
The new NIST reference for Randomness Beacons

Lúıs Brandão

Joint work with:
John Kelsey, René Peralta, Harold Booth

National Institute of Standards and Technology (Gaithersburg MD, USA)

Presentation at

International Cryptographic Module Conference
May 17, 2019 @ Vancouver, Canada

1
1
 0

 1
 1

 1
 0

1
0
 1

 1
 0

 0
 0

 1
 0

0
0

1
 1

 1
 1

 1
 0

 0
 1

 1
 0

1
1
 1

 0
 0

 1
 0

 0
 0

 1

1
01

 1
 0

 1
 0

 0
 0

 0
 1

 1
 0

 0
 1

1
1
 0

 0
 1

 0
 0

 0
 0

 1
 0

 0
 1

 0
 0

 0
 1

0
1
 0

 1
 1

 1
 1

 1
 0

 1
 1

 0
 1

 1
 0

 1
 1

 1
 1

0
0

1
 1

 0
 1

 0
 1

 0
 1

 0
 0

 1
 1

 1

A
d
a
p
te

d
 fro

m
 clke

r.co
m

/clip
a
rt-1

9
5

9
3

2
.h

tm
l

Outline

1. Introduction

2. Pulse format

3. Beacon Protocol

4. Using a Beacon

5. Brief security considerations

6. Conclusion

2/30

1. Introduction

Outline

1. Introduction

2. Pulse format

3. Beacon Protocol

4. Using a Beacon

5. Brief security considerations

6. Conclusion

3/30

1. Introduction

A Randomness Beacon

A service that produces timed outputs of fresh public randomness.

High-level description:

I Periodically pulsates randomness (e.g., 1 per min)

I Each pulse has a fresh 512-bit random string

I Each pulse is indexed, time-stamped and signed

I Any past pulse is publicly accessible

I The sequence of pulses forms a hash-chain

1
1
 0

 1
 1

 1
 0

1
0
 1

 1
 0

 0
 0

 1
 0

0
0

1
 1

 1
 1

 1
 0

 0
 1

 1
 0

1
1
 1

 0
 0

 1
 0

 0
 0

 1

1
01

 1
 0

 1
 0

 0
 0

 0
 1

 1
 0

 0
 1

1
1
 0

 0
 1

 0
 0

 0
 0

 1
 0

 0
 1

 0
 0

 0
 1

0
1
 0

 1
 1

 1
 1

 1
 0

 1
 1

 0
 1

 1
 0

 1
 1

 1
 1

0
0

1
 1

 0
 1

 0
 1

 0
 1

 0
 0

 1
 1

 1

A
d
a
p
te

d
 fro

m
 clke

r.co
m

/clip
a
rt-1

9
5

9
3

2
.h

tm
l

What can it be useful for?

I public auditability of randomized processes

I coordination between many parties

I prove something happened after a certain time

Not good for: selecting your secret keys

4/30

1. Introduction

A Randomness Beacon

A service that produces timed outputs of fresh public randomness.

High-level description:

I Periodically pulsates randomness (e.g., 1 per min)

I Each pulse has a fresh 512-bit random string

I Each pulse is indexed, time-stamped and signed

I Any past pulse is publicly accessible

I The sequence of pulses forms a hash-chain

1
1
 0

 1
 1

 1
 0

1
0
 1

 1
 0

 0
 0

 1
 0

0
0

1
 1

 1
 1

 1
 0

 0
 1

 1
 0

1
1
 1

 0
 0

 1
 0

 0
 0

 1

1
01

 1
 0

 1
 0

 0
 0

 0
 1

 1
 0

 0
 1

1
1
 0

 0
 1

 0
 0

 0
 0

 1
 0

 0
 1

 0
 0

 0
 1

0
1
 0

 1
 1

 1
 1

 1
 0

 1
 1

 0
 1

 1
 0

 1
 1

 1
 1

0
0

1
 1

 0
 1

 0
 1

 0
 1

 0
 0

 1
 1

 1

A
d
a
p
te

d
 fro

m
 clke

r.co
m

/clip
a
rt-1

9
5

9
3

2
.h

tm
l

What can it be useful for?

I public auditability of randomized processes

I coordination between many parties

I prove something happened after a certain time

Not good for: selecting your secret keys

4/30

1. Introduction

A Randomness Beacon

A service that produces timed outputs of fresh public randomness.

High-level description:

I Periodically pulsates randomness (e.g., 1 per min)

I Each pulse has a fresh 512-bit random string

I Each pulse is indexed, time-stamped and signed

I Any past pulse is publicly accessible

I The sequence of pulses forms a hash-chain

1
1
 0

 1
 1

 1
 0

1
0
 1

 1
 0

 0
 0

 1
 0

0
0

1
 1

 1
 1

 1
 0

 0
 1

 1
 0

1
1
 1

 0
 0

 1
 0

 0
 0

 1

1
01

 1
 0

 1
 0

 0
 0

 0
 1

 1
 0

 0
 1

1
1
 0

 0
 1

 0
 0

 0
 0

 1
 0

 0
 1

 0
 0

 0
 1

0
1
 0

 1
 1

 1
 1

 1
 0

 1
 1

 0
 1

 1
 0

 1
 1

 1
 1

0
0

1
 1

 0
 1

 0
 1

 0
 1

 0
 0

 1
 1

 1

A
d
a
p
te

d
 fro

m
 clke

r.co
m

/clip
a
rt-1

9
5

9
3

2
.h

tm
l

What can it be useful for?

I public auditability of randomized processes

I coordination between many parties

I prove something happened after a certain time

Not good for: selecting your secret keys

4/30

1. Introduction

A Randomness Beacon

A service that produces timed outputs of fresh public randomness.

High-level description:

I Periodically pulsates randomness (e.g., 1 per min)

I Each pulse has a fresh 512-bit random string

I Each pulse is indexed, time-stamped and signed

I Any past pulse is publicly accessible

I The sequence of pulses forms a hash-chain

1
1
 0

 1
 1

 1
 0

1
0
 1

 1
 0

 0
 0

 1
 0

0
0

1
 1

 1
 1

 1
 0

 0
 1

 1
 0

1
1
 1

 0
 0

 1
 0

 0
 0

 1

1
01

 1
 0

 1
 0

 0
 0

 0
 1

 1
 0

 0
 1

1
1
 0

 0
 1

 0
 0

 0
 0

 1
 0

 0
 1

 0
 0

 0
 1

0
1
 0

 1
 1

 1
 1

 1
 0

 1
 1

 0
 1

 1
 0

 1
 1

 1
 1

0
0

1
 1

 0
 1

 0
 1

 0
 1

 0
 0

 1
 1

 1

A
d
a
p
te

d
 fro

m
 clke

r.co
m

/clip
a
rt-1

9
5

9
3

2
.h

tm
l

What can it be useful for?

I public auditability of randomized processes

I coordination between many parties

I prove something happened after a certain time

Not good for: selecting your secret keys

4/30

1. Introduction

A Randomness Beacon

A service that produces timed outputs of fresh public randomness.

High-level description:

I Periodically pulsates randomness (e.g., 1 per min)

I Each pulse has a fresh 512-bit random string

I Each pulse is indexed, time-stamped and signed

I Any past pulse is publicly accessible

I The sequence of pulses forms a hash-chain

1
1
 0

 1
 1

 1
 0

1
0
 1

 1
 0

 0
 0

 1
 0

0
0

1
 1

 1
 1

 1
 0

 0
 1

 1
 0

1
1
 1

 0
 0

 1
 0

 0
 0

 1

1
01

 1
 0

 1
 0

 0
 0

 0
 1

 1
 0

 0
 1

1
1
 0

 0
 1

 0
 0

 0
 0

 1
 0

 0
 1

 0
 0

 0
 1

0
1
 0

 1
 1

 1
 1

 1
 0

 1
 1

 0
 1

 1
 0

 1
 1

 1
 1

0
0

1
 1

 0
 1

 0
 1

 0
 1

 0
 0

 1
 1

 1

A
d
a
p
te

d
 fro

m
 clke

r.co
m

/clip
a
rt-1

9
5

9
3

2
.h

tm
l

What can it be useful for?

I public auditability of randomized processes

I coordination between many parties

I prove something happened after a certain time

Not good for: selecting your secret keys

4/30

1. Introduction

A Randomness Beacon

A service that produces timed outputs of fresh public randomness.

High-level description:

I Periodically pulsates randomness (e.g., 1 per min)

I Each pulse has a fresh 512-bit random string

I Each pulse is indexed, time-stamped and signed

I Any past pulse is publicly accessible

I The sequence of pulses forms a hash-chain

1
1
 0

 1
 1

 1
 0

1
0
 1

 1
 0

 0
 0

 1
 0

0
0

1
 1

 1
 1

 1
 0

 0
 1

 1
 0

1
1
 1

 0
 0

 1
 0

 0
 0

 1

1
01

 1
 0

 1
 0

 0
 0

 0
 1

 1
 0

 0
 1

1
1
 0

 0
 1

 0
 0

 0
 0

 1
 0

 0
 1

 0
 0

 0
 1

0
1
 0

 1
 1

 1
 1

 1
 0

 1
 1

 0
 1

 1
 0

 1
 1

 1
 1

0
0

1
 1

 0
 1

 0
 1

 0
 1

 0
 0

 1
 1

 1

A
d
a
p
te

d
 fro

m
 clke

r.co
m

/clip
a
rt-1

9
5

9
3

2
.h

tm
l

What can it be useful for?

I public auditability of randomized processes

I coordination between many parties

I prove something happened after a certain time

Not good for: selecting your secret keys

4/30

1. Introduction

A Randomness Beacon

A service that produces timed outputs of fresh public randomness.

High-level description:

I Periodically pulsates randomness (e.g., 1 per min)

I Each pulse has a fresh 512-bit random string

I Each pulse is indexed, time-stamped and signed

I Any past pulse is publicly accessible

I The sequence of pulses forms a hash-chain

1
1
 0

 1
 1

 1
 0

1
0
 1

 1
 0

 0
 0

 1
 0

0
0

1
 1

 1
 1

 1
 0

 0
 1

 1
 0

1
1
 1

 0
 0

 1
 0

 0
 0

 1

1
01

 1
 0

 1
 0

 0
 0

 0
 1

 1
 0

 0
 1

1
1
 0

 0
 1

 0
 0

 0
 0

 1
 0

 0
 1

 0
 0

 0
 1

0
1
 0

 1
 1

 1
 1

 1
 0

 1
 1

 0
 1

 1
 0

 1
 1

 1
 1

0
0

1
 1

 0
 1

 0
 1

 0
 1

 0
 0

 1
 1

 1

A
d
a
p
te

d
 fro

m
 clke

r.co
m

/clip
a
rt-1

9
5

9
3

2
.h

tm
l

What can it be useful for?

I public auditability of randomized processes

I coordination between many parties

I prove something happened after a certain time

Not good for: selecting your secret keys

4/30

1. Introduction

A Randomness Beacon

A service that produces timed outputs of fresh public randomness.

High-level description:

I Periodically pulsates randomness (e.g., 1 per min)

I Each pulse has a fresh 512-bit random string

I Each pulse is indexed, time-stamped and signed

I Any past pulse is publicly accessible

I The sequence of pulses forms a hash-chain

1
1
 0

 1
 1

 1
 0

1
0
 1

 1
 0

 0
 0

 1
 0

0
0

1
 1

 1
 1

 1
 0

 0
 1

 1
 0

1
1
 1

 0
 0

 1
 0

 0
 0

 1

1
01

 1
 0

 1
 0

 0
 0

 0
 1

 1
 0

 0
 1

1
1
 0

 0
 1

 0
 0

 0
 0

 1
 0

 0
 1

 0
 0

 0
 1

0
1
 0

 1
 1

 1
 1

 1
 0

 1
 1

 0
 1

 1
 0

 1
 1

 1
 1

0
0

1
 1

 0
 1

 0
 1

 0
 1

 0
 0

 1
 1

 1

A
d
a
p
te

d
 fro

m
 clke

r.co
m

/clip
a
rt-1

9
5

9
3

2
.h

tm
l

What can it be useful for?

I public auditability of randomized processes

I coordination between many parties

I prove something happened after a certain time

Not good for:

selecting your secret keys

4/30

1. Introduction

A Randomness Beacon

A service that produces timed outputs of fresh public randomness.

High-level description:

I Periodically pulsates randomness (e.g., 1 per min)

I Each pulse has a fresh 512-bit random string

I Each pulse is indexed, time-stamped and signed

I Any past pulse is publicly accessible

I The sequence of pulses forms a hash-chain

1
1
 0

 1
 1

 1
 0

1
0
 1

 1
 0

 0
 0

 1
 0

0
0

1
 1

 1
 1

 1
 0

 0
 1

 1
 0

1
1
 1

 0
 0

 1
 0

 0
 0

 1

1
01

 1
 0

 1
 0

 0
 0

 0
 1

 1
 0

 0
 1

1
1
 0

 0
 1

 0
 0

 0
 0

 1
 0

 0
 1

 0
 0

 0
 1

0
1
 0

 1
 1

 1
 1

 1
 0

 1
 1

 0
 1

 1
 0

 1
 1

 1
 1

0
0

1
 1

 0
 1

 0
 1

 0
 1

 0
 0

 1
 1

 1

A
d
a
p
te

d
 fro

m
 clke

r.co
m

/clip
a
rt-1

9
5

9
3

2
.h

tm
l

What can it be useful for?

I public auditability of randomized processes

I coordination between many parties

I prove something happened after a certain time

Not good for: selecting your secret keys
4/30

1. Introduction

A Randomness Beacon

A service that produces timed outputs of fresh public randomness.

High-level description:

I Periodically pulsates randomness (e.g., 1 per min)

I Each pulse has a fresh 512-bit random string

I Each pulse is indexed, time-stamped and signed

I Any past pulse is publicly accessible

I The sequence of pulses forms a hash-chain

1
1
 0

 1
 1

 1
 0

1
0
 1

 1
 0

 0
 0

 1
 0

0
0

1
 1

 1
 1

 1
 0

 0
 1

 1
 0

1
1
 1

 0
 0

 1
 0

 0
 0

 1

1
01

 1
 0

 1
 0

 0
 0

 0
 1

 1
 0

 0
 1

1
1
 0

 0
 1

 0
 0

 0
 0

 1
 0

 0
 1

 0
 0

 0
 1

0
1
 0

 1
 1

 1
 1

 1
 0

 1
 1

 0
 1

 1
 0

 1
 1

 1
 1

0
0

1
 1

 0
 1

 0
 1

 0
 1

 0
 0

 1
 1

 1

A
d
a
p
te

d
 fro

m
 clke

r.co
m

/clip
a
rt-1

9
5

9
3

2
.h

tm
l

What can it be useful for?

I public auditability of randomized processes

I coordination between many parties

I prove something happened after a certain time

Not good for: selecting your secret keys
4/30

1. Introduction

Brief historical note

Some timeline events:

I 2013-Sep till 2018-Dec: NIST Beacon service version 1.0 online

I 2018-Jul till present: NIST Beacon service version 2.0 online

I 2019-May: “Draft NISTIR 8213” online — specifies the new
(draft) Reference for Randomness Beacons (version 2)

The NIST Beacon will progressively implement all aspects of the Reference.

5/30

1. Introduction

Brief historical note

Some timeline events:

I 2013-Sep till 2018-Dec: NIST Beacon service version 1.0 online

I 2018-Jul till present: NIST Beacon service version 2.0 online

I 2019-May: “Draft NISTIR 8213” online — specifies the new
(draft) Reference for Randomness Beacons (version 2)

The NIST Beacon will progressively implement all aspects of the Reference.

5/30

1. Introduction

Brief historical note

Some timeline events:

I 2013-Sep till 2018-Dec: NIST Beacon service version 1.0 online

I 2018-Jul till present: NIST Beacon service version 2.0 online

I 2019-May: “Draft NISTIR 8213” online — specifies the new
(draft) Reference for Randomness Beacons (version 2)

The NIST Beacon will progressively implement all aspects of the Reference.

5/30

1. Introduction

This talk is about the NISTIR 8213 (draft)

“A Reference for Randomness Beacons: Format and Protocol Version 2”

https://doi.org/10.6028/NIST.IR.8213-draft

Some topics in the report:

I format for pulses

I protocol for beacon operations

I using Beacon randomness

I security considerations

Public comments till August 05, 2019.

Draft NISTIR 82131

2

A Reference for Randomness Beacons3

Format and Protocol Version 24

John Kelsey5

Luı́s T. A. N. Brandão6

René Peralta7

Harold Booth8

This publication is available free of charge from:9

https://doi.org/10.6028/NIST.IR.8213-draft10

11

Two goals in this presentation:

I Provide an overview of the new reference

I Motivate engagement: NISTIR feedback, new beacons and apps

6/30

https://doi.org/10.6028/NIST.IR.8213-draft

1. Introduction

This talk is about the NISTIR 8213 (draft)

“A Reference for Randomness Beacons: Format and Protocol Version 2”

https://doi.org/10.6028/NIST.IR.8213-draft

Some topics in the report:

I format for pulses

I protocol for beacon operations

I using Beacon randomness

I security considerations

Public comments till August 05, 2019.

Draft NISTIR 82131

2

A Reference for Randomness Beacons3

Format and Protocol Version 24

John Kelsey5

Luı́s T. A. N. Brandão6

René Peralta7

Harold Booth8

This publication is available free of charge from:9

https://doi.org/10.6028/NIST.IR.8213-draft10

11

Two goals in this presentation:

I Provide an overview of the new reference

I Motivate engagement: NISTIR feedback, new beacons and apps

6/30

https://doi.org/10.6028/NIST.IR.8213-draft

1. Introduction

This talk is about the NISTIR 8213 (draft)

“A Reference for Randomness Beacons: Format and Protocol Version 2”

https://doi.org/10.6028/NIST.IR.8213-draft

Some topics in the report:

I format for pulses

I protocol for beacon operations

I using Beacon randomness

I security considerations

Public comments till August 05, 2019.

Draft NISTIR 82131

2

A Reference for Randomness Beacons3

Format and Protocol Version 24

John Kelsey5

Luı́s T. A. N. Brandão6

René Peralta7

Harold Booth8

This publication is available free of charge from:9

https://doi.org/10.6028/NIST.IR.8213-draft10

11

Two goals in this presentation:

I Provide an overview of the new reference

I Motivate engagement: NISTIR feedback, new beacons and apps

6/30

https://doi.org/10.6028/NIST.IR.8213-draft

1. Introduction

This talk is about the NISTIR 8213 (draft)

“A Reference for Randomness Beacons: Format and Protocol Version 2”

https://doi.org/10.6028/NIST.IR.8213-draft

Some topics in the report:

I format for pulses

I protocol for beacon operations

I using Beacon randomness

I security considerations

Public comments till August 05, 2019.

Draft NISTIR 82131

2

A Reference for Randomness Beacons3

Format and Protocol Version 24

John Kelsey5

Luı́s T. A. N. Brandão6

René Peralta7

Harold Booth8

This publication is available free of charge from:9

https://doi.org/10.6028/NIST.IR.8213-draft10

11

Two goals in this presentation:

I Provide an overview of the new reference

I Motivate engagement: NISTIR feedback, new beacons and apps

6/30

https://doi.org/10.6028/NIST.IR.8213-draft

1. Introduction

Components of the Beacon service, at a high level

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

DB
(web

frontend)
Web
(users)

Fw

Legend:
- App: software application
- DB: database
- Fw: firewall
- HSM: hardware security module
- RNG: random-number generator

queries

replies

But what exactly is a pulse, what is its randomness, ...?

7/30

1. Introduction

Components of the Beacon service, at a high level

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

DB
(web

frontend)
Web
(users)

Fw

Legend:
- App: software application
- DB: database
- Fw: firewall
- HSM: hardware security module
- RNG: random-number generator

queries

replies

But what exactly is a pulse, what is its randomness, ...?

7/30

2. Pulse format

Outline

1. Introduction

2. Pulse format

3. Beacon Protocol

4. Using a Beacon

5. Brief security considerations

6. Conclusion

8/30

2. Pulse format

A pulse (simplified example)

uri:str="https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220394"

version:str="2.0"

...

period:dec="60000"

...

chainId:dec="1"

pulseId:dec="220394"

time:str="2018-12-26T16:07:00.000Z"

randLocal:hex="5FF1E0C019C42C77FA72D522...(512 bits total)"

...

out.Prev:hex="BA646CC4E7AE195D2C85E9D3...(512 bits total)"

...

preCom:hex="269908B840E79BE71CEC4EBA...(512 bits total)"

...

sig:hex="17943D886DA8C7C24B9244BE...(4096 bits total)"

randOut:hex="0A8863E03E200F6940A009B0...(512 bits total)"

I Each pulse is indexed

I Two main random values (“rands”): randLocal and randOut.

I Other features: signature

, precommit randLocal, chain randOut, ...

9/30

2. Pulse format

A pulse (simplified example)

uri:str="https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220394"

version:str="2.0"

...

period:dec="60000"

...

chainId:dec="1"

pulseId:dec="220394"

time:str="2018-12-26T16:07:00.000Z"

randLocal:hex="5FF1E0C019C42C77FA72D522...(512 bits total)"

...

out.Prev:hex="BA646CC4E7AE195D2C85E9D3...(512 bits total)"

...

preCom:hex="269908B840E79BE71CEC4EBA...(512 bits total)"

...

sig:hex="17943D886DA8C7C24B9244BE...(4096 bits total)"

randOut:hex="0A8863E03E200F6940A009B0...(512 bits total)"

I Each pulse is indexed

I Two main random values (“rands”): randLocal and randOut.

I Other features: signature

, precommit randLocal, chain randOut, ...

9/30

2. Pulse format

A pulse (simplified example)

uri:str="https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220394"

version:str="2.0"

...

period:dec="60000"

...

chainId:dec="1"

pulseId:dec="220394"

time:str="2018-12-26T16:07:00.000Z"

randLocal:hex="5FF1E0C019C42C77FA72D522...(512 bits total)"

...

out.Prev:hex="BA646CC4E7AE195D2C85E9D3...(512 bits total)"

...

preCom:hex="269908B840E79BE71CEC4EBA...(512 bits total)"

...

sig:hex="17943D886DA8C7C24B9244BE...(4096 bits total)"

randOut:hex="0A8863E03E200F6940A009B0...(512 bits total)"

I Each pulse is indexed

I Two main random values (“rands”): randLocal and randOut.

I Other features: signature

, precommit randLocal, chain randOut, ...

9/30

2. Pulse format

A pulse (simplified example)

uri:str="https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220394"

version:str="2.0"

...

period:dec="60000"

...

chainId:dec="1"

pulseId:dec="220394"

time:str="2018-12-26T16:07:00.000Z"

randLocal:hex="5FF1E0C019C42C77FA72D522...(512 bits total)"

...

out.Prev:hex="BA646CC4E7AE195D2C85E9D3...(512 bits total)"

...

preCom:hex="269908B840E79BE71CEC4EBA...(512 bits total)"

...

sig:hex="17943D886DA8C7C24B9244BE...(4096 bits total)"

randOut:hex="0A8863E03E200F6940A009B0...(512 bits total)"

I Each pulse is indexed

I Two main random values (“rands”): randLocal and randOut.

I Other features: signature

, precommit randLocal, chain randOut, ...

9/30

2. Pulse format

A pulse (simplified example)

uri:str="https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220394"

version:str="2.0"

...

period:dec="60000"

...

chainId:dec="1"

pulseId:dec="220394"

time:str="2018-12-26T16:07:00.000Z"

randLocal:hex="5FF1E0C019C42C77FA72D522...(512 bits total)"

...

out.Prev:hex="BA646CC4E7AE195D2C85E9D3...(512 bits total)"

...

preCom:hex="269908B840E79BE71CEC4EBA...(512 bits total)"

...

sig:hex="17943D886DA8C7C24B9244BE...(4096 bits total)"

randOut:hex="0A8863E03E200F6940A009B0...(512 bits total)"

I Each pulse is indexed

I Two main random values (“rands”): randLocal and randOut.

I Other features: signature

, precommit randLocal, chain randOut, ...

9/30

2. Pulse format

A pulse (simplified example)

uri:str="https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220394"

version:str="2.0"

...

period:dec="60000"

...

chainId:dec="1"

pulseId:dec="220394"

time:str="2018-12-26T16:07:00.000Z"

randLocal:hex="5FF1E0C019C42C77FA72D522...(512 bits total)"

...

out.Prev:hex="BA646CC4E7AE195D2C85E9D3...(512 bits total)"

...

preCom:hex="269908B840E79BE71CEC4EBA...(512 bits total)"

...

sig:hex="17943D886DA8C7C24B9244BE...(4096 bits total)"

randOut:hex="0A8863E03E200F6940A009B0...(512 bits total)"

I Each pulse is indexed

I Two main random values (“rands”): randLocal and randOut.

I Other features: signature

, precommit randLocal, chain randOut, ...

9/30

2. Pulse format

A pulse (simplified example)

uri:str="https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220394"

version:str="2.0"

...

period:dec="60000"

...

chainId:dec="1"

pulseId:dec="220394"

time:str="2018-12-26T16:07:00.000Z"

randLocal:hex="5FF1E0C019C42C77FA72D522...(512 bits total)"

...

out.Prev:hex="BA646CC4E7AE195D2C85E9D3...(512 bits total)"

...

preCom:hex="269908B840E79BE71CEC4EBA...(512 bits total)"

...

sig:hex="17943D886DA8C7C24B9244BE...(4096 bits total)"

randOut:hex="0A8863E03E200F6940A009B0...(512 bits total)"

I Each pulse is indexed

I Two main random values (“rands”): randLocal and randOut.

I Other features: signature, precommit randLocal

, chain randOut, ...

9/30

2. Pulse format

A pulse (simplified example)

uri:str="https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220394"

version:str="2.0"

...

period:dec="60000"

...

chainId:dec="1"

pulseId:dec="220394"

time:str="2018-12-26T16:07:00.000Z"

randLocal:hex="5FF1E0C019C42C77FA72D522...(512 bits total)"

...

out.Prev:hex="BA646CC4E7AE195D2C85E9D3...(512 bits total)"

...

preCom:hex="269908B840E79BE71CEC4EBA...(512 bits total)"

...

sig:hex="17943D886DA8C7C24B9244BE...(4096 bits total)"

randOut:hex="0A8863E03E200F6940A009B0...(512 bits total)"

I Each pulse is indexed

I Two main random values (“rands”): randLocal and randOut.

I Other features: signature, precommit randLocal, chain randOut , ...

9/30

2. Pulse format

The two “rands” in a pulse

randLocal (a.k.a. local random value):

I Hash (SHA512) of randomness output by ≥ 2 RNGs

I Pre-committed 1 minute in advance of release

I Useful for combining beacons

randOut (a.k.a. output value):

I Hash of all other fields

I Fresh at the time of release

I The actual randomness to be used by applications

10/30

2. Pulse format

The two “rands” in a pulse

randLocal (a.k.a. local random value):

I Hash (SHA512) of randomness output by ≥ 2 RNGs

I Pre-committed 1 minute in advance of release

I Useful for combining beacons

randOut (a.k.a. output value):

I Hash of all other fields

I Fresh at the time of release

I The actual randomness to be used by applications

10/30

2. Pulse format

The two “rands” in a pulse

randLocal (a.k.a. local random value):

I Hash (SHA512) of randomness output by ≥ 2 RNGs

I Pre-committed 1 minute in advance of release

I Useful for combining beacons

randOut (a.k.a. output value):

I Hash of all other fields

I Fresh at the time of release

I The actual randomness to be used by applications

10/30

2. Pulse format

The two “rands” in a pulse

randLocal (a.k.a. local random value):

I Hash (SHA512) of randomness output by ≥ 2 RNGs

I Pre-committed 1 minute in advance of release

I Useful for combining beacons

randOut (a.k.a. output value):

I Hash of all other fields

I Fresh at the time of release

I The actual randomness to be used by applications

10/30

2. Pulse format

The two “rands” in a pulse

randLocal: ri+1 = Hash(ρ1,i || ρ2,i [|| ρ3,i]), with random ρj,i from i th RNG

preCom: Ci = Hash(ri+1), released 1 min before ri+1

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Hash

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

HashHash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

=

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

Hash

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

=

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

randOut: Ri = Hash(Mi), with Mi being the serialization of all previous fields

out.Prev has the output value (Ri) of the previous pulse

11/30

2. Pulse format

The two “rands” in a pulse

randLocal: ri+1 = Hash(ρ1,i || ρ2,i [|| ρ3,i]), with random ρj,i from i th RNG

preCom: Ci = Hash(ri+1), released 1 min before ri+1

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Hash

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

HashHash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

=

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

Hash

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

=

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

randOut: Ri = Hash(Mi), with Mi being the serialization of all previous fields

out.Prev has the output value (Ri) of the previous pulse

11/30

2. Pulse format

The two “rands” in a pulse

randLocal: ri+1 = Hash(ρ1,i || ρ2,i [|| ρ3,i]), with random ρj,i from i th RNG

preCom: Ci = Hash(ri+1), released 1 min before ri+1

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Hash

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

HashHash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

=

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

Hash

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

=

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

randOut: Ri = Hash(Mi), with Mi being the serialization of all previous fields

out.Prev has the output value (Ri) of the previous pulse

11/30

2. Pulse format

The two “rands” in a pulse

randLocal: ri+1 = Hash(ρ1,i || ρ2,i [|| ρ3,i]), with random ρj,i from i th RNG

preCom: Ci = Hash(ri+1), released 1 min before ri+1

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Hash

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

=

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

Hash

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

=

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

randOut: Ri = Hash(Mi), with Mi being the serialization of all previous fields

out.Prev has the output value (Ri) of the previous pulse

11/30

2. Pulse format

The two “rands” in a pulse

randLocal: ri+1 = Hash(ρ1,i || ρ2,i [|| ρ3,i]), with random ρj,i from i th RNG

preCom: Ci = Hash(ri+1), released 1 min before ri+1

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Hash

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

=

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

Hash

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

=

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

randOut: Ri = Hash(Mi), with Mi being the serialization of all previous fields

out.Prev has the output value (Ri) of the previous pulse

11/30

2. Pulse format

The two “rands” in a pulse

randLocal: ri+1 = Hash(ρ1,i || ρ2,i [|| ρ3,i]), with random ρj,i from i th RNG

preCom: Ci = Hash(ri+1), released 1 min before ri+1

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Hash

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

HashHash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

=

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

Hash

Hash

Mi

Pulse i
Ti=2019-05-17T16:13:00.000Z

...

out.Prev: Ri-1=0110...

...

randLocal: ri = 1001...

preCom: Ci = 0101...

...

 sig: Si = 1010...

randOut: Ri = 1110...

=

Pulse i+1
Ti=2019-05-17T16:14:00.000Z

...

out.Prev: Ri = 1110...

...

randLocal: ri+1 = 1101...

preCom: Ci+1 = 0010...

...

 sig: Si+1 = 0111...

randOut: Ri+1 = 1011...

Mi

Hash

randOut: Ri = Hash(Mi), with Mi being the serialization of all previous fields

out.Prev has the output value (Ri) of the previous pulse

11/30

3. Beacon Protocol

Outline

1. Introduction

2. Pulse format

3. Beacon Protocol

4. Using a Beacon

5. Brief security considerations

6. Conclusion

12/30

3. Beacon Protocol

Beacon proper operation

I Timing and entropy requirements

I Beacon interface: getting pulses and skiplists

I Others (not here): external values, status fields, ...

13/30

3. Beacon Protocol

Timing requirements for generation and release

1. No advanced release of pulse (δ ≥ 0)

2. Generate with entropy (≥ 2 RNGs)

}
⇒ Unpredictability

3. Generate not too in advance (small ∆)

⇒ Freshness

4. Release soon (small δ)

⇒ Timeliness

5. Timestamp (non-repeating) indexation

⇒ Unambiguity

Ri : randOut
ri : randLocal

Time

π: intended pulsation period

Ti Ti+1

Time

release Pi

π: intended pulsation period

release
Pi+1

δ

Ti

δ

Ti+1
start
gen.
Pi

Time

release Pi

π: intended pulsation period

start
gen.
Pi+1

release
Pi+1

∆
δ

Ti

∆
δ

Ti+1
start
gen.
Pi

Time

release Pi

π: intended pulsation period

obtain
Pi

start
gen.
Pi+1

obtain
Pi+1

release
Pi+1

ri+1

Ri

∆
δγ

Ti

∆
δγ

ri+1

Ri

Ti+1

(The reference document specifies allowed intervals for δ and ∆, relative to π)

14/30

3. Beacon Protocol

Timing requirements for generation and release

1. No advanced release of pulse (δ ≥ 0)

2. Generate with entropy (≥ 2 RNGs)

}
⇒ Unpredictability

3. Generate not too in advance (small ∆)

⇒ Freshness

4. Release soon (small δ)

⇒ Timeliness

5. Timestamp (non-repeating) indexation

⇒ Unambiguity

Ri : randOut
ri : randLocal

Time

π: intended pulsation period

Ti Ti+1

Time

release Pi

π: intended pulsation period

release
Pi+1

δ

Ti

δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

start
gen.
Pi+1

release
Pi+1

∆
δ

Ti

∆
δ

Ti+1
start
gen.
Pi

Time

release Pi

π: intended pulsation period

obtain
Pi

start
gen.
Pi+1

obtain
Pi+1

release
Pi+1

ri+1

Ri

∆
δγ

Ti

∆
δγ

ri+1

Ri

Ti+1

(The reference document specifies allowed intervals for δ and ∆, relative to π)

14/30

3. Beacon Protocol

Timing requirements for generation and release

1. No advanced release of pulse (δ ≥ 0)

2. Generate with entropy (≥ 2 RNGs)

}
⇒ Unpredictability

3. Generate not too in advance (small ∆)

⇒ Freshness

4. Release soon (small δ)

⇒ Timeliness

5. Timestamp (non-repeating) indexation

⇒ Unambiguity

Ri : randOut
ri : randLocal

Time

π: intended pulsation period

Ti Ti+1

Time

release Pi

π: intended pulsation period

release
Pi+1

δ

Ti

δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

start
gen.
Pi+1

release
Pi+1

∆
δ

Ti

∆
δ

Ti+1
start
gen.
Pi

Time

release Pi

π: intended pulsation period

obtain
Pi

start
gen.
Pi+1

obtain
Pi+1

release
Pi+1

ri+1

Ri

∆
δγ

Ti

∆
δγ

ri+1

Ri

Ti+1

(The reference document specifies allowed intervals for δ and ∆, relative to π)

14/30

3. Beacon Protocol

Timing requirements for generation and release

1. No advanced release of pulse (δ ≥ 0)

2. Generate with entropy (≥ 2 RNGs)

}
⇒ Unpredictability

3. Generate not too in advance (small ∆)

⇒ Freshness

4. Release soon (small δ)

⇒ Timeliness

5. Timestamp (non-repeating) indexation

⇒ Unambiguity

Ri : randOut
ri : randLocal

Time

π: intended pulsation period

Ti Ti+1

Time

release Pi

π: intended pulsation period

release
Pi+1

δ

Ti

δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

start
gen.
Pi+1

release
Pi+1

∆
δ

Ti

∆
δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

obtain
Pi

start
gen.
Pi+1

obtain
Pi+1

release
Pi+1

ri+1

Ri

∆
δγ

Ti

∆
δγ

ri+1

Ri

Ti+1

(The reference document specifies allowed intervals for δ and ∆, relative to π)

14/30

3. Beacon Protocol

Timing requirements for generation and release

1. No advanced release of pulse (δ ≥ 0)

2. Generate with entropy (≥ 2 RNGs)

}
⇒ Unpredictability

3. Generate not too in advance (small ∆) ⇒ Freshness

4. Release soon (small δ)

⇒ Timeliness

5. Timestamp (non-repeating) indexation

⇒ Unambiguity

Ri : randOut
ri : randLocal

Time

π: intended pulsation period

Ti Ti+1

Time

release Pi

π: intended pulsation period

release
Pi+1

δ

Ti

δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

start
gen.
Pi+1

release
Pi+1

∆
δ

Ti

∆
δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

obtain
Pi

start
gen.
Pi+1

obtain
Pi+1

release
Pi+1

ri+1

Ri

∆
δγ

Ti

∆
δγ

ri+1

Ri

Ti+1

(The reference document specifies allowed intervals for δ and ∆, relative to π)

14/30

3. Beacon Protocol

Timing requirements for generation and release

1. No advanced release of pulse (δ ≥ 0)

2. Generate with entropy (≥ 2 RNGs)

}
⇒ Unpredictability

3. Generate not too in advance (small ∆) ⇒ Freshness

4. Release soon (small δ)

⇒ Timeliness

5. Timestamp (non-repeating) indexation

⇒ Unambiguity

Ri : randOut
ri : randLocal

Time

π: intended pulsation period

Ti Ti+1

Time

release Pi

π: intended pulsation period

release
Pi+1

δ

Ti

δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

start
gen.
Pi+1

release
Pi+1

∆
δ

Ti

∆
δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

obtain
Pi

start
gen.
Pi+1

obtain
Pi+1

release
Pi+1

ri+1

Ri

∆
δγ

Ti

∆
δγ

ri+1

Ri

Ti+1

(The reference document specifies allowed intervals for δ and ∆, relative to π)

14/30

3. Beacon Protocol

Timing requirements for generation and release

1. No advanced release of pulse (δ ≥ 0)

2. Generate with entropy (≥ 2 RNGs)

}
⇒ Unpredictability

3. Generate not too in advance (small ∆) ⇒ Freshness

4. Release soon (small δ) ⇒ Timeliness

5. Timestamp (non-repeating) indexation

⇒ Unambiguity

Ri : randOut
ri : randLocal

Time

π: intended pulsation period

Ti Ti+1

Time

release Pi

π: intended pulsation period

release
Pi+1

δ

Ti

δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

start
gen.
Pi+1

release
Pi+1

∆
δ

Ti

∆
δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

obtain
Pi

start
gen.
Pi+1

obtain
Pi+1

release
Pi+1

ri+1

Ri

∆
δγ

Ti

∆
δγ

ri+1

Ri

Ti+1

(The reference document specifies allowed intervals for δ and ∆, relative to π)

14/30

3. Beacon Protocol

Timing requirements for generation and release

1. No advanced release of pulse (δ ≥ 0)

2. Generate with entropy (≥ 2 RNGs)

}
⇒ Unpredictability

3. Generate not too in advance (small ∆) ⇒ Freshness

4. Release soon (small δ) ⇒ Timeliness

5. Timestamp (non-repeating) indexation

⇒ Unambiguity

Ri : randOut
ri : randLocal

Time

π: intended pulsation period

Ti Ti+1

Time

release Pi

π: intended pulsation period

release
Pi+1

δ

Ti

δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

start
gen.
Pi+1

release
Pi+1

∆
δ

Ti

∆
δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

obtain
Pi

start
gen.
Pi+1

obtain
Pi+1

release
Pi+1

ri+1

Ri

∆
δγ

Ti

∆
δγ

ri+1

Ri

Ti+1

(The reference document specifies allowed intervals for δ and ∆, relative to π)

14/30

3. Beacon Protocol

Timing requirements for generation and release

1. No advanced release of pulse (δ ≥ 0)

2. Generate with entropy (≥ 2 RNGs)

}
⇒ Unpredictability

3. Generate not too in advance (small ∆) ⇒ Freshness

4. Release soon (small δ) ⇒ Timeliness

5. Timestamp (non-repeating) indexation ⇒ Unambiguity

Ri : randOut
ri : randLocal

Time

π: intended pulsation period

Ti Ti+1

Time

release Pi

π: intended pulsation period

release
Pi+1

δ

Ti

δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

start
gen.
Pi+1

release
Pi+1

∆
δ

Ti

∆
δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

obtain
Pi

start
gen.
Pi+1

obtain
Pi+1

release
Pi+1

ri+1

Ri

∆
δγ

Ti

∆
δγ

ri+1

Ri

Ti+1

(The reference document specifies allowed intervals for δ and ∆, relative to π)

14/30

3. Beacon Protocol

Timing requirements for generation and release

1. No advanced release of pulse (δ ≥ 0)

2. Generate with entropy (≥ 2 RNGs)

}
⇒ Unpredictability

3. Generate not too in advance (small ∆) ⇒ Freshness

4. Release soon (small δ) ⇒ Timeliness

5. Timestamp (non-repeating) indexation ⇒ Unambiguity

Ri : randOut
ri : randLocal

Time

π: intended pulsation period

Ti Ti+1

Time

release Pi

π: intended pulsation period

release
Pi+1

δ

Ti

δ

Ti+1
start
gen.
Pi

Time

release Pi

π: intended pulsation period

start
gen.
Pi+1

release
Pi+1

∆
δ

Ti

∆
δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

obtain
Pi

start
gen.
Pi+1

obtain
Pi+1

release
Pi+1

ri+1

Ri

∆
δγ

Ti

∆
δγ

ri+1

Ri

Ti+1

(The reference document specifies allowed intervals for δ and ∆, relative to π)

14/30

3. Beacon Protocol

Timing requirements for generation and release

1. No advanced release of pulse (δ ≥ 0)

2. Generate with entropy (≥ 2 RNGs)

}
⇒ Unpredictability

3. Generate not too in advance (small ∆) ⇒ Freshness

4. Release soon (small δ) ⇒ Timeliness

5. Timestamp (non-repeating) indexation ⇒ Unambiguity

Ri : randOut
ri : randLocal

Time

π: intended pulsation period

Ti Ti+1

Time

release Pi

π: intended pulsation period

release
Pi+1

δ

Ti

δ

Ti+1
start
gen.
Pi

Time

release Pi

π: intended pulsation period

start
gen.
Pi+1

release
Pi+1

∆
δ

Ti

∆
δ

Ti+1

start
gen.
Pi

Time

release Pi

π: intended pulsation period

obtain
Pi

start
gen.
Pi+1

obtain
Pi+1

release
Pi+1

ri+1

Ri

∆
δγ

Ti

∆
δγ

ri+1

Ri

Ti+1

(The reference document specifies allowed intervals for δ and ∆, relative to π)

14/30

3. Beacon Protocol

Fetching pulses

Beacon App: a pulse release means sending the pulse to the database

Beacon
App

Pulse DB
(web

frontend)
Web
(users)

Fw queries

replies

How do users request pulses from the database? uri/url

https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last

Example: URI for the latest pulse in chain 1 of
the NIST randomness Beacon (version 2)

15/30

https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last
https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last

3. Beacon Protocol

Fetching pulses

Beacon App: a pulse release means sending the pulse to the database

Beacon
App

Pulse DB
(web

frontend)
Web
(users)

Fw queries

replies

How do users request pulses from the database? uri/url

https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last

Example: URI for the latest pulse in chain 1 of
the NIST randomness Beacon (version 2)

15/30

https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last
https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last

3. Beacon Protocol

Fetching pulses

Beacon App: a pulse release means sending the pulse to the database

Beacon
App

Pulse DB
(web

frontend)
Web
(users)

Fw queries

replies

How do users request pulses from the database?

uri/url

https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last

Example: URI for the latest pulse in chain 1 of
the NIST randomness Beacon (version 2)

15/30

https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last
https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last

3. Beacon Protocol

Fetching pulses

Beacon App: a pulse release means sending the pulse to the database

Beacon
App

Pulse DB
(web

frontend)
Web
(users)

Fw queries

replies

How do users request pulses from the database? uri/url

https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last

Example: URI for the latest pulse in chain 1 of
the NIST randomness Beacon (version 2)

15/30

https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last
https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last

3. Beacon Protocol

Fetching pulses

Beacon App: a pulse release means sending the pulse to the database

Beacon
App

Pulse DB
(web

frontend)
Web
(users)

Fw queries

replies

How do users request pulses from the database? uri/url

https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last

Example: URI for the latest pulse in chain 1 of
the NIST randomness Beacon (version 2)

15/30

https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last
https://beacon.nist.gov/beacon/2.0/chain/last/pulse/last

3. Beacon Protocol

Skiplists — efficient chain verification

How to prove that an old pulse is consistent with a recent pulse?

Example: Anchor = 2019-05-17 14:12 → Target = 2016-02-14 17:45

Solution: check that there is a hash-chain linking them

Inefficient: check the hash-chain of (>1M) consecutive pulses

2019-05-17 14:12 → 2019-05-17 14:11 → (1 per minute) → 2016-02-14 17:45

Efficient: check the hash-chaining in a skiplist (< 125 pulses).

Use the 5 past output fields in the pulse format:
I out.Prev: the previous pulse

I out.H, out.D, out.M, out.Y: the first of the hour/day/month/year

2019-05-17 14:12 → 2019-01-01 00:00 → 2018-01-01 00:00 → 2017-01-01 00:00 →
2016-12-01 00:00 → (1 per month) → 2016-03-01 00:00 → 2016-02-29 00:00 →

(1 per day) → 2016-02-15 00:00 → 2016-02-14 23:00 → (1 per hour) →
2016-02-14 18:00 → 2016-02-14 17:59 → (1 per minute) → 2016-02-14 17:45

16/30

3. Beacon Protocol

Skiplists — efficient chain verification

How to prove that an old pulse is consistent with a recent pulse?

Example: Anchor = 2019-05-17 14:12 → Target = 2016-02-14 17:45

Solution: check that there is a hash-chain linking them

Inefficient: check the hash-chain of (>1M) consecutive pulses

2019-05-17 14:12 → 2019-05-17 14:11 → (1 per minute) → 2016-02-14 17:45

Efficient: check the hash-chaining in a skiplist (< 125 pulses).

Use the 5 past output fields in the pulse format:
I out.Prev: the previous pulse

I out.H, out.D, out.M, out.Y: the first of the hour/day/month/year

2019-05-17 14:12 → 2019-01-01 00:00 → 2018-01-01 00:00 → 2017-01-01 00:00 →
2016-12-01 00:00 → (1 per month) → 2016-03-01 00:00 → 2016-02-29 00:00 →

(1 per day) → 2016-02-15 00:00 → 2016-02-14 23:00 → (1 per hour) →
2016-02-14 18:00 → 2016-02-14 17:59 → (1 per minute) → 2016-02-14 17:45

16/30

3. Beacon Protocol

Skiplists — efficient chain verification

How to prove that an old pulse is consistent with a recent pulse?

Example: Anchor = 2019-05-17 14:12 → Target = 2016-02-14 17:45

Solution: check that there is a hash-chain linking them

Inefficient: check the hash-chain of (>1M) consecutive pulses

2019-05-17 14:12 → 2019-05-17 14:11 → (1 per minute) → 2016-02-14 17:45

Efficient: check the hash-chaining in a skiplist (< 125 pulses).

Use the 5 past output fields in the pulse format:
I out.Prev: the previous pulse

I out.H, out.D, out.M, out.Y: the first of the hour/day/month/year

2019-05-17 14:12 → 2019-01-01 00:00 → 2018-01-01 00:00 → 2017-01-01 00:00 →
2016-12-01 00:00 → (1 per month) → 2016-03-01 00:00 → 2016-02-29 00:00 →

(1 per day) → 2016-02-15 00:00 → 2016-02-14 23:00 → (1 per hour) →
2016-02-14 18:00 → 2016-02-14 17:59 → (1 per minute) → 2016-02-14 17:45

16/30

3. Beacon Protocol

Skiplists — efficient chain verification

How to prove that an old pulse is consistent with a recent pulse?

Example: Anchor = 2019-05-17 14:12 → Target = 2016-02-14 17:45

Solution: check that there is a hash-chain linking them

Inefficient: check the hash-chain of (>1M) consecutive pulses

2019-05-17 14:12 → 2019-05-17 14:11 → (1 per minute) → 2016-02-14 17:45

Efficient: check the hash-chaining in a skiplist (< 125 pulses).

Use the 5 past output fields in the pulse format:
I out.Prev: the previous pulse

I out.H, out.D, out.M, out.Y: the first of the hour/day/month/year

2019-05-17 14:12 → 2019-01-01 00:00 → 2018-01-01 00:00 → 2017-01-01 00:00 →
2016-12-01 00:00 → (1 per month) → 2016-03-01 00:00 → 2016-02-29 00:00 →

(1 per day) → 2016-02-15 00:00 → 2016-02-14 23:00 → (1 per hour) →
2016-02-14 18:00 → 2016-02-14 17:59 → (1 per minute) → 2016-02-14 17:45

16/30

3. Beacon Protocol

Skiplists — efficient chain verification

How to prove that an old pulse is consistent with a recent pulse?

Example: Anchor = 2019-05-17 14:12 → Target = 2016-02-14 17:45

Solution: check that there is a hash-chain linking them

Inefficient: check the hash-chain of (>1M) consecutive pulses

2019-05-17 14:12 → 2019-05-17 14:11 → (1 per minute) → 2016-02-14 17:45

Efficient: check the hash-chaining in a skiplist (< 125 pulses).

Use the 5 past output fields in the pulse format:
I out.Prev: the previous pulse

I out.H, out.D, out.M, out.Y: the first of the hour/day/month/year

2019-05-17 14:12 → 2019-01-01 00:00 → 2018-01-01 00:00 → 2017-01-01 00:00 →
2016-12-01 00:00 → (1 per month) → 2016-03-01 00:00 → 2016-02-29 00:00 →

(1 per day) → 2016-02-15 00:00 → 2016-02-14 23:00 → (1 per hour) →
2016-02-14 18:00 → 2016-02-14 17:59 → (1 per minute) → 2016-02-14 17:45

16/30

3. Beacon Protocol

Skiplists — efficient chain verification

How to prove that an old pulse is consistent with a recent pulse?

Example: Anchor = 2019-05-17 14:12 → Target = 2016-02-14 17:45

Solution: check that there is a hash-chain linking them

Inefficient: check the hash-chain of (>1M) consecutive pulses

2019-05-17 14:12 → 2019-05-17 14:11 → (1 per minute) → 2016-02-14 17:45

Efficient: check the hash-chaining in a skiplist (< 125 pulses).

Use the 5 past output fields in the pulse format:
I out.Prev: the previous pulse

I out.H, out.D, out.M, out.Y: the first of the hour/day/month/year

2019-05-17 14:12 → 2019-01-01 00:00 → 2018-01-01 00:00 → 2017-01-01 00:00 →
2016-12-01 00:00 → (1 per month) → 2016-03-01 00:00 → 2016-02-29 00:00 →

(1 per day) → 2016-02-15 00:00 → 2016-02-14 23:00 → (1 per hour) →
2016-02-14 18:00 → 2016-02-14 17:59 → (1 per minute) → 2016-02-14 17:45

16/30

3. Beacon Protocol

Skiplists — efficient chain verification

How to prove that an old pulse is consistent with a recent pulse?

Example: Anchor = 2019-05-17 14:12 → Target = 2016-02-14 17:45

Solution: check that there is a hash-chain linking them

Inefficient: check the hash-chain of (>1M) consecutive pulses

2019-05-17 14:12 → 2019-05-17 14:11 → (1 per minute) → 2016-02-14 17:45

Efficient: check the hash-chaining in a skiplist (< 125 pulses).

Use the 5 past output fields in the pulse format:
I out.Prev: the previous pulse

I out.H, out.D, out.M, out.Y: the first of the hour/day/month/year

2019-05-17 14:12 → 2019-01-01 00:00 → 2018-01-01 00:00 → 2017-01-01 00:00 →
2016-12-01 00:00 → (1 per month) → 2016-03-01 00:00 → 2016-02-29 00:00 →

(1 per day) → 2016-02-15 00:00 → 2016-02-14 23:00 → (1 per hour) →
2016-02-14 18:00 → 2016-02-14 17:59 → (1 per minute) → 2016-02-14 17:45

16/30

3. Beacon Protocol

Skiplists — efficient chain verification

How to prove that an old pulse is consistent with a recent pulse?

Example: Anchor = 2019-05-17 14:12 → Target = 2016-02-14 17:45

Solution: check that there is a hash-chain linking them

Inefficient: check the hash-chain of (>1M) consecutive pulses

2019-05-17 14:12 → 2019-05-17 14:11 → (1 per minute) → 2016-02-14 17:45

Efficient: check the hash-chaining in a skiplist (< 125 pulses).

Use the 5 past output fields in the pulse format:
I out.Prev: the previous pulse

I out.H, out.D, out.M, out.Y: the first of the hour/day/month/year

2019-05-17 14:12 → 2019-01-01 00:00 → 2018-01-01 00:00 → 2017-01-01 00:00 →

2016-12-01 00:00 → (1 per month) → 2016-03-01 00:00 → 2016-02-29 00:00 →
(1 per day) → 2016-02-15 00:00 → 2016-02-14 23:00 → (1 per hour) →

2016-02-14 18:00 → 2016-02-14 17:59 → (1 per minute) → 2016-02-14 17:45

16/30

3. Beacon Protocol

Skiplists — efficient chain verification

How to prove that an old pulse is consistent with a recent pulse?

Example: Anchor = 2019-05-17 14:12 → Target = 2016-02-14 17:45

Solution: check that there is a hash-chain linking them

Inefficient: check the hash-chain of (>1M) consecutive pulses

2019-05-17 14:12 → 2019-05-17 14:11 → (1 per minute) → 2016-02-14 17:45

Efficient: check the hash-chaining in a skiplist (< 125 pulses).

Use the 5 past output fields in the pulse format:
I out.Prev: the previous pulse

I out.H, out.D, out.M, out.Y: the first of the hour/day/month/year

2019-05-17 14:12 → 2019-01-01 00:00 → 2018-01-01 00:00 → 2017-01-01 00:00 →
2016-12-01 00:00 → (1 per month) → 2016-03-01 00:00

→ 2016-02-29 00:00 →
(1 per day) → 2016-02-15 00:00 → 2016-02-14 23:00 → (1 per hour) →

2016-02-14 18:00 → 2016-02-14 17:59 → (1 per minute) → 2016-02-14 17:45

16/30

3. Beacon Protocol

Skiplists — efficient chain verification

How to prove that an old pulse is consistent with a recent pulse?

Example: Anchor = 2019-05-17 14:12 → Target = 2016-02-14 17:45

Solution: check that there is a hash-chain linking them

Inefficient: check the hash-chain of (>1M) consecutive pulses

2019-05-17 14:12 → 2019-05-17 14:11 → (1 per minute) → 2016-02-14 17:45

Efficient: check the hash-chaining in a skiplist (< 125 pulses).

Use the 5 past output fields in the pulse format:
I out.Prev: the previous pulse

I out.H, out.D, out.M, out.Y: the first of the hour/day/month/year

2019-05-17 14:12 → 2019-01-01 00:00 → 2018-01-01 00:00 → 2017-01-01 00:00 →
2016-12-01 00:00 → (1 per month) → 2016-03-01 00:00 → 2016-02-29 00:00 →

(1 per day) → 2016-02-15 00:00

→ 2016-02-14 23:00 → (1 per hour) →
2016-02-14 18:00 → 2016-02-14 17:59 → (1 per minute) → 2016-02-14 17:45

16/30

3. Beacon Protocol

Skiplists — efficient chain verification

How to prove that an old pulse is consistent with a recent pulse?

Example: Anchor = 2019-05-17 14:12 → Target = 2016-02-14 17:45

Solution: check that there is a hash-chain linking them

Inefficient: check the hash-chain of (>1M) consecutive pulses

2019-05-17 14:12 → 2019-05-17 14:11 → (1 per minute) → 2016-02-14 17:45

Efficient: check the hash-chaining in a skiplist (< 125 pulses).

Use the 5 past output fields in the pulse format:
I out.Prev: the previous pulse

I out.H, out.D, out.M, out.Y: the first of the hour/day/month/year

2019-05-17 14:12 → 2019-01-01 00:00 → 2018-01-01 00:00 → 2017-01-01 00:00 →
2016-12-01 00:00 → (1 per month) → 2016-03-01 00:00 → 2016-02-29 00:00 →

(1 per day) → 2016-02-15 00:00 → 2016-02-14 23:00 → (1 per hour) →
2016-02-14 18:00

→ 2016-02-14 17:59 → (1 per minute) → 2016-02-14 17:45

16/30

3. Beacon Protocol

Skiplists — efficient chain verification

How to prove that an old pulse is consistent with a recent pulse?

Example: Anchor = 2019-05-17 14:12 → Target = 2016-02-14 17:45

Solution: check that there is a hash-chain linking them

Inefficient: check the hash-chain of (>1M) consecutive pulses

2019-05-17 14:12 → 2019-05-17 14:11 → (1 per minute) → 2016-02-14 17:45

Efficient: check the hash-chaining in a skiplist (< 125 pulses).

Use the 5 past output fields in the pulse format:
I out.Prev: the previous pulse

I out.H, out.D, out.M, out.Y: the first of the hour/day/month/year

2019-05-17 14:12 → 2019-01-01 00:00 → 2018-01-01 00:00 → 2017-01-01 00:00 →
2016-12-01 00:00 → (1 per month) → 2016-03-01 00:00 → 2016-02-29 00:00 →

(1 per day) → 2016-02-15 00:00 → 2016-02-14 23:00 → (1 per hour) →
2016-02-14 18:00 → 2016-02-14 17:59 → (1 per minute) → 2016-02-14 17:45

16/30

3. Beacon Protocol

A possible diagram of pulse generation

HSM

Legend: - DB: database

- : release not before timestamp

- HSM: hardware security module

- RNG: random-number generator

- NTP: network time protocol

DB

- ||: concatenation

Ei: external (srcId, status, value) (all-zeros when not available)

NTP

MDi: some metadata (uri, version, cipher, period, certId, chainId)

Pasti = (Ri-1, RH[i-1], RD[i-1], RM[i-1], RY[i-1]): previous (i-1)

and 1st of {hour (H), day (D), month (M) and year (Y)} of previous

Mi = MDi || i || Ti || ri || Ei || Pasti || Ci || zi

i: pulse index (integer, incremented by 1 for each released pulse)

Ti: time (UTC string, ms precision, e.g., "2018-07-23T19:26:00.000Z")

Time
Server
(remote)

Clock
(on chip)

Hash of

external

value

Ri
Ri

Pi (pulse)
pulsify

Pi =
Mi || Ri || Si

RNG #1
(on chip)

Ci: preCom (512 bits)

RNG #2

HashHash

(randLocal of
next pulse)

�i,2

ri+1

(512 bits)

(512
bits)

ri: randLocal (512 bits)

�i,1 || �i,2

[|| �i,3]

RNG #3
(Quantum)

�i,3

(512
bits)

Local
cache

HashHash

ri+1

�i,1

zi: status (32 bits)

HashHash*

Ri: randOut

Hi Si

Mi || Si
HashHash

Mi

Si: sig

Signing*
module

Mi

Si

For simplicity, the diagram omits serialization details (e.g., field lengths and padding) and some metadata fields.

17/30

4. Using a Beacon

Outline

1. Introduction

2. Pulse format

3. Beacon Protocol

4. Using a Beacon

5. Brief security considerations

6. Conclusion

18/30

4. Using a Beacon

Using Beacon randomness (if I trust the beacon)

(some simplifications for presentation purpose)

Simply getting a practically uniform number in [0,N − 1]:

I Just calculate randOut (mod N), if N < 2384

If I want future auditability of a randomized operation:

1. Commit upfront: publish a statement S that explains my
deterministic operation that will use the Beacon randomness
(the output value randOut) from future time t;

2. Derive a seed: Get R = randOut[t] (from the pulse with
timestamp t), and set the seed as Z = SHA512(S ||R)

3. Perform the operation: Do what the statement S promised,
using Z as the seed for all needed pseudo-randomness.

We defer reference guidance to complementary future documentation

19/30

4. Using a Beacon

Using Beacon randomness (if I trust the beacon)

(some simplifications for presentation purpose)

Simply getting a practically uniform number in [0,N − 1]:

I Just calculate randOut (mod N), if N < 2384

If I want future auditability of a randomized operation:

1. Commit upfront: publish a statement S that explains my
deterministic operation that will use the Beacon randomness
(the output value randOut) from future time t;

2. Derive a seed: Get R = randOut[t] (from the pulse with
timestamp t), and set the seed as Z = SHA512(S ||R)

3. Perform the operation: Do what the statement S promised,
using Z as the seed for all needed pseudo-randomness.

We defer reference guidance to complementary future documentation

19/30

4. Using a Beacon

Using Beacon randomness (if I trust the beacon)

(some simplifications for presentation purpose)

Simply getting a practically uniform number in [0,N − 1]:

I Just calculate randOut (mod N), if N < 2384

If I want future auditability of a randomized operation:

1. Commit upfront: publish a statement S that explains my
deterministic operation that will use the Beacon randomness
(the output value randOut) from future time t;

2. Derive a seed: Get R = randOut[t] (from the pulse with
timestamp t), and set the seed as Z = SHA512(S ||R)

3. Perform the operation: Do what the statement S promised,
using Z as the seed for all needed pseudo-randomness.

We defer reference guidance to complementary future documentation

19/30

4. Using a Beacon

Using Beacon randomness (if I trust the beacon)

(some simplifications for presentation purpose)

Simply getting a practically uniform number in [0,N − 1]:

I Just calculate randOut (mod N), if N < 2384

If I want future auditability of a randomized operation:

1. Commit upfront: publish a statement S that explains my
deterministic operation that will use the Beacon randomness
(the output value randOut) from future time t;

2. Derive a seed: Get R = randOut[t] (from the pulse with
timestamp t), and set the seed as Z = SHA512(S ||R)

3. Perform the operation: Do what the statement S promised,
using Z as the seed for all needed pseudo-randomness.

We defer reference guidance to complementary future documentation

19/30

4. Using a Beacon

Using Beacon randomness (if I trust the beacon)

(some simplifications for presentation purpose)

Simply getting a practically uniform number in [0,N − 1]:

I Just calculate randOut (mod N), if N < 2384

If I want future auditability of a randomized operation:

1. Commit upfront:

publish a statement S that explains my
deterministic operation that will use the Beacon randomness
(the output value randOut) from future time t;

2. Derive a seed:

Get R = randOut[t] (from the pulse with
timestamp t), and set the seed as Z = SHA512(S ||R)

3. Perform the operation:

Do what the statement S promised,
using Z as the seed for all needed pseudo-randomness.

We defer reference guidance to complementary future documentation

19/30

4. Using a Beacon

Using Beacon randomness (if I trust the beacon)

(some simplifications for presentation purpose)

Simply getting a practically uniform number in [0,N − 1]:

I Just calculate randOut (mod N), if N < 2384

If I want future auditability of a randomized operation:

1. Commit upfront: publish a statement S that explains my
deterministic operation that will use the Beacon randomness
(the output value randOut) from future time t;

2. Derive a seed:

Get R = randOut[t] (from the pulse with
timestamp t), and set the seed as Z = SHA512(S ||R)

3. Perform the operation:

Do what the statement S promised,
using Z as the seed for all needed pseudo-randomness.

We defer reference guidance to complementary future documentation

19/30

4. Using a Beacon

Using Beacon randomness (if I trust the beacon)

(some simplifications for presentation purpose)

Simply getting a practically uniform number in [0,N − 1]:

I Just calculate randOut (mod N), if N < 2384

If I want future auditability of a randomized operation:

1. Commit upfront: publish a statement S that explains my
deterministic operation that will use the Beacon randomness
(the output value randOut) from future time t;

2. Derive a seed: Get R = randOut[t] (from the pulse with
timestamp t), and set the seed as Z = SHA512(S ||R)

3. Perform the operation:

Do what the statement S promised,
using Z as the seed for all needed pseudo-randomness.

We defer reference guidance to complementary future documentation

19/30

4. Using a Beacon

Using Beacon randomness (if I trust the beacon)

(some simplifications for presentation purpose)

Simply getting a practically uniform number in [0,N − 1]:

I Just calculate randOut (mod N), if N < 2384

If I want future auditability of a randomized operation:

1. Commit upfront: publish a statement S that explains my
deterministic operation that will use the Beacon randomness
(the output value randOut) from future time t;

2. Derive a seed: Get R = randOut[t] (from the pulse with
timestamp t), and set the seed as Z = SHA512(S ||R)

3. Perform the operation: Do what the statement S promised,
using Z as the seed for all needed pseudo-randomness.

We defer reference guidance to complementary future documentation

19/30

4. Using a Beacon

Using Beacon randomness (if I trust the beacon)

(some simplifications for presentation purpose)

Simply getting a practically uniform number in [0,N − 1]:

I Just calculate randOut (mod N), if N < 2384

If I want future auditability of a randomized operation:

1. Commit upfront: publish a statement S that explains my
deterministic operation that will use the Beacon randomness
(the output value randOut) from future time t;

2. Derive a seed: Get R = randOut[t] (from the pulse with
timestamp t), and set the seed as Z = SHA512(S ||R)

3. Perform the operation: Do what the statement S promised,
using Z as the seed for all needed pseudo-randomness.

We defer reference guidance to complementary future documentation

19/30

4. Using a Beacon

Combining Beacons

What Beacon randomness R[t] to use if I do not trust any Beacon
in isolation? ... but trust that two Beacons (A and B) will not collude?

Desired properties:
I A single Beacon cannot bias the output;

I Even two colluding beacons cannot fully control the output.

Not good:

I R[t] = Hash(A[t].randOut||B[t].randOut) (A could wait to know B’s value)

I R[t] = Hash(A[t].randLocal||B[t].randLocal)
(A & B could force repeating R[t])

Solution: get R[t] from two randLocal[t] and two randOut[t − π] values:

R[t] = Hash(A[t − π].randOut||B[t − π].randOut||A[t].randLocal||B[t].randLocal)

Also need to check:
I reception of A[t − π].randOut and B[t − π].randOut before time T
I correctness of standalone pulses: A[t − π],B[t − π],A[t],B[t]
I hash-chaining (e.g., A[t].out.Prev = A[t − π].randOut)
I pre-commitments (e.g., Hash(A[t].randLocal) = A[t − π].preCom)

20/30

4. Using a Beacon

Combining Beacons

What Beacon randomness R[t] to use if I do not trust any Beacon
in isolation?

... but trust that two Beacons (A and B) will not collude?

Desired properties:
I A single Beacon cannot bias the output;

I Even two colluding beacons cannot fully control the output.

Not good:

I R[t] = Hash(A[t].randOut||B[t].randOut) (A could wait to know B’s value)

I R[t] = Hash(A[t].randLocal||B[t].randLocal)
(A & B could force repeating R[t])

Solution: get R[t] from two randLocal[t] and two randOut[t − π] values:

R[t] = Hash(A[t − π].randOut||B[t − π].randOut||A[t].randLocal||B[t].randLocal)

Also need to check:
I reception of A[t − π].randOut and B[t − π].randOut before time T
I correctness of standalone pulses: A[t − π],B[t − π],A[t],B[t]
I hash-chaining (e.g., A[t].out.Prev = A[t − π].randOut)
I pre-commitments (e.g., Hash(A[t].randLocal) = A[t − π].preCom)

20/30

4. Using a Beacon

Combining Beacons

What Beacon randomness R[t] to use if I do not trust any Beacon
in isolation? ... but trust that two Beacons (A and B) will not collude?

Desired properties:
I A single Beacon cannot bias the output;

I Even two colluding beacons cannot fully control the output.

Not good:

I R[t] = Hash(A[t].randOut||B[t].randOut) (A could wait to know B’s value)

I R[t] = Hash(A[t].randLocal||B[t].randLocal)
(A & B could force repeating R[t])

Solution: get R[t] from two randLocal[t] and two randOut[t − π] values:

R[t] = Hash(A[t − π].randOut||B[t − π].randOut||A[t].randLocal||B[t].randLocal)

Also need to check:
I reception of A[t − π].randOut and B[t − π].randOut before time T
I correctness of standalone pulses: A[t − π],B[t − π],A[t],B[t]
I hash-chaining (e.g., A[t].out.Prev = A[t − π].randOut)
I pre-commitments (e.g., Hash(A[t].randLocal) = A[t − π].preCom)

20/30

4. Using a Beacon

Combining Beacons

What Beacon randomness R[t] to use if I do not trust any Beacon
in isolation? ... but trust that two Beacons (A and B) will not collude?

Desired properties:
I A single Beacon cannot bias the output;

I Even two colluding beacons cannot fully control the output.

Not good:

I R[t] = Hash(A[t].randOut||B[t].randOut) (A could wait to know B’s value)

I R[t] = Hash(A[t].randLocal||B[t].randLocal)
(A & B could force repeating R[t])

Solution: get R[t] from two randLocal[t] and two randOut[t − π] values:

R[t] = Hash(A[t − π].randOut||B[t − π].randOut||A[t].randLocal||B[t].randLocal)

Also need to check:
I reception of A[t − π].randOut and B[t − π].randOut before time T
I correctness of standalone pulses: A[t − π],B[t − π],A[t],B[t]
I hash-chaining (e.g., A[t].out.Prev = A[t − π].randOut)
I pre-commitments (e.g., Hash(A[t].randLocal) = A[t − π].preCom)

20/30

4. Using a Beacon

Combining Beacons

What Beacon randomness R[t] to use if I do not trust any Beacon
in isolation? ... but trust that two Beacons (A and B) will not collude?

Desired properties:
I A single Beacon cannot bias the output;

I Even two colluding beacons cannot fully control the output.

Not good:

I R[t] = Hash(A[t].randOut||B[t].randOut)

(A could wait to know B’s value)

I R[t] = Hash(A[t].randLocal||B[t].randLocal)
(A & B could force repeating R[t])

Solution: get R[t] from two randLocal[t] and two randOut[t − π] values:

R[t] = Hash(A[t − π].randOut||B[t − π].randOut||A[t].randLocal||B[t].randLocal)

Also need to check:
I reception of A[t − π].randOut and B[t − π].randOut before time T
I correctness of standalone pulses: A[t − π],B[t − π],A[t],B[t]
I hash-chaining (e.g., A[t].out.Prev = A[t − π].randOut)
I pre-commitments (e.g., Hash(A[t].randLocal) = A[t − π].preCom)

20/30

4. Using a Beacon

Combining Beacons

What Beacon randomness R[t] to use if I do not trust any Beacon
in isolation? ... but trust that two Beacons (A and B) will not collude?

Desired properties:
I A single Beacon cannot bias the output;

I Even two colluding beacons cannot fully control the output.

Not good:

I R[t] = Hash(A[t].randOut||B[t].randOut) (A could wait to know B’s value)

I R[t] = Hash(A[t].randLocal||B[t].randLocal)
(A & B could force repeating R[t])

Solution: get R[t] from two randLocal[t] and two randOut[t − π] values:

R[t] = Hash(A[t − π].randOut||B[t − π].randOut||A[t].randLocal||B[t].randLocal)

Also need to check:
I reception of A[t − π].randOut and B[t − π].randOut before time T
I correctness of standalone pulses: A[t − π],B[t − π],A[t],B[t]
I hash-chaining (e.g., A[t].out.Prev = A[t − π].randOut)
I pre-commitments (e.g., Hash(A[t].randLocal) = A[t − π].preCom)

20/30

4. Using a Beacon

Combining Beacons

What Beacon randomness R[t] to use if I do not trust any Beacon
in isolation? ... but trust that two Beacons (A and B) will not collude?

Desired properties:
I A single Beacon cannot bias the output;

I Even two colluding beacons cannot fully control the output.

Not good:

I R[t] = Hash(A[t].randOut||B[t].randOut) (A could wait to know B’s value)

I R[t] = Hash(A[t].randLocal||B[t].randLocal)

(A & B could force repeating R[t])

Solution: get R[t] from two randLocal[t] and two randOut[t − π] values:

R[t] = Hash(A[t − π].randOut||B[t − π].randOut||A[t].randLocal||B[t].randLocal)

Also need to check:
I reception of A[t − π].randOut and B[t − π].randOut before time T
I correctness of standalone pulses: A[t − π],B[t − π],A[t],B[t]
I hash-chaining (e.g., A[t].out.Prev = A[t − π].randOut)
I pre-commitments (e.g., Hash(A[t].randLocal) = A[t − π].preCom)

20/30

4. Using a Beacon

Combining Beacons

What Beacon randomness R[t] to use if I do not trust any Beacon
in isolation? ... but trust that two Beacons (A and B) will not collude?

Desired properties:
I A single Beacon cannot bias the output;

I Even two colluding beacons cannot fully control the output.

Not good:

I R[t] = Hash(A[t].randOut||B[t].randOut) (A could wait to know B’s value)

I R[t] = Hash(A[t].randLocal||B[t].randLocal)
(A & B could force repeating R[t])

Solution: get R[t] from two randLocal[t] and two randOut[t − π] values:

R[t] = Hash(A[t − π].randOut||B[t − π].randOut||A[t].randLocal||B[t].randLocal)

Also need to check:
I reception of A[t − π].randOut and B[t − π].randOut before time T
I correctness of standalone pulses: A[t − π],B[t − π],A[t],B[t]
I hash-chaining (e.g., A[t].out.Prev = A[t − π].randOut)
I pre-commitments (e.g., Hash(A[t].randLocal) = A[t − π].preCom)

20/30

4. Using a Beacon

Combining Beacons

What Beacon randomness R[t] to use if I do not trust any Beacon
in isolation? ... but trust that two Beacons (A and B) will not collude?

Desired properties:
I A single Beacon cannot bias the output;

I Even two colluding beacons cannot fully control the output.

Not good:

I R[t] = Hash(A[t].randOut||B[t].randOut) (A could wait to know B’s value)

I R[t] = Hash(A[t].randLocal||B[t].randLocal)
(A & B could force repeating R[t])

Solution: get R[t] from two randLocal[t] and two randOut[t − π] values:

R[t] = Hash(A[t − π].randOut||B[t − π].randOut||A[t].randLocal||B[t].randLocal)

Also need to check:
I reception of A[t − π].randOut and B[t − π].randOut before time T
I correctness of standalone pulses: A[t − π],B[t − π],A[t],B[t]
I hash-chaining (e.g., A[t].out.Prev = A[t − π].randOut)
I pre-commitments (e.g., Hash(A[t].randLocal) = A[t − π].preCom)

20/30

4. Using a Beacon

Combining Beacons

What Beacon randomness R[t] to use if I do not trust any Beacon
in isolation? ... but trust that two Beacons (A and B) will not collude?

Desired properties:
I A single Beacon cannot bias the output;

I Even two colluding beacons cannot fully control the output.

Not good:

I R[t] = Hash(A[t].randOut||B[t].randOut) (A could wait to know B’s value)

I R[t] = Hash(A[t].randLocal||B[t].randLocal)
(A & B could force repeating R[t])

Solution: get R[t] from two randLocal[t] and two randOut[t − π] values:

R[t] = Hash(A[t − π].randOut||B[t − π].randOut||A[t].randLocal||B[t].randLocal)

Also need to check:
I reception of A[t − π].randOut and B[t − π].randOut before time T
I correctness of standalone pulses: A[t − π],B[t − π],A[t],B[t]
I hash-chaining (e.g., A[t].out.Prev = A[t − π].randOut)
I pre-commitments (e.g., Hash(A[t].randLocal) = A[t − π].preCom)

20/30

4. Using a Beacon

Combining Beacons

What Beacon randomness R[t] to use if I do not trust any Beacon
in isolation? ... but trust that two Beacons (A and B) will not collude?

Desired properties:
I A single Beacon cannot bias the output;

I Even two colluding beacons cannot fully control the output.

Not good:

I R[t] = Hash(A[t].randOut||B[t].randOut) (A could wait to know B’s value)

I R[t] = Hash(A[t].randLocal||B[t].randLocal)
(A & B could force repeating R[t])

Solution: get R[t] from two randLocal[t] and two randOut[t − π] values:

R[t] = Hash(A[t − π].randOut||B[t − π].randOut||A[t].randLocal||B[t].randLocal)

Also need to check:
I reception of A[t − π].randOut and B[t − π].randOut before time T
I correctness of standalone pulses: A[t − π],B[t − π],A[t],B[t]
I hash-chaining (e.g., A[t].out.Prev = A[t − π].randOut)
I pre-commitments (e.g., Hash(A[t].randLocal) = A[t − π].preCom)

20/30

4. Using a Beacon

Some Beacons in development

Three countries are developing Beacons to match the current reference:

United States

Brazil

Chile

I (United States) NIST Randomness Beacon
https://beacon.nist.gov/home

I (Chile) CLCERT Randomness Beacon
https://beacon.clcert.cl/

I (Brazil) Brazilian Randomness Beacon
https://beacon.inmetro.gov.br/

We would like others to join

21/30

https://beacon.nist.gov/home
https://beacon.clcert.cl/
https://beacon.inmetro.gov.br/

4. Using a Beacon

Some Beacons in development

Three countries are developing Beacons to match the current reference:

United States

Brazil

Chile

I (United States) NIST Randomness Beacon
https://beacon.nist.gov/home

I (Chile) CLCERT Randomness Beacon
https://beacon.clcert.cl/

I (Brazil) Brazilian Randomness Beacon
https://beacon.inmetro.gov.br/

We would like others to join

21/30

https://beacon.nist.gov/home
https://beacon.clcert.cl/
https://beacon.inmetro.gov.br/

4. Using a Beacon

Some conceivable applications

“You have been randomly selected for additional screening”

Example applications:

I Select test and control groups for clinical trials

I Select random government officials for financial audits

I Assign court cases to random judges

I Sample random lots for quality-measuring procedures

I Provide entropy to digital lotteries

Some generic goals:

I Prevent auditors from biasing selections (or being accused of it)

I Prevent auditees from addressing only the items to-be sampled

I Enable public verifiability of correct sampling

22/30

4. Using a Beacon

Some conceivable applications

“You have been randomly selected for additional screening”

Example applications:

I Select test and control groups for clinical trials

I Select random government officials for financial audits

I Assign court cases to random judges

I Sample random lots for quality-measuring procedures

I Provide entropy to digital lotteries

Some generic goals:

I Prevent auditors from biasing selections (or being accused of it)

I Prevent auditees from addressing only the items to-be sampled

I Enable public verifiability of correct sampling

22/30

4. Using a Beacon

Some conceivable applications

“You have been randomly selected for additional screening”

Example applications:

I Select test and control groups for clinical trials

I Select random government officials for financial audits

I Assign court cases to random judges

I Sample random lots for quality-measuring procedures

I Provide entropy to digital lotteries

Some generic goals:

I Prevent auditors from biasing selections (or being accused of it)

I Prevent auditees from addressing only the items to-be sampled

I Enable public verifiability of correct sampling

22/30

5. Brief security considerations

Outline

1. Introduction

2. Pulse format

3. Beacon Protocol

4. Using a Beacon

5. Brief security considerations

6. Conclusion

23/30

5. Brief security considerations

Security against intrusions

Security is “easy” in uncompromised scenario!

But how to withstand compromised system components?

– Semi-honest (SH), aka honest-but-curious or passive: can
exfiltrate internal state, but does not deviate from protocol

– Malicious (Mal), aka byzantine or active: arbitrary behavior

Why considering intrusions?

1. We want trust to be leveled with trustworthiness — a security
analysis enables reflecting on meaningful security claims.

2. Even if operators believe in uncompromised
components at launch day, we want security in
the long run, against conceivable adversarial
threats (goals and capabilities).

24/30

5. Brief security considerations

Security against intrusions

Security is “easy” in uncompromised scenario!

But how to withstand compromised system components?

– Semi-honest (SH), aka honest-but-curious or passive: can
exfiltrate internal state, but does not deviate from protocol

– Malicious (Mal), aka byzantine or active: arbitrary behavior

Why considering intrusions?

1. We want trust to be leveled with trustworthiness — a security
analysis enables reflecting on meaningful security claims.

2. Even if operators believe in uncompromised
components at launch day, we want security in
the long run, against conceivable adversarial
threats (goals and capabilities).

24/30

5. Brief security considerations

Security against intrusions

Security is “easy” in uncompromised scenario!

But how to withstand compromised system components?

– Semi-honest (SH), aka honest-but-curious or passive: can
exfiltrate internal state, but does not deviate from protocol

– Malicious (Mal), aka byzantine or active: arbitrary behavior

Why considering intrusions?

1. We want trust to be leveled with trustworthiness — a security
analysis enables reflecting on meaningful security claims.

2. Even if operators believe in uncompromised
components at launch day, we want security in
the long run, against conceivable adversarial
threats (goals and capabilities).

24/30

5. Brief security considerations

Security against intrusions

Security is “easy” in uncompromised scenario!

But how to withstand compromised system components?

– Semi-honest (SH), aka honest-but-curious or passive: can
exfiltrate internal state, but does not deviate from protocol

– Malicious (Mal), aka byzantine or active: arbitrary behavior

Why considering intrusions?

1. We want trust to be leveled with trustworthiness — a security
analysis enables reflecting on meaningful security claims.

2. Even if operators believe in uncompromised
components at launch day, we want security in
the long run, against conceivable adversarial
threats (goals and capabilities).

24/30

5. Brief security considerations

Types of security properties (informal)

I Relational: correct hash chain, signatures, timestamps, consistent record
(immutable past), ...

I Availability: timely pulse releases; accessible past pulses; automatic
operation (reduced human operator intervention); ...

I “Rands” quality: unpredictable; unbiaseable; fresh and independent;

Attack consequences:

I breaking relational or availability properties typically leads to detectable
errors, e.g., incorrect signatures or hash-chaining, delayed releases, ...

I next slides mention a few examples of attacks to the “rands” quality

25/30

5. Brief security considerations

Types of security properties (informal)

I Relational: correct hash chain, signatures, timestamps, consistent record
(immutable past), ...

I Availability: timely pulse releases; accessible past pulses; automatic
operation (reduced human operator intervention); ...

I “Rands” quality: unpredictable; unbiaseable; fresh and independent;

Attack consequences:

I breaking relational or availability properties typically leads to detectable
errors, e.g., incorrect signatures or hash-chaining, delayed releases, ...

I next slides mention a few examples of attacks to the “rands” quality

25/30

5. Brief security considerations

Intrusion scenarios

NISTIR 8213 considers several scenarios with intruded components

:

I I1. Mal Beacon App → randLocal control attack

I I2. Mal Beacon App → randOut bias attack

I I3. Mal local-clock + SH DB → “rands” predict attack

I I4. SH Beacon App → “rands” prediction attack

I I5. Mal DB with HSM sign key → change-history attack

HSM

Clock

RNG

Beacon

 App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

Legend: Mal=malicious; SH=semi-honest; DB=database

The red dancing devil clipart is from clker.com/clipart-13643.html

26/30

5. Brief security considerations

Intrusion scenarios

NISTIR 8213 considers several scenarios with intruded components:

I I1. Mal Beacon App → randLocal control attack

I I2. Mal Beacon App → randOut bias attack

I I3. Mal local-clock + SH DB → “rands” predict attack

I I4. SH Beacon App → “rands” prediction attack

I I5. Mal DB with HSM sign key → change-history attack

HSM

Clock

RNG

Beacon

 App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

Legend: Mal=malicious

; SH=semi-honest; DB=database

The red dancing devil clipart is from clker.com/clipart-13643.html

26/30

5. Brief security considerations

Intrusion scenarios

NISTIR 8213 considers several scenarios with intruded components:

I I1. Mal Beacon App → randLocal control attack

I I2. Mal Beacon App → randOut bias attack

I I3. Mal local-clock + SH DB → “rands” predict attack

I I4. SH Beacon App → “rands” prediction attack

I I5. Mal DB with HSM sign key → change-history attack

HSM

Clock

RNG

Beacon

 App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

Legend: Mal=malicious

; SH=semi-honest; DB=database

The red dancing devil clipart is from clker.com/clipart-13643.html

26/30

5. Brief security considerations

Intrusion scenarios

NISTIR 8213 considers several scenarios with intruded components:

I I1. Mal Beacon App → randLocal control attack

I I2. Mal Beacon App → randOut bias attack

I I3. Mal local-clock + SH DB → “rands” predict attack

I I4. SH Beacon App → “rands” prediction attack

I I5. Mal DB with HSM sign key → change-history attack

HSM

Clock

RNG

Beacon

 App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

Legend: Mal=malicious; SH=semi-honest; DB=database

The red dancing devil clipart is from clker.com/clipart-13643.html

26/30

5. Brief security considerations

Intrusion scenarios

NISTIR 8213 considers several scenarios with intruded components:

I I1. Mal Beacon App → randLocal control attack

I I2. Mal Beacon App → randOut bias attack

I I3. Mal local-clock + SH DB → “rands” predict attack

I I4. SH Beacon App → “rands” prediction attack

I I5. Mal DB with HSM sign key → change-history attack

HSM

Clock

RNG

Beacon

 App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

Legend: Mal=malicious; SH=semi-honest; DB=database

The red dancing devil clipart is from clker.com/clipart-13643.html

26/30

5. Brief security considerations

Intrusion scenarios

NISTIR 8213 considers several scenarios with intruded components:

I I1. Mal Beacon App → randLocal control attack

I I2. Mal Beacon App → randOut bias attack

I I3. Mal local-clock + SH DB → “rands” predict attack

I I4. SH Beacon App → “rands” prediction attack

I I5. Mal DB with HSM sign key → change-history attack

HSM

Clock

RNG

Beacon

 App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

Legend: Mal=malicious; SH=semi-honest; DB=database

The red dancing devil clipart is from clker.com/clipart-13643.html

26/30

5. Brief security considerations

Conceivable mitigations

The NISTIR mentions some mitigations

(either possible now or conceivable for the future)

For example, some could be based on the use of:

I publicly-verifiable external entropy (to reduce pre-computation window)

I verifiable delay functions

I secure time synchronization

I a different randLocal computation, with non controllable value

I different signature (e.g., > bit-strength, post-quantum, or/and threshold)

I a forward-chaining mechanism

27/30

5. Brief security considerations

Conceivable mitigations

The NISTIR mentions some mitigations

(either possible now or conceivable for the future)

For example, some could be based on the use of:

I publicly-verifiable external entropy (to reduce pre-computation window)

I verifiable delay functions

I secure time synchronization

I a different randLocal computation, with non controllable value

I different signature (e.g., > bit-strength, post-quantum, or/and threshold)

I a forward-chaining mechanism

27/30

6. Conclusion

Outline

1. Introduction

2. Pulse format

3. Beacon Protocol

4. Using a Beacon

5. Brief security considerations

6. Conclusion

28/30

6. Conclusion

Final Remarks

I Randomness Beacons have a great potential to serve as a public
utility, e.g., to promote public auditability of randomized processes

I The reference (NISTIR 8213) version 2 introduces new features for
better interoperability, security and efficiency

I Possible developments to be made:

I Complementary analysis and guidance

I Improvements based on feedback

I We would like to have your collaboration:

I public feedback on the NISTIR 8213

I more deployed beacons

I external apps using Beacon randomness

29/30

6. Conclusion

Final Remarks

I Randomness Beacons have a great potential to serve as a public
utility, e.g., to promote public auditability of randomized processes

I The reference (NISTIR 8213) version 2 introduces new features for
better interoperability, security and efficiency

I Possible developments to be made:

I Complementary analysis and guidance

I Improvements based on feedback

I We would like to have your collaboration:

I public feedback on the NISTIR 8213

I more deployed beacons

I external apps using Beacon randomness

29/30

6. Conclusion

Final Remarks

I Randomness Beacons have a great potential to serve as a public
utility, e.g., to promote public auditability of randomized processes

I The reference (NISTIR 8213) version 2 introduces new features for
better interoperability, security and efficiency

I Possible developments to be made:

I Complementary analysis and guidance

I Improvements based on feedback

I We would like to have your collaboration:

I public feedback on the NISTIR 8213

I more deployed beacons

I external apps using Beacon randomness

29/30

6. Conclusion

Final Remarks

I Randomness Beacons have a great potential to serve as a public
utility, e.g., to promote public auditability of randomized processes

I The reference (NISTIR 8213) version 2 introduces new features for
better interoperability, security and efficiency

I Possible developments to be made:

I Complementary analysis and guidance

I Improvements based on feedback

I We would like to have your collaboration:

I public feedback on the NISTIR 8213

I more deployed beacons

I external apps using Beacon randomness

29/30

6. Conclusion

Final Remarks

I Randomness Beacons have a great potential to serve as a public
utility, e.g., to promote public auditability of randomized processes

I The reference (NISTIR 8213) version 2 introduces new features for
better interoperability, security and efficiency

I Possible developments to be made:

I Complementary analysis and guidance

I Improvements based on feedback

I We would like to have your collaboration:

I public feedback on the NISTIR 8213

I more deployed beacons

I external apps using Beacon randomness

29/30

6. Conclusion

Thank you for your attention

I Draft NISTIR 8213: https://doi.org/10.6028/NIST.IR.8213-draft

I Email for feedback on the NISTIR 8213: beacon-nistir@nist.gov

I Beacon project: https://www.nist.gov/programs-projects/nist-randomness-beacon

1
1
 0

 1
 1

 1
 0

1
0
 1

 1
 0

 0
 0

 1
 0

0
0

1
 1

 1
 1

 1
 0

 0
 1

 1
 0

1
1
 1

 0
 0

 1
 0

 0
 0

 1

1
01

 1
 0

 1
 0

 0
 0

 0
 1

 1
 0

 0
 1

1
1
 0

 0
 1

 0
 0

 0
 0

 1
 0

 0
 1

 0
 0

 0
 1

0
1
 0

 1
 1

 1
 1

 1
 0

 1
 1

 0
 1

 1
 0

 1
 1

 1
 1

0
0

1
 1

 0
 1

 0
 1

 0
 1

 0
 0

 1
 1

 1

A
d
a
p
te

d
 fro

m
 clke

r.co
m

/clip
a
rt-1

9
5

9
3

2
.h

tm
l

Presentation at the International Cryptographic Module Conference

May 17, 2019 @ Vancouver, Canada

Disclaimer. Opinions expressed in this presentation are from the author(s) and are not to be construed as official or as views of the U.S.
Department of Commerce. The identification of any commercial product or trade names in this presentation does not imply endorsement of
recommendation by NIST, nor is it intended to imply that the material or equipment identified are necessarily the best available for the purpose.

Disclaimer. Some external-source images and cliparts were included/adapted in this presentation with the expectation of such use constituting
licensed and/or fair use.

30/30

https://doi.org/10.6028/NIST.IR.8213-draft
beacon-nistir@nist.gov
https://www.nist.gov/programs-projects/nist-randomness-beacon

6. Conclusion

Thank you for your attention

I Draft NISTIR 8213: https://doi.org/10.6028/NIST.IR.8213-draft

I Email for feedback on the NISTIR 8213: beacon-nistir@nist.gov

I Beacon project: https://www.nist.gov/programs-projects/nist-randomness-beacon

1
1
 0

 1
 1

 1
 0

1
0
 1

 1
 0

 0
 0

 1
 0

0
0

1
 1

 1
 1

 1
 0

 0
 1

 1
 0

1
1
 1

 0
 0

 1
 0

 0
 0

 1

1
01

 1
 0

 1
 0

 0
 0

 0
 1

 1
 0

 0
 1

1
1
 0

 0
 1

 0
 0

 0
 0

 1
 0

 0
 1

 0
 0

 0
 1

0
1
 0

 1
 1

 1
 1

 1
 0

 1
 1

 0
 1

 1
 0

 1
 1

 1
 1

0
0

1
 1

 0
 1

 0
 1

 0
 1

 0
 0

 1
 1

 1

A
d
a
p
te

d
 fro

m
 clke

r.co
m

/clip
a
rt-1

9
5

9
3

2
.h

tm
l

Presentation at the International Cryptographic Module Conference

May 17, 2019 @ Vancouver, Canada

Disclaimer. Opinions expressed in this presentation are from the author(s) and are not to be construed as official or as views of the U.S.
Department of Commerce. The identification of any commercial product or trade names in this presentation does not imply endorsement of
recommendation by NIST, nor is it intended to imply that the material or equipment identified are necessarily the best available for the purpose.

Disclaimer. Some external-source images and cliparts were included/adapted in this presentation with the expectation of such use constituting
licensed and/or fair use.

30/30

https://doi.org/10.6028/NIST.IR.8213-draft
beacon-nistir@nist.gov
https://www.nist.gov/programs-projects/nist-randomness-beacon

	Title
	Outline
	1 Introduction
	Outline
	A Randomness Beacon
	Brief historical note
	This talk is about the NISTIR 8213 (draft)
	Components of the Beacon service, at a high level

	2 Pulse format
	Outline
	A pulse (simplified example)
	The two ``rands'' in a pulse
	The two ``rands'' in a pulse

	3 Beacon Protocol
	Outline
	Beacon proper operation
	Timing requirements for generation and release
	Fetching pulses
	Skiplists — efficient chain verification
	A possible diagram of pulse generation

	4 Using a Beacon
	Outline
	Using Beacon randomness
	Combining Beacons
	Some Beacons in development
	Some conceivable applications

	5 Brief security considerations
	Outline
	Security against intrusions
	Types of security properties (informal)
	Intrusion scenarios
	Conceivable mitigations

	6 Conclusion
	Outline
	Final Remarks
	Thank you for your attention

