
Session ID:

Session Classification:

John Kelsey

SHA3

WHERE WE’VE BEEN

WHERE WE’RE GOING

2

►Where We’ve Been:

►Ancient history

►2004

►The Competition

►Where We’re Going

►What to standardize

►Extras

►Speculative plans

Overview of Talk

3

Ancient History
(before 2004)

4

► Hash functions appeared as an important idea at the dawn of modern public crypto.

► Many ideas floating around to build hash functions from block ciphers (DES) or

mathematical problems.

► Ways to build hash functions from compression functions

►Merkle-Damgaard

► Ways to build compression functions from block ciphers

►Davies-Meyer, MMO, etc.

Origins

5

Merkle-Damgaard

►Used in all widespread hash functions before 2004

►MD4, MD5, RIPE-MD, RIPE-MD160, SHA0, SHA1, SHA2

Image from Wikipedia

6

►Rivest published MD4 in

1990

►128-bit output

►Built on 32-bit word

operations

►Add, Rotate, XOR, bitwise

logical operations

►Fast

►First widely used dedicated

hash function

The MD4 Family

Image from Wikipedia MD4 Article

7

►Several researchers

came up with attacks on

weakened versions of

MD4

►Rivest created stronger

function in 1992

►Still very fast

►Same output size

►Some attacks known

►Den Boer/Bosselaers

►Dobbertin

MD5

Image from Wikipedia MD5 Article

8

►SHA0 published in 1993

►160-bit output

► (80 bit security)

►NSA design

►Revised in 1995 to SHA1

►Round function (pictured) is

same

►Message schedule more

complicated

►Crypto ‘98 Chabaud/Joux

attack on SHA0

SHA0 and SHA1

Image from Wikipedia SHA1 Article

9

►Published 2001

►Three output sizes

►256, 384, 512

►224 added in 2004

►Very different design

►Complicated

message schedule

►Still looks strong

SHA2

Image from Wikipedia SHA2 Article

10

►MD4 was known to be broken by Dobbertin, but still saw

occasional use

►MD5 was known to have theoretical weaknesses from

Den Boer/Bosselaers and Dobbertin, but still in wide use.

►SHA0 was known to have weaknesses and wasn’t used.

►SHA1 was thought to be very strong.

►SHA2 looked like the future, with security up to 256 bits

►Merkle-Damgaard was normal way to build hashes

As of 2004, we thought we

knew what we were doing.

11

2004: The Sky
Falls

12

Conference:

►Joux shows a surprising property in Merkle-Damgaard

hashes

►Multicollisions

►Cascaded hashes don’t help security much

►Biham/Chen attack SHA0 (neutral bits)

Rump Session:

►Joux shows attack on SHA0

►Wang shows attacks on MD4, MD5, RIPEMD, some

Haval variants, and SHA0

►Much better techniques used for these attacks

Crypto 2004: The Sky Falls

13

►We found out we didn’t understand hashes as well as we

thought.

►Wang’s techniques quickly extended

►Better attacks on MD5

►Claimed attacks on SHA1 (2005)

►Joux’s multicollisions extended and applied widely

►Second preimages and herding

►Multicollisions even for multiple passes of hash

►Much more

Aftermath: What We Learned

14

►All widely used hash functions were called into question

►MD5 and SHA1 were very widespread

►SHA2 and RIPE-MD160, neither one attacked, were not widely

used.

►At same time, NIST was pushing to move from 80- to

112-bit security level

►Required switching from SHA1 to SHA2

►Questions about the existing crop of hash functions

►SHA1 was attacked, why not SHA2?

What to do next?

15

Preparing for the
Competition

16

►We started hearing from people who wanted a hash

competition

►AES competition had happened a few years earlier, and

had been a big success

►This would give us:

►Lots of public research on hash functions

►A new hash standard from the public crypto community

►Everything done out in the open

Pressure for a Competition

17

►Gaithersburg 2005

►UCSB 2006

► In these workshops, we got feedback on what a

competition should focus on, what requirements should

be, etc.

►Lots of encouragement to have a hash competition

Hash Workshops

18

►We spent a lot of time getting call for proposals nailed

down:

►Algorithm spec

►Security arguments or proofs

►Preliminary analysis

►Tunable security parameter(s)

2007: Call for proposals

19

►Drop-in replacement

►Must provide 224, 256, 384, and 512 bit output sizes

►Must play well with HMAC, KDFs, and other existing hash uses

►N bit output:

►N/2 bit collision resistance

►N bit preimage resistance

►N-K bit second preimage resistance

►K = lg(target message length)

►Eliminate length-extension property!

►Tunable parameter to trade off between security and

performance.

Security Requirements

20

The Competition

21

Date Event Candidate

s Left

11/2/2007 Call for Proposals published, competition began

10/31/2008 SHA3 submission deadline 64

12/10/2008 First-round candidates announced 51

2/25/2009 First SHA3 workshop in Leuven, Belgium 51

7/24/2009 Second-round candidates announced 14

8/23/2010 Second SHA3 workshop in Santa Barbara, CA 14

12/9/2010 SHA3 finalists announced 5

3/22/2012 Third SHA3 workshop in Washington, DC 5

10/2/2012 Keccak announced as the SHA3 winner 1

Hash Competition Timetable

22

►We started with 64 submissions (10/08)

►51 were complete and fit our guidelines

►We published those 51 on December 2008

►Huge diversity of designs

►51 hash functions were too many to analyze well

►There was a *lot* of cryptanalysis early on, many hash

functions were broken

Initial submissions

23

BLAKE BMW Cubehash Echo Fugue Grostl Hamsi

JH Keccak Luffa SHABAL SHAVite SIMD Skein

►Many of the first 51 submissions were broken or seriously

dented in the first year of the competition.

►Others had unappealing performance properties or other

problems.

►AES competition had 15 submissions; we took a year to

get down to 14.

►Published our selections in July 2009

Narrowing the field down to 14

24

BLAKE Grostl JH Keccak Skein

►Published selection in Dec 2010

►Much harder decisions

►Cryptanalytic results were harder to interpret

►Often distinguishers of no apparent relevance

►All five finalists made tweaks for third round

►BLAKE and JH increased number of rounds

►Grostl changed internals of Q permutation

►Keccak changed padding rules

►Skein changed key schedule constant

Choosing 5 finalists

25

►Nobody was knocked out by cryptanalysis

►Different algorithms got different depth of cryptanalysis

►Grostl, BLAKE, Skein, Keccak, JH

►Keccak and Blake had best security margins

►Domain extenders (aka chaining modes) all had security

proofs

►Grostl had a very big tweak, Skein a significant one

►ARX vs non-ARX designs

Keccak looks very strong, and seems to have been analyzed

in sufficient depth to give us confidence.

Choosing a Winner: Security

26

►All five finalists have acceptable performance

►ARX designs (BLAKE and Skein) are excellent on high-

end software implementations

►JH and Grostl fairly slow in software

►Keccak is very hardware friendly

►High throughput per area

Keccak performs well everywhere, and very well in

hardware.

Choosing a Winner:

Performance

27

►SHA3 will be deployed into a world full of SHA2

implementations

►SHA2 still looks strong

►We expect the standards to coexist.

►SHA3 should complement SHA2.

►Good in different environments

►Susceptible to different analytical insights

Keccak is fundamentally different from SHA2. Its

performance properties and implementation tradeoffs

have little in common with SHA2.

Complementing SHA2

28

►Keccak won because of:

►High security margin

►Fairly high quality, in-depth analysis

►Elegant, clean design

►Excellent hardware performance

►Good overall performance

►Design diversity from SHA2

Wrapup on Selecting a Winner

29

►The competition brought forth a huge amount of effort by

people outside NIST

►The cryptographic community did the overwhelming

majority of the work:

►Submissions

►Analysis

►Proofs

►Reviews of papers for conferences/journals

►NIST's main job was to understand that work and make

decisions based on it.

How Did It Work Out?

30

SHA3: What
Function Will We
Standardize?

31

►Play well with existing applications

►DRBGs, KDFs, HMAC, signatures

►Drop-in replacements

►SHA224, -256, -384, -512, and even SHA1 and MD5

►Fast and efficient everywhere

►Benefit from tree hashing

►Benefit from Keccak extras

►Variable output, efficient PRF, authenticated encryption, DRBG

Keccak as SHA3: Goals

32

►Keccak is equipped to provide variable-length output from

a hash.

►This is endlessly useful

►Protocols roll their own version of this all the time

►OAEP

►Key derivation functions

►DSA Vaudenay attack fix

►SHA3 standard will support variable output sizes

Variable output length

33

►Traditionally, hash functions’ security level is linked to

their output size

►SHA256: 128 bit security against collisions, 256 against preimage

►Best possible security for hash with 256-bit output.

►Keccak has variable output length, which breaks this link

►Need a notion of security level separate from output size

►Keccak is a sponge

►Security level is determined by capacity

►Tunable parameter for performance/security tradeoff

Security and Output Size

34

►Keccak’s security level is based on its capacity

►Adjustable parameter – more security = less performance

►C = 2*security level

►C/2 bits of security against both preimages and collisions

.

Capacity and Security

35

►SHA256 has a security level of 128 bits

►Used with public key and symmetric algorithms of comparable

security level

► Is 256 bits of security against preimages necessary?

►We propose changing this

►Hash function that supports k bit security level should require only

k bits of preimage resistance.

►Question: Is there any practical weakness introduced by this

decision?

Security Levels and Hashing

36

►Keccak’s SHA3 submissions paid a substantial

performance cost to get these high preimage resistance

numbers.

►Keccak-512 has 1024-bit capacity

►Keccak-256 has 512-bit capacity

►Our proposal:

►Security t of k means k bits of security needed for all

attacks.

►This will make SHA3 considerably faster everywhere.

Smaller capacity, faster hash

37

►Keccak specified four different capacities

►448, 512, 768 ,1024

►Our plan would drop those to

►224, 256, 384, 512

►But this seems needlessly complex

►224 not on a 64-bit boundary

►Four incompatible implementations

►What do we gain for this added complexity?

Too Many Capacities!

38

►Choice #1: C = 512 only

►Security of SHA3 is at least 256 bits against all attacks

►Preimage strength only 256 bits

►Variable output

►All implementations identical for all output sizes and security levels.

►Choice #2: C = 512 and C=256 only

►Security of SHA3 is at least C/2 against all attacks

►Variable output

►Lower security implementations can be 20-30% faster

Tradeoff between simplicity of standard and performance at

low end.

How Many Capacities?

39

►Choice #3: Keep four capacities

►C = 224, 256, 384, 512

►Preimage strength equals collision strength

►Each capacity has variable output

►Drop in replacement for SHA-224 is Keccak224(x,224).

►Avoids changing message padding

►More implementation complexity

How Many Capacities? Cont'd

40

►We need drop-in replacements for SHA-224, -256, -384,

and -512.

►We can use variable output length to support these

►Problem: SHA224 and SHA256 give unrelated outputs

►Current Keccak variable-output scheme gives related outputs.

► If we use same capacity for all, we must encode output length in

message padding to make these outputs different

►Keccak SHA3 submission accomplished this with

different capacities

► If we don't have four capacities, we must make outputs different

in some other way.

Drop-in replacements

41

► If we change message padding we can incorporate other

information

►Tree structure/location

►Alternative message encodings

►Anything else?

Message padding

42

►Variable-length output

►Possibly only one or two capacities

►Requires encoding variable output length in message padding.

►Security decision: Preimages need only be as hard to find

as collisions.

►Advantage of one capacity: all implementations are

interoperable

►Disadvantage: 20-30% loss of performance in 128-bit

security level applications, message padding changes

Summing Up SHA3

43

What comes next?

44

►Our first job is to write a SHA3 FIPS

►Write standard to allow later standards to build up these extras

►Question: What should we call this? Keccak? SHA3?

►PRF

►Tree hashing

►Not part of Keccak spec, but used with it

►Authenticated encryption

►Random number generation

►Key derivation

Keccak offers a lot of extras

45

►Keccak defines a more efficient PRF

►Can we specify this as a drop-in replacement for HMAC?

►Note: HMAC-Keccak is also fine, just inefficient

►Question: Are there uses of HMAC that wouldn’t work

right with the Keccak PRF?

►Question: Can we use PRF for randomized hashing?

PRF

46

►NIST has committed to doing a standard for generic tree

hashing, using any approved hash function

►Planning to incorporate some support for tree hashing in

message padding rules for SHA3.

►Approach #1: Full hash tree

►Specify leaf size, fan-out, maximum height

►Approach #2: Interleave mode

►N hashes done in parallel, until end when they’re all hashed

together.

Tree Hashing

47

►Our current plan is to specify general mechanisms, and

recommend some parameters

►Example: parallel interleaved mode with N=16

►Example: tree mode with leaves of 8 message blocks and

fan-out of 8.

►Question: Would we be better off allowing only small set

of parameters?

►Comments or suggestions very much appreciated here

►This effort is just beginning now.

Tree Hashing, Cont’d

48

►Keccak designers defined “duplex mode” which can be

used to build authenticated encryption mechanism

►Authentication is as secure as hash function

►Encryption is secure if hash function behaves randomly in

some sense.

►See Duplex Mode paper from Keccak team for details

►Our Plan: after SHA3 is published, we will strongly

consider writing a standard for authenticated encryption

with Keccak.

Authenticated Encryption

49

►Keccak in duplex mode can also be used to build a

deterministic random number generator

►SP 800-90A has several DRBGs specified

►After the SHA3 standard is published, NIST will strongly

consider adding a new DRBG based on Keccak in

Duplex mode

Random Number Generation

50

►Keccak specifies many smaller permutations

►Full SHA3 is built on 1600-bit permutation

►Smaller permutations are closely related

►We may specify hashes based on these smaller

permutations at some point.

►Useful for constrained devices

►This depends on building up confidence in those small

permutations

►So far, they have seen little analysis.

Speculative: Smaller Permutations

51

►The Keccak designers have proposed alternatives for

more efficient authenticated encryption or message

authentication

►Different modes

►Smaller permutations

►Fewer rounds

►NIST might eventually consider these for standardization,

if we become confident in their security.

Speculative: Alternative Modes

52

Wrapup and
Questions

53

► Is there a problem reducing preimage resistance to

security level?

►What application will be broken with preimage resistance of 256

bits?

►How many capacities?

►C=512 or C=512/256 or C=512/384/256/224?

►Tree hashing: Flexibility vs simplicity of standards?

►What are important tree hashing applications?

►What should we call it?

►What are your questions?

Questions for Community

