## SYCON v1.0

# Submission to Lightweight Cryptographic Standards 

Designers and Submitters:<br>Sumanta Sarkar ${ }^{\dagger}$<br>Kalikinkar Mandal ${ }^{\ddagger}$<br>Dhiman Saha ${ }^{\dagger \dagger}$

${ }^{\dagger}$ TCS Innovation Labs, Hyderabad, INDIA<br>${ }^{\ddagger}$ University of Waterloo, Waterloo, CANADA<br>${ }^{\dagger}$ Indian Institute of Technology, Bhilai, INDIA

Corresponding submitter:
Sumanta Sarkar
TCS Innovation Labs
GS3-71, Tata Consultancy Services, Deccan Park
Madhapur, Hyderabad 500081 INDIA
Email: sumanta.sarkar1@tcs.com
Telephone: +91-40-6667-3588

## Contents

1 Introduction ..... 3
2 Specification of SYCON ..... 4
2.1 The Sycon Permutation ..... 4
2.1.1 Substitution Box: SBox (SB) ..... 4
2.1.2 First Permutation Layer: PLayer $\left(\mathbf{P L}_{1}\right)$ ..... 5
2.1.3 Diffusion Layer: SubBlockDiffusion (SD) ..... 5
2.1.4 Round Constant Layer: AddRoundConst (RC) ..... 6
2.1.5 Second Permutation Layer: PLayer $\left(\mathbf{P L}_{2}\right)$ ..... 6
2.2 Sycon Modes: Authenticated Encryption ..... 7
2.2.1 Parameter Sets and Security Claims ..... 7
2.2.2 Description of Mode Components ..... 8
2.2.3 Initialization and Processing Associated Data ..... 9
2.2.4 Encryption and Decryption ..... 9
2.2.5 Tag Generation ..... 9
2.3 Sycon Mode: Hash Algorithm ..... 10
3 Security Analysis ..... 13
3.1 Differential and Linear Cryptanalysis ..... 13
3.1.1 Differential Cryptanalysis ..... 13
3.1.2 Linear Cryptanalysis ..... 14
3.2 Impossible Differential Cryptanalysis ..... 14
3.3 Zero-sum Distinguisher ..... 14
4 Design Rationale for SYCON ..... 16
4.1 Choosing the Mode ..... 16
4.2 Choosing the S-boxes ..... 16
4.3 Choosing the Linear Diffusion Layer ..... 17
4.4 Choosing the Round Constant ..... 17
4.5 Choosing the Bit Permutations ..... 17
4.6 Choice of Initial Vectors ..... 18
5 Efficiency Evaluation of SYCON ..... 19
5.1 Hardware Implementation Results ..... 19
5.1.1 FPGA and ASIC Synthesis Results ..... 19
5.2 Efficiency Evaluation in Software ..... 19
5.2.1 Bit-Sliced efficiency on 64 -bit CPUs ..... 19
5.2.2 Efficiency on microcontroller ..... 20
A Test Vectors and Sycon Permutation Details ..... 27
A. 1 Test Vectors for Sycon Permutations, AE and Hash ..... 27
A. 2 Details of PLayer and S-box of $\Pi$ ..... 28
A. 3 Bit-sliced Representation of the Permutation ..... 31

## Chapter 1

## Introduction

NIST has taken up the initiative to standardize lightweight cryptographic algorithms that are tailored for resource constrained devices. In this regard, NIST announces call for lightweight cryptographic algorithms [2].

We present Sycon as a competitor for this standardization process. Sycon offers two authenticated encryption algorithms with associated data, and one hash algorithm in sponge constructions [7, 6, 9]. For authenticated encryption, one instance offers 128 -bit security for confidentiality, integrity and associated data, and the other instance offers 112-bit security. The hash algorithm accepts a message of any length and outputs a digest of length 256 bits, and offers 128 -bit collision resistance security.

At the core of Sycon is a lightweight permutation of 320 bits, called Sycon permutation. The design of the Sycon permutation is based on the substitution permutation network, and its components are chosen in such a way that it is featured for efficient implementations both in hardware and software. Our design is simple, provides stronger security assurance with good performances on cross-platforms, and is suitable for resourceconstrained devices such as RFID tags, sensor nodes, and industrial IoT devices.

Table 1.1: Notations

| $x \in\{0,1\}^{n}$ | Binary $n$-tuple |
| :--- | :--- |
| $x \oplus y$ | Bitwise XOR of $x$ and $y$ |
| $x \\| y$ | Concatenation of bitstrings $x$ and $y$ |
| $x y$ | Bitwise AND of $x$ and $y$ |
| $\lfloor x\rfloor_{n}$ | $x$ truncated to last (LSB) $n$-bits |
| $(x \lll n)$ | Left circular shift by $n$-bits |
| $\mathbf{S B}$ | S-box layer |
| $\mathbf{P L}_{1}$ | Bit permutation of 320 symbols |
| $\mathbf{P L}_{1}$ | Inverse of $\mathbf{P L}_{1}$ |
| $\mathbf{P L}_{2}$ | Bit permutation of 320 symbols |
| $\mathbf{S D}$ | Subblock Diffusion |
| $\mathbf{R C}$ | Add Round Constant Layer |
| $r c_{i}$ | Round constant at round $i$ |
| $\Pi^{\rho}$ | An iterated permutation with $\rho$ rounds over |
|  | $\{0,1\}^{320}$ |

Roadmap. The rest of the document is organized as follows. In Section 2, we provide the specification of Sycon authenticated encryption and hash algorithms. Section 3 presents the security of the Sycon algorithms, and Section 4 describes the design rationale of the Sycon parameters. In Section 5, we assess the performances of the Sycon AEAD and hash algorithms in hardware and software.

## Chapter 2

## Specification of SYCON

In this chapter, we provide a complete specification of the Sycon permutation and of its authenticated encryption (AE) and hash algorithms. We first present the construction of the Sycon permutation, which is designed to achieve high throughput and efficient in both hardware and software implementations. It is plugged into the MonkeyDuplex sponge mode [6] to construct a family of authenticated encryption, and used in the unified sponge mode [9] to construct a hash algorithm.

### 2.1 The Sycon Permutation

Sycon is an iterative permutation of 320 bits. The permutation is constructed by iterating the round function

$$
R:\{0,1\}^{320} \rightarrow\{0,1\}^{320},
$$

$\rho$ times. The design of $R$ is based on the Substitution-Permutation Network (SPN). The permutation $R$ is composed of a sequence of four distinct transformation, namely SBox (SB), PLayer ( $\mathbf{P L}_{1}$ and $\mathbf{P L}_{2}$ ), SubBlockDiffusion (SD), and AddRoundConst (RC), and it is defined by


Figure 2.1: The round function
Then, a $\rho$-round permutation, denoted by $\Pi^{\rho}$, is constructed as

$$
\Pi^{\rho}=\mathbf{P L}_{1} \circ \underbrace{R \circ \cdots \circ R}_{\rho \text { times }} \circ \mathbf{I P L}_{1},
$$

where $\mathbf{I P L}_{1}$ is the inverse of $\mathbf{P L}_{1}$. Below we describe the components of $R$ in detail.


Figure 2.2: An overview of the permutation $\Pi^{\rho}$

### 2.1.1 Substitution Box: SBox (SB)

The substitution box ( $\mathbf{S B}$ ) provides confusion in the permutation, and is applied to the state $\mathbf{a}=a_{0} a_{1} \cdots a_{320}$ as follows. It arranges the 320 -bit state into 645 -bit words as
$\mathbf{b}_{i}=a_{5 i} a_{5 i+1} a_{5 i+2} a_{5 i+3} a_{5 i+4}, 0 \leq i \leq 63, b_{i} \in\{0,1\}^{5}$, that is $\mathbf{a}=\mathbf{b}_{0} \mathbf{b}_{1} \cdots \mathbf{b}_{63}$. Then a $5 \times 5$ S-box $S$, given in Table 2.1, is applied to each 5 -bit word as

$$
\mathbf{S B}(\mathbf{a})=\mathrm{S}\left[\mathbf{b}_{0}\right] \mathrm{S}\left[\mathbf{b}_{1}\right] \mathrm{S}\left[\mathbf{b}_{2}\right] \cdots \mathrm{S}\left[\mathbf{b}_{63}\right] .
$$

The cryptographic properties of the S-box are summarized in Table 2.2.
Table 2.1: The 5-bit S-box

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~S}[x]$ | 8 | 19 | 30 | 7 | 6 | 25 | 16 | 13 | 22 | 15 | 3 | 24 | 17 | 12 | 4 | 27 |
| $x$ | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 19 | 30 | 31 |
| $\mathrm{~S}[x]$ | 11 | 0 | 29 | 20 | 1 | 14 | 23 | 26 | 28 | 21 | 9 | 2 | 31 | 18 | 10 | 5 |

Table 2.2: Cryptographic properties of the S-box

| Differential <br> uniformity | Algebraic <br> degree | Fixed point | Nonlinearity | Differential <br> branch number | Linear <br> branch number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 2 | No | 8 | 3 | 3 |

### 2.1.2 First Permutation Layer: PLayer $\left(\mathrm{PL}_{1}\right)$

After applying the SBox layer, we apply the permutation layer PLayer on the 320-bit state. The bit-permutation over 320 symbols is defined in Table A.1. Basically, it is obtained from $\hat{P}_{j}(i)=5 * i+j$ where $0 \leq i \leq 63$ and $0 \leq j \leq 4$. For the state

$$
\mathbf{a}=a_{0} a_{1} \cdots a_{5} a_{6} a_{7} \cdots a_{10} a_{11} a_{12} \cdots a_{160} a_{161} a_{162} \cdots a_{315} a_{316} a_{317} \cdots a_{319},
$$

the permutation layer $\mathbf{P L}_{1}$ changes it to

$$
\begin{aligned}
\mathbf{P L}_{1}(\mathbf{a}) & =a_{\mathbf{P L}_{1}(0)} a_{\mathbf{P L}_{1}(1)} \cdots \cdots \cdots a_{\mathbf{P L}_{1}(319)} \\
& =a_{0} a_{5} \cdots a_{315} a_{1} a_{6} \cdots a_{316} a_{2} a_{7} \cdots a_{317} a_{3} a_{8} \cdots a_{318} a_{4} a_{9} \cdots a_{319} .
\end{aligned}
$$

### 2.1.3 Diffusion Layer: SubBlockDiffusion (SD)

The diffusion layer is a linear transformation that is applied independently on five 64-bit subblocks constructed from the state. Given a state

$$
\mathbf{a}=a_{0} a_{1} \cdots a_{5} a_{6} a_{7} \cdots a_{10} a_{11} a_{12} \cdots a_{160} a_{161} a_{162} \cdots a_{315} a_{316} a_{317} \cdots a_{319}
$$

it first divides the state into five 64-bit blocks as $\mathbf{a}=Y_{0}\left\|Y_{1}\right\| Y_{2}\left\|Y_{3}\right\| Y_{4}$ and then five distinct diffusion transformations are applied on $Y_{i}$ 's. The diffusion layer on $\mathbf{a}=Y_{0}\left\|Y_{1}\right\| Y_{2}\left\|Y_{3}\right\| Y_{4}$ is defined as

$$
\begin{aligned}
& Z_{0} \leftarrow Y_{0} \oplus\left(Y_{0} \lll 11\right) \oplus\left(Y_{0} \lll 22\right) \\
& Z_{1} \leftarrow Y_{1} \oplus\left(Y_{1} \lll 13\right) \oplus\left(Y_{1} \lll 26\right) \\
& Z_{2} \leftarrow Y_{2} \oplus\left(Y_{2} \lll 31\right) \oplus\left(Y_{2} \lll 62\right) \\
& Z_{3} \leftarrow Y_{3} \oplus\left(Y_{3} \lll 56\right) \oplus\left(Y_{3} \lll 60\right) \\
& Z_{4} \leftarrow Y_{4} \oplus\left(Y_{4} \lll 6\right) \oplus\left(Y_{4} \lll 12\right) .
\end{aligned}
$$

where $\mathbf{S D}(\mathbf{a})=Z_{0}\left\|Z_{1}\right\| Z_{2}\left\|Z_{3}\right\| Z_{4} \|$ and $\lll$ is the left cyclic shift operation.

### 2.1.4 Round Constant Layer: AddRoundConst (RC)

We add the round constants to each round of the permutation to destroy the structural symmetry in the permutation. We generate the round constants by a 5 -bit LFSR defined by the primitive feedback polynomial $x^{5}+x^{3}+1$ over $\mathbb{F}_{2}$. We start with the initial state $(1,0,1,0,1)$ to generate 14 round constants where each state of the LFSR is served as distinct constants. For example, the 5 -bit LFSR state ( $1,0,1,0,1$ ) is converted to a byte $(0,0,0,1,0,1,0,1)=0 \times 15$, and then a 64 -bit round constant is constructed as 0xaaaaaaaaaaaaaa| 0 x15 = 0xaaaaaaaaaaaaaa15. The round constants are given in Table 2.3.

Table 2.3: The round constants $\left\{\mathrm{rc}_{i}\right\}$

| Round \# | Constants | Round \# | Constants |
| :---: | :---: | :---: | :---: |
| 0 | 0xaaaaaaaaaaaaa15 | 7 | 0xaaaaaaaaaaaaa06 |
| 1 | 0xaaaaaaaaaaaaa1a | 8 | 0xaaaaaaaaaaaaa03 |
| 2 | 0xaaaaaaaaaaaaa1d | 9 | 0xaaaaaaaaaaaaaa11 |
| 3 | 0xaaaaaaaaaaaaa0e | 10 | 0xaaaaaaaaaaaaa18 |
| 4 | 0xaaaaaaaaaaaaa17 | 11 | 0xaaaaaaaaaaaa1c |
| 5 | 0xaaaaaaaaaaaa1b | 12 | 0xaaaaaaaaaaaa1e |
| 6 | 0xaaaaaaaaaaaaa0d | 13 | 0xaaaaaaaaaaaa1f |

### 2.1.5 Second Permutation Layer: PLayer ( $\mathrm{PL}_{2}$ )

FIST permutation construction. First we construct a bit permutation $P$ over 320 symbols, which we call FIST permutation ${ }^{1}$. Suppose $P_{i}, 0 \leq i \leq 4$ is a bit permutation over 64 symbols, i.e., $P_{i}=\left[P_{i}(0), \cdots, P_{i}(63)\right]$. The FIST permutation $(P)$ over 320 symbols is constructed from $P_{i}$ 's as follows:

$$
\begin{aligned}
P= & {\left[P_{0}(0), \cdots, P_{0}(63), 64+P_{1}(0), \cdots, 64+P_{1}(63), 128+P_{2}(0), \cdots, 128+P_{2}(63),\right.} \\
& \left.192+P_{3}(0), \cdots, 192+P_{3}(63), 256+P_{4}(0), \cdots, 256+P_{4}(63)\right] .
\end{aligned}
$$

We now describe the construction of $P_{i}$. Let $V=V_{0}\left\|V_{1}\right\| V_{2} \| V_{3}, V_{i} \in\{0,1\}^{16}$ be the 16 -bit representation of a 64 -bit word $V$. The 16 -bit rotation function on $V$ with rotation constant $u$, denoted by $\operatorname{ROT} 16(V, u), 0 \leq u \leq 15$ is defined as

$$
\operatorname{ROT16}(V, u)=\left(V_{0} \lll u\right)\left\|\left(V_{1} \lll u\right)\right\|\left(V_{2} \lll u\right) \|\left(V_{3} \lll u\right) .
$$

Let $W=w_{0} w_{1} w_{2} w_{3} w_{4} w_{5} w_{6} w_{7}$ be the 8 -bit representation of $W$ where $w_{i} \in\{0,1\}^{8}$. Let $\pi$ be a permutation over $\{0, \cdots, 7\}$. A byte-shuffling transformation on $W$ with respect to $\pi$, denoted by ByteShuffle $(W, \pi)$, is defined as

$$
\text { ByteShuffle }(W, \pi)=w_{\pi(0)} w_{\pi(1)} w_{\pi(2)} w_{\pi(3)} w_{\pi(4)} w_{\pi(5)} w_{\pi(6)} w_{\pi(7)}
$$

We define a bit permutation over 64 symbols using ROT16(, ) and ByteShuffle(, ) as

$$
\begin{aligned}
& Y \leftarrow \operatorname{RoT16}(Y, u) \\
& Y \leftarrow \operatorname{ByteShuffle}(Y, \pi) .
\end{aligned}
$$

This bit permutation is uniquely determined by the parameters $u$ and $\pi$. Table 2.4 presents the parameters for five permutations on 64 symbols constituting the FIST permutation used in the permutation.

[^0]Table 2.4: Parameters for five permutations on 64 symbols for the FIST permutation

| Permutation | Parameters $\left(u, \pi_{i}\right)$ |
| :---: | :--- |
| $P_{0}$ | $(11,[7,0,3,5,4,6,2,1])$ |
| $P_{1}$ | $(4,[0,6,1,7,3,4,2,5])$ |
| $P_{2}$ | $(10,[7,2,4,5,1,0,6,3])$ |
| $P_{3}$ | $(7,[2,4,5,3,0,7,6,1])$ |
| $P_{4}$ | $(5,[3,6,1,0,5,7,2,4])$ |

Inverse of $\mathbf{P L}_{1}$. The inverse permutation of $\mathbf{P L} \mathbf{L}_{1}$ is denoted by $\mathbf{I P L} \mathbf{L}_{1}$, which is given by $\hat{I P} P_{i}(j)=64 j+i, 0 \leq i \leq 63$ and $0 \leq j \leq 4$. For a state $\mathbf{a}=a_{0} a_{1} a_{2} \cdots a_{318} a_{319}$, the inverse of $\mathbf{P} L_{1}$ is given by

$$
\mathbf{I P L}_{1}(a)=a_{0} a_{64} a_{128} a_{192} a_{256} a_{1} a_{65} a_{129} a_{193} a_{257} \cdots a_{63} a_{127} a_{191} a_{255} a_{319}
$$

Construction of $\mathbf{P L}_{2}$. The $\mathbf{P L}_{2}$ is constructed by composing the FIST permutation $P$ and $\mathbf{I P L} \mathbf{L}_{1}$, meaning first $P$ is applied on the input and then $\mathbf{I P L} \mathbf{L}_{1}$ is applied on the output of $P$. Symbolically, $\mathbf{P L}_{2}$ is written as $\mathbf{P L}_{2}=\mathbf{I} \mathbf{P L}_{1} \circ P$. Note that it is not a typical permutation composition. For the parameter in Table 2.4, the full description of $\mathbf{P L} \mathbf{L}_{2}$ is given in Table A.2.

### 2.2 Sycon Modes: Authenticated Encryption

An authenticated encryption with associated data (AEAD) consists of a tuple of two algorithms, namely the authenticated encryption algorithm and the decryption and verification of tags. The authenticated encryption algorithm accepts as input a secret key $K$, a public nonce $N$, an (optional) associated data $A$ and plaintext message $M$ and output a ciphertext $C$ and a tag $T$. Symbolically,

$$
\mathcal{E}(K, N, A, M)=(C, T)
$$

The decryption algorithm accepts as input a secret key $K$, a public nonce $N$, an (optional) associated data $A$, a ciphertext message $C$, and a tag $T$ and computes a tag $T^{\prime}$. It outputs the plaintext message $M$ if the verification of the tag succeeds, otherwise, outputs $\perp$.

$$
\mathcal{D}(K, N, A, C, T)= \begin{cases}M & T=T^{\prime} \\ \perp & T \neq T^{\prime}\end{cases}
$$

The entire encryption process consists of four distinct phases/algorithms, namely the initialization phase, processing associated data, encrypting message and generation of the tag. Figure 2.4 presents an overview of the authenticated encryption algorithms of Sycon. Like encryption, the decryption process also has four algorithms that are same except encryption. All five phases are described in detail in Sections 2.2.3-2.2.5.

### 2.2.1 Parameter Sets and Security Claims

The Sycon family of authenticated encryption has two instances that are constructed from the Sycon permutation using the MonkeyDuplex mode [6]. Each instance is determined by the key length, the nonce length, the tag length, the rate length, and an initial vector (IV). The first instance has a rate of 64 bits, denoted by Sycon_AEAD_128_r64, and the second one has a rate of 96 bits, denoted by SYCON_AEAD_128_r96. Each instance of Sycon supports variable length plaintexts and associated data. We shall recommend the
first instance where applications require lightweight authenticated encryption and hash functionality, and the second instance is for lightweight applications where speed matters.

Table 2.5: Recommended parameters for Sycon_AEAD instances

| Algorithms | Key $(\kappa)$ | Nonce $(n)$ | Tag $(\tau)$ | Rate $(r)$ | Rounds |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\rho_{1}$ | $\rho_{2}$ |
| SYCON_AEAD_128_r64 | 128 | 128 | 128 | 64 | 14 | 7 |
| SYCON_AEAD_128_r96 | 128 | 128 | 128 | 96 | 14 | 9 |

- $\rho_{1}$ is used in the initialization and finalization phases.
$\rho_{2}$ is used in the AD and encryption/decryption phases.
Table 2.6: The initial vectors for the SYcon_AEAD instances

| Algorithms | Initial vector (IV) | Const. identity |
| :---: | :---: | :---: |
| SYCON_AEAD_128_r64 | 0x0000000000000000 | iv0 |
| SYCON_AEAD_128_r96 | 0x5980A92AFC5D9D2C | iv1 |

We emphasize that two Sycon AE instances provide no security if two plaintexts are encrypted using the same key and the same nonce. In the decryption phase, the decrypted plaintext is only output if the tag verification is successful, otherwise, it outputs $\perp$. We also limit the data usage $\left(2^{a}\right)$ for each key, which is the number of plaintexts and associated data used per key. We set the exponent of the data usage to 64 .

Table 2.7: Security claims for SYCON_AEAD instances

| Algorithms | Confidentiality | Integrity | Authenticity | Data usages $(a)$ |
| :---: | :---: | :---: | :---: | :---: |
| SYCON_AEAD_128_r64 | 128 | 128 | 128 | 64 |
| SYCON_AEAD_128_r96 | 128 | 128 | 128 | 64 |

### 2.2.2 Description of Mode Components

Padding. When the length of the plaintext or associated data is not a multiple of $r$, padding is mandatory to make the message block multiple of $r$. For empty associated data, no padding is applied, otherwise, the padded associated data $A$ is $\operatorname{PAD}_{r}(A)=$ $A\|1\| 0^{r-1-|A| \bmod r}$. For the plaintext message $M$, the padding is applied as $\operatorname{PAD}_{r}(M)=$ $M\|1\| 0^{r-1-|M| \bmod r}$. The padding rules for the plaintext and associated data are summarized below.

$$
\begin{aligned}
\operatorname{PAD}_{r}(A) & = \begin{cases}A\|1\| 0^{r-1-|A| \bmod r}=A_{0} \cdots A_{t-1} & |A|>0 \\
\phi & |A|=0\end{cases} \\
\operatorname{PAD}_{r}(M) & =M\|1\| 0^{r-1-|M| \bmod r},|A| \geq 0
\end{aligned}
$$

For $\kappa=128$ and $r=64$, when the key is absorbed into the state, no padding is required, i.e., whereas, for $r=96$, the padding for the key is required, which is described below.

$$
\operatorname{PAD}_{r}(K)= \begin{cases}K_{0} \| K_{1} & \text { if } r=64 \\ K\|1\| 0^{r-1-|K| \bmod r}=K_{0} \| K_{1} & \text { if } r=96\end{cases}
$$

Positions for the rate and capacity. The state of the permutation is divided into two parts, called rate part and capacity part. Any input that is absorbed into the state is done through the rate part. Given the state of the permutation $S=\left(s_{0}, s_{1}, \cdots, s_{319}\right)$, for
$r=64$, the rate part of the state, denoted by $S_{r}$, is given by $S_{r}=\left(s_{0}, s_{1}, \cdots, s_{63}\right)$. The capacity part of the state, denoted by $S_{c}$, is given by $S_{c}=\left(s_{64}, s_{65}, \cdots, s_{318}, s_{319}\right)$. For $r=96$, the rate part of the state is given by $S_{r}=\left(s_{0}, s_{1}, \cdots, s_{94}, s_{95}\right)$, and the capacity part is given by $S_{c}=\left(s_{96}, s_{97}, \cdots, s_{318}, s_{319}\right)$.
Domain separation. For each phase of the encryption/decryption algorithm, a distinct (3-bit) domain separation constant is used. A domain separation constant is XORed with the last three bits of the capacity, i.e., XORed with state bits $\left(s_{317}, s_{318}, s_{319}\right)$.

### 2.2.3 Initialization and Processing Associated Data

Initialization. The initialization phase consists of a loading phase that loads the key and nonce to the state and absorbing the key into the state. The key, nonce and initial vector (iv) loading mechanism into the state $S$, denoted as $\operatorname{LOAD}(K, N$, iv), is given by

$$
S \leftarrow \operatorname{LOAD}(K, N, i v)=\left(k_{0}, k_{1}, \cdots, k_{127}, n_{0}, n_{1}, \cdots, n_{127}, i v_{0}, \cdots, i v_{63}\right)
$$

where $K=\left(k_{0}, \cdots, k_{127}\right)$ is the key, $N=\left(n_{0}, \cdots, n_{127}\right)$ is the nonce, and $i v=\left(i v_{0}, \cdots, i v_{63}\right)$ is the initial vector. Algorithm 1 presents the steps of the initialization.

Processing Associated Data. This algorithm is applied after the initialization phase. It accepts the associated data (AD) and the current state as input and returns the state of the permutation. Note that the padding rule is applied on the associated data if it is nonempty. The steps of the algorithm is described in Algorithm 2.

Table 2.8: The Sycon initialization and associated data processing algorithms

```
Algorithm 1 Proc. initialization
    Input: Key \(K\), nonce \(N\), and IV \(i v\)
    Output: State \(S\)
    \(S \leftarrow \operatorname{LOAD}(N, K, i v)\)
    \(\operatorname{PAD}_{r}(K)=K_{0} \| K_{1}\)
    \(S \leftarrow \Pi^{14}\left(\left(S_{r} \oplus K_{0}\right), S_{c}\right)\)
    \(S \leftarrow \Pi^{14}\left(\left(S_{r} \oplus K_{1}\right), S_{c} \oplus\left(0^{c-2} \| 01\right)\right)\)
    return \(S\)
```

```
Algorithm 2 Proc. associated data
    Input: State \(S\), and AD \(A\)
    Output: State \(S\)
    \(\operatorname{PAD}_{r}(A)=A_{0}\|\cdots\| A_{\ell_{A}-1}\)
    for \(i\) from 0 to \(\ell_{A}-2\) do
        \(S \leftarrow \Pi^{\rho}\left(\left(S_{r} \oplus A_{i}\right), S_{c} \oplus\left(0^{c-2} \| 01\right)\right)\)
    end for
    \(S \leftarrow \Pi^{\rho}\left(\left(S_{r} \oplus A_{\ell_{A}-1}\right), S_{c} \oplus\left(0^{c-2} \| 10\right)\right)\)
    return \(S\)
```


### 2.2.4 Encryption and Decryption

Encryption. After processing the associated data, the encryption algorithm is applied on the plaintext $M$ of length $m=|M|$. First, the padding rule ( $10^{*}$ ) is applied on the plaintext $M$, and the padding on $M$ returns a padded message which is a multiple of $r$, i.e., $M_{0}\|\cdots\| M_{\ell_{M}-1}$ where $\ell_{M}$ is the number blocks for the padded message. The encryption algorithm produces a ciphertext of length $m$ corresponds to the input plaintext. The detailed steps of encryption are given in Algorithm 3.
Decryption. Like encryption, the decryption algorithm is applied to the ciphertext $C$ after processing the associated data. The detailed steps of the decryption algorithm are provided in Algorithm 4.

### 2.2.5 Tag Generation

After the encryption or decryption algorithm, the tag generation algorithm is executed. The tag generation algorithm accepts the state after encryption and the key again and outputs a tag of length $\tau=128$. A tag is constructed by concatenating 128 bits from

Table 2.9: The Sycon encryption $\mathcal{E}()$ and decryption $\mathcal{D}()$ algorithms

```
Algorithm 3 Encryption algorithm \(\mathcal{E}()\)
    Input: Plaintext \(M\) and state \(S\)
    Output: Ciphertext \(C\) and state \(S\)
    \(\operatorname{PAD}_{r}(M)=M_{0}\|\cdots\| M_{\ell_{M}-2}\)
    for \(i\) from 0 to \(\ell_{M}-2\) do
        \(C_{i} \leftarrow M_{i} \oplus S_{r}\)
        \(S \leftarrow \Pi^{\rho}\left(C_{i}, S_{c} \oplus\left(0^{c-2} \| 10\right)\right)\)
    end for
    \(C_{\ell_{M}-1} \leftarrow M_{\ell_{M}-1} \oplus S_{r}\)
    \(S \leftarrow \Pi^{\rho}\left(C_{\ell_{M}-1}, S_{c} \oplus\left(0^{c-3} \| 100\right)\right)\)
    \(C_{\ell_{M}-1} \leftarrow\left\lfloor C_{\ell_{M}-1}\right\rfloor_{m \% r}\)
    return \(C=C_{0}\|\cdots\| C_{\ell_{M}-1}\) and \(S\)
```

```
Algorithm 4 Decryption algorithm \(\mathcal{D}()\)
    Input: Ciphertext \(C\) and state \(S\)
    Output: Plaintext \(M\) and state \(S\)
    \(\operatorname{PAD}_{r}(C)=C_{0}\|\cdots\| C_{\ell_{M}-1}\)
    for \(i\) from 0 to \(\ell_{C}-2\) do
        \(M_{i} \leftarrow C_{i} \oplus S_{r}\)
        \(S \leftarrow \Pi^{\rho}\left(C_{i},\left(S_{c} \oplus\left(0^{c-2} \| 10\right)\right)\right.\)
    end for
    \(M_{\ell_{M}-1} \leftarrow C_{\ell_{M-1}} \oplus S_{r}\)
    \(S \leftarrow \Pi^{\rho}\left(C_{\ell_{M}-1}, S_{c} \oplus\left(0^{c-3} \| 100\right)\right)\)
    \(M_{\ell_{M}-1} \leftarrow\left\lfloor M_{\ell_{M}-1}\right\rfloor_{m \% r}\)
    return \(M=M_{0}\|\cdots\| M_{\ell_{M}-1}\) and \(S\)
```

the indices 128 to 191 in the state. Given the state $S=\left(s_{0}, s_{1}, \cdots, s_{318}, s_{319}\right)$, the tag extraction function, denoted by $\operatorname{ExtTag}(S)$, extracts the tag as follows:

$$
\operatorname{ExtTag}(S)=s_{128} s_{129} \cdots s_{191} \| s_{192} s_{193} s_{13} \cdots s_{254} s_{255}
$$

Table 2.10: The tag extraction algorithm

```
Algorithm 5 Finalization algorithm
    Input: State \(S\) and key \(K\)
    Output: Tag \(T\)
    \(\operatorname{PAD}_{r}(K)=K_{0} \| K_{1}\)
    \(S \leftarrow \Pi^{14}\left(\left(S_{r} \oplus K_{0}\right), S_{c}\right)\)
    \(S \leftarrow \Pi^{14}\left(\left(S_{r} \oplus K_{1}\right), S_{c}\right)\)
    return \(T \leftarrow \operatorname{ExtTag}(S)\)
```



Figure 2.4: Modes for authentication encryption with associated data, $\rho=7$ and 9 for Sycon_AEAD_128_r64 and Sycon_AEAD_128_r96, respectively

### 2.3 Sycon Mode: Hash Algorithm

A hash function accepts a message of an arbitrary length as input and outputs a message digest of a fixed length. Mathematically, $H:\{0,1\}^{*} \rightarrow\{0,1\}^{\ell_{h}}$ where $\ell_{h}$ is the length of the digest. We use our Sycon permutation in the unified sponge mode [9] to achieve the hash function. The parameters for the hash function and the security claims are provided in Tables 2.11 and 2.12, respectively. The hash algorithm consists of three steps, namely loading the initial vector (iv2) into the state, absorbing the message and squeezing the hash value. The 64 -bit iv2 is loaded into the state bits ( $s_{128}, s_{129}, \cdots, s_{191}$ )
positions, and the remaining state bits are set to zero, which is denoted as LOADIV(iv2), i.e., $\operatorname{LOADIV}(\mathrm{iv} 2)=0^{128} \|$ iv2 $\| 0^{128}$. The description of the steps for the hashing are given in Algorithm 6. Figure 2.5 depicts an overview of the hash algorithm.

Table 2.11: Recommended parameters for Sycon_HASH

| Algorithm | IV (iv2) | Digest $\left(\ell_{h}\right)$ | Rate $r$ | Capacity $c$ | Rounds ( $\left.\Pi^{\rho}\right)$ <br> $\rho$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SYCON_HASH_256 | 0x1C0A80D42C6E63C5 | 256 | 64 | 256 | 14 |

Table 2.12: Security claims for the Sycon hash algorithm (in bits)

| Algorithm | Preimage <br> resistance | 2nd preimage <br> resistance | Collision <br> resistance |
| :---: | :---: | :---: | :---: |
| SYCON_HASH_256 | 192 | 128 | 128 |

```
Algorithm 6 The Sycon hash algorithm
    Input: State \(S\), iv2, and message \(M\)
    Output: Message digest \(D\)
    \(\operatorname{PAD}_{r}(M)=M_{0}\|\cdots\| M_{\ell_{M}-1}\)
    \(S \leftarrow\) LOADIV(iv2)
    for \(i\) from 0 to \(\ell_{M}-1\) do
        \(S \leftarrow \Pi^{14}\left(\left(S_{r} \oplus M_{i}\right), S_{c}\right)\)
    end for
    \(D_{0} \leftarrow S_{r}\)
    \(S=\left(S_{r}, S_{c}\right) \leftarrow \Pi^{14}(S)\)
    \(D_{1} \leftarrow S_{r}\)
    \(S=\left(S_{r}, S_{c}\right) \leftarrow \Pi^{14}(S)\)
    \(D_{2} \leftarrow S_{r}\)
    \(S=\left(S_{r}, S_{c}\right) \leftarrow \Pi^{14}(S)\)
    \(D_{3} \leftarrow S_{r}\)
    return \(D=D_{0}\left\|D_{1}\right\| D_{2} \| D_{3}\).
```



Figure 2.5: A block diagram of the Sycon_HASH_256 algorithm

Figure 2.3: Round function of $\Pi^{\rho}$, here $c_{0,1}=11, c_{0,2}=22, c_{1,1}=13, c_{1,2}=26, c_{2,1}=31, c_{2,2}=62, c_{3,1}=56, c_{3,2}=60, c_{4,1}=6, c_{4,2}=12$.
? punoy

## Chapter 3

## Security Analysis

In this chapter, we discuss the security features of Sycon. We use the provably secure sponge mode to guarantee the security of Sycon authenticated encryption and hash algorithms. To ensure the security of the Sycon algorithms, we investigate the security of the Sycon permutation against cryptanalytic attacks such as differential and linear cryptanalysis, impossible differential cryptanalysis, and zero-sum distinguisher.

### 3.1 Differential and Linear Cryptanalysis

We investigate the security of the Sycon permutation against differential and linear cryptanalysis. Differential [10] and linear cryptanalysis [18] are the two most powerful techniques to analyze symmetric-key primitives. A practical approach to measure the resistance against differential and linear cryptanalysis is to count the minimum number of differential and linear active S-boxes. These optimization problems can be modelled as a mixed integer linear programming problem (MILP), and some MILP solver like Gurobi [1] can be used to solve them as was shown in [19] for word oriented cipher like AES [15]. However, the MILP modelling slightly differs when it comes to analyse bit oriented ciphers like PRESENT [11]. We follow the MILP modelling for bit oriented ciphers as shown in [21], and count the number of active S-boxes for both differential and linear cryptanalysis for few rounds.

### 3.1.1 Differential Cryptanalysis

The maximum differential probability of Sycon's S-box is $2^{-2}$. The differential branch number is 3 , so diffusion itself starts from the S-box layer, which is further enhanced by passing through the SD layer and the FIST permutation layer. Table 3.1 provides a summary of the number of active S -boxes for the first few rounds. Thus, in 4 rounds, the

Table 3.1: Number of active S-boxes

| Number of rounds | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Active S-boxes | 1 | 4 | 11 | $51^{*}$ |

differential attack complexity ${ }^{1}$ reaches at the order of $2^{102^{*}}$.

[^1]
### 3.1.2 Linear Cryptanalysis

The maximum linear probability of SyCOn's S-box is $2^{-2}$. The linear branch number is 3 which helps to increase the number of active S-boxes for linear trails. Below we present the number of linearly active S-boxes for a few rounds.

Table 3.2: Number of active Sboxes

| Number of rounds | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Active Sboxes | 1 | 4 | 9 | $39^{* *}$ |

The complexity for the linear attack ${ }^{2}$ in 4 rounds is $2^{78^{* *}}$.

### 3.2 Impossible Differential Cryptanalysis

To find the existence of impossible differentials in the Sycon permutation, we need to check whether an input-output difference pair, denoted by $\left(\Delta_{i}, \Delta_{o}\right)$, that is impossible or not. We apply the same MILP based automated technique as done in [20, 14]. We only search for one-weight input and output differences. As a result, for 4 rounds, we get the following impossible input and output difference pair. We are not aware of any attack that can be launched by exploiting this property of the permutation.

Table 3.3: Impossible differnce pair for 4 rounds

| Input Difference $\left(\Delta_{i}\right)$ |
| :---: |
| 0x000000000000000000000000000001000000000000 |
| 00000000000000000000000000000000000000000 |
| Output Difference $\left(\Delta_{o}\right)$ |
| 0x00000000000000000000000000000000000000000 |
| 0000000000000000000000000000002000000000 |

### 3.3 Zero-sum Distinguisher

We check the validity of the zero-sum distinguisher [5] on the Sycon permutation $\Pi$, which was first shown to distinguish the Keccak permutation [9]. For any function $\phi: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$, the set $\left\{X_{1}, \ldots, X_{\ell}\right\} \subset \mathbb{F}_{2}$ is said to be zero-sum if $\sum_{i=1}^{\ell} X_{i}=0$ and $\sum_{i=1}^{\ell} F\left(X_{i}\right)=0$. Clearly, any function having this property can be distinguished from a random permutation. Suppose $F$ is an iterated permutation that $F=\phi^{t}$. Let $\operatorname{deg}(F)$ denote the degree of $F$. Consider an intermediate round $r$, and compute the degree of $\left(\phi^{-1}\right)^{r}$ and $\phi^{t-r}$. Suppose there is an $s<n$ such that

$$
\operatorname{deg}\left(\phi^{-1}\right)^{r}<s \text { and } \operatorname{deg}\left(\phi^{t-r}\right)<s
$$

Then fix $(n-s)$ bits of the output of $r\left(\phi^{r}\right)$, and vary all possible $s$ bits. Then the sum of images of these $2^{s}$ elements under $\phi^{-1}$ will be zero as $\operatorname{deg}\left(\phi^{-1}\right)^{r}<s$. Further, the sum of images of these $2^{s}$ elements under $\phi^{n-r}$ will also be zero as $\operatorname{deg}\left(\phi^{t-r}\right)<s$. Therefore, we have a zero-sum distinguisher for $F$. Lower the degree of $\phi$ and $\phi^{-1}$ and lower the number of rounds of $F$, better the chance of having zero-sums.

[^2]The degrees of Sycon S-box and its inverse are 2 and 3 , respectively. Thus, the degrees of $\Pi$ and $\Pi^{-1}$ are 2 and 3 also. Therefore, the degree of $\Pi^{t} \leq \min \left(2^{t}, n-1\right)$, and the degree of $\left(\Pi^{-1}\right)^{t} \leq \min \left(3^{t}, n-1\right)$. However, as noted in [13], the Walsh spectrum of S-box plays an important role in bounding the overall degree of the permutation. For instance, if there are $n_{s}$ S-boxes present in the round function and each Walsh spectrum value is divided by $2^{w_{s}}$, then we have

$$
\operatorname{deg}\left(\phi^{r}\right) \leq n-n_{s} \cdot w_{s}+\operatorname{deg}\left(\phi^{r-1}\right)
$$

Applying this to the Sycon permutation, we get that

$$
\operatorname{deg}\left(\Pi^{-1}\right)^{7} \leq 320-64 \cdot 3+\operatorname{deg}\left(\Pi^{-1}\right)^{6}=192
$$

which is much less than $\min \left(319,3^{7}\right)$. In fact, this trick was applied in [12] to show the existence of zero-sums in the Keccak permutation much efficiently. If we apply the same technique, we will not be able to show the existence of a zero-sum in the Sycon permutation. However, using the observation of [12] which adds one intermediate round for free, existence of zero-sum can be shown as follows. Fix the $320-260=60$ input bits to the 6 th round. If we vary 260 , then all $260 / 5=52$ S-boxes receive all possible values 5 -bits and so are their outputs. Then the images of these all possible 260-bits sum to zero as the degree of $\left(\Pi^{-1}\right)^{5}$ is $3^{5}=243$. Secondly, the output of the S-box layer of the 6 th round will go through linear layer (no degree enhancement) followed by the rounds 7 to 14 , that is 8 rounds in total. The degree of $\Pi^{8}=2^{8}=256$. That means images of these outputs of 6 th round S-box layer will also sum to zero. Hence the zero-sum distinguisher is shown to exist for the full Sycon permutation $(\rho=14)$. However, the complexity is $2^{260}$, which is way too high that the security claim that SYCON has, though it proves that SYCON is not an ideal permutation.

## Chapter 4

## Design Rationale for Sycon

In this chapter we discuss the rationale behind Sycon. We focus on choosing the components in such a way that they lead to low implementation cost in both hardware and software.

### 4.1 Choosing the Mode

For the choice of modes, we want to leverage existing provably secure modes to instantiate the Sycon permutation to obtain an AE and a hash function. In the literature, there are several lightweight variants of the sponge construction with goals of making the modes efficient and secure, for example, making key absorption efficient, domain separation for preventing attacks, and reducing the round of the permutation for efficiency [6]. The mode of Sycon_AEAD is a MonkeyDuplex mode where the key absorption is inspired from the sLiSCP mode [3], which is lightweight, and the domain separation is inspired from NORX [4]. For the hash algorithm, we use the sponge mode of operation [9]. These modes are widely used and have been proven secure.

One advantage of MonkeyDuplex mode in the lightweight AE applications, is that this mode does not require any key-schedule and it is efficient due to reduced internal rounds of the permutation. Otherwise this would have been an additional burden on the implementation. We take the advantage of flexible number of rounds of the permutation that processes associated data or the message part, as these parts of the mode do not need ideal permutation as compared to the initiation part. An interesting feature of this mode is that the same permutation works in the decryption, and overall overhead for decryption over encryption is minimal.
Security guarantee. The security of the AEAD modes of Sycon directly follows that of the MonkeyDuplex mode. An improved security bound of sponge-based constructions for authenticated encryption is proved in [17] in terms of the key size, the permutation state size, and the capacity size. More precisely, the security bound is $\min \left\{2^{\kappa}, 2^{c}, 2^{\frac{320}{2}}\right\}$ where $\kappa$ and $c$ are chosen in such a way that we can achieve 128 -bit security for both instances (see Tables 2.5 and 2.7). For the keyed sponge, the relation between the usage exponent and the capacity is given by $c \geq a+\kappa+1$ [8]. Relying on these two results, the security claims of Sycon algorithms are justified.

### 4.2 Choosing the S-boxes

We chose the $5 \times 5$ S-box with good cryptographic properties as well as efficient hardware and (bit-sliced) software implementations. The software efficiency of the S-box is defined as the minimum number of instructions need to implement the S-box. A lot of effort has
been given to choose the S-box. We set the cut-off to choose S-boxes that need below 30 GE (under 65 nm technology), and with differential uniformity 8 , nonlinearity 8 , differential branch number 3 and linear branch number 3. While constructing such S-boxes, we set another criterion that the S-box should have less number of terms in the ANF. By setting differential and linear branch number to 3 , we ensure an increasing number of active S boxes per round for differential and linear trails. As a result, we obtain the S-box as mentioned in Table 2.1.

### 4.3 Choosing the Linear Diffusion Layer

Once the S-box is decided, we chose the SubBlockDiffusion layer which has an efficient hardware implementation. We stick to the linear branch number 4 for the SubBlockDiffusion layer. The implementation cost for the linear transformation $x \oplus\left(x \lll r_{1}\right) \oplus\left(x \lll r_{2}\right)$ depends on the rotation constant pair $\left(r_{1}, r_{2}\right)$. First, we have generated all such diffusion layers with linear branch number 4 and classified those based on the number of XOR gates needed to implement them. As per our design we need five linear diffusion functions that act on 64 -bits. We choose differential branch number 4 as a trade-off between the implementation cost and the number of active S-boxes. We choose linear diffusion function of the form $x \mapsto x \oplus\left(x \lll r_{1}\right) \oplus\left(x \lll r_{2}\right)$. Obviously this type of functions are highly software friendly. On the other hand they ensure that the Hamming weight of each row/column is 3 . Apparently these type of functions need 128 XORs, however, we search for all possible rotation constant pairs $\left(r_{1}, r_{2}\right)$, where we can take the advantage of subexpression elimination, so that the final XOR requirement come below 128. We chose five such pairs that are listed in Section 2.1.3.

### 4.4 Choosing the Round Constant

The main reason for introducing the round constant is to destroy the symmetry in the round output. For an efficient hardware implementation, every time we generate distinct 5 tuples that is produced by a 5 -stage LFSR with primitive polynomial $x^{5}+x^{3}+1$ that costs 2 XORs and 5 flip-flops. We decide to load the round constant whose 128 MSBs and 128 LSBs are all zeros, so that it serves our purpose at the same time puts less burden on the implementation.

### 4.5 Choosing the Bit Permutations

The primary reason to choose $\mathbf{P L}_{2}$ is to lift the branch number after the linear diffusion layer. We look for the bit permutation (FIST permutation) which result in a higher number of branch numbers at the end of certain number of rounds. Further, we search for such bit permutation in a special class. Note that in case of hardware, the bit permutation comes for free. However, for software (given the state size is more than 64-bits), implementing it needs few more instructions depending upon the implementation platform. The beauty of the FIST construction of bit permutation is that it can be handled in separate five 64 -bit blocks, which further boils down to process 16 and 8 -bit words. Therefore, FIST construction is suitable for as low as 8 bit microcontrollers.

### 4.6 Choice of Initial Vectors

The initial vectors uniquely identity different AEAD and hash instances of Sycon. The initial vectors iv1 used in SYCOn_AEAD_128_r96 and iv2 in SYCOn_HASH_256 are obtained by taking the output of the Riemann Zeta function [16] evaluated at 2 and 3, respectively, and then considering the 19 decimal places in the hex representation.

## Chapter 5

## Efficiency Evaluation of Sycon

In this chapter, we report the hardware implementation results in FPGAs and ASICs. We also assess the performance of the SYCON permutation, authenticated encryption and the hash algorithms on high-speed CPUs as well as microcontrollers.

### 5.1 Hardware Implementation Results

### 5.1.1 FPGA and ASIC Synthesis Results

The Hardware implementation was carried out using Verilog HDL and for FPGA the design was synthesized on the Xilinx Vivado while the ASIC synthesis was done on Synopsis Design Compiler using UMC 65 nm technology. Two variants of SYCON have been implemented with the main difference being the implementation of the Sbox layer.

For the first variant, an iterative strategy has been followed to implement the underlying Sycon permutation. Entire state is processed using 64 parallel Sbox-es. The round function has been realized combinatorially. A 320-bit register has been used to store the state after every iteration of the round function. For the authenticated encryption mode, after one application of the permutation, the message is absorbed into the state and appropriate domain separators are applied before the message is fed back. The ciphertext blocks and the tag are output at appropriate times based on the algorithm. The hashing mode is similar except the fact that the message is now xored only in the absorption phase while the hash output happens in the squeezing phase as per the sponge construction. The datapaths of both the modes are furnished in Fig. 5.1 and Fig. 5.2.

For the second variant, a single Sbox is used to process the entire state serially in 64 clock cycles. This is achieved using a 320 -bit circular shift register where the first 5 -bits are processed through the Sbox and fed into the last 5-bits. Detailed FPGA results for three different target devices are given in Table 5.1 while the ASIC area results are furnished in Table 5.2. The difference in area between the two variants for both the modes can be appreciated in terms of the FPGA LUT count and ASIC GE.

### 5.2 Efficiency Evaluation in Software

### 5.2.1 Bit-Sliced efficiency on 64-bit CPUs

We have implemented the SYCON permutation, AEAD and hash algorithms in the bitsliced fashion using the SIMD Intel Intrinsics including SSE2 and AVX2. The SSE2 supports operations on 128-bit XMM registers and AVX2 supports operations on 256-bits


Figure 5.1: Sycon datapath for authenticated encryption mode


Figure 5.2: Sycon datapath for hashing mode

YMM registers. We use two different CPUs, namely Skylake and Haswell to obtain efficiency results. The codes were compiled using gcc 5.4.0 (Skylake) and llvm 10.0.0 (Haswell) with -g -Wall -02 -fomit-frame-pointer -funroll-all-loops flags. Algorithm 7 presents an equivalent (bit-sliced) representation of the Sycon permutation. Table 5.3 presents the speed for the Sycon permutation, authenticated encryption and hash algorithms. The speed is measured in terms of the number of clock cycles per byte. The best speed achieved by the Sycon permutation is 3.23 cpb in the AVX2 implementation. When computing the speed for Sycon_AEAD, we chose a plaintext message of length 2048 bits and an associated data of length 128 bits where the speed computation includes executions of initialization, AD processing, encryption and tag generation algorithms.

### 5.2.2 Efficiency on microcontroller

To assess the software performance of Sycon on microcontrollers, we have implemented the Sycon authenticated encryption and hash algorithms on the 8-bit Atmel Atmega32 and a 32 -bit MIPS32 from MIPS Technologies. The 8-bit Atmel Atmega32 microcontroller has 2 Kbytes of flash, 32 KBytes of RAM and 32 -bit general purpose registers. MIPS32 has 32 32-bit general purpose registers. We implement the Sycon instance in assembly, and the AVR Simulator IDE was used to write the code. In our implementations, we implement the S-box in the bitsliced fashion, instead of look up table, to achieve highest efficiency while reducing memory. We use a plaintext of 572 bits in our experiment to obtain cycles

Table 5.1: FPGA and ASIC implementation results

|  |  |  | arallel S |  |  | erial Sb |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sycon <br> Variant | FPGA <br> Platform | Slice <br> Registers | $\begin{gathered} \text { Slice } \\ \text { LUTs } \end{gathered}$ | Frequency <br> (MHz) | Slice <br> Registers | $\begin{aligned} & \text { Slice } \\ & \text { LUTs } \end{aligned}$ | Frequency (MHz) |
| AEAD_r64 | $\begin{gathered} \text { Spartan-7 } \\ (\mathrm{xc} 7 \mathrm{~s} 50 \mathrm{ftgb} 196-1) \end{gathered}$ | 328 | 693 | 246.9 | 335 | 651 | 188.7 |
|  | $\begin{gathered} \text { Kintex-7 } \\ (\text { xc7k160tfbv676-2) } \end{gathered}$ | 328 | 693 | 416.7 | 335 | 651 | 333.3 |
|  | $\begin{gathered} \text { Artix-7 } \\ (\text { xc7a200tfbv484-3) } \end{gathered}$ | 328 | 693 | 358.4 | 335 | 651 | 277.8 |
| AEAD_r96 | $\begin{gathered} \text { Spartan-7 } \\ (\mathrm{xc} 7 \mathrm{~s} 50 \mathrm{ftgb} 196-1) \end{gathered}$ | 328 | 727 | 246.9 | 335 | 682 | 188.7 |
|  | $\begin{gathered} \text { Kintex-7 } \\ \text { (xc7k160tfbv676-2) } \end{gathered}$ | 328 | 727 | 425.5 | 335 | 682 | 333.3 |
|  | $\begin{gathered} \text { Artix-7 } \\ (\text { xc7a200tfbv484-3) } \end{gathered}$ | 328 | 727 | 358.4 | 335 | 682 | 277.8 |
| HASH_256 | $\begin{gathered} \text { Spartan-7 } \\ \text { (xc7s50ftgb196-1) } \end{gathered}$ | 326 | 646 | 250.0 | 333 | 471 | 232.6 |
|  | $\begin{gathered} \text { Kintex-7 } \\ (\mathrm{xc} 7 \mathrm{k} 160 \mathrm{tfbv} 676-2) \end{gathered}$ | 326 | 646 | 476.2 | 333 | 471 | 384.6 |
|  | $\begin{gathered} \text { Artix-7 } \\ \text { (xc7a200tfbv484-3) } \end{gathered}$ | 326 | 646 | 363.6 | 333 | 471 | 327.9 |

Table 5.2: ASIC area results with UMC 65 nm technology

|  | Chip Area |  |
| :---: | :---: | :---: |
| Sycon <br> Variant | $\mu m^{2}$ | kGE |
| AE_r64 <br> (Parallel Sbox) | 8148.79 | 6.37 |
| AE_r64 <br> (Serial Sbox) | 6618.56 | 5.17 |
| Hash <br> (Parallel Sbox) | 8007.68 | 6.26 |

for AEAD and hash instances. For instance, the SYCON permutation evaluation requires 17,791 cycles, and the throughput of the permutation is 444.78 cycles/byte. Table 5.4 presents the cycle counts, code sizes in bytes, and cycles per byte.

Table 5.3: Performance of the Sycon permutation, AE and hash algorithms on 64-bit CPUs. The performance is measured in terms of clock cycles per byte (cpb).

| Functionality | Intel <br> Core i5 CPU@2.6 GHz <br> (Haswell) |  | Intel <br> i7-6700 CPU@3.40GHz <br> (Skylake) |  |
| :--- | :---: | :---: | :---: | :---: |
|  | AVX2 | SSE2 | AVX2 | SSE2 |
| $\Pi^{14}$ permutation | 3.88 | 7.65 | 3.23 | 5.54 |
| SYCON_AEAD_128_r64 | 12.75 | 22.44 | 14.20 | 20.55 |
| SYCON_HASH_256 | 17.61 | 34.75 | 23.57 | 43.27 |

Table 5.4: Performance of different Sycon instances on Atmega32 (8-bit) and MIPS32 (32-bit) microcontrollers

|  | SYCON |  | SYCON_AEAD_128_r64 |  | SYCON_AEAD_128_r96 |  | SYCON_HASH_256 |  |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Platform | 8 -bit | 32 -bit |
| Cycles | 33,037 | 17,791 | 347,525 | 186,047 | 333,245 | 178,289 | 430,275 | 233,585 |
| Code size[Bytes] | 1,092 | 1,904 | 1,379 | 2,116 | 1,384 | 2,128 | 1,213 | 2,024 |
| Cycles/byte | 825.92 | 444.78 | $4,826.74$ | $2,583.99$ | $4,682.40$ | $2,476.24$ | $5,976.04$ | $3,244.24$ |

## Acknowledgments

The designers would like to thank Amit Acharyya and Swati Bharadwaj for providing their ASIC synthesis platform and synthesizing the design on our behalf. The designers also thank Aikata for providing microcontroller results.

## Bibliography

[1] Gurobi: Gurobi optimizer reference manual. http://www.gurobi.com.
[2] NIST lightweight cryptography project. 2018. https://csrc.nist. gov/CSRC/media/Projects/Lightweight-Cryptography/documents/ final-lwc-submission-requirements-august2018.pdf.
[3] Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal, Gangqiang Yang, and Guang Gong. sliscp: Simeck-based permutations forlightweight sponge cryptographicprimitives. In Carlisle Adams and Jan Camenisch, editors, Selected Areas in Cryptography - SAC 2017, pages 129-150, Cham, 2018. Springer International Publishing.
[4] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. Norx: parallel and scalable aead. In European Symposium on Research in Computer Security, pages 19-36. Springer, 2014.
[5] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for reduced keccakf and for the core functions of luffa and hamsi. Presented at the rump session of Cryptographic Hardware and Embedded Systems-CHES 2009, 2009.
[6] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Permutationbased encryption, authentication and authenticated encryption. Presented at DIAC 2012, July 2012. Stockholm, Sweden.
[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the sponge: single-pass authenticated encryption and other applications. In International Workshop on Selected Areas in Cryptography, pages 320-337. Springer, 2011.
[8] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the security of the keyed sponge construction. In Symmetric Key Encryption Workshop, volume 2011, 2011.
[9] Guido Bertoni, Joan Daemen, Michal Peeters, and Gilles Van Assche. Keccak specifications, 2009.
[10] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems. J. Cryptology, 4(1):3-72, 1991.
[11] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES 2007, volume 4727 of LNCS, pages 450-466. Springer, 2007.
[12] Christina Boura and Anne Canteaut. Zero-sum distinguishers for iterated permutations and application to keccak-f and hamsi-256. In Proceedings of the 17th International Conference on Selected Areas in Cryptography, SAC'10, pages 1-17, Berlin, Heidelberg, 2011. Springer-Verlag.
[13] Anne Canteaut and Marion Videau. Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis. In Lars R. Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory and Applications of Cryptographic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings, volume 2332 of Lecture Notes in Computer Science, pages 518-533. Springer, 2002.
[14] Tingting Cui, Keting Jia, Kai Fu, Shiyao Chen, and Meiqin Wang. New automatic search tool for impossible differentials and zero-correlation linear approximations. IACR Cryptology ePrint Archive, 2016:689, 2016.
[15] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, 2002.
[16] H.M. Edwards. Riemann's zeta function. Dover Publications, 2001.
[17] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 security in spongebased authenticated encryption modes. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014, pages 85-104, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.
[18] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth, editor, Advances in Cryptology - EUROCRYPT '93, Workshop on the Theory and Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings, volume 765 of Lecture Notes in Computer Science, pages 386-397. Springer, 1993.
[19] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and linear cryptanalysis using mixed-integer linear programming. In Chuankun Wu, Moti Yung, and Dongdai Lin, editors, Information Security and Cryptology - 7th International Conference, Inscrypt 2011, Beijing, China, November 30 - December 3, 2011. Revised Selected Papers, volume 7537 of Lecture Notes in Computer Science, pages 57-76. Springer, 2011.
[20] Yu Sasaki and Yosuke Todo. New impossible differential search tool from design and cryptanalysis aspects - revealing structural properties of several ciphers. In JeanSébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017-36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April $30-$ May 4, 2017, Proceedings, Part III, volume 10212 of Lecture Notes in Computer Science, pages 185-215, 2017.
[21] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Automatic security evaluation and (related-key) differential characteristic search: Application to simon, present, lblock, $\operatorname{DES}(\mathrm{L})$ and other bit-oriented block ciphers. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings,

Part I, volume 8873 of Lecture Notes in Computer Science, pages 158-178. Springer, 2014.

## Appendix A

## Test Vectors and Sycon Permutation Details

In this section, we present the test vectors for all SYCON instances, and some details about the bit permutations and S-box.

## A. 1 Test Vectors for Sycon Permutations, AE and Hash

Here we present the test vectors for two authenticated encryption algorithms and the hash algorithms.
Sycon Permutation. The input and output after 14 rounds of the permutation are as follows.
Input:
000000000000000000000000000000000000000 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Output:
31DED502D85527B07357D8E2BFA2AA39DED003A4D911131FBC9A5BA15618C464F23AD59EC3F5F72B

The step-by-step input-outputs of the permutation for 14 rounds are given below:
$000000000000000000000000000000000000000 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A$ 5715FDAABFF55F00A8AA0AFAAFFDFF5FFFFFFFFFD03FFFFFFFFFFFFFFFFFFFFF5555555555555555 299478 D 4 E 7704576 AC 8 F 0952 ABDDB 639336 B 55 EF 2634 A 01 A5A8974D984001EE4531EAEAEDC855246 4AB269C2B739F02BD52273F4B6138AFF5E8CB33018FA4FCD9F65866DF08C297F61DFEC1016AFC40B 24535F18E691605BB8D53E1D651C1DA4DBDB83ACF527A8E8DEBDC83DB1BE8DF371B0D84C06DEC747 47740C7E603DF3C110111211F57A0128AF1B30AD328734AD3EBAFEFD0418C1138E85EF0694539BD5 C4D5E5FD63F897A2481F485070E19DEF3550612135D228432A7404D07263DF01318D79367BE9DDAD 3818F0EB0C0C3C2A62BADF200D727F0146B58F352ABBFFBD57ABC8A1B8ED42F55B6C5C3E1AFE06A2 7E8F444890FDDE0DC7881CB8C3605682A6439188F2D54B07226991FE7E606AE70BD50EB3B255F54C FF5D5CCB135C8E5B4BE107B7B2980366074C1AAF48D8B28FC7DCCEAABA6CD24333C50987A984898B 8417A7027EF861358DFAC8AE0657E23432EE9F374CF795E9F7BC8C29A5DBD6D5770038408539EB7E ODB1A793BA7C670FBCD388A4668E3049E1D4E999313222EF422D6E5004A9A15D61A0400474D072F5 4EBE001A4A2799D269ED1BF88EE5650E02A10F92CE0441A63A97143AEE31C03DD34E9CE23D79C294 BF31DB1311CB4BDF52B66CDCA995591EE013B6D076253D77ACD8FA96C18D0F0E534C52AC396D9AD5 31DED502D85527B07357D8E2BFA2AA39DED003A4D911131FBC9A5BA15618C464F23AD59EC3F5F72B

## Test Vectors for Sycon_AEAD_128_r64:

| Key | 000102030405060708090A0B0C0D0E0F |
| :--- | :--- |
| Nonce | 000102030405060708090A0B0C0D0E0F |
| Associated data | 05AE023DC3105DA62894A16A0E260956 |
| "To authenticate, or not to authenticate" |  |
| Plaintext (byte) | 546F2061757468656E7469636174652C206F72206E6F7420746F2061757468656E746963617465 |
| Ciphertext | 0535E98A36A013905C884ED69C752D05F81C3D57EA7DA62C5857B66824E8361A8C0B2FC9691B74 |
| Tag | D744AB39F5233F2FD6357A9BE330D9A2 |

Test Vectors for Sycon_AEAD_128_r96:

| Key | 000102030405060708090A0B0CODOE0F |
| :--- | :--- |
| Nonce | 000102030405060708090A0B0C0D0E0F |
| Associated data | 05AE023DC3105DA62894A16A0E260956 |
| Plaintext | "To authenticate, or not to authenticate" |
| Plaintext (byte) | 546F2061757468656E7469636174652C206F72206E6F7420746F2061757468656E746963617465 |
| Ciphertext | 164F4F0463781EF41C3A512264B74C3B06A53BD345B8EB8E3B8D8F0930AC920591B16C4A3B5DF9 |
| Tag | 06F990758FE75620A11210C7095EBECD |

Test Vectors for Sycon_HASH_256:

| Plaintext | "To authenticate, or not to authenticate" |
| :--- | :--- |
| Plaintext (byte) | 546F2061757468656E7469636174652C206F72206E6F7420746F2061757468656E746963617465 |
| Digest | 95088252C915EF0B5013BEA358ACEB366096D2E179603ED49D1BF60A9BF52956 |

## A. 2 Details of PLayer and S-box of $\Pi$

In this section, we provide two bit permutation layers $\mathbf{P L}_{1}$ and $\mathbf{P L}_{2}$, the difference distribution table and the linear approximation tables of the S-box.

Table A.1: Bit permutation $\mathbf{P L}_{1}$

| $i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P L_{1}(i)$ | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 |
| $i$ | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| $P L_{1}(i)$ | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 150 | 155 |
| $i$ | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| $P L_{1}(i)$ | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 | 205 | 210 | 215 | 220 | 225 | 230 | 235 |
| $i$ | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
| $P L_{1}(i)$ | 240 | 245 | 250 | 255 | 260 | 265 | 270 | 275 | 280 | 285 | 290 | 295 | 300 | 305 | 310 | 315 |
| $i$ | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 |
| $P L_{1}(i$ | 1 | 6 | 11 | 16 | 21 | 26 | 31 | 36 | 41 | 46 | 51 | 56 | 61 | 66 | 71 | 76 |
| $i$ | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 |
| $P L_{1}($ | 81 | 86 | 91 | 96 | 101 | 106 | 111 | 116 | 121 | 126 | 131 | 136 | 141 | 146 | 151 | 156 |
| $i$ | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 |
| $P L_{1}(i)$ | 161 | 166 | 171 | 176 | 181 | 186 | 191 | 196 | 201 | 206 | 211 | 216 | 221 | 226 | 231 | 236 |
| $i$ | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 |
| $P L_{1}(i)$ | 241 | 246 | 251 | 256 | 261 | 266 | 271 | 276 | 281 | 286 | 291 | 296 | 301 | 306 | 311 | 316 |
| $i$ | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 |
| $P L_{1}($ | 2 | 7 | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 | 52 | 57 | 62 | 67 | 72 | 77 |
| $i$ | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 |
| $P L_{1}(i)$ | 82 | 87 | 92 | 97 | 102 | 107 | 112 | 117 | 122 | 127 | 132 | 137 | 142 | 147 | 152 | 157 |
| $i$ | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 |
| $P L_{1}(i)$ | 162 | 167 | 172 | 177 | 182 | 187 | 192 | 197 | 202 | 207 | 212 | 217 | 222 | 227 | 232 | 237 |
| $i$ | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 |
| $P L_{1}(i)$ | 242 | 247 | 252 | 257 | 262 | 267 | 272 | 277 | 282 | 287 | 292 | 297 | 302 | 307 | 312 | 317 |
| $i$ | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 |
| $P L_{1}(i)$ | 3 | 8 | 13 | 18 | 23 | 28 | 33 | 38 | 43 | 48 | 53 | 58 | 63 | 68 | 73 | 78 |
| $i$ | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 |
| $P L_{1}(i)$ | 83 | 88 | 93 | 98 | 103 | 108 | 13 | 118 | 123 | 128 | 133 | 138 | 143 | 148 | 153 | 158 |
| $i$ | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 |
| $P L_{1}(i)$ | 163 | 168 | 173 | 178 | 183 | 188 | 193 | 198 | 203 | 208 | 213 | 218 | 223 | 228 | 233 | 238 |
| $i$ | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 |
| $P L_{1}(i)$ | 243 | 248 | 253 | 258 | 263 | 268 | 273 | 278 | 283 | 288 | 293 | 298 | 303 | 308 | 313 | 318 |
| $i$ | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 |
| $P L_{1}(i)$ | 4 | 9 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 | 64 | 69 | 74 | 79 |
| $i$ | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 |
| $P L_{1}(i)$ | 84 | 89 | 94 | 99 | 104 | 109 | 114 | 119 | 124 | 129 | 134 | 139 | 144 | 149 | 154 | 159 |
| $i$ | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 |
| $P L_{1}(i)$ | 164 | 169 | 174 | 179 | 184 | 189 | 194 | 199 | 204 | 209 | 214 | 219 | 224 | 229 | 234 | 239 |
| , | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 |
| $P L_{1}(i)$ | 244 | 249 | 254 | 259 | 264 | 269 | 274 | 279 | 284 | 289 | 294 | 299 | 304 | 309 | 314 | 319 |

Table A.2: Bit permutation $\mathbf{P L}_{2}$

| $i$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P L_{2}(i)$ | 51 | 68 | 178 | 215 | 285 | 52 | 69 | 179 | 216 | 286 | 53 | 70 | 180 | 217 | 287 | 54 |
| $i$ | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| PL ${ }_{2}(i$ | 71 | 181 | 218 | 272 | 55 | 72 | 182 | 219 | 273 | 56 | 73 | 183 | 220 | 274 | 57 | 74 |
| i | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| $P L_{2}(i)$ | 184 | 221 | 275 | 58 | 75 | 185 | 222 | 276 | 11 | 116 | 154 | 231 | 309 | 12 | 117 | 155 |
| $i$ | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
| $P L_{2}(1)$ | 232 | 310 | 13 | 118 | 156 | 233 | 311 | 14 | 119 | 157 | 234 | 312 | 15 | 120 | 158 | 235 |
| $i$ | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 |
| PL ${ }_{2}(i$ | 313 | 0 | 121 | 159 | 236 | 314 | 1 | 122 | 144 | 237 | 315 | 2 | 123 | 145 | 238 | 316 |
| ${ }^{\text {i }}$ | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 |
| $P L_{2}(i)$ | 19 | 76 | 170 | 239 | 269 | 20 | 77 | 171 | 224 | 270 | 21 | 78 | 172 | 225 | 271 | 22 |
| $i$ | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 |
| $P L_{2}($ | 79 | 173 | 226 | 256 | 23 | 64 | 174 | 227 | 257 | 24 | 65 | 175 | 228 | 258 | 25 | 66 |
| $i$ | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 |
| $P L_{2}(i)$ | 160 | 229 | 259 | 26 | 67 | 161 | 230 | 260 | 35 | 124 | 162 | 223 | 261 | 36 | 125 | 163 |
| $i$ | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 |
| $P L_{2}($ | 208 | 262 | 37 | 126 | 164 | 209 | 263 | 38 | 127 | 165 | 210 | 264 | 39 | 112 | 166 | 211 |
| $i$ | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 |
| $P L_{2}(i)$ | 265 | 40 | 113 | 167 | 212 | 266 | 41 | 114 | 168 | 213 | 267 | 42 | 115 | 169 | 214 | 268 |
| $i$ | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 |
| $P L_{2}(i)$ | 43 | 92 | 130 | 199 | 301 | 44 | 93 | 131 | 200 | 302 | 45 | 94 | 132 | 201 | 303 | 46 |
| $i$ | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 |
| $P L_{2}(i)$ | 95 | 133 | 202 | 288 | 47 | 80 | 134 | 203 | 289 | 32 | 81 | 135 | 204 | 290 | 33 | 82 |
| i | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 |
| $P L_{2}(i)$ | 136 | 205 | 291 | 34 | 83 | 137 | 206 | 292 | 59 | 100 | 138 | 255 | 317 | 60 | 101 | 139 |
| i | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 |
| $P L_{2}(i)$ | 240 | 318 | 61 | 102 | 140 | 241 | 319 | 62 | 103 | 141 | 242 | 304 | 63 | 104 | 142 | 243 |
| $i$ | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 |
| $P L_{2}(1)$ | 305 | 48 | 105 | 143 | 244 | 306 | 49 | 106 | 128 | 245 | 307 | 50 | 107 | 129 | 246 | 308 |
| $i$ | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 |
| $P L_{2}(i)$ | 27 | 84 | 186 | 247 | 277 | 28 | 85 | 187 | 248 | 278 | 29 | 86 | 188 | 249 | 279 | 30 |
| $i$ | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 |
| $P L_{2}(i)$ | 87 | 189 | 250 | 280 | 31 | 88 | 190 | 251 | 281 | 16 | 89 | 191 | 252 | 282 | 17 | 90 |
| $i$ | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 |
| $P L_{2}(i)$ | 176 | 253 | 283 | 18 | 91 | 177 | 254 | 284 | 3 | 108 | 146 | 207 | 293 | 4 | 109 | 147 |
| i | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 |
| $P L_{2}(i)$ | 192 | 294 | 5 | 110 | 148 | 193 | 295 | 6 | 111 | 149 | 194 | 296 | 7 | 96 | 150 | 195 |
| i | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 |
| $P L_{2}(i)$ | 297 | 8 | 97 | 151 | 196 | 298 | 9 | 98 | 152 | 197 | 299 | 10 | 99 | 153 | 198 | 300 |

The algebraic normal form of the S-box is as follows.

$$
\begin{aligned}
& y_{0}=x_{0} \oplus x_{1} x_{3} \oplus x_{2} x_{3} \oplus x_{3} x_{4} \oplus x_{4} \\
& y_{1}=x_{0} x_{1} \oplus x_{0} x_{3} \oplus x_{0} \oplus x_{1} x_{3} \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \\
& y_{2}=x_{0} x_{2} \oplus x_{1} \oplus x_{2} x_{4} \oplus x_{2} \oplus x_{3} \\
& y_{3}=x_{0} \oplus x_{2} x_{3} \oplus x_{2} \oplus x_{3} x_{4} \oplus x_{3} \oplus 1 \\
& y_{4}=x_{0} x_{4} \oplus x_{0} \oplus x_{1} \oplus x_{3}
\end{aligned}
$$

Table A.3: DDT of S-box

|  | 0 | 1 | 2 | $t 3$ | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 8 | 8 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| 4 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 8 | 0 | 0 | 8 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 |
| 7 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 |
| 9 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| 10 | 0 | 8 | 8 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 11 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 |
| 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| 13 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 |
| 14 | 0 | 4 | 4 | 0 | 0 | 4 | 4 | 0 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 15 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 |
| 16 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 4 | 0 |
| 17 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 18 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 4 |
| 19 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 0 |
| 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 8 | 0 | 0 |
| 21 | 0 | 0 | 0 | 0 | 8 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 4 |
| 23 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 24 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 |
| 25 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |
| 26 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 |
| 27 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 |
| 28 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 |
| 29 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 |
| 30 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
| 31 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |

Table A.4: LAT of S-box


## A. 3 Bit-sliced Representation of the Permutation

```
Algorithm 7 SYCON \(\Pi^{14}\)
    procedure SYCON
        Input: \(S=A_{0}\left\|A_{1}\right\| A_{2}\left\|A_{3}\right\| A_{4}\) and \(\left\{\mathrm{rc}_{i}\right\}\)
        Output: \(S\)
        for \(i=0 \ldots 13\) do
    //Sbox Layer
                    \(t_{0}=A_{2} \oplus A_{4}\)
            \(t_{1}=t_{0} \oplus A_{1}\)
            \(t_{2}=A_{1} \oplus A_{3}\)
            \(t_{3}=A_{0} \oplus A_{4}\)
            \(t_{4}=t_{3} \oplus\left(t_{1} \wedge A_{3}\right)\)
            \(A_{1} \leftarrow\left(\left(\neg A_{1}\right) \wedge A_{3}\right) \oplus t_{1} \oplus\left(\left(\neg t_{2}\right) \wedge A_{0}\right)\)
            \(t_{1}=\left(\left(\neg t_{3}\right) \wedge A_{2}\right) \oplus t_{2}\)
            \(A_{3} \leftarrow\left(\left(\neg t_{0}\right) \wedge A_{3}\right) \oplus A_{0} \oplus\left(\neg A_{2}\right)\)
            \(A_{4} \leftarrow\left(\left(\neg A_{4}\right) \wedge A_{0}\right) \oplus t_{2}\)
            \(A_{0} \leftarrow t_{4} ; A_{2} \leftarrow t_{1} ;\)
    //SubBlockDiffusion Layer
            \(A_{0} \leftarrow A_{0} \oplus\left(A_{0} \lll 11\right) \oplus\left(A_{0} \lll 22\right)\)
            \(A_{1} \leftarrow A_{1} \oplus\left(A_{1} \lll 13\right) \oplus\left(A_{1} \lll 26\right)\)
            \(A_{2} \leftarrow A_{2} \oplus\left(A_{2} \lll 31\right) \oplus\left(A_{2} \lll 62\right)\)
            \(A_{3} \leftarrow A_{3} \oplus\left(A_{3} \lll 56\right) \oplus\left(A_{3} \lll 60\right)\)
            \(A_{4} \leftarrow A_{4} \oplus\left(A_{4} \lll 6\right) \oplus\left(A_{4} \lll 12\right)\)
    //AddRoundConstant Layer
            \(A_{2} \leftarrow A_{2} \oplus \mathrm{rc}_{i}\)
    //PLayer ( \(P\) )
            \(A_{0} \leftarrow \operatorname{ROT16}\left(A_{0}, 11\right)\)
            \(A_{0} \leftarrow\) ByteShuffle \(\left(A_{0}, \pi_{0}\right)\)
            \(A_{1} \leftarrow \operatorname{ROT16}\left(A_{1}, 4\right)\)
            \(A_{1} \leftarrow \operatorname{ByteShuffle}\left(A_{1}, \pi_{1}\right)\)
            \(A_{2} \leftarrow \operatorname{ROT16}\left(A_{2}, 10\right)\)
            \(A_{2} \leftarrow \operatorname{ByteShuffle}\left(A_{2}, \pi_{2}\right)\)
            \(A_{3} \leftarrow \operatorname{ROT16}\left(A_{3}, 7\right)\)
            \(A_{3} \leftarrow\) ByteShuffle \(\left(A_{3}, \pi_{3}\right)\)
            \(A_{4} \leftarrow \operatorname{ROT16}\left(A_{4}, 5\right)\)
            \(A_{4} \leftarrow \operatorname{ByteShuffle}\left(A_{4}, \pi_{4}\right)\)
        end for
        Set \(S \leftarrow\left(A_{0}, A_{1}, A_{2}, A_{3}, A_{4}\right)\)
    end procedure
```


[^0]:    ${ }^{1}$ As five fingers make a fist, similarly five bit permutations over 64 symbols come together to create the bit permutation $P$.

[^1]:    ${ }^{1}$ The (*) mark indicates the bound that Gurobi MILP solver gave us at the best.

[^2]:    ${ }^{2}$ The $(* *)$ mark indicates the bound that Gurobi MILP solver gave us at the best.

