is not transmitting. This power budget includes that required
for the sensor or, less frequently, the actuator as well as any connected microcomputer,
memory, communications circuitry, etc. Typical microcomputers in today's devices are
8-bit and 16-bit CPUs with some EEPROM, such as various models of the 6805 and
8051 and related and derivative 16-bit families.

Before the advent of digital networking in this environment, most field devices used
pneumatic or near-DC analog point-to-point communications, with the device
interconnections on physically-secured premises (e.g. a fenced access-controlled oil
refinery). The advent of networked digital communications has led to higher bit-rate
transmissions, either wired or now wireless, where eavesdropping from "outside the
fence" is feasible. Indeed, one European refiner has reported discovering that
arbitrageurs were eavesdropping on the signaled levels of its petroleum storage tanks
and were playing the local spot market against the company.

108

Implications for AES
================
The following comments are relative to current wired industrial field device networks and
their likely extension to wireless regimes.

Industrial field devices use combinations of point-to-point client-server and point-to-
multipoint publisher-subscriber connections, as well as point-to-point (unicast) and point-
to-multipoint (multicast) multi-source to multi-sink connectionless communications. Most
such messages are relatively short, consisting of approximately 10 – 40 bytes. In a
wired environment, critical messaging should use source authentication and message
integrity checking; in a wireless environment both authentication and MACs are a
requirement.

Whether wired or wireless, business-critical information such as inventory levels and
critical process measurements requires confidentiality. This is best applied on a
presentation layer (field content) basis, with the data values encrypted and the
remainder (communications protocol portion) of the message in the clear.

Different connections may require different session confidentiality keys, so a single
device may be encrypting and decrypting concurrently under many keys. However, the
existence of long-lived connections and associations makes precomputation of round-
keys feasible, up to the amount of available RAM in the field device. Most such field
devices can be expected to have at least a few kB of unused RAM (today, typically in a
separate RAM chip), so this need not be a severe constraint on key setup. Thus key
agility has some value in this environment, but less than it would have in a transactional
environment where long-term relationships among communicating nodes is not the
norm.

Field devices are both clients and servers. Thus assumptions that simple devices are
not servers are incorrect . (Cf. letter to NIST on AES by Jeffrey Streifling, "Consideration
of RC6", 1999.12.05)

Unlike most commercial battery-operated devices, which have limited energy storage but
few restrictions on instantaneous power use, field devices designed for hazardous-area
use have a strictly limited power supply. Software design strategies try to average
power consumption and minimize peak usage. Encryption modes where the keystream
material can be precomputed are a good fit for this power regime.

The AES security timeframe of 20 years would be considered short in the industrial
environment. Many industrial systems operating today are well over 20 years old; some
are in their 30s. For example, a large percentage of the electric power generation in the
U.S. falls into this aged category. Typically, these systems undergo a substantial
upgrade every few years, but wholesale replacement or discard of working devices is a
seldom occurrence. The multiple key lengths currently specified for AES are a
reasonable fit to the spectrum of threats envisaged for such long-lived systems.

Increasingly, field devices have a downloadable code store (e.g., flash PEROM) to
handle issues of software protocol upgrade. This was not possible in the days of 12 - 18
V flash programming voltages, but new devices use such low voltages and energies that
they can meet design requirements for hazardous areas (a field known as intrinsic

109

safety). Therefore, if a usable attack on the chosen AES algorithm were to be
discovered, such devices could be upgraded with a replacement algorithm.

Other comments
=============
I recommend that NIST use a self-administering FSF-like CopyLeft licensing procedure
for the AES to preclude restrictive derivative-use patents. I see this as partly an issue of
"internet years" versus human years. We as humans cannot predict the specifics of the
hot encryption uses over the next few decades, but the "wired economy" will suffer
substantial harm if this public process is coopted for private gain, e.g., by the first person
to claim the use of AES for digital cash or micro-payments or E-mail or something else
which the patent examiners consider "non-obvious to one skilled in the art."

Some of the letters to NIST indicate concern about implementation errors. This seems
unlikely to be a problem for the AES core algorithm, assuming that multiple reference
implementations and an adequate set of test vectors both exist (as they do or will). Of
much greater concern is the implementation of key management, which is outside the
scope of the AES effort. In this latter area all five candidates are equal.

I believe that NIST should choose only one AES algorithm. A backup algorithm should
not be specified now. Rather, defer such selection from the other four current
candidates, or more likely run a new selection process, only if and when cracks (pun
intended) start to appear in the strength of the selected algorithm. This deferral permits
the selection of the backup to be informed by continuing research, and motivates that
research, without imposing the inevitable "consider implementing the backup algorithm
now" debates and security risks which an actual choice would engender.

Specifying a backup candidate now may actually increase the security risks if it is ever
employed, because in many cases the implementation will already be in place if it
becomes required, but will not have been tested adequately because of the backup
algorithm's irrelevance at the time the code or hardware was developed.

My own preferences for the AES selection are TwoFish or Rijndael. The per-byte power
requirements for multi-precision software multiplication and shifting of MARS and RC6
seem excessive for the above-described field device environment. Serpent seems
excessively cautious.

In closing I would like to applaud the submitters of the 15 initial AES candidates, and the
tremendous investment of the participating crypto community in their analysis and in
continuing analysis of the five semifinalists. For this we should all be grateful.

The above comments are my own, and do not represent an opinion of my employer or of
the U.S. industrial networking standards community.

Tom Phinney
Principal Engineering Fellow
Honeywell
Industrial Automation and Control
Phoenix, AZ USA

110

Date: Sun, 14 May 2000 23:47:27 +0100
From: David Crick <dacrick@cwcom.net>
X-Mailer: Mozilla 4.61 [en] (Win95; U)
X-Accept-Language: en
To: AESround2@nist.gov
Subject: AES Round 2 Comments

-----BEGIN PGP SIGNED MESSAGE-----

My views are:

* Rijndael should be selected as the one and only AES algorithm.

 - it is the only finalist that performs exceptionally well in
 all environments. Fast key setup, support for larger block
 sizes (essential for hashing), and an inherently parallel
 nature further mark it out as an exemplary modern block cipher.

 - safety margin aside (the authors still feel it is adequate),
 the cipher has remained secure throughout the evaluation period.
 Many people have expressed the view that the simple, "clean" and
 indeed elegant structure of Rijndael has proven advantageous in
 analysis and understanding.

 - multiple algorithms introduce complications. Ian Harvey's
 paper concludes that a primary algorithm with optional
 secondaries is the most acceptable of the multiple scenarios.

 Yet there is little difference between this and a single cipher
 when resources only permit one to be implemented, and multiple
 ciphers (to choose from) would in any case be likely in suitable
 environments. (If Rijndael does win, I expect to see Serpent and
 Twofish used in such circumstances.)

 If NIST and the community (who in the AES2 questionnaire were
 in favour of a single winner, with Rijndael and Serpent rating
 highly) cannot decide on a single algorithm, then how are the
 public supposed to? Not to mention all the implementation
 uncertainties that would arise in such a scenario.

* Addressing Rijndael's safety margin, if NIST feels that there is
 enough call to increase it, then they should do so now. I feel
 that an increase to 16/18/20 rounds for 128/192/256-bit key and
 block lengths respectively should satisfy such concerns, while
 still retaining adequate performance.

 For those still not satisfied (and also to counter breaks if they
 occur), perhaps the best situation is to have the number of rounds

111

 as a parameter, so that higher figures still could be used which
 could nevertheless be decoded by all implementations. (A hard-
 coded lower limit is crucial here, to stop someone [maliciously]
 requesting lower than 10 rounds - or even zero!)

* Implementations should use 256-bit keys unless there are serious
 reasons why this is not possible. Conceivably, technology such
 as quantum brute-force key searches could come into play during
 the lifetime of AES.

* Triple-DES should be promoted and run concurrently with AES as
 a FIPS, so that organisations and individuals who do not feel
 confident with a relatively new algorithm can go for a more
 established and trusted one.

* Similarly, 3DES could be used as an emergency replacement should
 AES be totally broken. This makes most sense as 3DES is already
 fielded, and implementation expertise, etc. already exists.

* NIST should use the (estimated) one year period between the
 selection of the AES winner and the FIPS certification to
 encourage further analysis. The reduction of the fifteen Round 1
 candidates to the five for Round 2 facilitated much more detailed
 analysis on those that were left. Some people have commented that
 another year's study is needed for the finalists. This year of
 "dead" time could therefore be used highly profitably in a
 concentrated effort on a single algorithm, further boosting
 confidence.

* If AES suffers a critical break (one where data is actually
 at risk, or if a valid "academic" attack seems like it may
 become practical in the future lifetime of AES), then NIST
 obviously needs to take action. Some options I suggest are:

 - increasing the number of rounds if this will stop the break
 (with Rijndael this is easy to do).

 - patching the cipher if possible, although this will need to
 be done with care and with further analysis (the move from
 SHA to SHA-1 is an example of this).

 - replacing the algorithm with one of the other finalists if
 they are immune (intellectual property is crucial here).

 - replace with a more up-to-date cipher (ideally one that has
 already been analysed for some time).

112

 - initiate another call for candidates for a new standard (the
 AES process was initiated when DES was recognised as being
 inadequate/vulnerable).

* For NIST's Round 2 Status Report, a summary table of attacks
 for each finalist should be given. This would detail for every
 attack currently known:

 - the number of rounds broken

 - the key size it relates to

 - the complexity of the attack (in terms of time, data, etc.)

 - the type of attack (e.g. Square, partial sums, related key)

 Such information would need to be compiled from the original
 candidate submission documents, Round 1 / Round 2 papers
 and comments, plus other "outside" sources (eg FSE, SCIS2000).

 An example of the type of table I am referring to can be seen
 in Table 1 of "Improved Cryptanalysis of Rijndael" by the
 Counterpane team.

* NIST should adopt the GNU copyleft licensing for AES. This
 would ensure that all implementations, optimisations, etc.
 are free for anybody and everybody to use, which I believe
 is the true spirit of AES.

* For the record, my ranking of the finalists, best to worst,
 is: Rijndael (outstanding); Serpent, Twofish (both very good);
 RC6, MARS (both have poor performance off the reference
 platform, and also design concerns).

-----BEGIN PGP SIGNATURE-----
Version: 2.6.3ia
Charset: cp850

iQEVAwUBOR8q+4VnnSUi1cepAQFmVwf5Aa9bRQpkr9tlhDuIH6eOp4HlaoB6MUll
DoJtozW6u2MvkijZF1gQCUpkIGt5ia+cvWoCTIAhMAS3pTyhKBPzCvzrC+ajjEQk
/FlYkcWr53wxNCyTk6zL1fPabSh4KrPVnheYOckVxQWWsMR/glNZ7R4zVmbIy4i4
FliMaaj1Zp+8dzimICSPOYySCYK19hZDe2hSh0h9h0RIBzdtPBEmVdTSDmCd+81Y
eoqgUTqUcQgyx0rYqThwVethktBscvu1wtZaOlkd+usrw2IdETkr0zKNVzZ0zG/u
prqgw3jG1QJBH/eeWJ863H0FynGopitjwrY50ZxGl9Skg0H6T/JbhA==
=wFcs
-----END PGP SIGNATURE-----

113

From: "Yaro Charnot" <ycharnot@identikey.com>
To: <AESround2@nist.gov>
Subject: AES Round 2 Finalists
Date: Mon, 15 May 2000 01:08:53 +0100
X-MSMail-Priority: High
X-Mailer: Microsoft Outlook IMO, Build 9.0.2416 (9.0.2910.0)
Importance: High
Sensitivity: Company-Confidential
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2314.1300

As a computer security expert, software engineer, software reverse engineer, Master of
Cryptology, former computer cracker and hacker with many years of experience, I want
to use my opportunity to influence your decision on the next Advanced Encryption
Standard.

My points are:

1. The security of the products I have been cracking for years lied mainly on the
implementation, not on the number of rounds or possible theoretical attacks on the
cipher. After personally evaluating all AES candidates, I can report that only two ciphers
qualify as simplest to implement not leaving much room for mistakes: Twofish and RC6,
with RC6 being amazingly simple and requiring the least IQ of the programmer to
implement it, debug it and deal with it.

2. My personal never published (company's internal) analysis of R1 AES candidates in
June 99 using personally designed and publicly available randomness testing tools (like
DIEHARD tests) showed that two algorithms stand off the rest. Those are again Twofish
and RC6, with Twofish leading in speed on most of the processors. They offer the lowest
price (speed and memory requirements) for the same level of security.

3. All AES candidates have different properties, but in software implementation (in 95%
of the cases performed by programmers with very little understanding of cryptography)
one characteristic plays the second most important role: flexibility of the key size. RC6-
like algorithms offer it allowing the entire large output of public key algorithms like 4096-
bit Diffie-Hellman to be used as a key without a need to design an extra special
"compression" function for this purpose leaving poor software developers on their own in
that design. They will most probably use the lower 128 or 256 bit of the common key,
which are the least secure as PK cryptographers know. But in some cases this flexibility
is irrelevant and other characteristics play more important role:

4. Hardware implementations? Again, Twofish wins, RC6 follows, the rest of the
algorithms is behind only confusing developers with their complexity.

5. Pick a 15 y.o. student, show him all the algorithms and ask him which ones he likes
the best and would use? He'll point at RC6. Why? It's naturally and geniusly simple and
easy to understand, one can hardly make a mistake implementing it.

6. Pick an experienced Unix software developer, show him all the algorithms and ask
him which one he likes the best? He'll point at Twofish. He trusts its predecessor

114

Blowfish and his main concern is inter-platform effectiveness and compatibility.
Problems like byte order, absence of rotation functions on different processors,
differences in register size, memory alignment requirements, etc. Twofish is fastest on 8-
bit processors as it is on 32-bit or 64-bit processors regardless of byte ordering or
instruction set.

7. Even if you pick only one algorithm as AES, all the software developers will still want
to support both RC6 and Twofish because they are already doing it. Why are they doing
it? Because they had a choice and they choose the algorithms easiest to implement, the
algorithms most effective, the algorithms most flexible, the algorithms most trusted. Trust
is the key to the success of their software. They trust RC5 and they trust Blowfish, so
they all trust RC6 and Twofish more than all the other algorithms combined together. I
do too.

8. In some countries in the world people will not trust Twofish or RC6 because they are a
US product. An encryption algorithm from a country that has been imposing bans on
strong encryption for years. On contrary in the US people will most likely favour a US
product not trusting much a foreign algorithm to protect their most valuable assets. The
USA is the world's leader no matter how good or bad it is or its products are. It's rich and
strong. The whole world is watching and is trying to follow. Give the world a choice and
they will love you for that. Serpent suits well for it although it lacks the flexibility and
simplicity RC6 and Twofish offer.

9. I myself don't have a preference in any of the algorithms. They are all secure enough
to protect from a street hacker or even a small or large business trying to hack a network
or a financial software. I can implement even DES in such a way that it will be
uncrackable for NSA. The security of the algorithms is my least concern. The beauty and
ease of implementation and flexibility of the algorithm is. Only two algorithms qualify:
RC6 and Twofish. Although if I was to choose a HASH function, I'd stick to Tiger due to
its natural simplicity and my trust to Eli Biham's and his colleagues with Russian names
cryptanalytic skills. So Serpent would be my next trusted choice.

10. There are other less significant points like one round of RC6 can be and will be used
as a beautiful non-linear chaining function replacing simple easy-to-attack XOR, like both
algorithms can be and will be combined together. Paranoid programmers will want to
encrypt their data first with Twofish and then with RC6 or something else on top just in
case one of the algorithms is broken. And they will be right. The skills of the majority of
them are very low.

Unfortunately cryptographers and cryptanalysts do not develop security software. I
represent the rare 0.001% of those developers and while I personally don't care what the
next AES will be (my products will still be more secure than everything else around), the
rest 99.999% might get stuck with a big pain for years. Please be careful.

The conclusion is I ask, demand and beg to include both Twofish and RC6 (maybe
Serpent as well) in AES for all the software and hardware developers, copy-
protectionists, information security advisors, software reverse engineers, white hat
hackers and beginners, as someone who is qualified enough to see and exploit the real
insecurity of all so-called security software every day of his life, someone from the
battlefield.

115

- Yaro Charnot

Identikey - The Key To Internet Security

Yaro Charnot
Chief Security Advisor
Identikey (Australia) Pty Ltd
143 Coronation Drive
Milton QLD 4064
Phone: +61 7 3236 5050
Fax: +61 7 3236 5850
E-mail: ycharnot@identikey.com
https://www.identikey.com

The views expressed in this message are those of the
individual sender, except where the sender specifically
states them to be the views of Identikey (Australia) Pty Ltd.

116

X-Authentication-Warning: everest.cs.umbc.edu: aselcu1 owned process doing -bs
Date: Sun, 14 May 2000 22:58:35 -0400 (EDT)
From: Ali Aydin Selcuk <aselcu1@cs.umbc.edu>
Reply-To: Ali Aydin Selcuk <aselcu1@cs.umbc.edu>
To: AESround2@nist.gov
Subject: comment on RC6

A general comment on RC6:

I think RC6 is the best publicly analyzed algorithm after DES, considering the amount of
public analysis received by RC6 and RC5. Having so much analysis done on such a
small piece of code, and still having no significant weakness found, I think, is an
important plus for RC6.

Regards,

Ali

117

X-Lotus-FromDomain: NRTA
From: "Ken Tindell" <ktindell@realogy.com>
To: AESround2@nist.gov
Date: Mon, 15 May 2000 09:41:42 +0100
Subject: Comment on round 2 AES algorithm selection

I wish to comment on the criteria for selecting the AES algorithm. Aside from the issues
already well covered and understood, I would like to emphasize a key area:

The efficiency in terms of code space and working RAM must be very high. The
smartcard market has been discussed already, but there are other domains that require
high memory efficiency: mass-produced embedded devices. It is quite common now for
embedded computing in mass-produced devices to be sophisticated, and yet to be
implemented in small, low-cost microcontrollers. I give the example of automobiles: there
are several new automobiles with more than 20 microcontrollers on-board, each with
Flash memory and hence able to be re-programmed. Several manufacturers of
components (e.g. engine management systems) wish to keep their software secret when
downloading and programming devices, and to ensure that certain data is protected
against tampering (e.g. engine calibration tables). This has led to the use of customized
low-resource encryption. However, there are considerable risks in adopting proprietary
encryption algorithms, which would be avoided by adopting a memory-efficient AES
algorithm.

>From an examination of the candidate algorithms it would seem that Twofish
is best placed to be implemented in low-resource micros.

Best regards,

Ken Tindell

118

Sender: contini@maths.usyd.edu.au
Date: Tue, 16 May 2000 01:01:11 +1000
From: Scott Contini <contini@maths.usyd.edu.au>
X-Mailer: Mozilla 4.7 [en] (X11; I; SunOS 5.5.1 sun4u)
X-Accept-Language: en
To: AESround2@nist.gov
Subject: AES comments

Dear NIST,

I am writing to make my recommendations for the choice of the AES. My
recommendations are entirely from a security analyst perspective.

I am most supportive of RC6 being chosen for the AES. It is quite clear that RC6 is the
easiest cipher to analyze. This analysis is aided by 6 years of public research on RC5.
I think many people have overlooked the value of this, and many others just do not have
the experience with analyzing algorithms to appreciate how important such results are.

For instance, the analysis of RC6 had the results of Biryukov and Kushilevitz to build
upon, which are the best results today for attacking RC5. Their results were based upon
earlier work of Knudsen and Meier which was based upon earlier research by Kaliski
and Yin. Biryukov and Kushilevitz were able to mount very enlightening attacks against
RC5 by using a more general notion of difference than the earlier researchers. The
security analysis of RC6 considers their general notion of difference with respect to both
subtraction and exclusive or. Similar experience was gained from linear cryptanalysis
and other attacks against RC5. I have not seen any other AES submissions with such
general analyses as RC6, nor any analyses that are based upon so much public
research.

RC6 is a cipher that is so simple that it is inviting to analyze. However, the most
significant new result by Knudsen and Meier closely agrees with the security analysis
originally submitted by the RC6 design team and myself. The lack of results on such an
easy to analyze cipher should be strongly considered, since it suggests that RC6 is the
most well understood and has the most accurate security analysis.

I recommend to NIST to avoid new ciphers that are not well understood and are difficult
to analyze. The two ciphers that come to mind are MARS and Twofish. While these
ciphers may (or may not) appear to offer good security at first, it is important to realize
that analyzing such ciphers takes many years (even analyzing a simple cipher like RC5
took a couple years to get strong results) and thus we cannot be confident of the true
security that the ciphers offer. It will likely take several years before the research
community has a good feeling for how secure these ciphers really are. Ciphers that are
based upon years of cryptanalysis experience should weigh more than newly designed,
complex ciphers when choosing the AES.

Thank you for taking the time to read my comments,

Scott Contini

119

From: "Walker, Jesse" <jesse.walker@intel.com>
To: "'AESround2@nist.gov'" <AESround2@nist.gov>
Subject: Feedback to NIST AES Questionaire
Date: Mon, 15 May 2000 08:04:52 -0700
X-Mailer: Internet Mail Service (5.5.2448.0)

This provides feedback from Intel's Network Communication Group to NIST's AES
questionaire. Our focus is on the impact of the AES standard on mass-deployment
networking markets. If you need any clarification of any of our points, please contact me.

Jesse Walker
Intel Corporation
Network Communications Group
2111 N.E. 25th Avenue
JF3-448
Hillsboro, OR 97214
(503) 712-1849
jesse.walker@intel.com

1. NIST has stated its goal that the AES should specify an algorithm(s) that will
provide strong security for protecting sensitive data for 20-30+ years. How would the
selection of one versus multiple algorithms affect the likelihood of achieving this goal?

The selection of a single algorithm would contribute far more to the goal than
multiple algorithms. The reasons are sociological, not technical.

The first reason is market psychology. If NIST were to select more than one
algorithm, the market would ask what's wrong with the lot of them. The public would
incorrectly conclude that NIST sufficiently trusts none of the algorithms, or they would
have chosen the one most trusted as the winner. This is the "every contest has to have
one winner" syndrome, and it is a real phenomenon.

The second reason is the criteria to select which algorithm to employ in a
particular circumstance are too arcane for even cryptographers. Compelling a choice
would overwhelm most people; ask your great Aunt Nellie when she intends to protect
her data with Rijndael and when with Serpent. This is not just rhetoric, because
cryptographic tools have flooded far beyond the province of security professionals. And
we in private industry have demonstrated limited ability in automating the selection
process to the degree needed to win wide-spread acceptance of any security standard
with multiple algorithms; for instance, almost all IPsec GUIs ask users to select between
HMAC-SHA-1 and HMAC-MD5. However absurd this situation might be, it is likely to be
repeated with a multi-algorithm AES standard.

Finally, multiple algorithms would increase security costs. Multiple algorithms
would marginally increase hardware, software, and testing costs for equipment vendors.
More importantly, the deployment costs for multiple algorithms would also be higher than
for equipment based on a single algorithm, because the deploying organization has to
elaborate and configure policies selecting the appropriate algorithm, and then debug and
maintain their configuration. None of these costs are trivial for deploying organizations,

120

and they are likely to become only more of a burden as the shortage of IT personnel
continues to accelerate each year.

This reasoning leads us to believe that, whatever its technical merits, a multiple
algorithm standard would delay AES acceptance and deployment, thus extending the
widespread usage of 40-bit RC4 and 56-bit DES. Data protected in this way are far more
vulnerable to recovery and compromise than data protected by any of the AES
candidates.

Neither the standard grade school cirriculum nor the lessons from everyday life
include an education in cryptography, and so we cannot expect the public to reason
correctly or even be equipped to make informed choices in this arena. The
technologically elite will use multiple algorithms, regardless of what NIST does, because
they can, and everyone else will use one algorithm or nothing at all, because they aren't
prepared to do anything else.

2. If only one algorithm is selected, how will sensitive data be protected (with AES-
comparable security) in the event that the AES algorithm is broken?

History suggests this depends completely on the technical sophistication of the
individuals and organizations affected. In the eventuality of a break, the overwhelming
majority of people would continue to use the compromised algorithm, and they would
resist change until forced to do otherwise (e.g., by an insurance provider refusing to
renew a policy without an upgrade). Everyone has known for years that 40-bit RC4 and
56-bit DES do not provide any substantive privacy, but both still enjoy widespread use.
On the other hand, the cryptographic literati routinely employ many algorithms, and
promptly migrate from old favorites to newer ones with any hint of compromise.
Compromise thus leads to interoperability failures and islands governed by competing
algorithms, not to needed behavioral change in the user community. Making multiple
algorithms available will do nothing for most already encrypted data, because most
people will not re-encrypt. Multiple algorithms only make sense in a context of a properly
trained and motivated user community, and the larger community is neither so trained
nor properly motivated.

There are lots and lots and lots of good symmetric key algorithms. The people
and organizations who really care about their data being compromised by cryptanalysis
will protect their data by a new algorithm when their first choice might be broken. Most
people won't. Selecting two or two thousand algorithms for AES will not change this fact.

3. What type of attack on an AES algorithm would be sufficient to "break" the
algorithm? A practical attack or a purely theoretical one? That is, when is an algorithm
considered to be broken? Another way to think of this is to consider what sort of attack
would cause users to lose confidence in the AES algorithm(s).

Given the continued wide-spread acceptance of 40-bit RC4 and 56-bit DES, it is
difficult to imagine a scenario powerful, practical, imminent, disarming, and threatening
enough to even make a blip on the public's radar. The cryptographically sophisticated
always respond when a potential for liability threatens, but few other members of society
care or even notice.

121

In a world where insurers underwrite losses accrued by organizations attaching
today's commercial operating systems to the Internet, raising the question of what will
constitute a break in the public's eye seems to miss the real threats. 40-bit RC4 is still in
wide-spread use not because it is safe, but because hackers need not bother breaking
its keys; simple buffer overrun attacks, not cryptanalysis, are their preferred route.
Commercial operating systems cannot become more secure, for the simple reason they
are getting more complex, so it seems unlikely the present balance between hackers
and their prey will soon change. Thus, while practical attacks are easy against the weak
cryptographic algorithms deployed today, by and large this is a concern only to a very
narrow portion of the public, because almost all systems offer so many much easier
attacks. Those who understand the issues already know lots of algorithms to fall back to
in case of a compromise.

Why force everyone to choose among different bank vault doors to install on their
yurts? The few people who actually possess vaults already know plenty of vault door
suppliers. With the exception of this tiny minority, the community cannot and will not use
a standard that makes them choose among options they cannot readily distinguish.

4. If multiple algorithms are selected, what effect would this have on
interoperability? Note that there are currently multiple algorithms available which may
provide confidentiality and other security services.

Multiple algorithms have always undermined interoperability. History amply
testifies to this.

The success of the original single algorithm DES standard is evident. The
success of TLS was likewise forged by its reliance on a single weak algorithm, 40-bit
RC4. IPsec's comparative lack of success may be attributed in part to its explicit
embrace of multiple algorithms. Even though there are many good reasons to promote
DSA and EC-DSA as equal partners with RSA, so far the market has adamantly rejected
the new-comers, more because of the confusion their deployment would engender than
for any apparent cryptographic concerns: RSA got there first.

The market overwhelmingly and emphatically tells us over and over again its
wants a simple choice: encryption, YES or NO. People want this whether or not it is the
ideal choice cryptographically. People without deep professional training and experience
in security realize they are incapable of dealing responsibly with the choices a more
complex standard would impose.

With the advent of PCs and the Web, cryptography is no longer the exclusive
sandbox of security professionals. As reiterated before, those who are so inclined will
use multiple algorithms regardless of whether NIST selects 1 or 1 million algorithms as
the AES standard, while even two algorithms will be a deployment barrier for everyone
else. Selecting a single algorithm will maximize interoperability by giving the newly
enfranchised a tool with which to push back against the small cadre of experts
demanding more.

5. If multiple algorithms are selected, how many should there be?

This is the wrong question; there should not be more than one.

122

The availability of two algorithms is no different than ten thousand for the vast
majority of the users, because they have no relevant means to distinguish among more
than one. Indeed, a multi-algorithm standard presupposes both well-defined criteria
specifying when to use one algorithm over another, and that the community relying on
the standard is trained in the criteria. Neither presupposition is valid. Without a
mechanism analogous to the driver's license testing, an applicable common school
cirriculum, or the like, correct application of the criteria by the wider community is
impossible.

Many security professionals will dismiss this kind of argument as specious,
because it ignores any examination of "real" security needs. That is exactly the point,
however. The diffusion of cryptographic tools to a vast cross section of the public
relegates technical arguments to secondary importance. The cryptographic community
seems convinced most of the AES finalists are essentially sound, and that any one of
them probably provides vastly greater security than any encryption algorithm used
commercially today. All the technical arguments needed have thus already been made
to winnow the field to five and then rank them. This has resulted in the best judgement
technical consideration can render now. Given this situation, arguments maximizing
deployment and use have to become the overwhelming test of acceptability, and this
argues for selecting just one algorithm.

6. If multiple algorithms are selected, what sort of guidance or standards would be
useful?

The assumption behind the question-that it is technically feasible to assemble
reasonable guidelines-is questionable at best; the cryptographic community itself hasn't
even reached rough consensus on when to use one of the candidate algorithms instead
of another. The nearest thing to a consensus is that the people who attended the AES
conferences tend to rank their preferences for algorithms as Rijndael first, then Serpent,
followed by Twofish, RC6, and MARS. If professionals cannot agree on a finer scale,
what are the amateurs supposed to do? With the present state of knowledge, it is
infeasible to issue meaningful guidelines for selecting among the algorithms.

Lacking meaningful guidelines that crisply and easily divide one usage from
another, selecting more than one algorithm can do nothing but sow confusion, degrade
interoperability, and delay the adoption of AES. Someone always finds a way to break
every algorithm, and we don't know when that will happen with any of the AES
algorithms. But none of this will matter if people don't adopt and use AES. Multiple
algorithms are a deployment barrier for that vast majority of potential users. The threat of
a break remains a theoretical attack in the future. The threat of confusion and
misapplication that multiple algorithms engender is real today.

Those sophisticated enough to weigh the technical tradeoffs for themselves can
and will employ multiple algorithms, regardless of the number of algorithms NIST
incorporates into AES. The broader market lacks this sophistication. Indeed, it is
implausible that any guidance NIST or anyone else can develop for selecting among
multiple algorithms based on existing knowledge would have any practical value or utility
outside a narrow community of security professionals.

7. What about the speed versus security margin tradeoff?

123

We would be more comfortable with four more rounds for Rijndael, or doubling
the number of rounds for RC6, but then those of us who bother to encrypt our personal
data or use a VPN still employ 3DES and IDEA for these functions, so there is some
hypocrisy in our response. Even unchanged, all the candidates already appear stronger
than what we use. As time goes on, however, the candidates will only become weaker
as they undergo further cryptanalysis, so extra security probably wouldn't hurt.

At least in the networking arena, customer first want to know if we implement a
standards-based algorithm, so they know our solutions are interoperable and have
undergone adequate technical review. After receiving a satisfying answer, their next
three questions are how fast is the solution, when we will make it faster, and when we
will deliver something even faster. The market is very clear and precise: speed wins over
security margin. We don't agree with that tradeoff, but that's what the market is saying,
and it speaks emphatically with its dollars.

The one area where the speed-over-security contingent argument is compelling
is in the usability arena. Slow implementations detract from usability as the user
community has broadened. Most people are simply not willing to wait on "poor"
performance. It does not appear AES will present any problems in this arena, however,
except perhaps for some software implementations of Serpent or MARS.

8. How important are low-end smart cards and related environments when selecting
the AES algorithm(s)?

We offer no opinions on this topic.

9. What is the relative importance of hardware vs. software performance in the
selection of the AES algorithm(s)?

This question misses the point. There will always be a mix of both, so both will be
important, and it is difficult to credulously assign a relatively importance of one over the
other. If you talk with end users and the vendors who build for them, the answer will be
software, because processor performance is growing faster than the demands placed on
end-user systems, and end-user performance is a driving usability concern. If you talk to
vendors of choke point devices like servers and network plumbing, the answer will be
hardware, because network line rates are growing faster than processor speeds. We
have to build all the parts of the system, so the answer has to be both are equally
important.

10. What modes of operation should be available for the AES algorithm(s)?

The four DES modes should be support, as doing so will simplify the migration
from DES to AES. Counter mode is appealing in that it appears to provide marginally
better security than CBC, and it is obvious how to parallelize this. A mode combining
encryption with data authentication, like Gligor's PCBC mode, would also be attractive.

124

From: DWHITING@hifn.com
To: AESRound2@nist.gov
Subject: Comments on email from David Oshel
Date: Mon, 15 May 2000 09:35:58 -0700
X-Mailer: Internet Mail Service (5.5.2650.21)

Mr. Oshel has posted a comment noting that Twofish was very slow on his Macintosh
PowerPC machine. His numbers made no sense to me, since Twofish was FAR slower
even than Serpent in software, which has not been the case on any other platform (even
Eli's machine <g>).

After corresponding with him, it was determined that his test application encrypts exactly
ONE block before re-keying. However, his initial numbers we taken using the Twofish
"full keying" option implemented in Brian Gladman's code. I recommended that he use
instead the "zero keying" option of Twofish, which was intended for just such "non-bulk"
applications. Within a few hours, he responded to me as follows:

 "Thanks for your help on this! After the relevant code changes, Rijndael, Serpent and
Twofish all clocked in on the same test with the same start (seed = today's Julian date)
at 13 seconds. If I'd been checking 0.1s I might have seen a difference."

Thus, the problem was not a Twofish algorithm problem, but how he was attempting to
use it, in a somewhat unrealistic environment. Since he apparently has not yet posted a
clarification on this issue, I wanted to make it clear that the issue was resolved to his
satisfaction.

125

X-Lotus-FromDomain: CERTICOM
From: "Don Johnson" <djohnson@certicom.com>
To: AESround2@nist.gov
Date: Mon, 15 May 2000 14:22:39 -0400
Subject: Don Johnson's Final Thoughts on AES

NIST,
Here are my final thoughts on AES, contributed to NIST as grist for the mill:

1. In the AES3 summary poll, many voters indicated they wanted a single winner or
possibly a single winner with a backup if patent concerns or security concerns surfaced
later. It is essential that NIST listen to all potential users of AES and attempt to make
the best decision that meets the needs of ALL members of its constituency. Sometimes
a decision needs to be made that is NOT the most currently popular decision; this is the
essence of leadership and often takes courage.

It is important that NIST not let any (admittedly unscientific) polls be a large determining
factor in its decision. Rather, I suggest the best use of the results of the polls is in
recognizing that NIST must explain the rationale behind its final decision as much as
possible. Inquiring minds want to know!

2. Each of the summary papers by the inventors of each finalist algorithm give
advantages of the algorithm according to certain criteria and tries to put their algorithm in
the best light possible. Each paper tries to give good reasons for selecting their
algorithm as the finalist. In effect, each summary paper can be seen as contending that
the author's rationale should be used by NIST to decide the AES contest. This means
that NIST could justify the selection of ANY finalist simply by adopting the criteria and
rationale of the corresponding summary paper as its own.

One problem with accepting any particular criterion as critical is that often the best
choice under one criterion is not so good under another criterion. Using performance as
examples: RC6 seems to be fastest on a modern PC but seems slowest on some
processors without support for multiplication. SERPENT seems to be fastest in
hardware but is often slowest in software. As another example, for some applications,
key agility is very important; for others, the effect of key agility is negligible. How is NIST
to make a choice regarding which criteria are more important that others?

Rather than NIST attempting to choose which optimality criterion/criteria is/are MOST
important, NIST could instead choose to adopt the anti-pessimal criterion, which says to
pick an algorithm which is not bad anywhere. According to the anti-pessimal criterion,
RIJNDAEL is a suitable AES winner. This was noted at the conference by Vincent
Rijmen using somewhat different words. It is important that the many advantages of
NIST adopting the anti-pessimal criterion not be overlooked, hence I am restating it here.

3. If NIST believes that it needs to choose some optimality criteria, my perspective is that
suitability for use on constrained devices should be THE critical criterion. This is where
the AES decision can make or break the potential for new functionality in a future
product or solution. To be specific, on a modern PC acting as a client, it appears that
any finalist would be acceptable. On a server, one can add more hardware if

126

performance is a concern. On a constrained device, the requirement to use an algorithm
that is not as suitable as another can make or break the feasibility of an application for
the device, raise the price point, etc.

Some say that future advances and Moore's law will overcome any current limitations on
processors, but Moore's law has historically manifested itself in two ways (A) faster
computation for a fixed price as newer chip designs pack more power and (B) cheaper
computation for a fixed time as older chip designs become cheaper. It is important to
note that the crypto engine will not be the only code running on a constrained device,
applications will also. My concern is that selection of a less suitable algorithm will have
a cascading ripple effect in two ways: (A) Internal: The constrained device will need to
be larger, more costly and/or less flexible. (B) External: Constrained devices are
expected to proliferate and become ubiquitous. As a first approximation, essentially all
crypto engines will be on constrained devices. This simply means that any negative
consequences of NIST's AES decision in regards to constrained devices packs a double
whammy.

>From a constrained device viewpoint, the selection of at least one algorithm from the
set of (RIJNDAEL, SERPENT, TWOFISH) as an AES winner seems advantageous for
the following reasons:
A) MARS and RC6 appear to require more RAM for initialization.
B) MARS and RC6 require support for multiplication to fun fast. On cheaper processors,
this function may not exist and will need to be emulated.
C) MARS and RC6 appear to be less key agile. This becomes of greater relative
importance as shorter messages are encrypted or when the cipher algorithm is used for
hash purposes.

4. Adi Shamir made the suggestion at AES3 that it would be acceptable to him for NIST
to flip a 5-sided coin to determine the winner. This does not seem to me to be the best
way for NIST to proceed. However, I suggest that Adi's idea can be used with merit in
the following way: NIST (in its collective mind) can PRETEND to flip a coin and
contemplate the likely results if any of the five finalists were selected as the/a winner. If,
while the coin is in the air (so to speak) NIST discovers that it wants the coin to fall in a
certain way, then this can be a way to tap into subconscious and unconscious thoughts
that may not at first be apparent to the conscious mind. In other words, if while the coin
is in the air, NIST hopes it would come down in a certain way (or at least not come down
in a certain way) then I suggest it would be fruitful to explore further why this is so.

When I personally conduct the pretend coin flip exercise above, my results are as
follows:
A) At the minimum, NIST should select a primary algorithm and a secondary algorithm.
B) RIJNDAEL becomes the primary algorithm, being the anti-pessimal choice and
suitable for constrained devices. As such, it would become the default FIPS symmetric
algorithm and used unless there is a GOOD reason for it not to used.
C) SERPENT becomes the secondary algorithm, able to be used by choice for a specific
reason, such as super AES (multiple algorithm encryption) or hot backup (if RIJNDAEL
should be discovered to have a flaw), speed for hardware link encrypters (as they only
talk to themselves), etc. The point is that there would need to be a GOOD reason to use
SERPENT; but if there was an explicitly-stated good reason, it would be allowed.

Don B. Johnson, Certicom

127

From: "Kaliski, Burt" <BKaliski@rsasecurity.com>
To: "'AESround2@nist.gov'" <AESround2@nist.gov>
Cc: "'mrobshaw'" <mrobshaw@supanet.com>
Subject: Patent waiver for modifications to RC6
Date: Mon, 15 May 2000 16:12:19 -0400
X-Mailer: Internet Mail Service (5.5.2448.0)

RSA Security has already waived any license or royalty payments, no matter which
algorithm is chosen as the AES. See
http://www.rsasecurity.com/rsalabs/aes/rc6_patent.html.

As requested by NIST, we can therefore confirm that this policy would also apply if a
version of RC6 were selected with different parameters to those recommended in the
AES submission.

-- Burt Kaliski

Burt Kaliski, Chief Scientist and Director
RSA Laboratories - http://www.rsasecurity.com
20 Crosby Drive, Bedford, MA 01730 USA
+1 781 687 7057; fax: +1 781 687 7213; bkaliski@rsasecurity.com

128

X-Server-Uuid: 7edb479a-fd89-11d2-9a77-0090273cd58c
From: "Schroeppel, Richard" <rschroe@sandia.gov>
To: "'aesround2@nist.gov'" <aesround2@nist.gov>
cc: "Schroeppel, Richard" <rschroe@sandia.gov>,
 "'rcs@cs.arizona.edu'" <rcs@cs.arizona.edu>
Subject: comment for AES cipher selection
Date: Mon, 15 May 2000 14:18:37 -0600
X-Mailer: Internet Mail Service (5.5.2650.21)
X-WSS-ID: 153E8415129311-01-01

Here's my analysis of the AES cipher selection.
There are some equations near the end of Appendix D which
look best in a fixed-width font.

Rich Schroeppel rcs@cs.arizona.edu rschroe@sandia.gov

AES Comments

May 15, 2000
Rich Schroeppel
Sandia National Laboratory
University of Arizona
rschroe@sandia.gov

Disclaimers:
As should be abundantly clear, the opinions expressed in this letter
are mine alone, and are unlikely to be official positions of any
organization. I submitted a cipher to Round 1 of the AES process; it
was not selected for Round 2.

Abstract:
I discuss the five AES candidates, and suggest various improvements.
NIST should send all five ciphers back for rework, and hold another
conference in six months to analyze the revised ciphers. Failing
that, I reluctantly recommend Twofish as primary AES and Serpent as
backup AES.

Summary of Most Important Recommendations:

None of the AES candidates is completely satisfactory. NIST should
return all five candidates for curing of deficiencies, with a two
month deadline. Another conference should be held in six months to
review the revised candidates. Deficiencies are listed in Appendix A.

129

No cipher should be selected with a modified number of rounds or other
revisions, without further public review.

Among the present unmodified candidates, Twofish is the best choice as
primary AES. Serpent should be an optional backup.

CBC mode must be replaced. I suggest LFSR-counter mode, described in
Appendix C.

A full list of recommendations precedes Appendix A.

1. Introduction

NIST is searching for a block cipher to replace DES. [1] Three
conferences have been held to evaluate the candidates. Fifteen
candidate ciphers have been winnowed down to five. Many algorithms
have been attacked, defended, implemented on multiple platforms, and
measured and simulated in mushware and hardware. Public comments have
been solicited and offered. The time is at hand for a final decision.

This note argues that we now understand the problem better, and should
give the cipher teams suggestions for improvements. The final decision
should be deferred six months.

Section 2 addresses the question of appropriate security margins,
concluding that RC6 and Rijndael have insufficient margin. Section 3
argues that hardware cost has been neglected by most of the teams.
Multiplication as an inner loop operation is unacceptable. Key
expansion is too difficult for some ciphers, and hard to run in the
decryption direction for most candidates. Cipher Block Chaining mode
should be replaced. Section 4 discusses other issues, including the
AES process. Section 5 contains a list of recommendations. Appendix A
lists recommendations for each candidate. Appendix B contains my
guesses about future computing power. Appendix C explains an idea for
replacing CBC mode. Appendix D discusses my concerns with Rijndael,
and offers some suggestions for strengthening it.

2. Security

"Prediction is difficult, especially of the future." -- Niels Bohr

The most important criterion in cipher selection is security. All the
candidates claim to be "secure enough", so that secondary
considerations such as speed and implementation cost become tie-
breaking factors.

None of the ciphers has been broken, in the sense that someone using
one today would have reason to fear for the privacy of his traffic.
The arguments center around appropriate security margins, and how much

130

weight to give to infeasible academic attacks against reduced-round
versions of the candidates.

The Importance of Academic Attacks

An attack is academic when it represents no real threat to traffic
encrypted with the cipher. Examples are attacks that require 2^100
plaintext-ciphertext pairs, or an attack that distinguishes the cipher
from a random permutation, or demonstrates a failure of some other
theoretical criterion. Most attacks against ciphers are academic. All
the reported attacks against the AES candidates are against weakened
versions of the ciphers, usually with the number of rounds reduced.

Academic attacks are the best predictors we have of real-world attacks.

The history of cryptography confirms that attacks improve. Progress is
so erratic that it's impossible to forecast improvements. When DES was
announced, the best attacks could break four rounds. There are now
practical attacks on eight rounds, and two different academic attacks
on the full sixteen rounds. One of the academic sixteen round attacks
has been demonstrated. Progress continues; recently the amount of
material required for Matsui's linear attack was reduced by a factor of
four. The most important discovery about DES was a structural weakness
of Feistel ciphers -- half the rounds could be ignored. Three of the
five AES candidates use modified Feistel structures.

The AES is expected to last twenty years, and may be with us for a
century. If it's good enough, it may well be permanent. (In spite of
known attacks, movement away from DES has been glacial. Even the
existence of a key-search machine has not discouraged some folks for
proposing DES in new network protocols!)

A successful AES will be a very tempting target, attracting the
attention of the best and brightest cryptographers.

Appropriate Security Margins

Briefly review the drawbacks of a busted AES cipher:
(a) A new cipher must be adopted in haste.
(b) Old software that can't be adapted to the new cipher must be
 abandoned.
(c) Old hardware is toast.
(d) Old data that was thought to be safe is at risk.
(e) People will continue to use the old cipher. Some of their traffic
 will be broken.
(f) Bad guys may have been secretly reading traffic for years.
(g) New software must use the new cipher, but maintain compatibility to
 read old encrypted records.
(h) New hardware is in the same boat.

131

(i) The actual transition time for new software and hardware is several
 years. Some hardware, such as satellite electronics, has a much
 longer lifetime.

Now examine the costs of selecting a cipher with extra security margin:
(j) It runs slower in hardware and software, or needs extra area in
 hardware.
(k) The maximum bandwidth achievable with given amount of logic is less.
(l) A few applications become infeasible or uneconomic because the cost
 of the encryption becomes too large, or the cipher won't fit on the
 chip, or crowds out some other functionality.
(m) Some applications that would have used encryption will omit it
 because it's too slow.

As part of deciding how much security margin is appropriate, we must
balance factors a-i against factors j-m. Since the cost of recovering
from an insecure cipher is pretty high, it's prudent to add some
security margin beyond that required for "can't be broken in the near
term".

I agree with Lars Knudsen's suggestion: An AES cipher should use twice
as many rounds as the most effective attack that's better than
exhaustive key search. This protects against the most likely
catastrophe, discovery of a structural weakness such as happened to DES.
It also protects against incremental improvements in the attacks that
we see every year. It offers some protection against quantum computing,
although this is probably a fool's errand. (Appendix C has my guesses
about the future of computing.)

This is a conservative criterion -- if we were not trying to plan for
an uncertain long term future, we could accept more risk. If we were
designing a single application for a short lifetime, we could accept
more risk. But the AES will be the world's major cipher for quite a
while, and we can't accept more risk.

By this criterion, RC6 and Rijndael have insufficient safety margin
while Serpent is overbuilt.

Other Security Issues

Ross Anderson argues that we should routinely use 256-bit keys, and
skimp with 192 or 128 only when absolutely necessary. I'll disagree
somewhat, and say that we should use 256 bits when it doesn't increase
cost much. The current situation is that we don't have infinite
hardware, so an application that stores a large number of keys will
prefer to use keys that are as short as possible. Some of the ciphers
are slower with longer keys.

Most seriously, our key exchange algorithms take unpleasantly long when
matched with a 256-bit symmetric key. A Diffie-Hellman key exchange

132

matched to 128-bit security will use a prime modulus of 3000 bits;
matching 256-bit security requires a modulus of 15000 bits, and the key
exchange will take twenty-five times as long to compute as the 128-bit
case. The situation is somewhat better if elliptic curves are used,
since the curves need only use 250-bit or 500-bit fields; but 128-bit
matched security will run six times as fast as the 256-bit case.

This suggests an additional requirement for the AES ciphers:
Truncated key spaces should still have exhaustive-search complexity.
Legacy systems will be using keys of 40, 56, 64, 80, 112, and 168 bits:
A standard way of converting such keys to 128 bits (or more) is needed.
If I extend an 80-bit key to 128 bits by padding with 0s, and the
attacker knows this, breaking the cipher should still require roughly
2^80 effort. Ditto if I extend the key by copying 48 bits, or by
xoring two overlapping copies. This requirement is related to the
notion of weak keys, but has a different complexion. Weak keys are a
lesser concern if they are unlikely to occur in practice; the
"truncated key" problem is to show that particular sets of keys which
are likely to occur in practice aren't weak.

Except for RC6 and perhaps Mars, all the ciphers have the property that
recovering the expanded key will translate into recovering the primary
key. More seriously, the key schedules of Rijndael, and to some extent
Serpent, allow an attacker who recovers (or guesses) some of the
expanded key to compute additional bits of the expanded key. Recall
that both differential and linear attacks on DES benefited from
replicated subkey bits -- as soon as an attack finds a few subkey bits,
the game is over.

Most ciphers execute the same length of time regardless of key length.
Rijndael and Twofish vary their encryption effort with the key size,
Rijndael by adding rounds, Twofish by complicating the sboxes. The
other ciphers might benefit by adjusting the number of rounds to match
the security level implied by the key length.

Some effort has been devoted to seeing which ciphers best resist power
measurement attacks. Attempting to protect cheap smart cards from
their possessors is a losing battle. Fancy test equipment always wins,
so any secret worth stealing will be stolen. Protecting the smart card
with the holder's cooperation is more reasonable, and benefits from
prevention of timing attacks, power attacks, RF leakage, etc. However,
some smart cards will be stolen, and their secrets extracted. This
should be recognized at the system design stage.

I give no weight whatsoever to the difficulty of implementing a block
cipher in software: The criterion is silly. Any serious implementer
will test his code against the NIST-required test values, which are
sufficient to guarantee good faith code against bugs. Most folks will
simply download a certified implementation, or buy software containing

133

a tested implementation.

An additional argument was made at the AES3 conference, that we don't
want to see headlines such as "AES broken" whenever someone discovers
how to lower the number of chosen ciphertexts to break Rijndael-256
from 2^254 to 2^253. I don't put a lot of stock in this argument:
People will get headlines however they can, and it doesn't much matter
what we do.

Security of the AES Candidates

Mars

Mars has adequate margin against the attacks presented so far.
The idea of using different kinds of rounds is a good one.
The symmetrically reduced twelve round attack from AES3, with three of
each type of round, is less than half of the actual eight cipher rounds
of each type.
The full wrapper plus five core round attack (also from AES3) is only
one third of the keyed cryptographic core, so again the margin seems
adequate.
The eleven round attack [2] on the Mars core is more than half of the
actual sixteen round core, but it isn't a threat because it omits a
feature (the sixteen round unkeyed wrapper) specifically included to
vitiate the attack.
The Mars key setup is subject to a timing attack, to determine the
number of long-bit-block fixups that occurred. This information
doesn't seem to help an attacker: even knowing some of the extended key
bits doesn't help to learn others, and the extended key is much larger
than the primary key.

RC6

There is a fourteen round attack [2] on RC6. There is also a fifteen
round attack on RC6-256. Since the actual RC6 has only twenty rounds,
the margin is insufficient.

Rijndael

Rijndael has inadequate security margin.
Rijndael-128 (with ten rounds) had a six round break included with its
submission, and the FSE2000 and AES3 conferences showed a break of seven
round Rijndael-192 (which uses twelve rounds).
AES3 also included a break of seven round Rijndael-128 that is
"marginally faster than exhaustive search".
Appendix D addresses some of my concerns with the Rijndael sbox, and
suggests a way to defeat the Square attack, which might allow ten round
Rijndael to be secure.

134

Papers at AES3 and FSE2000 pointed out minor weaknesses in the key
schedule.
Rijndael varies the number of rounds depending on key length, so a
simple timing measurement will determine the key length. Although
important, this information is usually available to an attacker from
other sources.

Serpent

Serpent (32 rounds) is overengineered; the best attack in only eight
rounds, although the Serpent team conjectured the existence of longer
differentials. The overengineering comes at a cost: Serpent is
typically twice as slow as the other ciphers in software.

Twofish

The best attack against Twofish only gets six rounds, versus sixteen
in the actual cipher.
More time is needed to see if Knudsen's unsuccessful attack on nine
round Twofish can be salvaged.
Some implementations of Twofish have execution time that depends on key
length, so a simple timing measurement will determine the key length.
Although important, this information is usually available to an
attacker from other sources.

Security Summary

RC6 and Rijndael-(128,192) have insufficient security margin.
Mars and Twofish have adequate margin.
Serpent has too much margin, and pays a speed penalty for it.

3. Hardware Considerations

Of the AES candidates, hardware folks prefer Rijndael and Serpent.

AES is a big step backward for hardware encryption. Measured by
throughput/area, no candidate has a clear advantage over 3DES, and
several are worse. It's not impossible that high-speed hardware will
go its own way if any of the current candidates is adopted without
modification.

DES was designed for hardware implementation: The original standard
explicitly forbade software implementations. DES uses primitives that
are hardware friendly, such as random-looking permutations, shift
registers with random-looking taps, tiny fixed sboxes, and nary a carry

135

in sight. The key schedule is simple, based on a stuttering shift
register, which rotates back to the original key after each encryption
or decryption, and shifts one way for encryption and the other way for
decryption. The cipher hardware is nearly the same for both directions.

Perhaps in reaction, the present AES ciphers are software oriented, and
somewhat hardware unfriendly. The ciphers have larger storage
requirements, and rampant additions and multiplications. Hardware
folks barf at multiplication, and would prefer not to have the long
carry chains in 32-bit addition. There is no use in the present
candidates of random-looking bit permutations; this is a powerful
primitive in DES, but software doesn't support it. Key schedules are
more software oriented, with some of the encryption effort being in the
key setup, rather than simply moving the bits around as DES does. None
of the ciphers has a cycle-back key schedule to ease decryption.

Reading through the AES3 hardware implementation papers, I compiled an
implied Hardware Wish/Unwish List:

 Key schedule computable from either end, a round at a time,
 in parallel with encryption/decryption.
 Constant time key setup.
 No variable rotations.
 No additions.
 No multiplications.
 Small sboxes.
 Random looking bit permutations are good.
 Encryption and decryption should be virtually identical.
 CBC mode must go!

Sandia's high-speed DES board uses a pipeline stage for each round, and
can have 16 different encryptions/decryptions in progress with 16
different keys, and freedom to select encryption or decryption for each
datum. This is the highest-throughput implementation strategy I know of.

Translating the technology to an AES cipher will run into significant
problems: Of course, the circuit complexity (area or gate-count) must
increase because of the longer blocksize and keysize. But that's
recovered in extra throughput. However: The decryption key schedule is
a problem for every cipher except Twofish. The sbox area is much
larger for all the ciphers except RC6, which needs a squarer. The
round functions are more complicated.

Decryption Key Schedules

Only Twofish has a key schedule that's easy to compute in both
directions. The Serpent and Rijndael key schedules can be run backward,
if the final state is first computed. This seems to require computing
the full key schedule in the forward direction, or equivalent work.
Mars and RC6 are worse: the full key schedule must be computed and

136

stored, and most of the work must be completed before the first round
key is ready to use.

Two simple key schedules that are easy to compute in both directions:
(a) Step the key forward with some invertible transformation. Apply a
simple map such as Serpent does to generate each round subkey from the
stepped key. Arrange for the key to return to the starting state after
R (the number of rounds) steps. DES did this with a stuttering shift
register, but there are also linear transforms available for any period.
If the number of rounds is variable, then some steps are stuttered.
Including a stutter in the key schedule is a good idea anyway.
(b) Another way is to use a "tent" pattern: The key is stepped forward
for half the rounds, and then stepped backward to return to start. The
first half and second half subkey-generation maps must differ so that
the subkeys are different in the second half. Some care is required to
avoid the DES weak key problem with 0 keys.

One interesting option for using a cipher with unequal encryption and
decryption costs is role reversal: Use decryption as the encipherment
and encryption as the decipherment. Unfortunately, this cannot be
recommended without further analysis. Most of the analysis done so far
would carry over to the inverse cipher, but it's unwise to use a cipher
in an unintended mode: Something may have been overlooked that would
be apparent if the mode had been examined closely from the beginning.

CBC MUST GO!

CBC mode encryption is a problem for any parallel or pipelined hardware
system. The fixup is to use lagged CBC, with a lag greater than or
equal to the number of pipeline stages. This requires an unreasonable
amount of IV, and forces even non-pipelined hardware to remember the
intermediate IVs. There are proposals for two or three pipeline stages
per cipher round. That's a lot of lag.

Many folks suggested Counter Mode as an alternative. I propose LFSR-
Counter Mode. It's as easy to implement as Counter Mode, and allows
arbitrary lookahead and so arbitrary parallelism or pipeline depth.
The details are in Appendix C. The ATM Forum has a Counter Mode
standard. Other modes are also possible; almost anything is better
than CBC.

Multiplication in Block Ciphers Considered Harmful

I was very surprised that Mars and RC6 were advanced to the final AES
round, since they require a 32-bit multiplier (32x32->low32) and a
30-bit squarer (30^2->low31). This is too much of a hardship for a
high-speed hardware implementation, and also a burden on low end smart
cards. It also guarantees that when new processor architectures appear,
they will be slow on these ciphers, since integer multiplication speed

137

is never as good as simpler instructions. (An architecture is mature
(senescent?) when multiply is nearly as fast as add.)

Multiplication circuits are (1) slow (2) area hogs (3) power hungry (4)
hard to test and (5) full of possible patent potholes. IBM-Japan had a
good paper at AES3 about minimizing carry-chain propagation delay in
the Mars multiplications. There was no mention of patentable circuit
optimization techniques in their paper. IBM is a reputable company,
and I'm sure they are planning to donate their best Mars circuits to
the public domain. But anyone else could have filed a submarine patent
we won't hear about for years.

On the bright side, if Mars or RC6 is selected, we will probably see a
flowering of new circuit design talent, since there's so much scope for
clever optimization. Perhaps our goal of the fastest and best cipher
is less important than encouraging this design talent.

Other Hardware Issues

Although Twofish has the most decryption-friendly key schedule, it
compensates for this in other ways. Twofish uses key-dependent sboxes.
This gives the hardware designer a Hobson's Choice for pipelined
encryption with differing keys: Either use substantial real estate to
precompute the sboxes and pass them along at each stage of the pipeline,
or apply three-to-five levels of sbox at each round.

Having an adjustable number of rounds will cause trouble for pipelined
systems. If a cipher with less than the recommended number of rounds
is adopted, such as Rijndael-128 with 10 rounds, hardware designers may
want to provide for an increase by including a few extra pipeline
stages, and a bypass for current operation. Another possibility is to
provide contingency circuits for double and triple encryption.

One objection to having a backup cipher in the Standard is that
hardware implementations will waste area for the backup cipher. One
answer to the "idle hardware" objection is to use both ciphers, with
some traffic in each cipher. This changes the backup cipher from a hot
spare into extra capacity.

4. Other Issues

The AES Process

There is some sentiment for negotiating changes privately with the
developers -- for example, Rijndael has been suggested with 14-18
rounds. This is a bad idea for several reasons:

(a) From the public process viewpoint, it stinks like a three day old
 fish, no matter how innocent the purpose. One important goal of

138

 the public development process is to avoid the controversy that
 surrounded DES; this isn't the time to abandon openness to speed up
 the selection process.
(b) It means the actual selected standard will not have been publicly
 reviewed. The speed estimates for a revised cipher are simply
 estimates, as are the area estimates for pipelined chips -- the
 highest speed chips. In most cases NIST is not particularly
 qualified to do the estimating: The proper folks to ask are the
 ones who did the original work.
(c) There's been only desultory discussion of questions such as "How
 many rounds of Rijndael or RC6 would be secure?" and people haven't
 had a proper debate with the issues lined up to do battle.
(d) Finally, I suggest revised key schedules for the ciphers to help
 out the hardware folks, and these must be reviewed if adopted.

There won't be a chance to do it over; let's get it right the first time.

I contend that sending the ciphers back for rework will give us a
better crop to choose from, resulting in a better, more widely adopted,
standard.

The argument against delay can be summed up as "It's late and getting
later; we should have done this five years ago". It comes down to
standing still while the meter is running: we'd rather get started
designing our hardware and software. Fortunately, encryption is
modular; most software can be created with dummy encryption, and the
actual AES cipher inserted near the end of the creation phase.
(Testing must be done with the actual cipher in place.)

Users of DES-based systems are concerned, since processing power and
clock speeds continue to increase, and DES becomes more vulnerable each
month. However, DES is not yet breakable without serious resources,
either special chips or a thousand PC-years. This will remain true for
a couple of more years. Triple DES is not threatened, and is merely
slow; there's no urgency to switch, and another six months delay won't
hurt.

There are two other timetable related considerations:

(a) The time for analysis has been insufficient. There aren't enough
public cryptographers to give full scrutiny to all the ciphers. If
NIST feels they must choose a cipher now, then they should designate a
provisional candidate(s), to focus further evaluation and criticism.
If nothing damaging emerges in a year, the provisional standard can be
adopted.
(b) This also reduces the threat of an "IP-attack" with a submarine
patent, since such patents can only remain submerged for a limited
length of time.

139

Miscellaneous Comments

CBC mode must be phased out, and replaced with counter mode or some
alternative.

NIST (or the cipher developers) should recommend standard method(s) of
key extension. There will be folks using 64-bit and other short keys.
The two obvious fast methods of key extension to 128 bits, padding with
0s and doubling the key, need significant security analysis for some of
the ciphers. Extending a key by "hashing up" (feeding it through SHA),
is secure but slows down encryption and requires extra hardware.
Longer keys (192 and 256 bits) require two calls to SHA.

There's been no testing of other block sizes; NIST has no basis to
recommend any blocksize other than 128 bits or any keysize other than
the standard three (128, 192, and 256). This means that the various
ciphers' advertised flexibility for other block and key sizes is merely
show: It's not safe to use the flexibility without more adverse
attention being directed at the variations.

Most ciphers execute for the same length of time regardless of key
length. This may indicate an opportunity for optimization.

If encryption and decryption aren't equal time, decryption should be
chosen to be faster. This will optimize the situation where an
encrypted message is broadcast and decrypted separately by multiple
receivers.

It's been pointed out that planning for a cipher transition is cheaper
than doing it unplanned; having a backup handy is good sense.
Naturally, in the case of cryptographic surprise, the cipher will be
abandoned with all deliberate speed, regardless of any official NIST
pronouncement.

The benefit of "only one standard" is that the hardware and software
can assume that the encryption method is known, with no header bits or
protocol negotiations required. But this benefit becomes a liability
when the inevitable upgrade to the new system happens, and the
application is stuck in the past and cannot even in principle handle
the new traffic.

Mars should receive a "certificate of apparent security" so that those
who wish to use it have a formal document to cite. It should not be in
the standard, becasue it contains a multiplication in its inner loop.

5. Conclusions & Recommendations (You Asked!)

None of the AES candidates is fully satisfactory.
Most can be improved significantly with modest changes.

140

NIST should return all five candidates for curing of deficiencies, with
a two month deadline. (A list of deficiencies is in Appendix A.)
Another conference should be held in six months to review the revised
candidates. This will push the final decision date back to summer 2001,
but we will have a better cipher. In particular, hardware will be
faster, and possibly software as well.

In the interim, NIST could designate a front-runner to focus
cryptographic attention.

No revised cipher should be considered without several months for
public analysis and discussion of the revisions.

NIST should explicitly not endorse any blocksize other than 128 or
keysize other than 128, 192, and 256, regardless of a cipher's
advertised flexibility.

NIST (or perhaps the cipher developers) should designate a standard
method of padding or extending short keys (such as 40, 56, 64, 80, or
112 bits) to 128 bits for use with the selected AES ciphers.

Applications are encouraged to include capability for changing
algorithms, or at least, switching to the backup cipher. The closer
the backup comes to being a hot spare, or extra capacity, the better.

CBC mode should be replaced with LFSR-counter mode, described in
Appendix C, or some alternative mode.

If this process is ever repeated, more consideration should be given to
hardware from the start.

If we are doing this again in twenty years, add the criterion that the
inverse cipher, using decryption as the cipher, also be secure.

Since there hasn't been sufficient time for adequate cryptographic
review, any standard should be considered provisional for a year, and
subject to recall if significant adverse information develops.

My choice among the present candidates is Twofish as primary AES, with
Serpent as optional but strongly encouraged backup. Mars should
receive a "Certificate of Apparent Security" but not be part of the
Standard.

Acknowledgments

I would like to thank Tom Cabe, Ed Witzke, Anna Johnston, Susan Landau,
Lyndon Pierson, and Craig Wilcox for helpful discussions.

141

References

[1] Proceedings of the 1st, 2nd, and 3rd AES Conferences.
 http://www.nist.gov/~aes
 AES CDroms 1, 2, and 3
[2] Preproceedings of FSE2000.

Appendix A: Defect List

Mars
Mars should replace the inner loop multiplication operation with some
alternative.
The key schedule should be computable on the fly from either direction.
The variable key setup time, to check for and fix long blocks of 0s and
1s in the round subkeys, is a minor blemish, but it slows down a
pipeline implementation.

RC6
RC6 has insufficient security margin. Since 14 rounds have been broken,
28 is the minimum acceptable.
RC6 should replace the inner loop squaring operations with some
alternative.
The key schedule should be computable on the fly from either direction.

Rijndael
Rijndael-128 and Rijndael-192 have too few rounds. Since 7 rounds of
each has been broken, the minimum should be raised to 14 rounds.
(This might cause Rijndael to lose its speed advantage.)
Change the Shift-Row operation to break up the bytes, to counter the
Square attack.
The sbox should be replaced with a non-algebraic sbox.
Encryption is faster than decryption: they should be exchanged.
Papers from FSE2000 and AES3 noted minor weaknesses in the key schedule.
The key schedule should be computable on the fly from either direction.
(The encryption direction is ok now. The decryption direction can be
computed backward, if first computed forward, but this requires
substantial additional time in hardware, or a software assist.)
See Appendix D for discussion.

Serpent
Serpent has too many rounds, and is consequently slower than it needs to be.
The key schedule should be computable on the fly from both directions.
(The encryption direction is ok, but the decryption direction requires
a special setup circuit, or software help.)

Twofish
There's nothing wrong with Twofish, but small hardware implementations
will be slow. The key-dependent sboxes make fast pipelined hardware

142

expensive. Since the other ciphers are being returned for rework, the
Twofish team may as well have a chance to improve Twofish.
If Knudsen's nine-round attack fails, the number of rounds in Twofish
could be reduced.

Appendix B: The Future of Computing Power -- Speculations

One conspicuous absense in the AES discussions has been the phrase
"threat model". The assumption is that a good cipher can trump all
threat models with the magic words "128-bit key". During the coffee
break, we backtrack to discount academic attacks, insinuating that an
attack that requires 2^100 P/C pairs can be safely ignored.

One of the benefits of a powerful cipher is that it can be used and
forgotten about: Whatever security problems may occur in our widget or
protocol, the cipher won't be the weak point. On the other hand, it
never hurts to look around a bit.

How powerful might an adversary be in the near future?

Current limits on world computer power are 2^70-75 encryptions/year and
storage around 2^60-70 bits of memory. (Some attacks require real-time
available memory, but others can be carried out with massive tape
libraries.) For available enciphered material, it's possible that
someone has encrypted as much as 2^55 bits (2^48 blocks) of data under
one key. This would be a 1GHz channel for a year, or a million backup
tapes.

It's reasonable to project another 20-30 bits of computing power from
"Moore's Law" and further market penetration of computers. Bandwidth
will grow by another 10-30 bits. Presumably demand for processing
power and bandwidth will saturate when each of us has a real-time
synthetic video channel.

In the far future?

Restricting ourselves to conventional physics, assume every atom in the
top kilometer of Earth's crust is a gate, and switching occurs at the
speed of light traveling the length of a chemical bond. We are limited
to about 2^156 gates (or memory) and 2^61 gate transitions/second.
Assume about 15000 gate transitions to encrypt. This translates to
about 2^228 encryptions/year. Any attack using more than these
resources will remain academic until we can build brains the size of a
small planet.

It's too early to tell if Quantum Computing will develop into anything

143

real. There's a QC algorithm for searching N^2 things in time N; if
this can be applied to exhaustive key searching, it would mean that key
lengths should be doubled to resist quantum attacks.

There's no proof as yet that NP-complete problems require exponential
times with conventional computers, although the betting is that they do.

It's possible that QC will permit "full parallelism", allowing searches
of 2^N things with N qubits. This would make NP-complete problems
practically solvable, and destroy conventional cryptography. No such
general QC algorithm is known. There are QC algorithms known with
exponential speedup for solving factoring and discrete logs, but these
don't seem to be NP-complete problems.

Appendix C: Replacing Cipher Block Chaining (CBC) Mode

CBC MUST GO!

CBC mode encryption is a problem for any parallel or pipelined hardware
system. The fixup is to use lagged CBC, with a lag greater than or
equal to the number of pipeline stages. This requires an unreasonable
amount of IV, and forces even non-pipelined hardware to remember the
lagged IVs.

Counter Mode has been suggested as an alternative. I propose LFSRC
(Linear Feedback Shift Register Counter) Mode. It's as easy to
implement as Counter Mode, but allows arbitrary lookahead and arbitrary
parallelism or pipeline depth.

LFSRC copes with the two main problems of Counter Mode: (1) It's a
little too likely that two adjacent plaintext blocks have consecutive
values that become equal when the counter is xored with the plaintext,
and hence encrypt to the same ciphertext; and (2) CM encrypts a long
plaintext block of 0s as the encryption of a sequence of consecutive
integers, a worrisome practice if our cipher has an unknown weakness.

In LSFRC Mode, a 128-bit linear feedback shift register is initialized
from an IV. The register is xored into the plaintext before each
encryption, and is stepped after each block. The step function is to
shift the register one bit to the left; if the bit that fell off the
end was a 1, we xor 0x87 into the low byte. This corresponds to the
polynomial u^128 + u^7 + u^2 + u + 1, the first (mod 2) irreducible
polynomial of degree 128. It has maximal period, 2^128-1.

The register can be initialized from a full 128 bit IV, or by a shorter
IV of length 32 or 64 bits. The shorter IVs are replicated to make up
the full register length. An IV of 0 means ECB Mode.

144

Appendix D: Problems with Rijndael

(Notation: In this appendix, + is used to mean addition in the GF[256]
field used by Rijndael. This is done by xoring the bits representing
the field elements. For single bits, this is just xoring the bits.
This frees up the symbol ^ to represent powers. I use the letter u to
represent the field basis generator. The Rijndael field polynomial is
u^8 + u^4 + u^3 + u + 1.)

Rijndael has several properties that I find worrisome. These could be
easily fixed, with minimal impact on code execution time and circuit
size.

Rijndael is a Byte Cipher

Rijndael is really a cipher on bytes, rather than bits. All of the
manipulations treat the bytes as whole objects, and Rijndael does
nothing to break up the byte structure. This weakness is what allows
the Square attack to work. Fortunately, it's easy to fix, by changing
the Shift-Row operation to rotate the rows a non-integral number of
bytes.

The Fearful Symmetry of the byte movements bothers me. If the Round
Constants used in the key expansion were missing, then encryption would
be compatible with rotating each word of the plaintext and key by a byte.
The Round Constants for the first eight rounds are single bits.

Rijndael is Mostly Linear

A second Rijndael design decision is "not to mix groups". The cipher
contains no ordinary arithmetic additions. The only non-linear
function in Rijndael is the sbox; the rest of the cipher is pure xors.

One amusing consequence is that the cipher has a number of "alternative
implementations" available. Any linear map can be applied to the bits
within a byte, with the same map applied to every byte, and other parts
of the cipher adjusted, to get the same cipher.

Example: Suppose we map bytes by xoring the low order bit of each byte
into the adjacent bit.

 B1 += B0

(Recall that I'm using + to mean xor, so that ^ is free for exponents.)
The necessary compensating internal changes are: Plaintext and
ciphertext are adjusted to match, as a wrapper around the revised
cipher. The input of the sbox is adjusted by conceptually xoring the

145

address lines: A1 += A0. This is equivalent to exchanging two quarters
of the sbox table. The output of the sbox is adjusted by xoring S0
into S1.

The Mix-Column operation is modified slightly: Two of the mixed copies
of a byte are multiplied by u and u+1, which requires changing two of
the three low order bits of the "multiplication by u" circuit. The
circuit is still linear.

 C7...C0 = u * B7...B0

is originally implemented as

 C7 = B6, C6 = B5, C5 = B4, C4 = B3+B7, C3 = B2+B7, C2 = B1,
 C1 = B0+B7, C0 = B7.

This is changed to

 C7 = B6, C6 = B5, C5 = B4, C4 = B3+B7, C3 = B2+B7, C2 = B1+B0,
 C1 = B0, C0 = B7.

Only C1 and C2 are changed.

Multiplication by u+1 is done by xoring B with C.

Finally, the expanded key must be adjusted to match, by xoring in every
byte's low order bit into the adjacent bit. It looks like this can be
done by adjusting the actual key, and using the modified sbox. The
round constants used for the key schedule stutters are also adjusted to
match.

Any nonsingular linear map can be built from similar single-bit-xor
primitives. I'm not actually proposing this as an implementation
optimization, but it provides an attacker with some interesting working
material: He can do a series of manipulations to the sbox, looking for
more favorable cryptographic properties such as single-bit-change bytes,
or bit-swap bytes. He can even change to one of the other 29 eighth-
degree irreducible finite-field defining polynomials, or switch the
basis of the finite field from polynomial to normal.

None of the other candidate ciphers has this linearity property. The
property is a deliberate design decision. It would be easy to remove,
say by combining the round keys and middletext using plain 32-bit
addition instead of xoring.

Rijndael's Sbox is Based on Finite Field Reciprocals

Rijndael's algebraic sbox is a terrible idea. The sbox is defined as
the finite field reciprocal, followed by an affine linear transformation.

146

[Math majors, please forgive the recapitulation of finite fields.]
Finite fields have automorphisms, they often have non-trivial subfields,
and they have maps to other finite fields of the same degree. The
automorphism x -> x^2 exists in any finite field of characteristic 2.
In GF[256] the map is of order 8; x -> x^2 -> x^4 -> ... -> x^256 = x.
If x is any finite field element, then the sum of all its morphic
images is simple:

 Trace(x) = x + x^2 + x^4 + x^8 + x^16 + x^32 + x^64 + x^128 = 0 or 1.

The automorphism commutes with polynomials and reciprocals, the inner
function in the Rijndael sbox. So if a,b,c satisfy some equation such
as a^3 = b^2 + b/c, and the automorphism maps a->A,b->B,c->C, then
A,B,C will satisfy the same equation: A^3 = B^2 + B/C. (Constants in
the field must also be mapped, but 0 and 1 always map to themselves.)
The Rijndael reciprocal operator is just x->x^254, and is compatible
with the automorphism.

The affine transform following the inner map is NOT compatible with the
morphism, but it is linear in the field basis, so there's some other
matrix that's equivalent to the morphism applied to the sbox.

We might try the approach used in the Square attack: Apply the morphism
eight times to a plaintext byte, and examine the results. The morphs
of x are {x,x^2,x^4,...,x^128}.

Applying the first half of the sbox, the reciprocal operator, and
summing the results gives

 1/x + 1/x^2 + 1/x^4 + 1/x^8 + 1/x^16 + 1/x^32 + 1/x^64 + 1/x^128

 = 0 or 1.

The second part of the sbox, the affine transform will prevent these
values from continuing to be a set of automorphic images, but will
preserve the property that the sum is one of two values, 0 or 63.
[The value x=0 may cause some of the equations with reciprocals to be
invalid, but many encryptions will never use that sbox entry. A ten
round encryption with a sixteen byte data block will touch the sbox 160
times, with 48% probability of touching the 0 entry.]

GF[256] has unique subfields of order 16, 4, and 2 that are fixed by
the morphism. Elements of GF[2] are fixed by the morphism; elements
of GF[4] are fixed by any even power of the morphism; and elements of
GF[16] are fixed by the fourth power of the morphism.

For any x in the field,

 x + x^4 + x^16 + x^64 is in the GF[4] subfield, and

147

 = either 0, 1, u^7+u^5+u^4+u^3+u^2, or u^7+u^5+u^4+u^3+u^2+1.

The same is of course true for 1/x + 1/x^4 + 1/x^16 + 1/x^64; after the
affine map is applied, there will be only four possible values.

Similarly, x+x^16 has one of the values in GF[16]. This subfield is
(additively) generated by 1, u^3+u^2, u^6+u^4, and u^7+u^6+u^5.

The reciprocal of a subfield member is of course in the subfield.
Complementing the low-order bit of a byte keeps it in the same subfield,
so its reciprocal remains in the subfield.

Rijndael's Sbox has a Relatively Simple Algebraic Formula

The Rijndael documentation notes that the full sbox map is equivalent
to the algebraic expresion

S(x) = 63 + 8f x^127 + b5 x^191 + 01 x^223 + f4 x^239 +
 25 x^247 + f9 x^251 + 09 x^253 + 05 x^254

(Coefficients are hex representations of GF[256] field elements.
Calculations are done in the field, so "+" is the xor of the elements.)
A typical random sbox would have 250 terms instead of 9.

Although S(x) looks daunting, it isn't quite as bad as it seems:
If x is not 0, then x^255 = 1, so we can rewrite the right-hand-side as

 8f b5 01 f4 25 f9 09 05
S(x) = 63 + ----- + ---- + ---- + ---- + --- + --- + --- + --
 x^128 x^64 x^32 x^16 x^8 x^4 x^2 x

Then the individual denominators are linear in x, allowing relatively
simple rational expressions for S(a+b):

 8f b5 05
S(a+b) = 63 + ------------- + ----------- + ... + -----
 a^128 + b^128 a^64 + b^64 a + b

and

 8f 05
S(a+b+c) = 63 + --------------------- + ... + ---------
 a^128 + b^128 + c^128 a + b + c

and

 8f b5 01 05
S(a^2) = 63 + -- + ----- + ---- + ... + ---
 a a^128 a^64 a^2

148

and

 8f + 25 b5 + f9 01 + 09 f4 + 05
S(a+a^16) = 63 + ----------- + ---------- + ---------- + --------
 a^128 + a^8 a^64 + a^4 a^32 + a^2 a^16 + a

The iteration of several rounds of the cipher will create more complex
expressions, but random sboxes would have much more complex expressions.

There is a natural tendency to regard these expressions as much too
complex to solve, but we have seen no detailed analysis of the growth
of expression size as a function of the number of rounds. If breaking
ten round Rijndael-128 merely requires writing the meet-in-the-middle
equation

 R5(plaintext,ExpandedKeyBeg) = R5inv(ciphertext,ExpandedKeyEnd)

and substituting in known plaintext-ciphertext pairs reduces the two
sides to polynomials with only a million terms, we have trouble. An
attacker can collect two million P/C pairs and solve the equations as a
large system of LINEAR equations.

There may also be an advantage in using a normal basis representation
for the field elements. A normal basis representation uses a field
element v and its successive squares v^2, v^4, v^8, v^16, v^32, v^64,
and v^128 as the basis instead of 1, u, u^2, u^3, u^4, u^5, u^6, u^7.
We require Trace(v) = 1; for the Rijndael polynomial, this means v must
have either u^5 xor u^7 as a component. A good choice for v is v = u^5;
then the basis is u^5, u^10, u^20, u^40, u^80, u^160, u^320, and u^640.
There's a linear transformation on the bits to convert between the
field representations, so the "alternative implementation" offered
above works. The advantage of NB representation is that squaring is a
rotation of the bits. Suppose that [hgfedcba] is a field element, with
each letter representing one bit:

[hgfedcba]^2 = (h u^640 + g u^320 + ... + b u^10 + a u^5)^2

 = h u^5 + g u^640 + f u^320 + ... + b u^20 + a u^10

 = [gfedcbah]

Reciprocals of rotated values are rotated by the same amount in the
same direction, so in the equation for S(x) as a sum of fractions, the
denominators will all be rotations of x, and all the reciprocals will
be rotations of 1/x.

It's possible that all these sbox speculations will lead to nothing,
and that no attack on Rijndael can be built from these ideas. However,

149

Rijndael is the only AES finalist that's subject to algebraic attack,
and the risk can be completely removed by using a new sbox.

There's no extra cost in either hardware or software, since no
implementation calculates the sbox fom the definition; all use table
lookup. There's even a potential benefit: the substituted sbox can be
an involution, which will simplify decryption hardware and make
decryption software smaller.

There's no need for the Rijndael sbox to have the reciprocal property.
As the authors themselves state, a random sbox with good crypto
properies would suffice.

Recommendations for Rijndael

Add more rounds, unless other changes reduce the number of breakable
rounds to five or fewer.

Change Shift-Row to break up the bytes and spoil the Square attack, by
rotating the rows a non-integral number of bytes.

Replace the sbox with a non-algebraic random sbox having the usual
properties of balance, diffusion, etc. This sbox can safely be an
involution, which will simplify life for the hardware folks.

Change the key schedule to be easily computable from either end.
[Papers at FSE2000 and AES3 noted weaknesses in the Rijndael key
schedule which should be addressed.]

Exchange the roles of decryption and encryption, so that decryption is
not slower than encryption.

150

Sender: jworley@hpfctwc.fc.hp.com
Date: Mon, 15 May 2000 15:12:56 -0600
From: John Worley <jworley@fc.hp.com>
Organization: Hewlett Packard Labs, Denver
X-Mailer: Mozilla 4.7 [en] (X11; U; HP-UX B.10.20 9000/785)
X-Accept-Language: en
To: AESround2@nist.gov
Cc: Tom Christian <twc@fc.hp.com>, Bill Worley <worley@hpl.hp.com>,
 Ross Anderson <Ross.Anderson@cl.cam.ac.uk>,
 Dag Arne Osvik <osvik@ii.uib.no>
Subject: New Serpent Timings for IA-64

 By carrying a duplicate of the low 32 bits of the data block in the
high 32-bits, it is possible to greatly improve Serpent performance on the
IA-64. The advantage is that the fixed rotations can now be accomplished
in one cycle. Equally important is the contribution of Dag Arne Osvik's
equations tailored to the IA-64 architecture. These provide 4- and 5-cycle
software solutions for the s-boxes.

 This solution requires a doubled-size key table (1056 bytes), but
the keying time decreased from 490 to 340 cycles, while the encryption
time decreases from 565 cycles to 419. I think this should be considered
more than acceptable software performance for almost any application.

Regards,
John Worley
jworley@fc.hp.com

151

From: "Mattias Lennartsson" <mattias.lennartsson@telia.com>
To: <AESround2@nist.gov>
Subject: AES
Date: Mon, 15 May 2000 23:24:09 +0200
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 4.72.3110.5
X-MimeOLE: Produced By Microsoft MimeOLE V4.72.3110.3
X-MIME-Autoconverted: from quoted-printable to 8bit by email.nist.gov id RAA08781

I think that the best selection for AES is the safest algorithm, so far I think that it's many
that agrees. But witch is than the safest one. As I see it there are two big threats to new
algorithms. Either a improvement of the cryptoanalytic methods used today or the
discovery of a totoal different way of attacking block chiffers. So the chiffer should be a
chiffer that stands greate aganst todays differential attack and also be safe against new
ones. First we need a big security margin on the differentials, this could be found on
either Serpent or Twofish. And if you add more ronds to Rijndael witch probably should
hav had more ronds allready from the begining, a good security margin is found also
here.

But it should allso be safe against future attacks. I think that this is achived by a komplex
algorithm structure. If you add several different and safe components it seemed
resonible to me that it would stop a future attack better. If you use a small number of
components and one or more of those component is found less effective it may crack the
hole algorithm. But this is not hapening if the chiffer is more complex. So therefore i think
that Twofish would be the best algorithm for AES.

And I don't like the idea of selecting two algorithms for AES. It would just be to
confusing, I think that selecting one algorithm will do just fine. What is hapening if two
AES standards i selected and one is broken. Wouldn't this affect the trust of AES, how
do you know witch of the AES you're program is using. I think that we should
concentrate on finding the most securest one instead of argumenting.

Mattias Lenartsson (Sweden)

152

Date: Mon, 15 May 2000 16:34:42 -0600
From: "Ralph S. Hoefelmeyer" <ralph.hoefelmeyer@wcom.com>
Subject: Twofish
To: AESround2@nist.gov
X-MIMEOLE: Produced By Microsoft MimeOLE V5.00.2314.1300
X-Mailer: Microsoft Outlook IMO, Build 9.0.2416 (9.0.2910.0)
Importance: Normal
X-MSMail-priority: Normal

Based on my analysis of the options, I support Twofish for AES. It is flexible enough to
support the myriad platforms we are going to see in the future, from Java-enable cell
phones and PDAs, to smart cards and tokens. It has a reasonable level of assurance of
confidentiality for the things one would use it for, such as financial transactions.

This is my opinion, not that of MCI WorldCom.

Ralph S. Hoefelmeyer
Senior Engineer
Team Lead, Next Generation Network Security Services

153

Date: Tue, 16 May 2000 02:31:16 +0200 (MET DST)
From: Dag Arne Osvik <osvik@ii.uib.no>
To: AESround2@nist.gov

I have some comments on two of the AES finalists

Serpent

 - In "The AES second round Comments of the Rijndael", the Rijndael team
 claims that Serpent needs 80 bytes for encryption, even for 128 bit
 keys. Now consider the minimum RAM requirements of Serpent:

 - Text block, 16 bytes
 - Key setup state, 32 bytes (independent of key size)
 - Temporary storage, 1 byte (for s-boxes/rotations)
 - Loop counter, 1 byte

 The loop counter and temporary storage might be kept in registers
 where available. Total RAM requirement is thus 48-50 bytes. Note that
 this requires application of both forward and inverse s-boxes in the
 key schedule, increasing code size (inverse s-boxes are required).

 - S-boxes can exploit parallelism in processors, as demonstrated by my
 S-boxes optimized for IA-64 (3 cycles critical path, 4-5 cycles total).
 John Worley just reported timings using these. Other processors should
 see similar figures for the s-boxes, depending on their number of ALUs.

Twofish

 - There is a tradeoff between key agility and encryption speed, i.e. if
 an implementation should be optimal for all numbers of blocks, it will
 have to choose in run time which key setup/encryption combo to use. And
 of course, all chosen combos must be implemented.

 - In "Comments on Twofish as an AES Candidate", the Twofish team claim
 that "Twofish far surpasses the other four finalists" in terms of
 security/performance ratio, "normalizing to the largest number of
 rounds cryptanalyzed". The NSA ASIC implementations indicated that
 Serpent was nearly 4 times faster than Twofish, and from the
 cryptanalysis I've seen so far, Serpent seems far more secure than
 Twofish. Also I expect S-box optimizations to benefit Serpent hardware
 implementations significantly.

154

Regarding my personal preferences for the AES, here is my list:

1. Serpent
2. Rijndael (with extra rounds)
3. Twofish
4. RC6
5. MARS

And choose only one.

Regards,

--
Dag Arne Osvik http://www.ii.uib.no/~osvik

155

X-Lotus-FromDomain: CERTICOM
From: "Don Johnson" <djohnson@certicom.com>
To: AESround2@nist.gov
Date: Tue, 16 May 2000 16:07:37 -0400
Subject: ANSI X9F1 vote on Future Resiliency

NIST,

I have just reviewed the AES round 2 notes/text comments (the big combined
file).

Early in the file I mention that I presented "Future Resiliency" to ANSI X9F1
and that they "voted for it" in some sense. For some reason or another, Roger
Schlafly, who was not there, deemed it necessary to claim that this vote was
meaningless. This was simply not true, so let me clarify.

I presented the paper "Future Resiliency: A Possible New AES Criterion" to ANSI
X9F1, which I had submitted to the first AES conference. The presentation took
the better part of an hour, it was not a truncated summary presentation. After
I was done, there was some discussion as to what to do, if anything, about the
ideas in it. I suggested an official vote, as follows:
A) NIST should incorporate the ideas of "Future Resiliency" in the AES criteria.

This passed with a good majority, there were a few no votes.

Allen Roginsky, IBM, later proposed another official vote, as follows:
B) NIST should consider adding the ideas of "Future Resiliency" to the AES
criteria.

This passed with more yes votes, being stated in a weaker form.

These were official ANSI X9F1 votes and were specifically based on the idea that
multiple algorithms were a way to address as much as possible the potential for
a disastrous crack in one algorithm.

I wanted to let NIST know for the record how the ANSI X9F1 vote should be
interpreted.

Don Johnson

