
Qameleon v. 1.0

A Submission to the
NIST Lightweight Cryptography Standardiza on Process

This submission is from the following team, listed in alphabe cal order:

Roberto Avanzi 1 Architecture and Technology Group, ARM Germany GmbH
E-mail address roberto.avanzi@gmail.com , roberto.avanzi@arm.com

Telephone +49-174-1418294
Postal address ARM Germany GmbH, Bretonischer Ring 16, 85630 Grasbrunn, Germany

Subhadeep Banik School of Computer and Communica on Sciences, EPFL, Switzerland
E-mail address subhadeep.banik@epfl.ch

Telephone +41-21-69-38127
Postal address EPFL IC IINFCOM LASEC, INF 239, Sta on 14, 1015 Lausanne, Switzerland

Andrey Bogdanov DTU COMPUTE, Technical University of Denmark
E-mail address anbog@dtu.dk

Telephone +45-45-25-54-72
Postal address Technical University of Denmark, Richard Petersens Plads

Building 322, room 232, 2800 Kgs. Lyngby

Orr Dunkelman Computer Science Department, University of Haifa, Israel
E-mail address orrd@cs.haifa.ac.il

Telephone +972-4-828-8447 (preferred), +972-54-5291912 (secondary)
Postal address Computer Science Department, University of Haifa, Haifa 31905, Israel

Senyang Huang Computer Science Department, University of Haifa, Israel
E-mail address xiaohuangbuct@gmail.com

Telephone +972-58-4888178
Postal address Computer Science Department, University of Haifa, Haifa 31905, Israel

Francesco Regazzoni 2 ALaRI, Università della Svizzera italiana, Switzerland
E-mail address regazzoni@alari.ch

Telephone +41-58-666-4307
Postal address ALaRI, Università della Svizzera italiana

Via G. Buffi 13, 6904 Lugano, Switzerland

1 Project lead, corresponding submi er 2 Backup corresponding submi er

Munich, March 29, 2019

(This page inten onally le blank.)

Qameleon v. 1.0

A Submission to the
NIST Lightweight Cryptography Standardiza on Process

This submission is from the following team, listed in alphabe cal order:

Roberto Avanzi 1 Architecture and Technology Group, ARM Germany GmbH
E-mail address roberto.avanzi@gmail.com , roberto.avanzi@arm.com

Subhadeep Banik School of Computer and Communica on Sciences, EPFL, Switzerland
E-mail address subhadeep.banik@epfl.ch

Andrey Bogdanov DTU COMPUTE, Technical University of Denmark
E-mail address anbog@dtu.dk

Orr Dunkelman Computer Science Department, University of Haifa, Israel
E-mail address orrd@cs.haifa.ac.il

Senyang Huang Computer Science Department, University of Haifa, Israel
E-mail address xiaohuangbuct@gmail.com

Francesco Regazzoni 2 ALaRI, Università della Svizzera italiana, Switzerland
E-mail address regazzoni@alari.ch

1 Project lead, corresponding submi er 2 Backup corresponding submi er

Munich, March 29, 2019

Introduc on

The present document proposes Qameleon, a new Authen cated Encryp on with Associated Data (AEAD)
design based on well-understood technologies. Parameters sets and variants are suggested that can use
different key and tweak sizes, and for each of them specific security levels are claimed.

Qameleon targets low-latency scenarios, such as memory encryp on. This suggests that the scheme is
“perfectly” parallelisable, i.e., as parallelisable as possible on a single task. In par cular, we support de-
cryp on of any block (while authen ca on is s ll taking place). Moreover, as our main focus is memory
encryp on, we mostly target scenarios in which the nonce are not repeated.

Qameleon is a clean design composed of amode of opera on calledPANORAmA, which can be used together
with any compa ble Tweakable Block Cipher (TBC), and the TBC QARMA [Ava17]. PANORAmA is a subset of the
tweaked Offset CodeBook mode (OCB) mode ΘCB, with an addi onal provision for extending the length of
messages. Some simplifica ons, such as the direct encryp on of frac onal blocks, makes implementa ons
less error-prone (and may offer reduced IP restric ons). It can also be seen as a special instan a on of the
Authen cated Encryp on Mode (AEM) [Rog04].

This choice of design has essen ally no set-up me, is highly parallelisable, and can be effec vely pipelined,
in order to keep up also with extreme bandwidth requirements.

The block cipher QARMA that is used with this mode of opera on has been actually designed for such
uses. Indeed, while the development of the 64-bit version of QARMAwas mo vated by the requirements of
Pointer Authen ca on for hardware assisted preven on of so ware exploita on [AKT14, ARM16,QPS17],
the general design was intended to meet the needs of addi onal specific use cases such as memory en-
cryp on and the construc on of keyed hash func ons. At the same me the cipher has a conserva ve
design and excellent performance.

Qameleon is performant enough to be used as a general purpose cipher, but it is especially op mised
for memory encryp on, and this is reflected in its name: QARMA plus Authen ca on for MEmories that Let
Exfiltra ON. We recall that QARMA itself is an acronym that means Qualcomm and ARM Authen cator be-
cause of the first intended applica on of its 64-bit version.

For Random Access Memory (RAM) encryp on a pure Authen cated Encryp on (AE)mode would suffice, but
sincewe encompass also export of pages or areas ofmemory from secure process domains (a.k.a. “enclaves,”
“realms,” or “Secure Par ons”) to insecure mass storage, the defini on of a general-purpose mode with
associated data is desirable. A few variants are included, addressing various use cases. The AEAD variants
of Qameleon provides full 128-bit or 256-bit security for plaintext confiden ality, whereas integrity and
authen city are limited by the tag size, which can be of 64 or 128 bits.

Qameleon performs very well in hardware, being significantly faster, smaller, and requiring far less energy
than the most important alterna ves with similar requisites.

Organiza on of this document In Chapter 1 on page 7 we specify the mode of opera on used by the
Qameleon family. Chapter 2 on page 13 contains the specifica ons of tweakable block cipher QARMA. The
proposed parameter sets and some variants are the subject ma er of Chapter 3 on page 19. Their claimed
security is also given there. In Chapter 4 on page 25 we explain the design ra onale of our algorithms.
Security arguments are presented in Chapter 5 on page 29. Chapter 6 on page 41 is where we report on
our implementa ons. A feature summary, acknowledgements, lyrics for the official Qameleon song, and a
bibliography round off the submission.

2

Contents

Introduc on 2

Contents 3

List of Algorithms . 5

List of Figures . 5

List of Tables . 5

List of Acronyms . 6

1 Specifica on of the Mode of Opera on PANORAmA 7

1.1 Nota on . 7

1.2 Algorithms . 8

1.2.1 Encryp on and tag genera on . 8

1.2.2 Nonce rota on . 8

1.2.3 Decryp on and tag verifica on . 10

1.2.4 Tag length trunca on . 10

1.2.5 64-bit version . 10

1.2.6 An implementa on note . 10

2 Specifica on of the Tweakable Block Cipher QARMA 13

2.1 General defini ons and nota on . 13

2.2 Key specialisa on . 13

2.3 The forward round func on . 14

2.4 The tweak update func on . 15

2.5 The backward round func on . 15

2.6 The central construc on and the pseudo-reflector . 15

2.7 The 4-bit S-Box . 15

2.8 The 8-bit S-Box . 16

2.9 The diffusion matrices . 16

2.10 The encryp on and decryp on algorithm . 17

3 Parameter Sets and Variants, and Security Claims 19

3.1 Parameter sets and variants . 19

3.2 Security claims . 20

3.2.1 Security goals . 20

3.2.2 Expected strength in general . 20

3.2.3 Expected strength for each parameter set . 21

3.3 Long tweak support . 22

3.3.1 Specifica on of the tweak compression func on . 22

3.3.2 Usage of the tweak compression func on . 22

3

3.3.3 Usage of the tweak compression func on in Parameter Sets (B) and (E) 24

4 Design Ra onale 25

4.1 High level choices . 25

4.2 Low level choices . 26

4.2.1 Low level choices for QARMA . 26

4.2.2 The selec on of the QARMA S-Box . 27

4.2.3 Low level choices for the PANORAmA mode of opera on . 27

4.2.4 Low level choices for the tweak compression . 28

5 Security Analysis 29

5.1 On the threat models . 29

5.1.1 General usage . 29

5.1.2 Memory encryp on . 30

5.1.2.1 The case of external, interposable memory . 30

5.1.2.2 The case of internal memory . 32

5.1.2.3 Addi onal security targets . 32

5.2 On the security of QARMA . 33

5.2.1 Design cryptanalysis . 34

5.2.2 Disclosed cryptanalysis . 34

5.2.3 On the security of the Even-Mansour construc on . 35

5.3 On the security of PANORAmA . 36

5.4 On the security of long tweak compression . 37

5.4.1 Tweak collisions . 37

5.4.2 Impact of tweak collisions on Qameleon . 38

5.4.2.1 Detec ng tweak collisions . 39

5.4.2.2 Eleva ng tweak collisions to a acks . 39

5.5 On side-channel resistance . 40

6 Implementa ons 41

6.1 So ware . 41

6.2 Hardware . 41

6.2.1 Qameleon: PANORAmA using QARMA-128 (Circuit details) . 42

6.2.2 Timing . 45

6.2.3 Performance . 45

7 Summary of Features 46

Acknowledgments 47

Bibliography 48

4

List of Algorithms

1.1 The PANORAmA encryp on algorithm ℰ ν
K(A,M) . 11

1.2 The PANORAmA decryp on algorithm𝒟 ν
K(A,M) . 12

2.1 The QARMA Algorithm . 18

3.1 Tweak Compression Algorithm . 23

List of Figures

1.1 Processing of the associated data . 9

1.2 Message processing and tag computa on . 9

1.3 Alterna ve message processing and tag computa on . 9

2.1 The Overall Scheme . 14

2.2 The Structure of QARMAr . 14

2.3 The Construc on of the 8-bit S-Box Σ of QARMA-128 . 16

2.4 Alignment of Output and Input Bits of Consecu ve Instances of the 8-bit Composite S-Box 16

6.1 Hardware circuit for Qameleon . 43

6.2 Componentwise area requirements for Qameleon-128 using QARMA-12814 43

List of Tables

2.1 The Round Constants for the 64-bit Ciphers . 18

2.2 The Round Constants for the 128-bit Ciphers . 18

3.1 Round constants used in the tweak compression of 2 n-bit and 3 n-bit tweaks for n = 64 23

3.2 Round constants used in the tweak compression of 2 n-bit tweaks for n = 128 23

5.1 Cryptanalysis of QARMA – Selected Published Results . 35

6.1 Implementa on results for various block ciphers. (Power reported at 10 MHz) 42

6.2 Implementa on results for Qameleon variants (Power reported at 10 MHz) 44

5

List of Acronyms

AD Associated Data . 7
AE Authen cated Encryp on . 2
AEAD Authen cated Encryp on with Associated Data . 8
AEM Authen cated Encryp on Mode . 2
BBB Beyond the Birthday Bound . 36
CL Cache Line . 19
CPU Central Processing Unit . 30
HPC High-Performance Compu ng . 25
EM Electro-Magne c . 32
IOT Internet of Things . 46
LFSR Linear Feedback Shi Register . 13
MDS Minimum-Distance Separable . 16
MG Memory Granule . 19
MILP Mixed Integer-Linear Programming . 28
MITM Meet-in-the-Middle . 34
NIST Na onal Ins tute of Standards and Technology . 7
OCB Offset CodeBook mode . 7
PA Physical Address . 19
PAT Parallelisable Authen ca on Tree . 31
PRF Pseudo-Random Func on . 37
PRP Pseudo-Random Permuta on . 37
RAM Random Access Memory . 19
RUP Releasing Unverified Plaintext . 32
SCM Storage Class Memory . 25
SCT Synthe c Counter-in-Tweak . 7
SOP Sum of Products . 27
TAE Tweakable Authen cated Encryp on . 7
TBC Tweakable Block Cipher . 7
TEC Tamper-Evident Counter . 31

6

1 Specifica on of the Mode of Opera on PANORAmA

This chapter contains the full specifica on of the mode of opera on used by Qameleon, which is itself
called PANORAmA: PArallelisable NOnce Rota ng Authen cated Encryp on cum Associated Data.

PANORAmA is similar to Deoxys-I by Jean, Nikolić, Peyrin, and Seurin [JNPS16], which is itself closely based
onΘBC [KR11], a variant ofOffset CodeBookmode (OCB) [RBBK01], also known as Tweakable Authen cated
Encryp on (TAE) [LRW02, LRW11]. The differences between PANORAmA and these modes are:

1. The last block of the message, if frac onal, is processed by padding and encryp ng it, instead of
XORing it with an encryp on of zero and trunca ng the output. The differen a on between the
cases of a full last block ending with 1‖08 (t−1)+7 and a frac onal last block defec ve of t bytes,
but otherwise iden cal, is done by tweak domain separa on based on the message length. The
computa on of the Associated Data (AD) authen cator is similar.

2. The Na onal Ins tute of Standards and Technology (NIST) call [NIS18] asks for the ability to handle
messages up to 250 − 1 bytes. On the other hand, we wanted to instan ate the main variants of the
cipher using QARMA-128, that has only a 128-bit tweak input. However, for the principal submission
variant, the nonce must be at least 96 bit, and the block counter would be too large to fit in the
remaining bits. Hence we developed a technique to “rotate” the values in the nonce field in a way
that is unpredictable for the a acker – in par cular observing any nonce repe onwould expectedly
require the processing of significantly more than 250−1 bytes, and even such an event should not be
exploitable. Alterna vely, developing an idea sketched in [Ava17, §2.9], we also develop a way to
use longer tweaks while not changing the proven core of the underlying Tweakable Block Cipher (TBC).

With our choices we aim, among other things, at making implementa on easier and avoiding poten al
pi alls such as those that affected the OCB2 mode, e.g. [IM18, Poe18, Iwa18].

Regarding a format-preserving processing of the frac onal last block: we could re-include it at the NIST’s
bidding (as this is NIST’s right). But we do not feel urged to include it at this stage.

It is possible to define a mode of opera on similar to Deoxys-II [JNPS16] as well to address the nonce-
repea ng scenario: We leave this open for discussion and may add this to the submission if the selec on
commi ee feels that such a mode of opera on is required. Note that Deoxys-II itself is a variant of
Synthe c Counter-in-Tweak (SCT), an inverse-free authen cated encryp on mode published in [PS16].

1.1 Nota on

Wedenote by ETK(P) the ciphering of the n-bit plaintext Pwith the tweakable block cipher QARMA (by default
QARMA-128, but also QARMA-64 could be used) with a 2 n-bit key K and a t-bit tweak T. Usually t = n but if
tweak compression is used t can be larger (as discussed for 2 n- and 3 n-bit tweaks in Chapter 3).

The symbol ‖ denotes the concatena on opera on. For any bit string x ∈ {0, 1}∗ let x denote its length.
The symbol ϵ denotes the empty string. The func on pad applies the 10∗ padding on n bits i.e.

pad(X) = {
X if |X| = n ,
X‖1‖0n−|X|−1 if 1 ≤ |X| < n ,
ϵ if X = ϵ .

7

We note that pad(⋅) does not offer prefix-free encoding, but the calls to the tweakable block cipher QARMA
enjoy domain separa onwhich ensure that for twodifferentmessagesm1,m2 such that pad(m1) = pad(m2),
the sequence of calls to the QARMA differ.

For any number i in an algorithm, we denote by ⌊i⌋p its trunca on to p bits, taking the p least significant bits
of i. If i is shorter than p bits, then its upper bits are padded with zeros. Similarly, ⌈i⌉p is the trunca on of i
to its p most significant bits, zero filled in the least significant bits if necessary.

1.2 Algorithms

The Authen cated Encryp on with Associated Data (AEAD) mode PANORAmA is composed of an encryp on
algorithm and a verifica on/decryp on algorithm. It is for nonce-respec ng users.

We describe it in detail the 128-bit version first, and then men on the differences for the 64-bit case.

1.2.1 Encryp on and tag genera on

The encryp on algorithm ℰ takes as input a variable-length plaintext byte-string M (with m = |M|/8), a
variable-length associated-data byte-string A (with a = |A|/8), a nonce N, and a 256-bit key K (since the
key used in the mode of opera on and the key actually used in all instances of the underlying TBC are
the same, we use the same le er for both of them). The algorithm outputs: an m′-byte ciphertext C (with
m′ = 16 ⋅ ⌈ m16⌉ for the 128-bit ciphers, replacing 16 by 8 for the 64-bit versions), and a 64 or 128-bit tag,
i.e. (C, tag) = ℰM

K (A,M). This algorithm is given in the form of pseudocode as Algorithm 1.1 on page 11.

In the tweak inputs, the value N is encoded on 96 bits, i and λ are encoded on 124 bits, and j, ℓ, m are
encoded on 28 bits. Since the actual variables j, ℓ, and m are longer than 28 bits, when inserted in the
tweak they are truncated to the 28 least significant bits.

Graphically, AD processing is represented in Figure 1.1 on the next page and message processing in Fig-
ure 1.2 on the following page, where the pictures are simplified by showing the algorithms for messages of
less than 228 blocks. (In Figure 1.3 on the next page we describe a different way to compute the final tag
to encourage its study. It is not part of the submi ed variants of Qameleon.)

Note that the NIST requirements ask “The family shall include one primary member that has [...] a nonce length
of at least 96 bits, [...]. The limits on the input sizes [...] for this member shall not be smaller than 250 − 1 bytes.”
Block counters for 250 −1 bytes occupy 43 bits and therefore nonce and counter cannot be packed in 128
bits! Our solu on is to replace the nonce every 228 blocks as described in the next subsec on.

1.2.2 Nonce rota on

We describe how the nonce is rotated – i.e. replaced with a mathema cally unpredictable value a er a
certain amount of text is processed.

Let ν be the original nonce passed as a parameter to the algorithm. This nonce is used to encrypt the first
228 blocks, i.e. the first chunk: A chunk is understood to be each segment of up to 228 texts encrypted with
a given nonce ν. A er that, new nonces are derived from ν using the formula N = E1111‖ν‖0K (j ≫ 28) where
j is the zero-based index of the message block, and since N is computed before the counter overflows into
the 29-th bit, j ≫ 28 is the zero-based index of the chunk of 228 message blocks, minus 1.

Note that all chunks beside possibly the last one are full chunks.

8

A0

E2‖0
K

A1

E2‖1
K

Aλ−2

E2‖λ−2
K

pad(Aλ−1)

E3‖a
K

……

Auth

Figure 1.1: Processing of the AD

Here a is the byte length of A and λ the total number of blocks in which A is segmented. These blocks are all non-empty and
the last one may be full or frac onal. If the last block is frac onal, it shall be padded before use.

M0

E0‖ν‖0
K

C0

M1

E0‖ν‖1
K

C1

……

Mℓ−2

E0‖ν‖ℓ−2
K

Cℓ−2

pad(Mℓ−1)

E1‖ν‖m
K

Cℓ−1

Σ

E4‖ν‖0
K

tag

Auth

Figure 1.2: Message processing and tag computa on

Here m is the byte length of M and ℓ is the number of blocks in which M is segmented: These blocks are all non-empty and
the last one may be full or frac onal. If the last block is frac onal, it shall be padded before use.

M0

E0‖ν‖0
K

C0

M1

E0‖ν‖1
K

C1

……

Mℓ−2

E0‖ν‖ℓ−2
K

Cℓ−2

pad(Mℓ−1)

E1‖ν‖m
K

Cℓ−1

Auth

E4‖ν‖0
K

tag

Σ

Figure 1.3: Alterna ve message processing and tag computa on

This is a different approach to the computa on of the final tag, whereby theAD authen catorAuth is added to the plaintext
checksum Σ before the la er is encrypted. This is not part of our submission and we share for only for possible study. It
inherits all security proofs of OCB/ΘCB and the par cular combina on of the authen cator with the plaintext checksum
seems different from the techniques considered by Rogaway. The downside of this variant is that parallelisa on is reduced,
and the final tag will have an added block cipher invoca on in the cri cal path. This is not cri cal in all applica ons we
considered so far.

9

Tweak domain separa on between the first and the subsequent chunks is guaranteed by flipping the most
significant bit of the tweak a er the first chunk.

In environments where the nonce is assured to be unique, in place of this solu on the nonce can be directly
updated, e.g. by using an untamperable counter. While such a scenario is discussed in Chapter 5 on page 29,
the nonce rota on is mostly useful for systems which pick the nonce at random (and thus a 96-bit nonce
offers good protec on against nonce collisions, un l about 248 different nonces are used).

1.2.3 Decryp on and tag verifica on

The verifica on/decryp on algorithm 𝒟 takes as input a variable-length ciphertext byte-string C (with
m′ = |C|/8), a variable-length AD byte-string A (with a = |A|/8), a tag tag, a nonce N, and a 2 n-bit key K.
Note that the receivermust know the correct plaintext lengthm, wherem′ = 2 μ⋅⌈ m2μ⌉ holds. This algorithm
outputs either an error string⊥ to signify that the verifica on failed or anm′-byte stringM = 𝒟N

K (A,C, tag)
when the tag tag is valid. The firstm bytes of them′-byte stringM are the original plaintext. This algorithm
is given in the form of pseudocode as Algorithm 1.2 on page 12.

1.2.4 Tag length trunca on

PANORAmA can output 64- or 128-bit tags. In the following the tag length shall be denoted by t.

In the case where a cipher with 128-bit blocks is used, we need to define how to choose the 64 bits for the
tag. We have defined trunca on as taking the least significant bits, however for an “orderless” field such
as the internal state of a cipher that does not use addi ons this must be explicitly defined.

Now, in agreement to what we shall define for the internal state of the cipher QARMA in (2.1), the 128-
bit registers where Auth and Σ are accumulated, and finally tag is computed are divided in 8-bit cells
indexed the same way the cipher state is par oned (since it is a sum of final cipher states), e.g. tag =
t0‖t1‖ ⋯ ‖t14‖t15. Then, the 64-bit tag is defined as ⌊tag ⌋64 = t0‖t1‖ ⋯ ‖t6‖t7.

1.2.5 64-bit version

The version of PANORAmA for tweakable block ciphers with 64-bit blocks and tweaks is mostly iden cal
with the 128-bit version just described, the biggest differences being that: The nonce length and the size
of the nonce field in the tweak is now 44 bits; the counter field is 16 bits. The masks and shi s are thus
adjusted accordingly, as well as the computa on of m′ from m.

If the tweakable block cipher has 64-bit blocks but it accepts 128-bit tweaks, no change to the nonce
length is necessary and the fields are as in the 128-bit version.

Since QARMA-64 has 64-bit nonces, in Sec on 3.3 on page 22 we explain how to modify the algorithm in
order to double or triple the tweak length. A technique for doing so was suggested in [Ava17, Sec on 2.9],
but the method presented here requires less resources and is more secure.

1.2.6 An implementa on note

Some variants of the submission append the original plaintext length to the ciphertext, in order to recover
it in an unambiguous way. The ra onale for this choice is explained in Sec on 6.1 on page 41.

10

Algorithm 1.1: The PANORAmA encryp on algorithm ℰ ν
K(A,M)

Input: A variable-length plaintext byte-stringM, with m = |M|/8, a variable-length associated-data
byte-string A, a 96-bit nonce ν, a 256-bit key K, and the tag length t

Output: A pair (C, tag) consis ng of: a m′-byte ciphertext C, with m′ = 16 ⋅ ⌈ m16⌉; and tag tag

// Initialisation
1 N ← ν
2 b ← 0

// Processing the associated data
3 Auth ← 0
4 if A ≠ ϵ then

5 a ← |A|
8

(byte length of A)

6 A0‖A1‖ ⋯ ‖Aλ−1 ← A where each |Ai| = 128 for 0 ≤ i < λ − 1 and 0 < |Aλ−1| ≤ 128
7 for i ← 0 to λ − 2 do
8 Auth ← Auth ⊕ E0010‖⌊i⌋124K (Ai)

9 Auth ← Auth ⊕ E0011‖⌊a⌋124K (pad(Aλ−1))

// Processing the message
10 Σ ← 0
11 ifM ≠ ϵ then
12 M0‖M1‖ ⋯ ‖Mℓ−1 ← M where each |Mi| = 128 for 0 ≤ i < ℓ − 1 and 0 < |Mℓ−1| ≤ 128
13 for j ← 0 to ℓ − 2 do
14 Σ ← Σ⊕Mj
15 Cj ← Eb000‖N‖⌊j⌋28

K (Mj)
16 if (j ∧ 0x0fffffff = 0x0fffffff) then
17 N ← ⌈E1111‖ν‖028K (j ≫ 28)⌉

96
18 b ← 1

19 tmp ← pad(Mℓ−1)
20 Σ ← Σ⊕ tmp
21 Cℓ−1 ← Eb001‖N‖⌊m⌋28

K (tmp)

// Tag generation and return
22 tag ← ⌊Eb100‖ν‖0K (Σ)⊕ Auth⌋t
23 return (C0‖ … ‖Cℓ−1, tag)

11

Algorithm 1.2: The PANORAmA decryp on algorithm𝒟 ν
K(A,M)

Input: A variable-length byte-string C, a variable-length associated-data byte-string A, a tag tag
of length t, a 96-bit nonce ν, a 256-bit key K, the plaintext byte length m = |M|/8

Output: Either an error string ⊥ to signify that the verifica on failed or a m-byte string
M = 𝒟N

K (A,C, tag) when the tag tag is valid.

// Initialisation
1 N ← ν
2 b ← 0

3 m′ ← |C|
8

(length in bytes)

4 if 16 ∤ m′ orm′ ≠ 16 ⋅ ⌈ m
16

⌉ then
5 return (⊥)

// Processing the associated data
6 Auth ← 0
7 if A ≠ ϵ then

8 a ← |A|
8

(byte length of A)

9 A0‖A1‖ ⋯ ‖Aλ−1 ← A where each |Ai| = 128 for 0 ≤ i < λ − 1 and 0 < |Aλ−1| ≤ 128
10 for i ← 0 to λ − 2 do
11 Auth ← Auth ⊕ E0010‖⌊i⌋124K (Ai)

12 Auth ← Auth ⊕ E0011‖⌊a⌋124K (pad(Aλ−1))

// Processing the ciphertext
13 Σ ← 0
14 if C ≠ ϵ then
15 C0‖C1‖ ⋯ ‖Cℓ−1 ← C where each |Ci| = 128
16 for j ← 0 to ℓ − 2 do
17 Mj ← Db000‖N‖⌊j⌋28

K (Cj)
18 Σ ← Σ⊕Mj
19 if (j ∧ 0x0fffffff = 0x0fffffff) then
20 N ← ⌈E1111‖ν‖028K (j ≫ 28)⌉

96
21 b ← 1

22 Mℓ−1 ← Db001‖N‖⌊m⌋28
K (Cℓ−1)

23 Σ ← Σ⊕Mℓ−1
24 TruncateMℓ−1 to m mod 16 bytes

// Tag verification and return
25 tag′ ← ⌊Eb100‖ν‖0K (Σ)⊕ Auth⌋t
26 if tag′ ≠ tag then
27 return (⊥)
28 else
29 return (M0‖ … ‖Mℓ−1)

12

2 Specifica on of the Tweakable Block Cipher QARMA

This chapter is mostly an abridged version of [Ava17, Sec on 2].

2.1 General defini ons and nota on

The overall scheme of the TBC QARMA is depicted in Figure 2.1 on the following page. There, and through-
out this document, a bar over a func on – e.g. F – denotes its inverse.

QARMA is a three-round Even-Mansour construc on where the permuta ons are parameterized by a core
key. The key mixings between rounds are derived from a whitening key. The first and third permuta ons
are func onally the inverse of each other and are further parameterised by a tweak, a concept related to
reflec on ciphers [BCG+12a]. The central permuta on is designed to be easily inverted by means of a
simple transforma on of its round key.

The cipher is depicted in more detail in Figure 2.2 on the next page.

The keys k0, k1, w0, and w1 are derived from a master key K via a simple key specialisa on. The le ers P,
C and T denote the plaintext, the ciphertext and the tweak, respec vely; S represents a layer of sixteen
μ-bit S-Boxes, h and τ are permuta ons, M is an involutory MixColumns-like opera on. and ω is a Linear
Feedback Shi Register (LFSR).

Ley n = 16 μ with μ = 4 or 8. All n-bit values are represented as arrays of sixteen μ-bit cells, which is also
viewed as a 4 × 4 matrix. For instance, the internal state admits representa ons

IS = s0‖s1‖ ⋯ ‖s14‖s15 = (

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

) , (2.1)

so that 4× 4 matrices operate column-wise on these values by le mul plica on. The bits of the state are
stored li le endian, for instance, for QARMA-64, bit 63 of the state is the most significant bit and bit 0 is the
least significant one. For the storage of the bits in the cells we use the same numbering conven on used
for memory, intended as the ubiquitous li le-endian (and used in MANTIS’ defini on), in other words the
zeroth cell contains the most significant bits of the state. The plaintext is given as P = p0‖p1‖ ⋯ ‖p14‖p15,
the tweak as T = t0‖t1‖ ⋯ ‖t14‖t15.
Throughout this chapter we use the symbol “+” to denote addi on in all algebraic structures. In par cular it
denotes the exclusive or in the QARMA ciphers, which do not use modular addi on. The symbol tk denotes
a (round) tweakey, i.e. a value derived only from the key, the tweak, and the round constants.

2.2 Key specialisa on

The 2 n = 32 μ-bit key K is split as w0‖k0 where w0 and k0, the whitening and core keys, are 16 μ bits each.
For encryp on, put w1 = 𝒪(w0) and k1 = k0, where the orthomorphism 𝒪(⋅) is defined as

𝒪(x) ∶= (x ⋙ 1) + (x ≫ (16 μ − 1)) ,

13

w0 w1 w0 w1

P ℱ 𝒞 ℱ C

k0 T k1 k0 + α T

Figure 2.1: The Overall Scheme

h ω h ω h ω ⋯ h ω h ω

w0

P S τ M S τ M S ⋯ τ M S τ M S τ M S τ

M

C S τ M S τ M S ⋯ τ M S τ M S τ M S τ

w1

h ω h ω h ω ⋯ h ω h ω

T

w1

w0

k1

k0

𝔠0

k0

𝔠1

k0

𝔠2

k0

𝔠3

k0

𝔠r−1

k0
α

𝔠r−1

k0
α

𝔠3

k0
α

𝔠2

k0
α

𝔠1

k0
α

𝔠0

Figure 2.2: The Structure of QARMAr

where≫ denotes register shi to the right, and⋙ circular rota on of the register’s bits to the right.

Since the first r rounds of the cipher (ignoring ini al whitening) differ from the last r rounds solely by the
addi on of a non-zero constant α, QARMA possesses a property very similar to PRINCE’s α-reflec on: The
encryp on circuit can be used for decryp on when k0 + α is used as the core key, the whitening keys w0
with w1 are swapped, and k1 = M ⋅ k0.

2.3 The forward round func on

The Forward Round Func on ℛ(IS; tk) is composed by four opera ons, performed in the following order:

1. AddRoundTweakey. The round tweakey tk defined in § 2.10 on page 17 is XORed to IS.

2. ShuffleCells. (τ(IS))i = sτ(i) for 0 ≤ i ≤ 15, where τ is the MIDORI cell permuta on, i.e.

τ = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2] .

3. MixColumns. Each column of the cipher internal state array is mul plied by the involutory matrix
M defined in Sec on 2.9 on page 16, i.e. IS = M ⋅ IS.

4. SubCells. For the chosen S-Box σ, the S layer acts on the state as follows: si ↤ σ(si) for 0 ≤ i ≤ 15.
The S-Boxes are defined in §§ 2.7 and 2.8 on page 16.

A short version of the forward round func on exists which omits the ShuffleCells and MixColumns
opera ons, similarly to the AES final round.

A er AddRoundTweakey the tweak T is updated by the func on described next.

14

2.4 The tweak update func on

First, the cells of the tweak are permuted as h(T) = th(0)‖ ⋯ ‖th(15), where h is the same permuta on

h = [6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11]

used in MANTIS. Then, the LFSR ω updates the tweak cells with indexes 0, 1, 3, 4, 8, 11, and 13. For μ = 4,
ω is a maximal period LFSR that maps cell (b3, b2, b1, b0) to (b0 + b1, b3, b2, b1). For μ = 8, it maps cell
(b7, b6, … , b0) to (b0 + b2, b7, b6, … , b1), and its cycles on the non-zero values have all length 15 or 30.

2.5 The backward round func on

The Backward Round Func on ℛ(IS; tk) is the inverse of the forward round func onℛ.

Its short form omits ShuffleCells and MixColumns.

The inverse tweak update using the inverse LFSR ω and the inverse permuta on hmust be applied before
AddRoundTweakey.

2.6 The central construc on and the pseudo-reflector

Two central rounds – a forward and a backward one – that use the whitening key instead of the core key,
bracket the cipher’s Pseudo-Reflector 𝒫 (IS; tk), which is essen ally just a key addi on and a matrix mul -
plica on of the internal state. In more detail, this central construc on is defined as follows:

1. A forward roundℛ.

2. The pseudo-reflector 𝒫 (IS; tk) i.e.

(a) ShuffleCells.

(b) Mul plica on of the state by the involutory matrixM defined in Sec on 2.9 on the next page.

(c) AddRoundTweakey. The round tweakey tk is XORed to the state.

(d) Inverse ShuffleCells.

3. A backward roundℛ.

Clearly, if steps (b) and (c) were swapped, then tkwould have to be replaced withM ⋅ tk to obtain the same
func on. Because of this, if tk is the tweakey used during encryp on,M ⋅ tk is used instead for decryp on.

2.7 The 4-bit S-Box

With respect to [Ava17] here we restrict the choice of the S-Box to the one called there σ1. Therefore, σ
will be used as the 4-Bit S-Box. Its value table is:

σ1 ∶= [10, 13, 14, 6, 15, 7, 3, 5, 9, 8, 0, 12, 11, 1, 2, 4] .

15

σ

σ

x0
x1
x2
x3
x4
x5
x6
x7

x0
x1
x2
x3
x4
x5
x6
x7

Figure 2.3: The Construc on of the 8-bit S-Box Σ of QARMA-128

σ

σ

σ

σ

1:

σ

σ

σ

σ

2:

σ

σ
σ

σ

3:

σ

σ σ

σ

4:

Figure 2.4: Alignment of Output and Input Bits of Consecu ve Instances of the 8-bit Composite S-Box

2.8 The 8-bit S-Box

As in MIDORI-128 we construct an 8-bit S-Box Σ by placing two instances of a single 4-bit S-Box in parallel.
However, we wire the input and output bits in a single and simpler, but asymmetric way, as shown in
Figure 2.3. The S-Box σ is the default S-Box σ = σ1 described in § 2.7 on the previous page. If we write a
8-bit cell of the state as (x7, x6, x5, x4, x3, x2, x1, x0), σ is applied to (x7, x6, x5, x4) producing the output bits
(x′
7, x′

5, x′
3, x′

1), and to (x3, x2, x1, x0) producing the output bits (x′
6, x′

4, x′
2, x′

0), and the output of the combined
8-bit S-Box is (x′

7, x′
6, x′

5, x′
4, x′

3, x′
2, x′

1, x′
0). Since the construc on is not symmetric, the opposite wiringmust

be implemented for Σ.

A three-round full diffusion property as in MIDORI-128 (Theorem 1 in [BBI+15]) holds, namely any input bit
nonlinearly affects all 128 bits of the state a er 3 full rounds (i.e. not short rounds).

2.9 The diffusion matrices

QARMA’s diffusion layer is composed of a cell permuta on and of a matrix mul plica on.

The chosen matrices are 4× 4 Almost-Minimum-Distance Separable (MDS)matrices. Almost-MDS matrices
are matrices whose branch number [DR02] is not op mal by 1, i.e. in this case they have a branch number
of 4. This allows us to choose matrices whose implementa on is much lighter than usual MDS matrices.

Let Rμ be the quo ent ring Rμ = 𝔽2[X]/(Xμ + 1), and ρ be the image of X in the ring Rμ. We see that ρμ = 1,
and thus such that {1, ρ, ρ2, … , ρμ−1} is a basis for Rμ as a 𝔽2-algebra. The mul plica on by ρ is thus just a
simple circular rota on of the bits (to the le), with only signal propaga on latency. Matrices over Rμ allow

16

us to easily include rota ons in the diffusion layer.

We can find Almost-MDS matrices over Rμ for μ = 4, resp. μ = 8 (for QARMA-64, resp. QARMA-128). Since
Rμ contains zero divisors (for μ ≥ 2), care is to be taken when construc ng inver ble matrices. Theorem 1
of [Ava17] classifies which of the circulants of the form

M = circ(0, ρa, ρb, ρc) = (

0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

) (2.2)

are Almost-MDS, those with an Almost-MDS inverse of the same form, and the involutory ones. According
to mathema cal and heuris c criteria, in [Ava17] the following involutory matrices are selected:

1. For QARMA-64 (μ = 4) the chosen matrix is:

M4,2 ∶= circ(0, ρ, ρ2, ρ) .

2. For QARMA-128 (μ = 8) the chosen matrix is:

M8,2 ∶= circ(0, ρ, ρ4, ρ5) .

2.10 The encryp on and decryp on algorithm

The encryp on algorithm of QARMAr is given in Figure 2.1 on the following page. QARMAr has 2 r+2 rounds.

The round constants are derived from the expansion of the constant π. For the 64-bit version of QARMA
we replace the first block of sixteen digits of the frac onal part with zeros and select the seventh block as
the α constant, as shown in Table 2.1 on the next page – as a hommage to PRINCE. For the 128-bit cipher,
instead, we just take the first block of 128 bits in the frac onal part of π as the α constant, set 𝔠0 = 0, and
then each 𝔠i is a successive block 128 bits of π, as shown in Table 2.2 on the following page.

Note the constant α is always added to the last r backward rounds. This and the pseudo-reflector design
prevent perfect symmetry in the data obfusca on path.

17

Algorithm 2.1: The QARMA Algorithm
Input: A n = 64 or 128 bit block P, a 2 n-bit key K, a n-bit tweak T, a flag f that can take the values

encrypting or decrypting
Output: A n-bit block C

// Key specialisation
1 w0‖k0 ← K
2 if (f = encrypting) then
3 w1 ← 𝒪(w0), k1 ← k0
4 else

// f = decrypting
5 w1 ← w0, w0 ← 𝒪(w0), k1 ← M ⋅ k0, k0 ← k0 + α

// Forward rounds
6 IS ← P + w0
7 for i ← 0 to r − 1 do
8 IS ← ℛ(IS, k0 + T + 𝔠i) (short round for i = 0)
9 T ← ω ∘ h(T)

// Central construction
10 IS ← ℛ(IS,w1 + T)
11 IS ← 𝒫 (IS, k1)
12 IS ← ℛ(IS,w0 + T)

// Backward rounds
13 for i ← r − 1 down to 0 do
14 T ← h ∘ ω(T)
15 IS ← ℛ(IS, k0 + T + 𝔠i + α) (short round for i = 0)
16 C ↤ IS + w1
17 return (C)

Table 2.1: The Round Constants for the 64-bit Ciphers

α = C0AC29B7C97C50DD 𝔠0 = 0000000000000000 𝔠1 = 13198A2E03707344
𝔠2 = A4093822299F31D0 𝔠3 = 082EFA98EC4E6C89 𝔠4 = 452821E638D01377
𝔠5 = BE5466CF34E90C6C 𝔠6 = 3F84D5B5B5470917 𝔠7 = 9216D5D98979FB1B
𝔠8 = D1310BA698DFB5AC 𝔠9 = 2FFD72DBD01ADFB7 𝔠10 = B8E1AFED6A267E96

Table 2.2: The Round Constants for the 128-bit Ciphers

α = 243F6A8885A308D3 13198A2E03707344 𝔠0 = 0000000000000000 0000000000000000
𝔠1 = A4093822299F31D0 082EFA98EC4E6C89 𝔠2 = 452821E638D01377 BE5466CF34E90C6C
𝔠3 = C0AC29B7C97C50DD 3F84D5B5B5470917 𝔠4 = 9216D5D98979FB1B D1310BA698DFB5AC
𝔠5 = 2FFD72DBD01ADFB7 B8E1AFED6A267E96 𝔠6 = BA7C9045F12C7F99 24A19947B3916CF7
𝔠7 = 0801F2E2858EFC16 636920D871574E69 𝔠8 = A458FEA3F4933D7E 0D95748F728EB658
𝔠9 = 718BCD5882154AEE 7B54A41DC25A59B5 𝔠10 = 9C30D5392AF26013 C5D1B023286085F0
𝔠11 = CA417918B8DB38EF 8E79DCB0603A180E 𝔠12 = 6C9E0E8BB01E8A3E D71577C1BD314B27
𝔠13 = 78AF2FDA55605C60 E65525F3AA55AB94 𝔠14 = 5748986263E81440 55CA396A2AAB10B6
𝔠15 = B4CC5C341141E8CE A15486AF7C72E993 𝔠16 = B3EE1411636FBC2A 2BA9C55D741831F6

18

3 Parameter Sets and Variants, and Security Claims

3.1 Parameter sets and variants

The following parameter sets and variants are part of the submission. The names follow the following
conven on:

qameleon‖blocksize‖taglength‖noncelength‖purpose‖version

where the purpose field can be gp for “general purpose” or me for “memory encryp on,” and the nonce
length can be nn if no nonce input is available (“no nonce”) and tc is added if tweak compression is used.

(A) qameleon12812896gpv1
Qameleon instan ated with QARMA-12814 with a 128-bit tag.
This is the primary member of the submission.

(B) qameleon128128128tcgpv1
Qameleon instan ated with QARMA-12811 using tweak compression, a 128-bit tag, 128-bit nonces
and no nonce rota on.

The tweak is a 256-bit long-tweak and it is compressed to 128 bit as described in Sec on 3.3, and
in par cular in Sec on 3.3.3 on page 24, before being used in the data obfusca on path.

128 bits of the long-tweak field are the nonce and they are processed through g0(⋅). The 4 most
significant bits of the other half of the long-tweak, which is processed through g1(⋅), serve the tweak
domain separa on, and the remaining 120 bits offer plenty of room for the block counters.

(C) qameleon12812864gpv1
Qameleon instan ated with QARMA-12814 with a 128-bit tag, modified with 64-bit nonces and 60-
bit counters in the field of the tweak input, and no nonce rota on mechanism.

The ordering for the tweak fields is typefield4‖counter60‖nonce64.

(D) qameleon1286464mev1
Qameleon instan ated with QARMA-12811 with a 64-bit tag for Random Access Memory (RAM) en-
cryp on applica ons.

This mode is simplified by removing the processing of AD and using fixed length messages cor-
responding to Memory Granules (MGs), which in turn correspond to one or more last level Cache
Lines (CLs). Typical lengths for a MG are 64 or 128 bytes, rarely 256 bytes.

In the PANORAmA mode of opera ons this variant employs tweak fields of 64 bits for the nonce
(ideally a counter) and a 60 bit field for a Physical Address (PA); Since the addresses are the bases
of the loca on of 16-byte aligned blocks in the memory, 60 bits suffice to cover even a flat 64-bit
address space.

(E) qameleon6464tcmev1
Qameleon instan ated with QARMA-647, using a 64-bit tag, for memory encryp on applica ons.
This mode is simplified by removing the processing of AD and using fixed length messages corre-
sponding to MGs, as in Parameter Set (D).

In PANORAmA this variant employs a long-tweak of 128 bits, with fields of 64 bits for the nonce
(ideally a counter), a 4-bit tweak domain separa on field, and a 60-bit field for a PA; In this case the

19

PA field can cover a flat address space of up to 63 bits.

This long-tweak input for QARMA-64 is compressed from 128 to 64 bits as described in Sec on 3.3,
and in par cular in § 3.3.3 on page 24, before being used in the data obfusca on path. The nonce
is processed through g0(⋅). The 4 most significant bits of the other half of the long-tweak, which is
processed through g1(⋅), serve the tweak domain separa on, and the remaining 60 bits contain the
physical address.

(F) qameleon6464nnmev1
Qameleon-64 with QARMA-649 and 64-bit tag, for memory encryp on applica ons in the case the
memory is on the same die or on the same package with tampering detec on capabili es.

This mode is simplified by removing the processing of AD and using fixed length messages corre-
sponding to memory granules, as in Parameter Sets (D) and (E).

The user may choose to ignore the authen ca on tag to obtain a pure confiden ality method, or
store the tag in memory in order to defend against Rowhammer a acks [KDK+14, SD16] that can
circumvent ECC protec on [CRGB19].

We shall argue in Chapter 5 on page 29 that these parameters offer sufficient security margins.

3.2 Security claims

3.2.1 Security goals

The authen cated cipher is designed to protect confiden ality of plaintexts (under adap ve chosen-plain-
text a acks) and integrity of ciphertexts (under adap ve forgery a empts).

See Sec on 3.2.3 for quan ta ve goals for specific parameter sets.

3.2.2 Expected strength in general

Each 128-bit cipher call is assumed to handle at most 250 bytes of plaintext or AD. Each key is assumed to
be used to process at most 250 bytes. For 64-bit cipher calls these bounds are lowered to 240.

The legi mate key holder must not use the same nonce to encrypt two different (plaintext,AD) pairs under
the same key. The cipher may lose integrity and confiden ality if this rule is violated. Therefore all security
claims below are in the nonce-respec ng se ng.

Keys are assumed to be chosen independently and uniformly at random.

Qameleon is designed to protect confiden ality of plaintexts (under adap ve chosen-plaintext a acks) and
integrity of ciphertexts (under adap ve forgery a empts). Quan ta ve goals for specific parameter sets
are given in the next subsec on.

Following [JNPS16], we claim that for any of the proposed variants, given a k-bit key, n-bit block, and t-
bit tweak, the security offered against nonce-respec ng adversary is: n-bit1 against confiden ality of the
plaintext; and n-bit security for the integri es of both the plaintext and the associated data. With respect
to key recovery a acks, following the analysis of Sec on 5.2:

• A acks using 250 bytes of data would require more than 2224 computa ons to break the plaintext
confiden ality of QARMA-128; and

1We note that actually, the correct bound is min(n, k), but for our purposes, k > n, and thus, the bound holds.

20

• A acks using 240 bytes of data would require more than 2112 computa ons to break the plaintext
confiden ality of QARMA-64.

3.2.3 Expected strength for each parameter set

(A) qameleon12812896gpv1
Following the use of the PANORAmA mode of opera on: the confiden ality of the plaintext is guar-
anteed against any nonce respec ng adversary that sa sfies the amount of data queries allowed.
Moreover, any a ack on the confiden ality by such an adversary by recovering the key would take
more than 2224 me.

We note that integrity a acks would also have a success rate of 2−128 (as long as the key was not
recovered).

These claims are the outcome of [KR11, Lemma 2].

(B) qameleon128128128tcgpv1
If the adversary probe mul ple tweaks, and no two different tweaks collide, then the same security
claims hold as for Parameter Set (A).

As the analysis of Sec on 5.4 suggests that tweak collisions happen with (close) to the random prob-
ability. Thus, before using about 264 different tweaks, we do not expect any security degrada on.

To conclude, the security claims for this set are equal to that of Set (A) with probability O(t2/2128).
We note that Sec on 5.4.2 on page 38 discusses the impact of such collisions and shows that they do
not impact the security (besides a very limited forgery a ack, which requires more data than allowed
for a single-key).

(C) qameleon12812864gpv1
Same as for Parameter Set (A).

(D) qameleon1286464mev1
Confiden ality is guaranteed independently of the number of blocks of data in encryp on/decryp on
queries made by an adversary.

The success probability of single-key a acks against integrity is at most 2−256.

For memory encryp on applica ons, where the nonce is a counter or a split counter set (cf. Sec-
on 5.1.2 on page 30) that is not under adversarial control (but can be observed), forgery and in-
tegrity viola ons have a likelihood of 2−64.

(E) qameleon6464tcmev1
Confiden ality is guaranteed independently of the number of blocks of data in encryp on/decryp on
queries made by an adversary.

The success probability of single-key a acks against integrity is at most 2−128.

For memory encryp on applica ons, where the nonce is a counter or a split counter set (cf. Sec-
on 5.1.2 on page 30) that is not under adversarial control (but can be observed), forgery and in-
tegrity viola ons have a likelihood of 2−64.

(F) qameleon6464nnmev1
In the intended scenario integrity and forgery are out of scope.

We claim that this variant offers full security against adversaries that can observe 240 bytes of ci-
phertexts, which may be the encryp ons of chosen plaintexts, where each 8-byte block has been
encrypted using a different tweak (the PA of the block). In this case confiden ality is guaranteed,

21

and any a ack will require at least the computa onal effort of 2112 encryp ons.

3.3 Long tweak support

In some cases, one may be interested in having a longer tweak than n bits. We offer support for such
long tweaks by relying on the exis ng QARMA-n instance which accepts n-bit tweaks. Hence, our solu on
is based on first compressing the long tweak Tℓ into an n-bit tweak Teffec ve. In this proposal we discuss
2 n-bit tweaks and 3 n-bit tweaks, but one can use similar methodology to define support for t n-bit tweaks
for any integer t > 1.

We shall treat Tℓ as composed of two (or three) n-bit words, i.e., Tℓ = T1‖T0 for 2n-bit tweaks or Tℓ =
T2‖T1‖T0. Now, as we compress the tweak into n-bit one, we expect collisions to exist. A few requirements
of the tweak compression process are self-explanatory. Most notably, we wish for collisions to exist with
their natural probability and that such collisions will not yield meaningful informa on about the key. In
par cular, dis nguishability should not be affected by tweak compression.

3.3.1 Specifica on of the tweak compression func on

The compression of the long tweak into a shorter one is done by keyed func ons.

For n = 64 we define g0(⋅), g1(⋅) and g2(⋅) to be 4-round (forward full rounds only) QARMA-64, i.e.,ℛ4 with
key K1 and round constants listed in Table 3.1. For n = 128, g0(⋅) and g1(⋅) are defined as 5-round (forward
full rounds only) QARMA-128. In Table 3.2 on the next page we give the corresponding round constants. In
§ 4.2.4 on page 28 we describe how these constants were chosen.

For 2 n-bit tweaks, we compute Teffec ve as follows:

Teffec ve = g0(T0 ⊕ K0)⊕ g1(T1 ⊕ K0) ,

where the 2 n-bit key K is considered as two n-bit words, i.e., K = K1‖K0.
For 3 n-bit tweaks, compute Teffec ve as follows:

Teffec ve = g0(T0 ⊕ K0)⊕ g1(T1 ⊕ K0)⊕ g2(T2 ⊕ K0) .

The formal defini on of gi is given in Algorithm 3.1 on the next page.

3.3.2 Usage of the tweak compression func on

Not only the tweak compression func on is used to provide a longer tweak to the QARMA encryp on func-
on, but the summands it returns are added to the plaintexts and ciphertextes as well to further differen-
ate the encryp on func ons in case different long tweaks are mapped onto the same short value.

In the case of of 2 n-bit long tweaks, a new algorithm QARMAℓ is defined an as extension of Algorithm 2.1
as follows: encryp on is defined as

P ↦ ETeffec veK (P⊕ 𝒪2(g0(T0 ⊕ K0))) (3.1)

and accordingly, decryp on as

C ↦ DTeffec veK (C)⊕ 𝒪2(g0(T0 ⊕ K0)) . (3.2)

22

Algorithm 3.1: Tweak Compression Algorithm
Input: A 2 n- or a 3 n-bit tweak T, a 2 n-bit key K
Output: The summands of n-bit effec ve tweak Teffec ve, given as (γ1, γ1) or (γ0, γ1, γ2)

1 K1‖K0 ← K
2 s ← 3 or 4 depending on whether n = 64 or 128
3 if |T| = 2 n then
4 T1‖T0 ← T
5 else
6 T2‖T1‖T0 ← T

// First branch (g0(⋅))
7 γ0 ← T0 ⊕ K0
8 for i ← 0 to s do
9 γ0 ← ℛ(γ0,K1 + ρ0i)

// Second branch (g1(⋅))
10 γ1 ← T1 ⊕ K0
11 for i ← 0 to s do
12 γ1 ← ℛ(γ1,K1 + ρ1i)

// Third branch (g2(⋅))
13 if |T| = 3 n then
14 γ2 ← T2 ⊕ K0
15 for i ← 0 to s do
16 γ2 ← ℛ(γ2,K1 + ρ2i)

17 if |T| = 2 n then
18 return (γ0, γ1)
19 else
20 return (γ0, γ1, γ2)

Table 3.1: Round constants used in the tweak compression of 2 n-bit and 3 n-bit tweaks for n = 64
ρ00 = 0000000000000000 ρ10 = 2B9BA3E381D6DB63 ρ20 = 96E5805273530DCD
ρ01 = 5CA791F11E2F4F7F ρ11 = EA115044D015CC95 ρ21 = 84876D4BF872E9C7
ρ02 = C9BDB65CF6E990C3 ρ12 = 87E51BB37364EAC6 ρ22 = 6C6255510F188A26
ρ03 = B4001C30BE9DE6F1 ρ13 = ED24D4F5E058BB1C ρ23 = 5C80839058071EA3

Table 3.2: Round constants used in the tweak compression of 2 n-bit tweaks for n = 128
ρ00 = 0000000000000000 0000000000000000 ρ10 = B8D1D517B635D231 A1C53B7F11F69713
ρ01 = 5CA791F11E2F4F7F C9BDB65CF6E990C3 ρ11 = C9000CCDDE4DE79C FB224FF9C51E4E18
ρ02 = B4001C30BE9DE6F1 2B9BA3E381D6DB63 ρ12 = 58B7ADDCE9450428 635BAAF34C104AD0
ρ03 = 96E5805273530DCD E0FE5C2707D8E275 ρ13 = D2EB1B1F7E5C9F00 5376A18E922FC57B
ρ04 = 2A76024E015E6630 5A501202D8CD0F57 ρ14 = FE93002568C93BA5 529F4E65C7740E17

23

In the case of of 3 n-bit long tweaks, the extension QARMAℓ is as follows: encryp on is defined as

P ↦ ETeffec veK (P⊕ 𝒪2(g0(T0 ⊕ K0)))⊕ 𝒪2(g1(T1 ⊕ K0)) (3.3)

and accordingly, decryp on as

C ↦ DTeffec veK (C⊕ 𝒪2(g1(T1 ⊕ K0)))⊕ 𝒪2(g0(T0 ⊕ K0)) . (3.4)

Note that if 𝒪(⋅) is an orthomorphism, then 𝒪2(⋅) is an orthomorphism as well2. We use this simple fact to
use a different orthomorphism in the tweak compression func on than in the TBC proper.

The security analysis of this construc on is given in Sec on 5.4.

3.3.3 Usage of the tweak compression func on in Parameter Sets (B) and (E)

The PA and the tweak differen a on fields should be packed together, thus cons tu ng a 64 bit field or
a 128 bit field, that is to be processed by the tweak compression func on g0(⋅). The nonce (which is itself
a counter or a set of counters coming from the integrity structures – not to be confused with the “block
index” counter of the other variants), which is constant for an en re MG, is then processed by g1(⋅) only
once per MG update, providing further power savings.

2First, note that 𝒪2(⋅) is clearly a bijec ve linear map. Then x ↦ y ∶= x + 𝒪(x) ↦ y + 𝒪(y) = x + 𝒪(x) + 𝒪(x) + 𝒪2(x) = x + 𝒪2(x)
as a composi on of bijec ons is a bijec on. This proves 𝒪2(⋅) is an orthomorphism.

24

4 Design Ra onale

NIST’s call for AES submissions iden fied “the extent to which the algorithm output is indis nguishable from
[the output of] a [uniform] random permuta on” as one of the “most important” factors in evalua ng candi-
dates. This factor has been amply studied for wide-trail ciphers, and QARMA follows the state of the art on
the construc on of this type of block ciphers. So we can safely presume that QARMA-n outputs for dis nct
inputs are indis nguishable from independent uniform random strings when the number of inputs does
not approach 2n/2 – for a single key and tweak.

For the 128-bit version of the cipher, with the recommended 12-byte nonces (or even for shorter 8-byte
nonces) and lengths of up to 250 blocks, the outputs are thus indis nguishable from independent uniform
random strings, and in fact the bounds for indis nguishability are higher (this includes the use of nonce
rota on, since and rotated nonce collision requires more than 228+48 = 276 blocks to be processed – more
analysis in given in Sec on 5.4). The encryp on of P into C is thus indis nguishable from a one- me pad,
and the tag is indis nguishable from an independent one- me polynomial authen cator of C.

4.1 High level choices

Themain applica on forwhichQARMA,Qameleon and their variants have been architected is the encryp on
of memory contents for both live memory (i.e. stored in RAM), where latency is cri cal and affects overall
performance directly, or memory contents at rest. The la er may soon include very low latency Storage
Class Memory (SCM) and therefore the speed of the ciphering algorithm ma ers also in that case (note
however that expor ng to memory may require longer hashes than 64- or 128-bit tags).

In this context the given architecture is usually implemented in a fully unrolled and pipelined way, where,
once an ini al latency corresponding to the design’s cri cal path has passed, the design can produce new
ciphertext con nuously keeping up with the memory’s bandwidth. What we found is that the resul ng per-
formance penalty is only correlated to the ini al latency, and this rela on is mostly linear.

Therefore our first priority is the reduc on of the cri cal path for themessage encryp on part in a hardware
implementa on, followed by energy consump on, and only then we consider area, SW performance and
code size.

The other main priority is to have a design that allows also for great parallelism. For memory encryp on in
theory there is o en no need to have as many cipher blocks as they fit in a cache line, provided that the
cipher can keep up with the memory bandwidth in a pipelined implementa on, but there are at least two
situa ons where this can be very useful:

(i) When the memory interface is par cularly fast (for instance in some High-Performance Compu ng
(HPC) or enterprise server applica ons); and

(ii) When the constraints required by a fine grained pipelined implementa on end up increasing the
ini al latency too much. In this case it may then be advisable to opt for a more monolithic, or less
pipelined, and op mised implementa on – which can require a lower clocking speed of the circuit.
Then we fall in the previous case and this must compensated with parallelism in order to get the
required throughput.

Algorithms that produce a pad stream that is then XORed to the plaintext have the advantage of very low
latency, but they require either a long ini alisa on phase and an excellent source of randomness to be

25

secure. When they are based on stream cipher construc ons they are also cumbersome to make them
parallelisable.

Therefore we prefer methods that, while having higher latency, place the data obfusca on path though the
cryptographic primi ve itself, also guaranteeing in-block diffusion, which is o en explicitly requested by
industrial partners (the same type of requirements led for instance to the design of PRINCE, together with
the ability to use it without temporal uniqueness).

For the purpose of architec ng a secure solu on for memory encryp on we have considered various ap-
proaches, but since block ciphers are, arguably, s ll the best understood cryptographic primi ves, we have
decided to follow the classical approach of a mode of opera on together with a self contained block cipher.

We have then reviewed the various suitable modes of opera on and found most of the modes based on
classical (i.e. non-tweakable) block ciphers be inefficient, as they put two instances of the block cipher
in the cri cal path, at least for the first block in a message. On the other hand, research on tweakable
block ciphers [LRW02] has been mo vated to solve exactly this problem for specific applica ons, such as
disk [Mar10] and memory encryp on [HT13].

Therefore we decided to have a “tweaked electronic codebook” mode as our star ng point. Under this as-
sump onQARMAwas developed and presented in [Ava17], and the associatedmode of opera onPANORAmA
has been “assembled” from established construc ons to be used with it.

Despite the original mo va ons, Qameleon is a general purpose AEAD algorithm and can be used for
any other applica on. Its low ini al latency, absence of ini alisa on phase that thus maintains a high
performance also for small inputs, and high parallelism make it suitable for most applica ons.

4.2 Low level choices

For both QARMA and Qameleon, our main concern was that of taking conserva ve steps along established
design methodologies. So, we never decided to take shortcuts and we o en accepted “subop mal” per-
formance by choosing components that are, or have proven, to be stronger over smaller or more efficient
ones. We did not aim at breaking world records in implementa on compactness, latency, code size, or
power consump on. In fact, it could be claimed that some of the outstanding performance indicators in
Chapter 6 on page 41 are achieved despite the conserva veness of our choices. Whenever possible, we
also have made choices that would make implementa ons less error prone.

4.2.1 Low level choices for QARMA

(i) Be er S-Box and diffusion layer than in MIDORI and MANTIS. The S-Box has been chosen exclusively
for its cryptographic proper es, andwe did notmake any a empt at relaxing them in order to balance
this later with the choice of diffusion layers. The search process for the S-Box has been sketched
in [Ava17], but we decided to describe it thoroughly in the next subsec on providing many details
missing in the original QARMA paper. The quality of the S-Box has been validated independently by
the analysis made by Eichlseder in her Ph.D. Thesis [Eic18].

(ii) Be er central construc on than the reflector in PRINCE or MANTIS.

(iii) W.r.t. MANTIS an LFSR ω is added to the tweak schedule to further disrupt characteris cs.

(iv) The round constants in QARMA have been chosen as “no ng upmy sleeve” numbers. They are derived
from the binary expansion of π. For QARMA-64 we used the same ordering as in PRINCE. For the
QARMA-128 we have taken the blocks in the same order as they are found in the expansion of π.

26

4.2.2 The selec on of the QARMA S-Box

With respect to [Ava17] we provide here addi onal informa on about the selec on of the S-Box σ1. We
reconstructed the selec on process, including details which were omi ed in the original paper:

1. We generate all fixed-point free involu ons on the set [0..15] using Prisse e’s algorithm [Pri10].

2. For each such involu on, we check whether it sa sfies certain cryptographic proper es.
In par cular we require that:

(a) The maximal bias of a linear approxima on (over 𝔽24) shall be minimal (1/4) and the number of
linear approxima ons with this bias shall be smallest (30).

(b) The maximal probability of a differen al characteris c shall be minimal (1/4) and the number
of differen al characteris cs with this likelihood shall be smallest (15).

(c) Each input bit of the S-Box shall influence each output bit non-linearly.

(d) Algebraic immunity shall be 2.

(e) Each of the 15 non-zero component func ons shall have algebraic degree 3.

(f) We compute the Sum of Products (SOP) and NOT-SOP of each output bit using the Quine-
McCluskey algorithm [Qui52, McC56]. We shall consider only those S-Boxes whose output
bits can be all expressed as sums of at most four products, each one having at most weight
three – for both the SOP and the NOT-SOP. This is done in order to favour those that can be
implemented with minimal length cri cal path.

(g) Addi onally, we minimise both the sum of the degrees and of the weights in the SOP (and of
the NOT-SOP), subject to all above constraints. These minima are 10 and 16 respec vely.

(h) At this point we are le with 332 S-Boxes. We further reduce the size of the resul ng set by
minimising the maximal likelihood for an arithme c differen al (i.e. over ℤ/16ℤ) as well.

3. By doing this, we reduced the set to 60 choices. These 60 S-Boxes are all affine equivalent to each other
– in fact, this is true of all 332 S-Boxes found without restric on (h). We have re-verified this for the
present submission using the tool sboxU by Perrin [Per19] running under SageMath 8.6 [Sage19].

4. We picked the second S-Box of the resul ng list because, synthesising the full QARMA-64 with the
first few S-Boxes in the list, it resulted in a minimally smaller area. This was done using the synthesis
tools which were available to us at the me when QARMAwas first developed. We do no longer have
access to those tools, but since all the S-Boxes are affine equivalent to each other, we believe the
actual choice is not a concern.

With respect to the classifica on of op mal 4-bit S-Boxes in linear equivalence classes from [LP07, Table 6],
our S-Boxes are linearly equivalent to G4. These S-Boxes all have boomerang uniformity [CHP

+18] equal
to 10 which, while not op mal [BC18], is a reasonable value for a 4-bit S-Box.

The small C program that generates the 60 S-Boxes accompanies the submission.

4.2.3 Low level choices for the PANORAmA mode of opera on

(i) We do not handle the encryp on of a final frac onal block by adding it to a pad and then trunca ng
the result. This simplifies implementa on and removes one cri cal component that has o en, in
many a design, led to weaknesses. The resul ng increase of ciphertext size, esp. for small message,
is in our opinion, a small price to pay.

27

(ii) We systema cally applied tweak separa on through a bit field for all components of the algorithm.

(iii) The use of nonce rota on can be viewed as controversial, esp. since there are established alterna-
ves, such as hashing the public value and trunca ng the result before using it, as in GCM [MV04].
Another alterna ve, used in Deoxys-II [JNPS16] when a nonce (public value) is longer than 120
bits and up to 128 bits, consists in encryp ng the nonce and then truncate the resul ng ciphertext
to 120 bits to be used as the actual nonce. This is significantly faster than a full hash because it
adds only one encryp on to the cri cal path. Similarly, we could have used a round of encryp on
to compress a 96-bit or longer nonce to a shorter field, but the resul ng addi onal latency increase
would have been unacceptable for the intended applica ons. The chosen approach adds a single
encryp on only a er a significant amount of data has been processed, does not increase ini al la-
tency, does not cause accidental nonce collisions at the beginning, and allows the processing of 276

(expected) blocks before a collision may occur, which is way beyond the NIST minimal requirements.
Furthermore, those collisions do not seem exploitable to compromise confiden ality or integrity, but
only to establish dis nguishability from a random output.

In essence, PANORAmA is a subset of the OCB/ΘCB modes, therefore inheri ng their security proofs.

4.2.4 Low level choices for the tweak compression

The round constants for the tweak compression algorithm have been selected as follows:

(i) First, we generated a pseudorandom sequence of 64-bit values using the ISAAC-64 random gen-
erator [Jen93, Jen96]. We used the parameter RANDSIZL = 8 and ini alised the randrsl buffer
with the first 2048 characters of the introduc on of the NIST all [NIS18], including (single) spacing
and punctua on: “The deployment of small compu ng devices such as RFID tags, industrial controllers,
sensor nodes and […].”

(ii) Since we only need to determine the XOR differences of the round constants for g1(⋅) and g2(⋅)with
respect to the constants of g0(⋅), and the constants for the first round can be chosen arbitrarily, suc-
cessive groups of 3 (resp. 8) constants are picked from the resul ng stream produced by ISAAC-64.

(iii) A bit-wiseMixed Integer-Linear Programming (MILP) program is used to count the ac ve S-Boxes.

(iv) For the 128-bit wide tweak compression, the smaller 4-bit S-Boxes are counted, and not the larger
composite 8-Bit S-Boxes, in order to get a more precise es mate for the linear and differen al biases.

(v) In the 64-bit case, the constants for g1(⋅) come from posi ons 3 ⋅ 213 to 3 ⋅ 213 + 2 in the pseudo-
random stream, and the constants for g2(⋅) come from posi ons 3 ⋅ 307 to 3 ⋅ 307 + 2. These are
the lowest indices that gave us the desired number of ac ve S-boxes, which is 31 between g0(⋅) and
g1(⋅) and at least 28 in the other two combina ons.

(vi) For the 128-bit case we were lucky with the first 4 constants (the first 8 words in the stream). Be-
tween g0(⋅) and g1(⋅) we get at least 59 ac ve S-Boxes.

(vii) Note that the constants for the first round can be chosen arbitrarily. We set the first one, ρ00, to zero
and the other ones, i.e. ρi0 for i > 0 together with the constants ρ0j , j > 0 as described next.

(viii) Similarly, the differences of the constants star ng from the second round count, not the constants
themselves. This means that the constants for g0(⋅) can be chosen arbitrarily. Instead of se ng
them to zero, we have picked other constants from the 314th posi on in the sequence generated
by ISAAC-64 in order to differen ate the rounds, first ρ0j , j > 0, then ρi0 for i > 0.

28

5 Security Analysis

5.1 On the threat models

Qameleon targets low-latency scenarios, such as memory encryp on. In many of these scenarios, the
opera ng system (or the trusted hardware environment) that decrypts the memory is trusted (as it knows
the encryp on key). In other words, we target scenarios in which the tweak and the nonce can be observed
by the adversary (or have some limited control over it), but not full control over them – for instance the
adversary may ask for the decryp on of messages with an arbitrarily set nonce and a guessed tag, but not
force the use a given nonce for encryp on. Hence, one can assume nonce-respec ng adversaries.

5.1.1 General usage

For the general usage we have carefully considered the NIST requirements. For simplicity, let us assume an
encryp on scheme similar to ours, i.e. we have a block-wise mode of opera on using a 128-bit tweakable
block cipher. The nonce will be the shortest size required of a primary submission member, i.e. 96 bits.

We believe that for general purpose usage, with nonce-respec ng users, two cases must be dis nguished:

(a) The user/target device is capable of maintaining an internal state, also across reboots, including
those caused by accidental or inten onal power disconnec ons.

For instance, this is the case if the device has a small internal flash memory, which is on the same die
or in the same package as the cryptographic engine, offering tampering detec on, and the nonce is
incremented and stored before being used.

In this case, the unit can store a counter for the nonces and we argue that there is no need for 96-bit
nonces. Even changing nonces one billion mes a second (assuming the device has enough com-
puta onal power and communica on bandwidth to work under these assump ons), nonces would
overflow in more than 2500 billion years! 80-bit nonces would overflow in 38 million years, 72-bit
nonces would overflow in 150 millennia, 64-bit nonces would overflow in 580 years.

Because of this, we argue that the NIST requirements are overkill in this case.

Therefore the nonces in this case should be required to be progressive message counters, and there
is room for a block index within the message of 60 bits. In this case there is no need for nonce
rota on: Algorithm 1.1 on page 11 resp. Algorithm 1.2 on page 12 would have a 60-bit field for the
index, a 64-bit field for the nonce, Lines 16–18, resp. 19–21, could be removed.

(b) The user/target device does not have an internal state that survives reboots, except for the encryp-
on key.

In this case, nonces have to be generated at random and the only non-repe on guarantee is offered
by the randomness. We first note that the NIST call requires the ability of encryp ng 250 − 1 bytes,
which in the worst case (from number of involved tweaks) means 250 − 1 different tweaks. While
the birthday paradox suggests repeated nonces (with good probability), we note that their existence
is similar to that of a “regular” random encryp on process. Moreover, to truly exploit such nonce
repe ons, a ack using five message blocks (i.e., 80-byte message) are needed: asking for the en-
cryp on of (X, Yi, Yi, Yi, Yi) for a shared block X for all messages (used to detect the nonce collision in
the first ciphertext block), and four equal consecu ve blocks, allowing to forge a message,tag pair of
the form (X, Yi, Yi, Yj, Yj). As this a ack assumes 80-byte messages (that can be reduced to 65-byte

29

message by picking Yi to be a padded block of a single byte of informa on), it allows the use of about
244 different tweaks. One can see that the success rate of this a ack is about 2−9, and even then,
its impact is very limited.

Considering now PANORAmA with nonce rota on, as we shall see in Sec on 5.3 on page 36, a first
detectable collision between first rotated nonces will occur with likelihood about 1/2 a er ≈ 271.23

bytes. Therefore we do believe using nonce rotated is not a security concern in this context. (More
in Sec on 5.3 on page 36.)

The above considera ons have led us to define the parameter sets (A) and (C) on page 19.

5.1.2 Memory encryp on

First of all, there are three types of a acks to memory contents:

(i) Violate the confiden ality of memory contents.

(ii) Replay memory contents.

(iii) Forge memory contents.

Furthermore, there are two different contexts:

(a) The memory is external to the Central Processing Unit (CPU) die, and it is accessed by the la er via
a memory interface and through a memory bus. A snapshot of the memory can be obtained by
pla orm reset a acks [CPGR05] and via cold-boot a acks [Pet07, HSH+08] which exploit memory
content reten on [And01, p. 281] at low temperatures [LM79, Sko02]. Even worse, the memory
interface can be inexpensively and effec vely interposed [KSP05, Win09, Pac18].

(b) The memory device is on the same die as the CPU, or in the same package offering tampering detec-
on. We shall call this case, with some abuse of language, the case of internal memory. Con nuous
memory eavesdropping or even memory manipula on would be therefore extremely difficult, but
pla orm reset a acks a acks and some form of cold-boot a ack could s ll be possible.

Before discussing the security parameters for the case of external, interposable memory, we shall review
the schemes that are used to guarantee the integrity of memory contents, as these will determine minimal
requirements on the size of nonces.

We assume that we need to guarantee spa al uniqueness to a flat 64-bit memory space (i.e. every memory
loca on has its own set of permuta ons applied to it), therefore requiring 60 bits for the encoding of the
base address of a cipher block. The available space for the nonce is thus at most 64 bits.

5.1.2.1 The case of external, interposable memory

We are going to assume that risks (i) and (iii) are addressed by the robustness of the encryp on algorithm.
It is also usually required that a memory encryp on system offers both spa al and temporal uniqueness.

A review of memory integrity mechanisms In what follows a memory granule is the smallest unit that is
encrypted and integrity protected. It usually coincides with a cache line, but can also be a mul ple thereof.

We consider the issue of a ackers that a empt to replay older contents onto a memory granule.

In early memory integrity systems such as XOM [MVS00], Merkle Trees [Mer82] have been used to guar-
antee memory integrity. However, Merkle Trees suffer from two problems: upda ng the structure is in-

30

herently not parallelisable, and they require large hashes to guarantee security, because of the birthday
paradox – in a real world scenario 128 bits are necessary. This leads to large memory overheads (about
33% for 4-ary trees, for instance with 64-byte memory granules and 16-byte hashes) and significant per-
formance penal es.

An alterna ve toMerkle Trees in order to gain the ability to parallelise the update of the integrity structure is
offered byCounter Trees. The first such structure in the scien fic literaturewasHall and Jutla’sParallelisable
Authen ca on Tree (PAT) [HJ02, HJ05, HJ08] a tree whose nodes are pairs (ν, h) consis ng of a nonce ν and
a hash h. This has been followed by the Tamper-Evident Counter (TEC) Tree [ECL+07], and by the 8-ary
counter tree with embedded tags used in intel’s SGX [Gue16]. These structures can be updated in parallel,
but they do not reduce memory overhead significantly.

A further technique to reduce the memory overhead induced by counters and tags is the use of Split Coun-
ters [YEP+06] in the context of Bonsai Trees [RCPS07]. Split Counters use a single major counter for a
con guous range of memory granules, and a minor counter for each memory granule in that range. For
instance, in a 512-bit memory granule one could store 64 7-bit minor counters, a 56-bit major counter and
reserve 8 bits for metadata. Therefore a memory granule worth of counter informa on would cover 64
memory granules, resul ng in a very high arity of 64 and in a much shallower integrity tree than with mono-
lithic counters. When the memory contents of a memory granule are updated, the corresponding minor
counter is increased – when the minor counter overflows, the major counter is increased as well, which
means that the integrity informa on for all the sibling memory granules must be updated as well (and in
most schemes, they must be also re-encrypted). The nonce informa on for the integrity (and confiden al-
ity) algorithms for a given memory granule is the concatena on of the corresponding major and the minor
counters, i.e. 63 bits worth of informa on. By means of this strategy the memory overhead can be pushed
to about 15% and less. These structures and some varia ons, such as Morphable Counters [SNR+18] are
the current state of the art.

Note that integrity structures need only be updated when data is actually wri en to external memory. In a
modern systemwith mul ple levels of cache, this means evic on of a cache line from the last level of cache
inside the security perimeter of the die containing the computa onal cores and the encryp on engine.

Therefore in what follows we shall assume that the memory contents are protected by including counters in the
computa on of the ciphertext and tag, that the counters are protected by some form of counter tree, and that
counters and tags are stored in memory in a reserved, but not hardened, area of the RAM.

The a acks In order to replay a memory granule an a acker has to observe the repe on of a (possibly
split) counter for a given granule and the replace the memory granule together with its integrity tag. This
will happen, in the above examples, a er at least 263 writes (cache evic ons).

The lowest complexity a ack, i.e. replay any content to the same loca on, takes me 263 writes to memory.
Note that the a acker needs to evict both the text and the the cache line containing the tag value. Since the
whole cache line containing the tag must be evicted even if the tag is only 64 bits, we have 264 evic ons.

The me needed for 264 cache evic ons is therefore a measure of the complexity of an a ack. Very high
performance servers can have an aggregated sustained memory bandwidth of up to ≈ 230 GB/s using 32
channels (we are going for the most pessimis c es mates even if usually only one channel can be used to
access a given memory loca on). Now, since we are looking at a POWER8, we assume a 128-byte cache
line. 264 cache line evic ons correspond to 271 bytes of traffic which, at the quoted bandwidth, would
take at least 233.15 seconds, i.e. 303 years. (Had we considered a recent Xeon with its buffered memory
interface and 64-byte cache lines, the results would have been similar.)

This does not take into account other memory traffic (that may share the same channels, such as the other

31

nodes of the integrity tree), including the traffic for the hashes and the fact that the a acker needs me
between cache evic ons to “harvest” the data from memory reliably with a high-performance interposer –
this will at least halve the bandwidth useable for the a ack, bringing the me to over 600 years.

Including the address in the hash computa on will force the a acker to use just one memory channel, de
facto reducing the available bandwidth by a factor of 8 (in the POWER8 case) and thus mul plying the me
required for the a ack by the same factor (to almost five millennia).

Note that the above complexity es ma on does not dis nguish between keyed and unkeyed tags/hashes.

Furthermore, if the cache line containing the tags is integrity protected itself, even if by just an addi onal
level of hashing, then either the tag of the targeted line must match as well, or the whole line has to be
replaced, increasing significantly the complexity of the a ack.

We claim that in this case having 64-bit nonces and 64-bit tags makes the scheme secure. Regarding plaintext
confiden ality, we believe that memory contents should not be protected with a significantly weaker algorithm
than data at rest. The current trend is to move to 256-bit keys for data at rest, so we recommend the use of
256-bit keys. This leads us to the choice of Qameleon instan ated with QARMA-128, and thus to Parameter
Set (D). Only if power consump on or area are cri cal concerns, the use ofQARMA-64with the tweak compression
described in Sec on 3.3 – or some other lightweight pseudorandom func on to compress the tweaks – can be
recommended, leading to a jus fica on for Parameter Set (E). The key used in the tweak compression scheme
can be the same as the main encryp on key or a different one to possibly obtain stronger security.

5.1.2.2 The case of internal memory

In this case, risks (ii) and (iii) are out of scope.

Also, the a acker cannot observe several different encryp ons to the same loca on. In fact, the best a ack
in this situa on, ignoring power and Electro-Magne c (EM) side channels, seems to be variant of the cold
boot a ack: cryogenically freeze the package, decap it while keeping it at low temperature, and extract the
RAM module to a ach it to a reading device. Against such a acks memory encryp on is s ll advisable,
but the a acker will observe, for a single key, a single ciphertext per loca on, with the physical address
entering the tweak input. She may be helped in her cryptanaly c efforts by the use of a limited amount of
chosen plaintext (for instance, while passing some chosen input to the device, that will then copy it into
the protected memory).

For this purpose, it is unrealis c to obtain more than 240 bytes of ciphertexts (this would be 1 TB of RAM),
only a small por on ofwhichwill correspond to chosen plaintexts. It is to expected that a lot of errorswill be
introduced by the process of extrac ng the memory module as well, further complica ng the cryptanalysis

We claim that in this case 128-bit keys offer sufficient protec on, and there is no need to have temporal unique-
ness of ciphertexts, but only spa al. This leads to Parameter Set (F).

5.1.2.3 Addi onal security targets

In addi on to the discussion above, we do not claim addi onal security targets. Most notably, in the context
of memory encryp on, the no on of Releasing Unverified Plaintext (RUP) [ABL+14], is irrelevant. Consider
a memory-encryp on mechanism which is asked to decrypt a cache line. In such a ack scenario, the
adversary is allowed to choose arbitrary ciphertexts to the decryp on oracle, and obtain the corresponding
plaintexts (even if the adversary has no legi mate tag for it).

Obviously, an adversary with the capabili es of offering raw data for the decryp on (and observing the

32

plaintext) is quite strong. In the internal memory scenario, this a ack requires the ability to control inputs
to the decryp on process, and obtain the intermediate values1 (all found inside the cryptographic engine).
Such an adversary can easily ask for the decryp on of real messages, and thus, break their confiden ality
immediately.

The case for external memory is slightly more delicate, but maintains the same se ngs: the cryptographic
engine may decrypt the cache line, pass it on to the CPU, which in turn act upon its contents, possibly
wai ng for a Flush instruc on from the cryptographic engine in case of a failed authen ca on. This gives
rise to issues related to specula ve execu on (e.g. [KGG+18, LSG+18]) or by adversaries capable of reading
the decrypted memory before it is cleared (similarly to the case of internal memory). While the discussion
of the la er problem is similar to the case of internal memory, the discussion of the first problem suggests
that the device outside the cryptographic engine should be wary of such specula ve execu on. Given the
impact of Spectre and Meltdown and the amount of work done to mi gate them, we believe that this is a
legi mate assump on.

5.2 On the security of QARMA

QARMA has not yet withstood the same intense scru ny as other ciphers men oned in this document such
as, for instance PRINCE, not to speak of the AES.

However, the closely related cipher MANTIS [BJK+16] has been under intense scru ny and QARMA has
been designed to resist the a acks that have been mounted on reduced round versions of MANTIS as well
as most a ack methodologies that have been mounted on reduced round versions of PRINCE. Its design
is based on decades of research into overall structure, lightweight diffusion layer construc on, and S-Box
selec on since the design of the AES, with the purpose to make the cipher lightweight but at the same
me building hedges against a variety of a acks.

For instance, while essen ally inheri ng the round structure of MIDORI [BBI+15] through its MANTIS her-
itage, it modifies the components – both the S-box layer and the diffusion matrix – to resist the a acks
that affect MIDORI-64 [GJN+17, TLS16]. Similarly, these choices, as well as the elimina on of the central
SuperBox make the a acks mounted so far on reduced-round MANTIS ineffec ve: Indeed, as discussed by
Eichlseder in her Ph.D. Thesis [Eic18], the key-recovery a ack on MANTIS-5 described in [DEKM17] does
not seem to carry over. In [Eic18, § 3.5.3] the applicability of the techniques used to mount the successful
a acks on MANTIS to QARMA is discussed, finding that “The QARMA design fixes several of the issues that we
exploited for the a ack on MANTIS-5: The strengthened inner round permits no Superbox property, and the new
S-box, MixColumns matrix and tweak schedule do not display the same differen al fixed points. This means that
neither the simple op mal differen al characteris c, nor the clustering effects observed in Sec on 3.3.3 seem
applicable.” One of the weaknesses exploited in MANTIS are the structural proper es of its S-box, which
are in part shared by QARMA’s σ0 – and this is the reason we dropped that S-Box in this submission. We
remind the reader that in Sec on 4.2.2 on page 27 we described how σ1 was chosen.

Eichlseder also comments “While the building blocks appear stronger than those of MANTIS, they also have
their downsides: The MixColumns matrix of QARMA permits related-tweak truncated-differen al characteris cs
with fewer ac ve S-boxes than thematrix of MANTIS, with only 30 (instead of 34 for the MANTISmatrix in either
the MANTIS or [...]) ac ve S-boxes for 5 rounds, and 48 (instead of 52) for the full 7 rounds.” We are aware of
this – indeed we accepted this compromise as part of the original QARMA design – but we also observe

1For internal memory devices this means that the adversary was capable to read the internal memory of the cryptographic
engine, e.g. by performing a cold boot a ack. This allows the adversary to mount only a single round of the a ack and to me
the freezing of the device to the exact moment in me where the decrypted values are stored, but not yet discarded due to failed
decryp on.

33

that these related-tweak truncated-differen al characteris cs do not seem to be exploitable – not only for
the par cular use cases of memory encryp on, where tweaks are not under adversarial control (and may
even be par ally encrypted themselves in RAM), or when using long tweaks, but in general. Furthermore,
some resistance against truncated differen al cryptanalysis is provided: using the methods from [SLG+16],
in [Ava17] is proved that truncated impossible differen al cryptanalysis is not feasible for the full ciphers.

Indeed, Eichlseder and Kales [EK18] successfully break the security claims of MANTIS-6, but their methods
(as men oned by Kales at the QA session a er his presenta on at FSE 2019), applied to QARMA, breaks at
most QARMA-4.

We start reviewing the analysis performed (or recycled from other designs) during QARMA’s design. Then
we shall review third party cryptanalysis and observa ons. Finally we will review our analysis on the use
of the Even-Mansour design and review the corresponding security claims from [Ava17].

5.2.1 Design cryptanalysis

As reported in [Ava17], the cipher QARMA has been designed to withstand several a acks:

(i) Linear and differen al cryptanalysis in the single-key, single-tweak model (MILP models, following
the techniques described in Beierle’s PhD Thesis [Bei18, Sec on 5.4.5]);

(ii) Differen al cryptanalysis under a single-key, related-tweak model (MILP models, following Beierle);

(iii) Reflec on A acks (resistance follows from structure);

(iv) Generic a acks on Even-Mansour schemes (resistance follows from structure, see Sec on 5.2.3);

(v) Slide a acks (follows from round heterogeneity);

(vi) Meet-in-the-middle a acks (follows from MIDORI’s resistance because of round similarity);

(vii) Invariant subspace a acks (new heuris c arguments presented in the paper);

(viii) Algebraic cryptanalysis (by coun ng equa ons and variables);

(ix) Impossible (truncated) differen al and zero correla on linear cryptanalysis (using the method from
Sun et al. [SLG+16]); and

(x) Higher order differen al cryptanalysis (follows from MIDORI’s resistance because of round similarity).

5.2.2 Disclosed cryptanalysis

Complexity details for all the following result are given in Table 5.1.

Regarding further cryptanalysis, the very first third party result we are aware of is a Meet-in-the-Middle
(MITM) key recovery a ack against 10-roundQARMA-64 and 10-roundQARMA-128, without outerwhitening.
The a ack does not seem to be extendable further. This seems to confirm the designer’s analysis thatMITM
a acks to 11 or more rounds should not be feasible.

Yang, Qi, and Chen [YQC18] generalise truncated differences and them in an impossible differen al a ack
on 11-round QARMA-64.

Zong, Dong,Wang [ZDW18] derive related-tweakey/key impossible differen als from single-key ones, and
presents also a tool for construc ng those characteris cs. Both QARMA-64 and Joltik-128 are studied.
Again, this a ack reaches 11-round QARMA-64.

Li and Jin [LJ18] mount meet-in-the-middle a acks to QARMA-64 and QARMA-128 including the outer

34

Table 5.1: Cryptanalysis of QARMA – Selected Published Results

Cipher
Rounds Short Outer/Inner A ack Complexity

Technique Reference
A acked Rounds? Whitening? Time Data Memory

64 4 + 6 Y N/Y 2116 + 270.1 253 CP 2116 MITM [ZD16]
64 4 + 4 Y Y/Y 233 + 290 216 CP 290 MITM [LJ18]
64 4 + 5 Y Y/Y 248 + 289 216 CP 289 MITM [LJ18]
64 4 + 6 Y Y/Y 272 261 CP 278.2 bits trunc. imp. diff. [YQC18]
64 4 + 6 Y Y/Y 259 259 KP 229.6 bits rel-tweak stat. sat. [LHW19]
64 4 + 7 Y Y/Y 2120.4 261 CP 2116 trunc. imp. diff. [YQC18]
64 3 + 8 Y Y/Y 264.4 + 280 261 CP 261 imp. diff. [ZDW18]
64 4 + 8 Y Y/Y 266.2 248.4 CP 253.70 zero corr./Integral [ADG+19]

128 4 + 6 Y N/Y 2232 + 2141.7 2105 CP 2232 MITM [ZD16]
128 5 + 5 Y Y/Y 2156 288 CP 2152 bits MITM [LJ18]
128∗ 4 + 6 Y Y/Y 2237.3 2122 CP 2144 trunc. imp. diff. [YQC18]
128∗ 4 + 7 Y Y/Y 2241.8 2122 CP 2232 trunc. imp. diff. [YQC18]
128 4 + 7 Y Y/Y 2126.1 2126.1 KP 271 bits rel-tweak stat. sat. [LHW19]

The number of analyzed rounds is wri en as x + y, where x is the number of S-Box layers before the Pseudo-
Reflector and y is the number of S-Box layers a er it.
A Y under “Short Rounds” means that the first and last rounds of the analysed cipher are short and not full.
A Y or a N under “Outer/Inner Whitening?” denotes whether the addi ons of the Outer/Inner whitening keys
are included in the cryptanalysed cipher or not.
The label 128∗ means that in [YQC18] a superseded set of matrices is used for QARMA-128, that has been later
replaced in the final published version.

whitening key addi ons. The authors a ack 8 and 9 rounds of QARMA-64 and 10 of QARMA-128.

Li, Hu and Wang [LHW19] have constructed Related-Tweak Sta s cal Satura on a acks, and mounted
such an a ack to 10-round QARMA-64 with outer whitening key and an 11-round a ack on QARMA-128.

Ankele, Dobraunig, Guo, Lambooij, Leander, and Todo [ADG+19] present an a ack on 12-round QARMA
with four forward and eight backward rounds (counted as S-Box layers). This a ack is very important
because it suggests that the QARMA-645 might be breakable.

Some of these a acks break the T ⋅M, T ⋅D ≤ 2n−ϵ barrier for the reduced round versions of the cipher but
the remaining security margin is s ll quite ample, at least 4 rounds for QARMA-647, 8 rounds for QARMA-649,
and upwards of 13 rounds for QARMA-128.

5.2.3 On the security of the Even-Mansour construc on

Recall that the whitening key deriva on func on 𝒪(⋅) is an orthomorphism. If orthomorphisms are used to
create a key schedule, the complexity of the a acks usually increases and approaches that of schemes with
independent keys or using independent permuta ons (see [CLL+14] for the two-round case). Of course,
QARMA is not composed of three ideal permuta ons, but we can gain some insight from the considera on
of the a acks on Even-Mansour schemes.

An analogue of the cryptanalysis described in [DDKS13] seems unlikely to be applied directly: The a ack
on single-key three-round designs with an involutory round is the one that seems closer to our design. It
can be adapted at once observing that, for each fixed core key, themapping x ↦ Δ assumes only 2n/2 values
which occur 2n/2 mes each (with respect to the nota on in [DDKS13], this is in-degree t). This leads to
a me/data/memory (T/D/M) tradeoff of TD = 23n/2, where the data consists of known texts and memory

35

is online storage. The a ack has to be repeated for each candidate core key in order to determine the
whitening key as well, so we obtain T = 27n/4, D = 23n/4 and M = D. Since evalua ons of the sub-ciphers
can be done for pairs of core keys (k0, k0 + α), the memory usage can be halved. For QARMA-64 this turns
into an a ack with 2112 me and 247 blocks of data, i.e. 250 bytes, for QARMA-128 we can get a tradeoff of
2224 me and 295 blocks of data, i.e. 299 bytes, or a different tradeoff of, say, 2255 opera ons with 264 data
or 2272 opera ons with 247 data, and in this case the lower requisite of 2224 opera ons with 246 16-byte
blocks of data is most likely met. In fact, for this mode we could even claim security up to 256 16-byte
blocks, or 260 bytes, processed.

The single-key two-round a ack can be applied, under the assump on that for, a known core key, a certain
difference Δ at the sides of the central construc on will occur with likelihood 2−n/2 (but choosing the
plaintext does not seem to give control on this event).

In this case the cipher collapses into a single-key two-round Even-Mansour construc on, not a single round
EM, because 𝒪(⋅) is an orthomorphism and thus the sum of the two whitening keys w0 and w1 = 𝒪(w1) is
a value 1-1 with w0. For each core key, me complexity is slightly smaller than 2

n, data (known texts) is
slightly smaller than 23n/4, and memory is around 2n/4. The me complexity must be mul plied by 2n to
cover all core keys, and the data by 2n/2 because of the usable propor on, whereas online memory usage
stay the same. We do get an a ack with T slightly be er than brute force, but TD ∼ 214n/4. For instance,
with n = 128 we have T = 2256 with D = 2192 and with n = 64 we have T = 2128 with D = 296.

Also in this case the NIST requirements (and recommenda ons) as well as our increased bounds above
would be sa sfied.

Similarly, for the a acks in [DDKS15], with the same likelihoods for a known central difference Δ for a
certain core key (resp. class of keys), the equa ons to solve for thewhitening key (and possibly the remaining
bits of the core key) would s ll correspond to the whole cipher minus the central construc on, so we do
not expect it to be significantly easier than a emp ng to exploit reflec on characteris cs.

Finally, a three-round, two-key Even-Mansour scheme, according to [DDKS14] is a ackedwith a me/data
tradeoff of TD = 22n where M = D, for unkeyed permuta ons – so the complexity must be increased to
take guesses of the core key into account as above. It is an open ques on whether our scheme, with a
second key derived from the first by means of an orthomorphism offers the same security bound.

We consider now the adop on of the PRINCE-like lower es mates for the security of QARMA on the basis
of exis ng analysis of Even-Mansour construc ons to have been excessively conserva ve. We are thus
claiming that:

• A acks using 250 bytes of data would require more than 2224 computa ons to break the plaintext
confiden ality of QARMA-128; and

• A acks using 240 bytes of data would require more than 2112 computa ons to break the plaintext
confiden ality of QARMA-64.

5.3 On the security of PANORAmA

For simplicity let us consider here the case of 128-bit blocks and tweaks.

Without the nonce rota on, and assuming counters of unlimited magnitude, we can bound the security
using, any security proof for the Beyond the Birthday Bound (BBB) security of ΘCB3. For instance one can
easily adapt the security proof of the TAE mode of opera on by Liskov, Rivest, Wagner [LRW02, LRW11].
In other words, the in the nonce-respec ng se ng; more precisely, confiden ality is perfectly guaranteed
and the forgery probability is 2−τ, independently of the number of blocks of data in encryp on/decryp on

36

queries made by the adversary, where τ is the tag length.

However, for PANORAmA there is an addi onal case where dis nguishability can gowrong: if nonce rota on
is implemented, repeated tweaks could be detected. In the single-key, nonce-respec ng se ng, we note
that this occurs only if there is first a collision between rotated nonces, as the original nonces cannot collide
before they are all used up, and the separa on of tweaks in the highest bit guarantees that only tweaks
a er the first 228 blocks can collide. Assuming that the tweakable block cipher is ideal, the a acker may,
for instance, ask for the encryp on of several all-zero plaintexts, and check whether some blocks collide.
Another op on to exploit a colliding rotated tweak is to apply the a ack of Sec on 5.1.1 on page 29
(scenario B).

The case of a rotated nonce collision happens with probability of about 1/2 a er √2 ln 2 ⋅ 248 rotated
nonces are computed. As each rotated nonce happens a er 228 message blocks are processed, a rotated
nonce collisions are expected only a er about 276 blocks (i.e., 280 bytes). Obviously, this is beyond the
data limit for a single key.

5.4 On the security of long tweak compression

The need to support long tweaks without altering the design led us to offer a method to transform a long
tweak (in this proposal, of 2 n or 3 n bits) into a standard-length tweak of n bits. Moreover, we aim to do
so in an way that does not increase the latency by much, while maintaining the security level.

5.4.1 Tweak collisions

Hence, we need a func on f(⋅) that accepts 2 n- or 3 n-bit tweak and produces an n-bit one. This func on
should sa sfy two main goals: It should be hard to find collisions in f(⋅), as such collisions result in the same
effec ve tweak, which in turn can be easily iden fied, and it should be hard to exploit random collisions
to extract keying material. The reason one should key the func on f(⋅) is to avoid a huge precomputa on
that affects all the instan a ons, and thus, as collisions exist, we should not be able to exploit them for
key-recovery.

Let us introduce some nota on. Let T be a 2 n- or 3 n-bit value. We split it into 2 resp. 3 equal segments
as T1||T0 ← T or T2||T1||T0 ← T. A key K is split as K1||K0 ← K.

For the case of 2 n-bit tweaks, one can think of the following condi ons:

• fk(T0, ⋅) ∶ {0, 1}n → {0, 1}n should be a permuta on,

• fk(⋅, T1) ∶ {0, 1}n → {0, 1}n should be a permuta on,

• It is computa onally infeasible to deduce informa on about the key K given a collision fK(T0, T1) =
fK(T′

0, T′
1).

The first two condi ons ensure that a tweak collision must involve a difference in both tweaks. Moreover,
these condi ons guarantee that in the context of a single process, one cannot find a collision between
two different instances of fk(⋅). Similarly, for 3 n-bit tweaks, we demand that fk(T0, T1, ⋅), fk(T0, ⋅, T2), and
fk(⋅, T1, T2) are all permuta ons.

Our proposal for fk(⋅) is based on the well established technique of XORing Pseudo-Random Permuta ons
(PRPs) to generate a Pseudo-Random Func on (PRF) [Luc00, Pat08, Pat13, CLP14, MP15]. Namely, we pro-
pose to use:

fk(T0, T1) = g0(T0 ⊕ K0)⊕ g1(T1 ⊕ K0)

37

and
fk(T0, T1, T2) = g0(T0 ⊕ K0)⊕ g1(T1 ⊕ K0)⊕ g2(T2 ⊕ K0) .

It is easy to see that assuming gi(⋅) to be PRPs (and they are as we pick them as four, resp. five full rounds
of QARMA-64, resp. -128, keyed with K1 and different round constants for each gi(⋅)), then the condi on on
the permuta on is immediately sa sfied.

A tweak collision occurs when
fk(T0, T1) = fk(T′

0, T′
1)

for double tweak lengths, and
fk(T0, T1, T2) = fk(T′

0, T′
1, T′

2)

for triple tweak lengths. The fact that the adversary must have (at least) two ac ve tweak words for a
tweak collision to occur suggests that in the memory space of a single process there are indeed no such
tweak collisions.

S ll, we may be interested in what informa on can be deduced once a tweak collision is detected (and at
what computa onal cost). We note that a tweak collision suggests:

g0(T0 ⊕ K0)⊕ g1(T1 ⊕ K0) = g0(T′
0 ⊕ K0)⊕ g1(T′

1 ⊕ K0)

(a similar equa on holds for the 3 n-bit case). We first note that as we observe only the impact of the same
tweak (as we discuss shortly), we do not obtain the actual value of g0(T0 ⊕ K0) ⊕ g1(T1 ⊕ K0). Hence, an
adversary needs to guess both K0 and K1 to check whether the above condi on holds. This of course takes
me O(22n), which is equivalent to exhaus ve search.

A different approach is to try and apply a differen al a ack, as we know that the output differences of g0(⋅)
and g1(⋅) are the same. However, g0(⋅) and g1(⋅) use different sets of constants, making the analysis of the
differen al proper es hard. The constants selected for g0(⋅) and g1(⋅) were selected to offer a number of
ac ve S-boxes which is as large as possible as we could find within the me constraints for this search.

In order to solve this issue we have used a bit-wiseMILP-model: for 64-bit func ons, the resul ng program
showed that there are at least 30 ac ve S-boxes for the two branch case ending in a collision, and as each
has probability of at most 2−2, we obtain that the probability of a collision is upper bounded by 2−60. For
the 3-branch case, we picked the differences between the round constants of g0(⋅), g1(⋅) and g2(⋅) such
that every pair (gi(⋅), gj(⋅)) also has a large number of ac ve S-boxes. The MILP program processing this
problem suggests 31 ac ve S-boxes for the pair (g0(⋅), g1(⋅)), and at least 28 each for the pairs (g0(⋅), g2(⋅))
and (g1(⋅), g2(⋅)).

For 128-bit func ons and tweak doubling, hence the pair (g0(⋅), g1(⋅)), we get 60 ac ve S-Boxes, i.e., a
probability of 2−120. For 128-bit tweak doubling, hence with the pair (g0(⋅), g1(⋅)), we get at least 59 ac ve
S-Boxes.

Hence, even if the adversary can control the difference between the tweaks (e.g., by star ng and termi-
na ng the process to obtain a process id that fits the tweak difference), the chances that a tweak collision
happens is very close to the random case. To conlcude, the analysis suggests that the “best” approach for
genera ng tweak collisions is by a random chance, which is inevitable (but as we now show of li le impact).

5.4.2 Impact of tweak collisions on Qameleon

We now turn our a en on to what happens (and how the adversary can exploit) tweak collisions. We
first discuss whether the collision can be detected when using Qameleon (and at what cost) and then we
discuss whether these detected collisions can be used for a acks (and at what cost).

38

5.4.2.1 Detec ng tweak collisions

Assume that the proposed encryp on scheme was without the orthomorphism, i.e., if P ↦ ETeffec veK (P).
Obviously, this is a very simple case to detect tweak collisions, as a er 2n/2 pairs of tweaks we expect such
a collision, and asking for the encryp on of two plaintexts P0 and P1 under all these tweaks, allows for an
immediate iden fica on of the colliding tweaks (as the corresponding ciphertexts will be the same).

In the 2 n-bit case, the addi on of the orthomorphism breaks this property immediately, as for the two
colliding tweaks T, T′, the corresponding g0 and g

′
0 are different. For the 3 n-bit case, at least one of the

pairs (T0, T′
0), (T1, T′

1) must be different, again breaking the property.

At the same me, we note that for a given (key,tweak) combina on, the addi on of g0 (and of g1) is the
same for all plaintexts. Hence, if we consider a 2 n-bit tweak collision, if by any chance P⊕ g0 (encrypted
with T) is equal to P′ ⊕ g′

0 (encrypted with T
′), then their ciphertext will be the same. Actually, whenever

the ciphertexts are the same, than necessarily, the plaintexts difference is g0 ⊕ g′
0. This gives rise to a

simple a ack — pick about 2n/2 pairs (or triplets) of tweaks, and ask for the encryp on of about 2n/2+2

plaintexts under each of them. We then look for colliding ciphertexts between different sets (i.e. encrypted
using different tweaks). If all collisions arise from plaintexts with the same difference, then with very good
probability the sets correspond to a tweak collision.

In the 3 n-bit case, a tweak collision and a difference g0 ⊕ g′
0 between the plaintexts ensures a difference

g1⊕g′
1 in the ciphertexts. Hence, one can easily amend the above a ack to work also for the longer tweaks.

We note that this a ack requires about 2n plaintexts (and about the same me). Given that a er 250

plaintexts one should re-key Qameleon, this a ack is “outside” the security model.

A different approach would actually be to use a chosen ciphertext a ack scenario. In the 2 n-bit case,
the adversary picks two ciphertexts C0 and C1 and asks for their decryp on under all 2

n/2 tweaks. Tweak
collisions could be found if the corresponding plaintexts P0 and P1 have the same difference with P

′
0 and

P′
1. This a ack requires the ability to decrypt, and thus, we can consider two possible a ack vectors:

• The case of releasing unverified plaintexts — in this case the adversary just obtains the corresponding
plaintexts corresponding to the ciphertext queries, even if the tag is wrong/non-present. As we
stated before, we do not discuss such RUP adversaries.

• The case of an adversary trying to forge tags (i.e., submit ciphertexts with an a empt on the tag).
Such adversary needs to submit about 2t pairs of (ciphertext, tag) to succeed in the decryp on of
a single ciphertext, where t is the tag length. Hence, for 2n/2 tweaks, we expect a total of 2n/2+t

(chosen ciphertexts,tags) tags. A different approach is to wait for 2n legi mate blocks and apply the
a ack then. We note that the data complexity of both a acks is larger than the data limit (more than
250 bytes for n = 128, and more than 240 bytes for n = 64 whenever the tag length sa sfies t > 8).

The adapta on of these a acks to the case of 3 n-bit tweak is immediate, resul ng in a similar conclusion.

5.4.2.2 Eleva ng tweak collisions to a acks

One can use tweak collision for one of two purposes — either as a tool for dis nguishing the output of
Qameleon from that of a random func on or for key recovery. As noted in the analysis of tweak collisions,
given a tweak, one cannot extract key informa on about it. Thus, we now discuss dis nguishing a acks
based on tweak collision.

Once two tweaks collide, they call the underlying block cipher with the same parameters (as nonce-respect-
ing adversaries may use the same nonce for different tweaks). In such a case, the addi on of the orthomor-

39

phisms is mandatory, as otherwise one could immediately dis nguish the tweak collision by asking for the
encryp on of the same 2-block plaintext under all 2n/2 tweaks. A collision of two ciphertexts happens with
probability 1 if there was indeed a tweak collision, whereas for a random func on repea ng two ciphertext
blocks in 2n/2 samples is unlikely.

The addi on of the orthomorphism changes this behavior, as even though the invoca on of QARMA which
accepts the same key and effec ve tweak, it is masked from the outside by different values.

5.5 On side-channel resistance

We did not include any specific technology in the design to protect against side-channel a acks.

QARMA (and thus Qameleon) can resists side-channel a acks by adop ng the same techniques as any other
bricklayer block cipher design. The available literature of techniques to provide this type of protec on to
QARMA is too large to be meaningfully included here. We observe that the simpler diffusion layer without
finite field mul plica ons, and the use of 4-bit S-Boxes instead of 8-bit S-Boxes, should make this lighter
than for other ciphers, such as the AES.

For instance, for the implementa on of the S-Boxes the techniques from [BNN+12, BGN+14, BNN+15]
could be used. Other techniques include dual-rail logic [TV04, PM05, PM06] or isola on of the power
supply [Sha00, GMOP15] and shielding of the circuit.

40

6 Implementa ons

6.1 So ware

Qameleon is accompanied by a so ware package containing a C implementa on of each of the proposed
variants. The purpose of the a ached so ware implementa ons is to provide a reference for analysis and
further implementa ons of the algorithm. The code is designed to be simple to be understood and portable.
For this reason, no op misa ons or pla orm specific func ons have been used.

The implementa on of each variant is in its own subdirectory of crypto_aead following the submission
guidelines and named exactly as in Sec on 3.1 on page 19. Each variant has been verified using the test
vectors indicated in the submission rules, except for the memory encryp on variants which use a smaller
set of test vectors (the program to generate them is always included). The test vector output files for each
variant is provided as well.

Remark In the variants where the message length is not always a mul ple of the block length, i.e. Sets (A), (B),
and (C), we append the message length to the ciphertext in a 64-bit field that a er the authen ca on tag as
a result of the func on crypto_aead_encrypt. The func on crypto_aead_decrypt will then use this
piece of informa on to properly decrypt. We do not encrypt this length because it is a public parameter.

This is done only to meet the submission guidelines and the limita ons of SUPERCOP and of, that mandates
“The outputs of crypto_aead_encrypt and crypto_aead_decrypt shall be determined en rely by
the inputs listed above (except that the parameter nsec is kept for compa bility with SUPERCOP and will
not be used) and shall not be affected by any randomness or other hidden inputs.” This seems to imply that
the length of the plaintext must be recoverable from the ciphertext. In our case this is in theory possible by trying,
for the last block, all possible truncated versions and verifying the padding as well, however this is cumbersome
and introduced a negligible likelihood of incorrect decryp on. Hence, we prefer to append the length. Of course
this makes the output of crypto_aead_encrypt no longer dis nguishable from a random string, but this is
easily solvable: For instance, as men oned before, by encryp ng the message length as well, but such a choice
belongs in our opinion to the domain of protocols, and not of ciphering primi ves.

6.2 Hardware

Qameleonwas designedwith the objec ve of being efficient formemory encryp on. This necessitates that
the underlying block cipher be able to encrypt and decrypt data with minimum delay. PRINCE [BCG+12b,
BCG+12a], was the first block cipher designed explicitly for memory encryp on. The cipher when unrolled
in hardware can encrypt data in hardware with very li le signal delay. Also designing a combined encryp-
on/decryp on circuit is very efficient in hardware as it only requires small altera on to the master key.

PRINCE however has only a variant with a block size of only 64 bits that offers a security of 128 bits. It
is also not known how to PRINCE incorporate a tweak in PRINCE. So applying a mode like ΘCB as in the
Deoxys CAESAR submission [JNPS16] to PRINCE is not directly possible.

The QARMA-128 tweakable block cipher family [Ava17], offers us the advantages of of a 128-bit block, 256-
bit security and a 128-bit tweak and hence can be used as the underlying encryp on engine in tweakable
modes of opera on such as ΘCB. For block ciphers offering 128-bit blocksize QARMA-128r is fast enough
in hardware when compared with other ciphers in literature for 11 ≤ r ≤ 14. In Table 6.1 on the next page

41

Block Cipher Area (GE) Power (mW) Energy (nJ) Delay (ns)

1 MIDORI-128 21647 17.60 1.76 18.80

2
AES-128 51126 66.33 6.63 25.10
AES-192 58313 87.47 8.75 28.91
AES-256 71711 133.74 13.37 33.78

3
Deoxys-BC-256 61713 108.83 10.88 34.91
Deoxys-BC-384 74940 145.59 14.56 40.04

4

QARMA-12811 31242 29.05 2.91 17.87
QARMA-12812 33827 41.59 4.16 19.35
QARMA-12813 36412 48.42 4.84 20.83
QARMA-12814 38998 55.78 5.58 22.32

Table 6.1: Implementa on results for various block ciphers. (Power reported at 10 MHz)

we report the performance characteris cs of some well known block ciphers when implemented using the
standard cell library CORE90GPSVT 2.1.a (STM 90nm). The designs were fully unrolled and exclusively
op mized for area. Apart from MIDORI-128 [BBI+15] which was designed for energy efficiency, QARMA-
128r finds itself well placed in terms both area and signal delay to compute an encryp on opera on.

6.2.1 Qameleon: PANORAmA using QARMA-128 (Circuit details)

The circuit for Qameleon, is shown in Figure 6.1 on the following page. This is the PANORAmA mode of
opera on using QARMA-128 as the underlying block cipher, in other words the ΘBC mode with minor
differences related to incomplete block processing and nonce rota on. The 128-bit tweak is generated
by combining the Nonce, current value of the counter and a 4 bit nibble that depends on the size of the
plaintext and AD. The value of this nibble and all other select signals are generated centrally. Note that the
nonce is included in the tweak only during the processing of the message blocks and so it has to filtered
to zero when the AD is being processed. Apart from the block cipher core, the circuit has two 128-bit
registers Σ and Auth to store the running sum of the plaintext blocks, and to store the output of the result
of processing the AD phase.

The tweak arrangement is the most subtle part of the design and is composed thus. We keep the up-
dated value of the nonce in a register, which is refreshed every 228 encryp ons of message blocks. The
count of the the number of encryp ons is natuarally kept in a 46 bit counter which is compared with the
0x0fffffff signal to trigger such an update. When such an update is required the input string consis ng
of the 110 leading zeros and 18 msbs of the counter (CtrMSB) are encrypted and updated on the register.
Note that the tweak consists of the first 4 leading bits Nib1, a 96 bit field occupied by the original nonce
or the updated value of the nonce and a 28 bit field meant for either the current 28 lsbs of the counter,
the 028 signal, or the 28 lsbs of the bytelength of the AD/message (for the last block processing). Each
takes a par cular value depending on the stage of opera on of the mode, and all signals to filter these are
generated centrally.

The input to the encryp on circuit can be either the plaintext, AD, the 0110||CtrMSB or the contents of the
sum (Σ) register. The output of the encryp on engine is output of the ciphertext (CT). The last encryp on
pass produces the tag which is obtained by adding the block cipher output to the Auth register.

42

28

LengthPT

Auth register

Σ register⊕

b

⊕

⊕

Counter

Control Signal Generator

b b b

b

b

b

b

b

b

b

b b b b bb

AD

PT

PT

Key

N

4 96

Tweak

128

256
CT

Tag

Sel1

Sel2

Sel3Nib1

QARMA-128r

Comparator

0x 0fff ffff

Nonce register

28

N

Sel4

28

b

CtrMSB

18

0110||CtrMSB

CT

CtrLSB

LengthAD28

Figure 6.1: Hardware circuit for Qameleon

QAMELEON (34278 GE) QAMELEON (58728 GE)

QARMA Core

Σ Register

Auth Register

Mul plexers/Xor gates

Area Op mized Speed Op mized

91.1%

1.6%1.6%
5.7%

93.5%

0.9%
1.2%
4.4%

Figure 6.2: Componentwise area requirements for Qameleon-128 using QARMA-12814

43

Variant Block Cipher Op miza on Area (GE) Power(mW) Delay(ns)

(A) qameleon12812896gpv1

QARMA-12811
Area 35053 35.0 20.98
Speed 59678 69.4 9.92

QARMA-12812
Area 37637 41.2 22.49
Speed 66987 85.5 10.41

QARMA-12813
Area 40225 46.8 23.93
Speed 73131 99.6 10.87

QARMA-12814
Area 42811 53.9 25.45
Speed 74177 109.8 11.91

(B) qameleon128128128tcgpv1 QARMA-12811
Area 46018 45.8 23.08
Speed 90138 100.3 10.42

(C) qameleon12812864gpv1 QARMA-12814
Area 42379 52.9 24.26
Speed 96708 86.7 9.90

(D) qameleon1286464mev1 QARMA-12811
Area 32457 28.6 18.99
Speed 56873 61.9 9.00

(E) qameleon6464tcmev1 QARMA-647(TC)
Area 15702 9.5 16.38
Speed 19408 16.2 7.90

(F) qameleon6464nnmev1 QARMA-649
Area 13779 9.8 16.38
Speed 22892 19.6 8.00

ΘCB Deoxys-BC-384 Area 77967 112.1 57.68
Speed 99128 178.7 29.91

Table 6.2: Implementa on results for Qameleon variants (Power reported at 10 MHz)

44

6.2.2 Timing

The QARMA-128r block ciphers are implemented fully unrolled, and hence it takes only 1 cycle to complete
one encryp on func on. Thus each block of AD or plaintext is processed in a single cylce. If the number of
blocks of AD and plaintext are na and nm respec vely then a total of T = na+nm+1 cycles are required for
a single encryp on pass. The additonal cycle is required to execute the final encryp on pass that produces
the tag.

6.2.3 Performance

In Table 6.2 on the previous page we present the synthesis results for the designs. The following design
flow was used: first the design was implemented in VHDL. Then, a func onal verifica on was first done
using Mentor Graphics Modelsim so ware. The designs were synthesized using the standard cell library
of the 90nm logic process of STM (CORE90GPHVT v2.1.a) with the Synopsys Design Compiler, with the
compiler being specifically instructed to op mize the circuit for area. A ming simula on was done on
the synthesized netlist. The switching ac vity of each gate of the circuit was collected while running post-
synthesis simula on. The average power was obtained using Synopsys Power Compiler, using the back
annotated switching ac vity.

We implemented Qameleon-128 using two design philosophies: the first op mizes area and the sec-
ond speed. Our implementa on of Qameleon-128 using QARMA-12814 op mized by area/speed occu-
pies 42811/74177 GE repec vely. A component-wise breakup of the circuit is givem in Figure 6.2 on
page 43. In Table 6.2 on the previous page we present detailed comparison of Qameleon-128 with ΘCB
using DeoxysBC-384. We measure various performance characteris cs for area and speed op mized cir-
cuits. It can be seen that in terms of area, power consump on and signal delay Qameleon is be er placed
in the design space.

45

7 Summary of Features

Our summary of features is wri en in the style of Dutch/Belgian Disserta on Stellingen:

1. Qameleon is an efficient general purpose AEAD cipher.

2. Qameleon is built on known and well established design principles.

3. All design aspects are documented and the origin of all constants is described.

4. Qameleon offers BBB security, because of its instan a on of PANORAmA (a variant of ΘCB) with a
TBC. This is in stark contrast to OCB, that only provides security up to the birthday bound.

5. The security of Qameleon is lost if nonces are reused.

6. The structure of its underlying TBC QARMA is also very fine grained (i.e. it is based on many very
lightweight rounds, instead of few heavier ones) so that it can be very easily par oned in various
ways for pipelining, depending on use case constraints.

7. The mode of opera on is highly parallelisable.

8. Because of the last two features, the design is ideal for memory encryp on applica ons, where the
performance impact is mostly determined by the ini al latency (i.e. the latency of producing the first
block), provided that the implementa on can then keep up with the memory bus bandwidth.

9. Implementa ons can be tuned tomake energy consump on very low. This makes the cipher suitable
for low power use cases (for instance, Internet of Things (IOT) devices).

10. The lack of set up me, the absence of complex key schedule, and the low ini al latency make
Qameleon suitable for the processing of short messages as well.

11. All blocks are processed in the same way – there is no frac onal block processing. This makes im-
plementa on easier and less error prone.

12. In the ARM ecosystem robust implementa ons of QARMA are already being used for the purpose
of pointer authen ca on, which means that the corresponding cryptographic hardware is already
available. It is to be expected that QARMA encryp on instruc on could be deployed very quickly in
case of standardisa on (or de-facto standardisa on) of the design.

13. Qameleon comes with two technologies that further increase its versa lity.

(a) The first is nonce rota on, that allows to increase the nonce and block counter spaces without
having to design versions of the underlying TBC that process longer tweaks. We prove that
this does not represent a security risk.

(b) The second technology is tweak compression, for the cases where a larger tweak space is s ll
needed. As the name suggests, a longer tweak is compressed to a shorter one using a proven
PRF-as-XOR-of-PRPs construc on. In order to make collisions between short tweaks non de-
tectable and non useable, masking using the values of the component func ons of the PRF
construc on, modified with orthomorphisms, is added to the actual “extended tweak” cipher.

14. Qameleon is a cool name.

15. Qameleon has a song (see next chapter).

46

Acknowledgments

We thank Itai Dinur, Maria Eichlseder, and Jérémy Jean for frui ul discussions. This work was also made
possible by the tools developed by Leo Perrin (author of sboxU), Oleksandr Kazymyrov, Maksim Storetvedt,
and Anna Maria Eilertsen (authors of the S-Box analysis tool at https://github.com/okazymyrov/sbox),
Stjepan Picek, Lejla Ba na, Domagoj Jakobović, Barış Ege, and Marin Golub (authors of SET) and the Sage-
Math and GUROBI developers.

We also thank Arrigo Triulzi who suggested the name Qameleon, a er the Culture Club song “Karma
Chameleon.” Qameleon has an official song. The lyrics, wri en by the submi ers and Arrigo Triulzi, are
given below. They are meant to be sung to the tune of aforemen oned Culture Club hit.

Full encryption in your RAM all the way
If I hack onto your bus, would you say:
There's some data with no decryption,
With a tag that doesn't match,
How to sail the contradiction?
Just crypt and go, just crypt and go.

QARMA QARMA QARMA QARMA QARMA Qameleon:
Just crypt and go, just crypt and go.
'crypting would be easy if all ciphers were like my dreams:
With tweak and key, with tweak and key.

Didn't you keep your keys safe every day
And you used to be so careful I heard you say
That your data was your addiction?
When we encrypt, our data is strong,
Erase the key, it's gone forever:
Just crypt and go, just crypt and go.

QARMA QARMA QARMA QARMA QARMA Qameleon:
Just crypt and go, just crypt and go.
'crypting would be easy if all ciphers were like my dreams:
With tweak and key, with tweak and key.

Every bit is like survival,
Choose my cipher, not my rivals'.
Every bit is like survival,
Choose my cipher, not my rivals'.

There's some data with no decryption,
With a tag that doesn't match,
How to sail the contradiction?
Just crypt and go, just crypt and go.

|: QARMA QARMA QARMA QARMA QARMA Qameleon:
Just crypt and go, just crypt and go.
'crypting would be easy if all ciphers were like my dreams:
With tweak and key, with tweak and key. :| [repeat and fade]

47

https://github.com/okazymyrov/sbox

Bibliography

[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, BartMennink, NickyMouha, and Kan Yasuda. How to securely release
unverified plaintext in authen cated encryp on. In Sarkar and Iwata [SI14], pages 105–125.
Cited in this document on page 32.

[ADG+19] Ralph Ankele, Christoph Dobraunig, Jian Guo, Eran Lambooij, Gregor Leander, and Yosuke Todo. Zero-correla on
a acks on tweakable block ciphers with linear tweakey expansion. IACR Transac ons on Symmetric Cryptology,
2019(1):192–235, Mar. 2019.
Cited in this document on page 35.

[AKT14] Can Acar, Arvind Krishnaswamy, and Robert Turner. Code pointer authen ca on for hardware flow control, October
2014. United States Patent US9514305 B2. Assignee: QUALCOMM Incorporated.
Cited in this document on page 2.

[And01] Ross J. Anderson. Security engineering - a guide to building dependable distributed systems. Wiley, 2001.
Cited in this document on page 30.

[ARM16] ARM Connected blog. ARMv8-A architecture – 2016 addi ons. https://www.community.arm.com/processors/
b/blog/posts/armv8-a-architecture-2016-additions, October 2016.
Cited in this document on page 2.

[Ava17] RobertoAvanzi. TheQARMAblock cipher family. almostMDSmatrices over ringswith zero divisors, nearly symmetric
even-mansour construc ons with non-involutory central rounds, and search heuris cs for low-latency s-boxes. IACR
Trans. Symmetric Cryptol., 2017(1):4–44, 2017.
Cited in this document on pages 2, 7, 10, 13, 15, 17, 26, 27, 34, and 41.

[BBI+15] SubhadeepBanik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, HarunagaHiwatari, Toru Akishita, and Francesco
Regazzoni. Midori: A Block Cipher for Low Energy. In Tetsu Iwata and JungHee Cheon, editors, Advances in Cryptology
- ASIACRYPT 2015 - 21st Interna onal Conference on the Theory and Applica on of Cryptology and Informa on Security,
Auckland, NewZealand, November 29 -December 3, 2015, Proceedings, Part II, volume9453 of LectureNotes in Computer
Science, pages 411–436. Springer, 2015.
Cited in this document on pages 16, 33, and 42.

[BC18] Chris na Boura and Anne Canteaut. On the boomerang uniformity of cryptographic sboxes. IACR Transac ons on
Symmetric Cryptology, 2018(3):290–310, Sep. 2018.
Cited in this document on page 27.

[BCG+12a] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor Leander,
Ventzislav Nikov, Christof Paar, Chris an Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE -
A Low-Latency Block Cipher for Pervasive Compu ng Applica ons - Extended Abstract. In XiaoyunWang and Kazue
Sako, editors, ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages 208–225. Springer, 2012.
Cited in this document on pages 13 and 41.

[BCG+12b] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor Leander,
Ventzislav Nikov, Christof Paar, Chris an Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE
- A Low-latency Block Cipher for Pervasive Compu ng Applica ons (Full version). IACR Cryptology ePrint Archive,
2012:529, 2012.
Cited in this document on page 41.

[Bei18] Christof Beierle. Design and analysis of lightweight block ciphers: a focus on the linear layer. PhD thesis, Ruhr University
Bochum, Germany, 2018.
Cited in this document on page 34.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen. Higher-order threshold imple-
menta ons. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th Interna onal
Conference on the Theory and Applica on of Cryptology and Informa on Security, Kaoshiung, Taiwan, R.O.C., December
7-11, 2014, Proceedings, Part II, volume 8874 of Lecture Notes in Computer Science, pages 326–343. Springer, 2014.
Cited in this document on page 40.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich,
and SiangMeng Sim. The SKINNYFamily of Block Ciphers and Its Low-LatencyVariantMANTIS. InMa hewRobshaw
and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual Interna onal Cryptology Conference,

48

https://www.community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions
https://www.community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions

Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes in Computer Science,
pages 123–153. Springer, 2016.
Cited in this document on page 33.

[BNN+12] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg Stütz. Threshold implementa ons of all
3 × 3 and 4 × 4 s-boxes. In Emmanuel Prouff and Patrick Schaumont, editors, Cryptographic Hardware and Embedded
Systems - CHES 2012 - 14th Interna onalWorkshop, Leuven, Belgium, September 9-12, 2012. Proceedings, volume 7428
of Lecture Notes in Computer Science, pages 76–91. Springer, 2012.
Cited in this document on page 40.

[BNN+15] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, Natalia N. Tokareva, and Valeriya Vitkup. Threshold
implementa ons of small s-boxes. Cryptography and Communica ons, 7(1):3–33, 2015.
Cited in this document on page 40.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang connec vity table: A new cryptanalysis
tool. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
Interna onal Conference on the Theory and Applica ons of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3,
2018 Proceedings, Part II, volume 10821 of Lecture Notes in Computer Science, pages 683–714. Springer, 2018.
Cited in this document on page 27.

[CLL+14] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P. Steinberger. Minimizing the two-round
Even-Mansour cipher. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of Lecture
Notes in Computer Science, pages 39–56. Springer, 2014.
Cited in this document on page 35.

[CLP14] Benoit Coglia , Rodolphe Lampe, and Jacques Patarin. The Indis nguishability of theXORof k Permuta ons. In Carlos
Cid and Chris an Rechberger, editors, Fast So ware Encryp on - 21st Interna onal Workshop, FSE 2014, London, UK,
March 3-5, 2014. Revised Selected Papers, volume 8540 of Lecture Notes in Computer Science, pages 285–302. Springer,
2014.
Cited in this document on page 37.

[CPGR05] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Shredding your garbage: Reducing data life me through
secure dealloca on. In Patrick D. McDaniel, editor, Proceedings of the 14th USENIX Security Symposium, Bal more, MD,
USA, July 31 - August 5, 2005. USENIX Associa on, 2005.
Cited in this document on page 30.

[CRGB19] LucianCojocar, KavehRazavi, Cris anoGiuffrida, andHerbert Bos. Exploi ng Correc ngCodes: On the Effec veness
of ECCMemory Against Rowhammer A acks. In Proceedings of the IEEE Symposium on Security and Privacy (S&P) 2019.
To appear, 2019. Available from https://cs.vu.nl/~lcr220/ecc/ecc-rh-paper-sp2019-cr.pdf.
Cited in this document on page 20.

[DDKS13] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Key Recovery A acks on 3-round Even-Mansour, 8-step
LED-128, and Full AES2. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013 - 19th
Interna onal Conference on the Theory andApplica on of Cryptology and Informa on Security, Bengaluru, India, December
1-5, 2013, Proceedings, Part I, volume 8269 of Lecture Notes in Computer Science, pages 337–356. Springer, 2013.
Cited in this document on page 35.

[DDKS14] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Cryptanalysis of iterated Even-Mansour schemes with two
keys. In Sarkar and Iwata [SI14], pages 439–457.
Cited in this document on page 36.

[DDKS15] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Reflec ons on slide with a twist a acks. Des. Codes
Cryptography, 77(2-3):633–651, 2015.
Cited in this document on page 36.

[DEKM17] Christoph Dobraunig, Maria Eichlseder, Daniel Kales, and Florian Mendel. Prac cal key-recovery a ack on man s5.
IACR Transac ons on Symmetric Cryptology, 2016(2):248–260, 2017.
Cited in this document on page 33.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryp on Standard. Informa on
Security and Cryptography. Springer, 2002. http://dx.doi.org/10.1007/978-3-662-04722-4.
Cited in this document on page 16.

[ECL+07] Reouven Elbaz, David Champagne, Ruby B. Lee, Lionel Torres, Gilles Sassatelli, and Pierre Guillemin. Tec-tree: A
low-cost, parallelizable tree for efficient defense against memory replay a acks. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES 2007, 9th Interna onal Workshop, Vienna,

49

https://cs.vu.nl/~lcr220/ecc/ecc-rh-paper-sp2019-cr.pdf
http://dx.doi.org/10.1007/978-3-662-04722-4

Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 289–302.
Springer, 2007.
Cited in this document on page 31.

[Eic18] Maria Eichlseder. Differen al Cryptanalysis of Symmetric Primi ves. PhD thesis, Graz Univer-
sity of Technology, March 2018. Available from https://graz.pure.elsevier.com/de/publications/
differential-cryptanalysis-of-symmetric-primitives.
Cited in this document on pages 26 and 33.

[EK18] Maria Eichlseder and Daniel Kales. Clustering related-tweak characteris cs: Applica on to man s-6. IACR Transac-
ons on Symmetric Cryptology, 2018(2):111–132, Jun. 2018.
Cited in this document on page 34.

[GJN+17] Jian Guo, Jérémy Jean, Ivica Nikolic, Kexin Qiao, Yu Sasaki, and Siang Meng Sim. Invariant Subspace A ack Against
Midori64 and The Resistance Criteria for S-box Designs. Transac on on Symmetric Cryptanalysis (FSE 2017), 2017.
Cited in this document on page 33.

[GMOP15] Andreas Gornik, Amir Moradi, Jürgen Oehm, and Christof Paar. A hardware-based countermeasure to reduce side-
channel leakage: Design, implementa on, and evalua on. IEEE Trans. on CAD of Integrated Circuits and Systems,
34(8):1308–1319, 2015.
Cited in this document on page 40.

[Gue16] Shay Gueron. Intel(r) so ware guard extensions (intel(r) sgx) memory encryp on engine (mee). Talk at Real World
Cryptography Conference 2016, 6-8 January 2016, Stanford, CA, USA, 2016. https://drive.google.com/file/d/
0Bzm_4XrWnl5zOXdTcUlEMmdZem8/view.
Cited in this document on page 31.

[HJ02] William Eric Hall and Charanjit S. Jutla. Parallelizable authen ca on trees. IACR Cryptology ePrint Archive, 2002:190,
2002.
Cited in this document on page 31.

[HJ05] William Eric Hall and Charanjit S. Jutla. Parallelizable authen ca on trees. In Bart Preneel and Stafford E. Tavares,
editors, Selected Areas in Cryptography, 12th Interna onal Workshop, SAC 2005, Kingston, ON, Canada, August 11-12,
2005, Revised Selected Papers, volume 3897 of Lecture Notes in Computer Science, pages 95–109. Springer, 2005.
Cited in this document on page 31.

[HJ08] William E. Hall and Charajit S. Jutla. US Patent US US7451310 B2: Parallelizable authen ca on tree for random
access storage. http://www.google.com/patents/US7451310, November 2008.
Cited in this document on page 31.

[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A. Calandrino, Ariel J.
Feldman, Jacob Appelbaum, and Edward W. Felten. Lest we remember: Cold boot a acks on encryp on keys. In
Paul C. van Oorschot, editor, Proceedings of the 17th USENIX Security Symposium, July 28-August 1, 2008, San Jose, CA,
USA, pages 45–60. USENIX Associa on, 2008.
Cited in this document on page 30.

[HT13] Michael Henson and Stephen Taylor. Memory encryp on: A survey of exis ng techniques. ACM Comput. Surv.,
46(4):53:1–53:26, 2013.
Cited in this document on page 26.

[IM18] Akiko Inoue and Kazuhiko Minematsu. Cryptanalysis of OCB2. Cryptology ePrint Archive, Report 2018/1040, 2018.
https://eprint.iacr.org/2018/1040.
Cited in this document on page 7.

[Iwa18] Tetsu Iwata. Plaintext Recovery A ack of OCB2. Cryptology ePrint Archive, Report 2018/1090, 2018. https:
//eprint.iacr.org/2018/1090.
Cited in this document on page 7.

[Jen93] Robert J. Jenkins, Jr. ISAAC: a fast cryptographic random number generator, 1993. https://burtleburtle.net/bob/
rand/isaacafa.html.
Cited in this document on page 28.

[Jen96] Robert J. Jenkins, Jr. ISAAC. In Dieter Gollmann, editor, Fast So ware Encryp on, Third Interna onal Workshop,
Cambridge, UK, February 21-23, 1996, Proceedings, volume 1039 of Lecture Notes in Computer Science, pages 41–49.
Springer, 1996.
Cited in this document on page 28.

50

https://graz.pure.elsevier.com/de/publications/differential-cryptanalysis-of-symmetric-primitives
https://graz.pure.elsevier.com/de/publications/differential-cryptanalysis-of-symmetric-primitives
https://drive.google.com/file/d/0Bzm_4XrWnl5zOXdTcUlEMmdZem8/view
https://drive.google.com/file/d/0Bzm_4XrWnl5zOXdTcUlEMmdZem8/view
http://www.google.com/patents/US7451310
https://eprint.iacr.org/2018/1040
https://eprint.iacr.org/2018/1090
https://eprint.iacr.org/2018/1090
https://burtleburtle.net/bob/rand/isaacafa.html
https://burtleburtle.net/bob/rand/isaacafa.html

[JNPS16] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. Deoxys v1.4.1, October 2016. Available from: http:
//www1.spms.ntu.edu.sg/~syllab/m/index.php/Deoxys.
Cited in this document on pages 7, 20, 28, and 41.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur
Mutlu. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors. In
ACM/IEEE 41st Interna onal Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014,
pages 361–372. IEEE Computer Society, 2014.
Cited in this document on page 20.

[KGG+18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre a acks: Exploi ng specula ve execu on. CoRR,
abs/1801.01203, 2018.
Cited in this document on page 33.

[KR11] Ted Krovetz and Phillip Rogaway. The so ware performance of authen cated-encryp on modes. In Antoine Joux,
editor, Fast So ware Encryp on - 18th Interna onal Workshop, FSE 2011, Lyngby, Denmark, February 13-16, 2011, Re-
vised Selected Papers, volume 6733 of Lecture Notes in Computer Science, pages 306–327. Springer, 2011.
Cited in this document on pages 7 and 21.

[KSP05] Klaus Kursawe, Dries Schellekens, and Bart Preneel. Analyzing trusted pla orm communica on. In In: ECRYPT
Workshop, CRASH – CRyptographic Advances in Secure Hardware, page 8, 2005.
Cited in this document on page 30.

[LHW19] Muzhou Li, Kai Hu, and MeiqinWang. Related-tweak sta s cal satura on cryptanalysis and its applica on on qarma.
IACR Transac ons on Symmetric Cryptology, 2019(1):236–263, Mar. 2019.
Cited in this document on page 35.

[LJ18] Rongjia Li and Chenhui Jin. Meet-in-the-middle a acks on reduced-round QARMA-64/128. Comput. J., 61(8):1158–
1165, 2018.
Cited in this document on pages 34 and 35.

[LM79] Walter Link and Herbert May. Eigenscha en von MOS-Ein-Transistorspeicherzellen bei efen Temperaturen. Archiv
für Elektronik und Übertragungstechnik, 33:229–235, June 1979.
Cited in this document on page 30.

[LP07] Gregor Leander and Axel Poschmann. On the Classifica on of 4-Bit S-Boxes. In Claude Carlet and Berk Sunar, edi-
tors, Arithme c of Finite Fields, First Interna onal Workshop, WAIFI 2007, Madrid, Spain, June 21-22, 2007, Proceedings,
volume 4547 of Lecture Notes in Computer Science, pages 159–176. Springer, 2007.
Cited in this document on page 27.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers. In Mo Yung, editor, CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 31–46. Springer, 2002.
Cited in this document on pages 7, 26, and 36.

[LRW11] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers. Journal of Cryptology, 24(3):588–613,
2011.
Cited in this document on pages 7 and 36.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Man-
gard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from user
space. In William Enck and Adrienne Porter Felt, editors, 27th USENIX Security Symposium, USENIX Security 2018,
Bal more, MD, USA, August 15-17, 2018., pages 973–990. USENIX Associa on, 2018.
Cited in this document on page 33.

[Luc00] Stefan Lucks. The sum of prps is a secure PRF. In Bart Preneel, editor, Advances in Cryptology - EUROCRYPT 2000,
Interna onal Conference on the Theory and Applica on of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000,
Proceeding, volume 1807 of Lecture Notes in Computer Science, pages 470–484. Springer, 2000.
Cited in this document on page 37.

[Mar10] Luther Mar n. XTS: A mode of AES for encryp ng hard disks. IEEE Security & Privacy, 8(3):68–69, 2010.
Cited in this document on page 26.

[McC56] Edward J. McCluskey. Minimiza on of Boolean Func ons. Bell System Technical Journal, 35(6):1417–1444, November
1956.
Cited in this document on page 27.

51

http://www1.spms.ntu.edu.sg/~syllab/m/index.php/Deoxys
http://www1.spms.ntu.edu.sg/~syllab/m/index.php/Deoxys

[Mer82] Ralph C. Merkle. US Patent US US4309569A: Method of providing digital signatures. https://patents.google.com/
patent/US4309569, January 1982.
Cited in this document on page 30.

[MP15] Bart Mennink and Bart Preneel. On the XOR of Mul ple Random Permuta ons. In Tal Malkin, Vladimir Kolesnikov,
Allison Bishop Lewko, and Michalis Polychronakis, editors, Applied Cryptography and Network Security - 13th Interna-
onal Conference, ACNS 2015, New York, NY, USA, June 2-5, 2015, Revised Selected Papers, volume 9092 of Lecture
Notes in Computer Science, pages 619–634. Springer, 2015.
Cited in this document on page 37.

[MV04] David A. McGrew and John Viega. The Security and Performance of the Galois/Counter Mode (GCM) of Opera on.
In Anne Canteaut and Kapalee Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004, 5th Interna onal
Conference on Cryptology in India, Chennai, India, December 20-22, 2004, Proceedings, volume 3348 of Lecture Notes in
Computer Science, pages 343–355. Springer, 2004.
Cited in this document on page 28.

[MVS00] Umesh Maheshwari, Radek Vingralek, and William Shapiro. How to build a trusted database system on untrusted
storage. In Michael B. Jones and M. Frans Kaashoek, editors, 4th Symposium on Opera ng System Design and Imple-
menta on (OSDI 2000), San Diego, California, USA, October 23-25, 2000, pages 135–150. USENIX Associa on, 2000.
Cited in this document on page 30.

[NIS18] NIST Cryptographic Technology Group. Submission requirements and evalua on criteria for the lightweight
cryptography standardiza on process, August 2018. https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf.
Cited in this document on pages 7 and 28.

[Pac18] Renaud Pacale. Probing a acks: On-board probing a acks. EURECOM Hardware Security Training, March 2018.
http://soc.eurecom.fr/HWSec/lectures/probing/main.pdf.
Cited in this document on page 30.

[Pat08] Jacques Patarin. A proof of security in o(2n) for the xor of two random permuta ons. In Reihaneh Safavi-Naini,
editor, Informa on Theore c Security, Third Interna onal Conference, ICITS 2008, Calgary, Canada, August 10-13, 2008,
Proceedings, volume 5155 of Lecture Notes in Computer Science, pages 232–248. Springer, 2008.
Cited in this document on page 37.

[Pat13] Jacques Patarin. Security in o(2n) for the Xor of Two Random Permuta ons - Proof with the standard H technique -.
IACR Cryptology ePrint Archive, 2013:368, 2013.
Cited in this document on page 37.

[Per19] Leo Perrin. sboxu, 2019. Available from https://gforge.inria.fr/projects/sbox-utils/.
Cited in this document on page 27.

[Pet07] Torbjörn Pe ersson. Cryptographic key recovery from Linux memory dumps. Presenta on, Chaos Communica-
on Camp, August 2007. https://media.ccc.de/v/cccamp07-en-2002-Cryptographic_key_recovery_from_

Linux_memory_dumps.
Cited in this document on page 30.

[PM05] Thomas Popp and Stefan Mangard. Masked dual-rail pre-charge logic: Dpa-resistance without rou ng constraints. In
Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware and Embedded Systems - CHES 2005, 7th Interna onal
Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings, volume 3659 of Lecture Notes in Computer
Science, pages 172–186. Springer, 2005.
Cited in this document on page 40.

[PM06] Thomas Popp and Stefan Mangard. Implementa on aspects of the dpa-resistant logic style MDPL. In Interna onal
Symposium on Circuits and Systems (ISCAS 2006), 21-24 May 2006, Island of Kos, Greece. IEEE, 2006.
Cited in this document on page 40.

[Poe18] Bertram Poe ering. Breaking the confiden ality of OCB2. Cryptology ePrint Archive, Report 2018/1087, 2018.
https://eprint.iacr.org/2018/1087.
Cited in this document on page 7.

[Pri10] Cyril Prisse e. An Algorithm to List All the Fixed-Point Free Involu ons on a Finite Set. http://arxiv.org/pdf/1006.
3993v1.pdf, 2010.
Cited in this document on page 27.

52

https://patents.google.com/patent/US4309569
https://patents.google.com/patent/US4309569
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
http://soc.eurecom.fr/HWSec/lectures/probing/main.pdf
https://gforge.inria.fr/projects/sbox-utils/
https://media.ccc.de/v/cccamp07-en-2002-Cryptographic_key_recovery_from_Linux_memory_dumps
https://media.ccc.de/v/cccamp07-en-2002-Cryptographic_key_recovery_from_Linux_memory_dumps
https://eprint.iacr.org/2018/1087
http://arxiv.org/pdf/1006.3993v1.pdf
http://arxiv.org/pdf/1006.3993v1.pdf

[PS16] Thomas Peyrin and Yannick Seurin. Counter-in-tweak: Authen cated encryp on modes for tweakable block ciphers.
In Ma hew Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual Interna onal
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, volume 9814 of Lecture Notes
in Computer Science, pages 33–63. Springer, 2016.
Cited in this document on page 7.

[QPS17] QualcommProduct Security. Pointer Authen ca on onARMv8.3 –Design andAnalysis of theNewSo ware Security
Instruc ons. https://www.qualcomm.com/documents/whitepaper-pointer-authentication-armv83, January
2017.
Cited in this document on page 2.

[Qui52] Willard Van Orman Quine. The Problem of Simplifying Truth Func ons. The American Mathema cal Monthly, pages
521–531, October 1952.
Cited in this document on page 27.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-cipher mode of opera on for efficient
authen cated encryp on. InMichael K. Reiter and Pierangela Samara , editors, CCS 2001, Proceedings of the 8th ACM
Conference on Computer and Communica ons Security, Philadelphia, Pennsylvania, USA, November 6-8, 2001., pages
196–205. ACM, 2001.
Cited in this document on page 7.

[RCPS07] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. Using Address Independent Seed Encryp on and
BonsaiMerkle Trees toMake Secure ProcessorsOS- and Performance-Friendly. In40thAnnual IEEE/ACM Interna onal
Symposium on Microarchitecture (MICRO-40 2007), 1-5 December 2007, Chicago, Illinois, USA, pages 183–196. IEEE
Computer Society, 2007.
Cited in this document on page 31.

[Rog04] Phillip Rogaway. Efficient Instan a ons of Tweakable Blockciphers and Refinements to Modes OCB and PMAC.
In Pil Joong Lee, editor, Advances in Cryptology - ASIACRYPT 2004, 10th Interna onal Conference on the Theory and
Applica on of Cryptology and Informa on Security, Jeju Island, Korea, December 5-9, 2004, Proceedings, volume 3329 of
Lecture Notes in Computer Science, pages 16–31. Springer, 2004.
Cited in this document on page 2.

[Sage19] The Sage Developers. SageMath, the Sage Mathema cs So ware System (Version 8.6), 2019. Available from https:
//www.sagemath.org.
Cited in this document on page 27.

[SD16] Mark Seaborn and Thomas Dullien. Exploi ng the DRAM rowhammer bug to gain kernel privileges. Talk at Black Hat
2015, 5-6 August 2015, Las Vegas, NV, USA, 2016. https://www.blackhat.com/us-15/briefings.html.
Cited in this document on page 20.

[Sha00] Adi Shamir. Protec ng smart cards from passive power analysis with detached power supplies. In Çe n Kaya Koç
and Christof Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2000, Second Interna onalWorkshop,
Worcester, MA, USA, August 17-18, 2000, Proceedings, volume 1965 of Lecture Notes in Computer Science, pages 71–77.
Springer, 2000.
Cited in this document on page 40.

[SI14] Palash Sarkar and Tetsu Iwata, editors. Advances in Cryptology - ASIACRYPT 2014 - 20th Interna onal Conference
on the Theory and Applica on of Cryptology and Informa on Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science. Springer, 2014.
Cited in this document on pages 48 and 49.

[Sko02] Sergei P. Skorobogatov. Low temperature data remanence in sta c RAM. Tech. Rep. UCAM-CL-TR-536, June 2002.
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.pdf.
Cited in this document on page 30.

[SLG+16] Bing Sun, Meicheng Liu, Jian Guo, Vincent Rijmen, and Ruilin Li. Provable security evalua on of structures against
impossible differen al and zero correla on linear cryptanalysis. In Marc Fischlin and Jean-Sébas en Coron, editors,
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual Interna onal Conference on the Theory and Applica ons of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes in Com-
puter Science, pages 196–213. Springer, 2016.
Cited in this document on page 34.

[SNR+18] Gururaj Saileshwar, Prashant J. Nair, Prakash Ramrakhyani, Wendy Elsasser, Jose Joao, and Moinuddin K. Qureshi.
Morphable counters: Enabling compact integrity trees for low-overhead secure memories. In 51st Annual IEEE/ACM

53

https://www.qualcomm.com/documents/whitepaper-pointer-authentication-armv83
https://www.sagemath.org
https://www.sagemath.org
https://www.blackhat.com/us-15/briefings.html
http://www.cl.cam.ac.uk/techreports/ UCAM-CL-TR-536.pdf

Interna onal Symposium on Microarchitecture, MICRO 2018, Fukuoka, Japan, October 20-24, 2018, pages 416–427.
IEEE Computer Society, 2018.
Cited in this document on page 31.

[TLS16] Yosuke Todo, Gregor Leander, and Yu Sasaki. Nonlinear Invariant A ack - Prac cal A ack on Full SCREAM, iSCREAM,
and Midori64. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd
Interna onal Conference on the Theory and Applica on of Cryptology and Informa on Security, Hanoi, Vietnam, December
4-8, 2016, Proceedings, Part II, volume 10032 of Lecture Notes in Computer Science, pages 3–33, 2016.
Cited in this document on page 33.

[TV04] Kris Tiri and Ingrid Verbauwhede. A logic level design methodology for a secure DPA resistant ASIC or FPGA im-
plementa on. In 2004 Design, Automa on and Test in Europe Conference and Exposi on (DATE 2004), 16-20 February
2004, Paris, France, pages 246–251. IEEE Computer Society, 2004.
Cited in this document on page 40.

[Win09] Johannes Winter. Eavesdropping Trusted Pla orm Module Communica on. 4th European Trusted Infrastructure
Summer school, ETISS, 2009. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.464.6048.
Cited in this document on page 30.

[YEP+06] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and Yan Solihin. Improving Cost, Performance, and
Security of Memory Encryp on and Authen ca on. In 33rd Interna onal Symposium on Computer Architecture (ISCA
2006), June 17-21, 2006, Boston, MA, USA, pages 179–190. IEEE Computer Society, 2006.
Cited in this document on page 31.

[YQC18] Dong Yang, Wen-Feng Qi, and Hua-Jin Chen. Impossible Differen al A ack on QARMA Family of Block Ciphers.
Cryptology ePrint Archive, Report 2018/334, 2018. https://eprint.iacr.org/2018/334.
Cited in this document on pages 34 and 35.

[ZD16] Rui Zong and Xiaoyang Dong. Meet-in-the-middle a ack on QARMA block cipher. Cryptology ePrint Archive, Report
2016/1160, 2016. http://eprint.iacr.org/2016/1160.
Cited in this document on page 35.

[ZDW18] Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. Milp-aided related-tweak/key impossible differen al a ack and its
applica ons to qarma, jol k-bc. Cryptology ePrint Archive, Report 2018/142, 2018. https://eprint.iacr.org/2018/
142.
Cited in this document on pages 34 and 35.

54

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.464.6048
https://eprint.iacr.org/2018/334
http://eprint.iacr.org/2016/1160
https://eprint.iacr.org/2018/142
https://eprint.iacr.org/2018/142

	Introduction
	Contents
	List of Algorithms
	List of Figures
	List of Tables
	List of Acronyms

	Specification of the Mode of Operation PANORAmA
	Notation
	Algorithms
	Encryption and tag generation
	Nonce rotation
	Decryption and tag verification
	Tag length truncation
	64-bit version
	An implementation note

	Specification of the Tweakable Block Cipher QARMA
	General definitions and notation
	Key specialisation
	The forward round function
	The tweak update function
	The backward round function
	The central construction and the pseudo-reflector
	The 4-bit S-Box
	The 8-bit S-Box
	The diffusion matrices
	The encryption and decryption algorithm

	Parameter Sets and Variants, and Security Claims
	Parameter sets and variants
	Security claims
	Security goals
	Expected strength in general
	Expected strength for each parameter set

	Long tweak support
	Specification of the tweak compression function
	Usage of the tweak compression function
	Usage of the tweak compression function in Parameter Sets (B) and (E)

	Design Rationale
	High level choices
	Low level choices
	Low level choices for QARMA
	The selection of the QARMA S-Box
	Low level choices for the PANORAmA mode of operation
	Low level choices for the tweak compression

	Security Analysis
	On the threat models
	General usage
	Memory encryption
	The case of external, interposable memory
	The case of internal memory
	Additional security targets

	On the security of QARMA
	Design cryptanalysis
	Disclosed cryptanalysis
	On the security of the Even-Mansour construction

	On the security of PANORAmA
	On the security of long tweak compression
	Tweak collisions
	Impact of tweak collisions on Qameleon
	Detecting tweak collisions
	Elevating tweak collisions to attacks

	On side-channel resistance

	Implementations
	Software
	Hardware
	Qameleon: PANORAmA using QARMA-128 (Circuit details)
	Timing
	Performance

	Summary of Features
	Acknowledgments
	Bibliography

