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Chapter 1

Introduction

NIST has taken up the initiative to standardize lightweight cryptographic algorithms that
are tailored for resource constrained devices. In this regard, NIST announces call for
lightweight cryptographic algorithms [2].

We present Sycon as a competitor for this standardization process. Sycon offers
two authenticated encryption algorithms with associated data, and one hash algorithm in
sponge constructions [7, 6, 9]. For authenticated encryption, one instance offers 128-bit
security for confidentiality, integrity and associated data, and the other instance offers
112-bit security. The hash algorithm accepts a message of any length and outputs a digest
of length 256 bits, and offers 128-bit collision resistance security.

At the core of Sycon is a lightweight permutation of 320 bits, called Sycon permu-
tation. The design of the Sycon permutation is based on the substitution permutation
network, and its components are chosen in such a way that it is featured for efficient
implementations both in hardware and software. Our design is simple, provides stronger
security assurance with good performances on cross-platforms, and is suitable for resource-
constrained devices such as RFID tags, sensor nodes, and industrial IoT devices.

Table 1.1: Notations

x ∈ {0, 1}n Binary n-tuple
x⊕ y Bitwise XOR of x and y
x||y Concatenation of bitstrings x and y
xy Bitwise AND of x and y
bxcn x truncated to last (LSB) n-bits
(x <<< n) Left circular shift by n-bits
SB S-box layer
PL1 Bit permutation of 320 symbols
IPL1 Inverse of PL1

PL2 Bit permutation of 320 symbols
SD Subblock Diffusion
RC Add Round Constant Layer
rci Round constant at round i
Πρ An iterated permutation with ρ rounds over

{0, 1}320

Roadmap. The rest of the document is organized as follows. In Section 2, we provide the
specification of Sycon authenticated encryption and hash algorithms. Section 3 presents
the security of the Sycon algorithms, and Section 4 describes the design rationale of the
Sycon parameters. In Section 5, we assess the performances of the Sycon AEAD and
hash algorithms in hardware and software.
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Chapter 2

Specification of Sycon
In this chapter, we provide a complete specification of the Sycon permutation and of its
authenticated encryption (AE) and hash algorithms. We first present the construction
of the Sycon permutation, which is designed to achieve high throughput and efficient
in both hardware and software implementations. It is plugged into the MonkeyDuplex
sponge mode [6] to construct a family of authenticated encryption, and used in the unified
sponge mode [9] to construct a hash algorithm.

2.1 The Sycon Permutation

Sycon is an iterative permutation of 320 bits. The permutation is constructed by iterating
the round function

R : {0, 1}320 → {0, 1}320,

ρ times. The design of R is based on the Substitution-Permutation Network (SPN). The
permutation R is composed of a sequence of four distinct transformation, namely SBox
(SB), PLayer (PL1 and PL2), SubBlockDiffusion (SD), and AddRoundConst (RC), and it
is defined by

R = PL2 ◦RC ◦ SD ◦PL1 ◦ SB.

SB PL1 SD RC PL2

Figure 2.1: The round function

Then, a ρ-round permutation, denoted by Πρ, is constructed as

Πρ = PL1 ◦R ◦ · · · ◦R︸ ︷︷ ︸
ρ times

◦IPL1,

where IPL1 is the inverse of PL1. Below we describe the components of R in detail.

IPL1 R R R PL1

rc0 rc1 rcρ−1

320 320

Figure 2.2: An overview of the permutation Πρ

2.1.1 Substitution Box: SBox (SB)

The substitution box (SB) provides confusion in the permutation, and is applied to the
state a = a0a1 · · · a320 as follows. It arranges the 320-bit state into 64 5-bit words as
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bi = a5ia5i+1a5i+2a5i+3a5i+4, 0 ≤ i ≤ 63, bi ∈ {0, 1}5, that is a = b0b1 · · ·b63. Then a
5× 5 S-box S, given in Table 2.1, is applied to each 5-bit word as

SB(a) = S[b0]S[b1]S[b2] · · · S[b63].

The cryptographic properties of the S-box are summarized in Table 2.2.

Table 2.1: The 5-bit S-box

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S[x] 8 19 30 7 6 25 16 13 22 15 3 24 17 12 4 27

x 16 17 18 19 20 21 22 23 24 25 26 27 28 19 30 31
S[x] 11 0 29 20 1 14 23 26 28 21 9 2 31 18 10 5

Table 2.2: Cryptographic properties of the S-box

Differential Algebraic Fixed point Nonlinearity Differential Linear
uniformity degree branch number branch number

8 2 No 8 3 3

2.1.2 First Permutation Layer: PLayer (PL1)

After applying the SBox layer, we apply the permutation layer PLayer on the 320-bit state.
The bit-permutation over 320 symbols is defined in Table A.1. Basically, it is obtained
from P̂j(i) = 5 ∗ i+ j where 0 ≤ i ≤ 63 and 0 ≤ j ≤ 4. For the state

a = a0a1 · · · a5a6a7 · · · a10a11a12 · · · a160a161a162 · · · a315a316a317 · · · a319,

the permutation layer PL1 changes it to

PL1(a) = aPL1(0)aPL1(1) · · · · · · · · · aPL1(319)

= a0a5 · · · a315a1a6 · · · a316a2a7 · · · a317a3a8 · · · a318a4a9 · · · a319.

2.1.3 Diffusion Layer: SubBlockDiffusion (SD)

The diffusion layer is a linear transformation that is applied independently on five 64-bit
subblocks constructed from the state. Given a state

a = a0a1 · · · a5a6a7 · · · a10a11a12 · · · a160a161a162 · · · a315a316a317 · · · a319,

it first divides the state into five 64-bit blocks as a = Y0‖Y1‖Y2‖Y3‖Y4 and then five distinct
diffusion transformations are applied on Yi’s. The diffusion layer on a = Y0‖Y1‖Y2‖Y3‖Y4
is defined as

Z0 ← Y0 ⊕ (Y0 ≪ 11)⊕ (Y0 ≪ 22)

Z1 ← Y1 ⊕ (Y1 ≪ 13)⊕ (Y1 ≪ 26)

Z2 ← Y2 ⊕ (Y2 ≪ 31)⊕ (Y2 ≪ 62)

Z3 ← Y3 ⊕ (Y3 ≪ 56)⊕ (Y3 ≪ 60)

Z4 ← Y4 ⊕ (Y4 ≪ 6)⊕ (Y4 ≪ 12).

where SD(a) = Z0‖Z1‖Z2‖Z3‖Z4‖ and ≪ is the left cyclic shift operation.
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2.1.4 Round Constant Layer: AddRoundConst (RC)

We add the round constants to each round of the permutation to destroy the structural
symmetry in the permutation. We generate the round constants by a 5-bit LFSR de-
fined by the primitive feedback polynomial x5 + x3 + 1 over F2. We start with the ini-
tial state (1, 0, 1, 0, 1) to generate 14 round constants where each state of the LFSR is
served as distinct constants. For example, the 5-bit LFSR state (1, 0, 1, 0, 1) is converted
to a byte (0, 0, 0, 1, 0, 1, 0, 1)= 0x15, and then a 64-bit round constant is constructed as
0xaaaaaaaaaaaaaa‖0x15 = 0xaaaaaaaaaaaaaa15. The round constants are given in Ta-
ble 2.3.

Table 2.3: The round constants {rci}

Round # Constants Round # Constants

0 0xaaaaaaaaaaaaaa15 7 0xaaaaaaaaaaaaaa06

1 0xaaaaaaaaaaaaaa1a 8 0xaaaaaaaaaaaaaa03

2 0xaaaaaaaaaaaaaa1d 9 0xaaaaaaaaaaaaaa11

3 0xaaaaaaaaaaaaaa0e 10 0xaaaaaaaaaaaaaa18

4 0xaaaaaaaaaaaaaa17 11 0xaaaaaaaaaaaaaa1c

5 0xaaaaaaaaaaaaaa1b 12 0xaaaaaaaaaaaaaa1e

6 0xaaaaaaaaaaaaaa0d 13 0xaaaaaaaaaaaaaa1f

2.1.5 Second Permutation Layer: PLayer (PL2)

FIST permutation construction. First we construct a bit permutation P over 320
symbols, which we call FIST permutation1. Suppose Pi, 0 ≤ i ≤ 4 is a bit permutation
over 64 symbols, i.e., Pi = [Pi(0), · · · , Pi(63)]. The FIST permutation (P ) over 320 symbols
is constructed from Pi’s as follows:

P = [P0(0), · · · , P0(63), 64 + P1(0), · · · , 64 + P1(63), 128 + P2(0), · · · , 128 + P2(63),

192 + P3(0), · · · , 192 + P3(63), 256 + P4(0), · · · , 256 + P4(63)].

We now describe the construction of Pi. Let V = V0‖V1‖V2‖V3, Vi ∈ {0, 1}16 be the
16-bit representation of a 64-bit word V . The 16-bit rotation function on V with rotation
constant u, denoted by ROT16(V, u), 0 ≤ u ≤ 15 is defined as

ROT16(V, u) = (V0 ≪ u)‖(V1 ≪ u)‖(V2 ≪ u)‖(V3 ≪ u).

Let W = w0w1w2w3w4w5w6w7 be the 8-bit representation of W where wi ∈ {0, 1}8. Let
π be a permutation over {0, · · · , 7}. A byte-shuffling transformation on W with respect
to π, denoted by ByteShuffle(W,π), is defined as

ByteShuffle(W,π) = wπ(0)wπ(1)wπ(2)wπ(3)wπ(4)wπ(5)wπ(6)wπ(7).

We define a bit permutation over 64 symbols using ROT16(, ) and ByteShuffle(, ) as

Y ← ROT16(Y, u)

Y ← ByteShuffle(Y, π).

This bit permutation is uniquely determined by the parameters u and π. Table 2.4 presents
the parameters for five permutations on 64 symbols constituting the FIST permutation
used in the permutation.

1As five fingers make a fist, similarly five bit permutations over 64 symbols come together to create the
bit permutation P .
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Table 2.4: Parameters for five permutations on 64 symbols for the FIST permutation

Permutation Parameters (u, πi)

P0 (11, [7, 0, 3, 5, 4, 6, 2, 1])
P1 (4, [0, 6, 1, 7, 3, 4, 2, 5])
P2 (10, [7, 2, 4, 5, 1, 0, 6, 3])
P3 (7, [2, 4, 5, 3, 0, 7, 6, 1])
P4 (5, [3, 6, 1, 0, 5, 7, 2, 4])

Inverse of PL1. The inverse permutation of PL1 is denoted by IPL1, which is given
by ˆIP i(j) = 64j + i, 0 ≤ i ≤ 63 and 0 ≤ j ≤ 4. For a state a = a0a1a2 · · · a318a319, the
inverse of PL1 is given by

IPL1(a) = a0a64a128a192a256a1a65a129a193a257 · · · a63a127a191a255a319.

Construction of PL2. The PL2 is constructed by composing the FIST permutation P
and IPL1, meaning first P is applied on the input and then IPL1 is applied on the output
of P . Symbolically, PL2 is written as PL2 = IPL1 ◦ P . Note that it is not a typical
permutation composition. For the parameter in Table 2.4, the full description of PL2 is
given in Table A.2.

2.2 Sycon Modes: Authenticated Encryption
An authenticated encryption with associated data (AEAD) consists of a tuple of two
algorithms, namely the authenticated encryption algorithm and the decryption and veri-
fication of tags. The authenticated encryption algorithm accepts as input a secret key K,
a public nonce N , an (optional) associated data A and plaintext message M and output
a ciphertext C and a tag T . Symbolically,

E(K,N,A,M) = (C, T ).

The decryption algorithm accepts as input a secret key K, a public nonce N , an (optional)
associated data A, a ciphertext message C, and a tag T and computes a tag T ′. It outputs
the plaintext message M if the verification of the tag succeeds, otherwise, outputs ⊥.

D(K,N,A,C, T ) =

{
M T = T ′

⊥ T 6= T ′.

The entire encryption process consists of four distinct phases/algorithms, namely the
initialization phase, processing associated data, encrypting message and generation of
the tag. Figure 2.4 presents an overview of the authenticated encryption algorithms of
Sycon. Like encryption, the decryption process also has four algorithms that are same
except encryption. All five phases are described in detail in Sections 2.2.3 - 2.2.5.

2.2.1 Parameter Sets and Security Claims

The Sycon family of authenticated encryption has two instances that are constructed from
the Sycon permutation using the MonkeyDuplex mode [6]. Each instance is determined
by the key length, the nonce length, the tag length, the rate length, and an initial vector
(IV). The first instance has a rate of 64 bits, denoted by Sycon AEAD 128 r64, and the
second one has a rate of 96 bits, denoted by Sycon AEAD 128 r96. Each instance of
Sycon supports variable length plaintexts and associated data. We shall recommend the
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first instance where applications require lightweight authenticated encryption and hash
functionality, and the second instance is for lightweight applications where speed matters.

Table 2.5: Recommended parameters for Sycon AEAD instances

Algorithms Key (κ) Nonce (n) Tag (τ) Rate (r) Rounds
ρ1 ρ2

Sycon AEAD 128 r64 128 128 128 64 14 7
Sycon AEAD 128 r96 128 128 128 96 14 9

- ρ1 is used in the initialization and finalization phases.
- ρ2 is used in the AD and encryption/decryption phases.

Table 2.6: The initial vectors for the Sycon AEAD instances

Algorithms Initial vector (IV) Const. identity

Sycon AEAD 128 r64 0x0000000000000000 iv0
Sycon AEAD 128 r96 0x5980A92AFC5D9D2C iv1

We emphasize that two Sycon AE instances provide no security if two plaintexts are
encrypted using the same key and the same nonce. In the decryption phase, the decrypted
plaintext is only output if the tag verification is successful, otherwise, it outputs ⊥. We
also limit the data usage (2a) for each key, which is the number of plaintexts and associated
data used per key. We set the exponent of the data usage to 64.

Table 2.7: Security claims for Sycon AEAD instances

Algorithms Confidentiality Integrity Authenticity Data usages (a)

Sycon AEAD 128 r64 128 128 128 64
Sycon AEAD 128 r96 128 128 128 64

2.2.2 Description of Mode Components

Padding. When the length of the plaintext or associated data is not a multiple of
r, padding is mandatory to make the message block multiple of r. For empty associ-
ated data, no padding is applied, otherwise, the padded associated data A is padr(A) =
A‖1‖0r−1−|A| mod r. For the plaintext message M , the padding is applied as padr(M) =
M‖1‖0r−1−|M | mod r. The padding rules for the plaintext and associated data are summa-
rized below.

padr(A) =

{
A‖1‖0r−1−|A| mod r = A0 · · ·At−1 |A| > 0
φ |A| = 0.

padr(M) = M‖1‖0r−1−|M | mod r, |A| ≥ 0.

For κ = 128 and r = 64, when the key is absorbed into the state, no padding is required,
i.e., whereas, for r = 96, the padding for the key is required, which is described below.

padr(K) =

{
K0‖K1 if r = 64

K‖1‖0r−1−|K| mod r = K0‖K1 if r = 96.

Positions for the rate and capacity. The state of the permutation is divided into two
parts, called rate part and capacity part. Any input that is absorbed into the state is
done through the rate part. Given the state of the permutation S = (s0, s1, · · · , s319), for
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r = 64, the rate part of the state, denoted by Sr, is given by Sr = (s0, s1, · · · , s63). The
capacity part of the state, denoted by Sc, is given by Sc = (s64, s65, · · · , s318, s319). For
r = 96, the rate part of the state is given by Sr = (s0, s1, · · · , s94, s95), and the capacity
part is given by Sc = (s96, s97, · · · , s318, s319).
Domain separation. For each phase of the encryption/decryption algorithm, a distinct
(3-bit) domain separation constant is used. A domain separation constant is XORed with
the last three bits of the capacity, i.e., XORed with state bits (s317, s318, s319).

2.2.3 Initialization and Processing Associated Data

Initialization. The initialization phase consists of a loading phase that loads the key and
nonce to the state and absorbing the key into the state. The key, nonce and initial vector
(iv) loading mechanism into the state S, denoted as LOAD(K,N, iv), is given by

S ← LOAD(K,N, iv) = (k0, k1, · · · , k127, n0, n1, · · · , n127, iv0, · · · , iv63)

whereK = (k0, · · · , k127) is the key, N = (n0, · · · , n127) is the nonce, and iv = (iv0, · · · , iv63)
is the initial vector. Algorithm 1 presents the steps of the initialization.

Processing Associated Data. This algorithm is applied after the initialization phase.
It accepts the associated data (AD) and the current state as input and returns the state
of the permutation. Note that the padding rule is applied on the associated data if it is
nonempty. The steps of the algorithm is described in Algorithm 2.

Table 2.8: The Sycon initialization and associated data processing algorithms

Algorithm 1 Proc. initialization

1: Input: Key K, nonce N , and IV iv
2: Output: State S
3: S ← LOAD(N,K, iv)
4: padr(K) = K0‖K1

5: S ← Π14((Sr ⊕K0), Sc)
6: S ← Π14((Sr ⊕K1), Sc ⊕ (0c−2‖01))
7: return S

Algorithm 2 Proc. associated data

1: Input: State S, and AD A
2: Output: State S
3: padr(A) = A0‖ · · · ‖A`A−1
4: for i from 0 to `A − 2 do
5: S ← Πρ((Sr⊕Ai), Sc⊕(0c−2‖01))
6: end for
7: S ← Πρ((Sr⊕A`A−1), Sc⊕(0c−2‖10))
8: return S

2.2.4 Encryption and Decryption

Encryption. After processing the associated data, the encryption algorithm is applied
on the plaintext M of length m = |M |. First, the padding rule (10∗) is applied on the
plaintext M , and the padding on M returns a padded message which is a multiple of r, i.e.,
M0‖ · · · ‖M`M−1 where `M is the number blocks for the padded message. The encryption
algorithm produces a ciphertext of length m corresponds to the input plaintext. The
detailed steps of encryption are given in Algorithm 3.
Decryption. Like encryption, the decryption algorithm is applied to the ciphertext C
after processing the associated data. The detailed steps of the decryption algorithm are
provided in Algorithm 4.

2.2.5 Tag Generation

After the encryption or decryption algorithm, the tag generation algorithm is executed.
The tag generation algorithm accepts the state after encryption and the key again and
outputs a tag of length τ = 128. A tag is constructed by concatenating 128 bits from
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Table 2.9: The Sycon encryption E() and decryption D() algorithms

Algorithm 3 Encryption algorithm E()

1: Input: Plaintext M and state S
2: Output: Ciphertext C and state S
3: padr(M) = M0‖ · · · ‖M`M−2
4: for i from 0 to `M − 2 do
5: Ci ←Mi ⊕ Sr
6: S ← Πρ(Ci, Sc ⊕ (0c−2‖10))
7: end for
8: C`M−1 ←M`M−1 ⊕ Sr
9: S ← Πρ(C`M−1, Sc ⊕ (0c−3‖100))

10: C`M−1 ← bC`M−1cm%r

11: return C = C0‖ · · · ‖C`M−1 and S

Algorithm 4 Decryption algorithm D()

1: Input: Ciphertext C and state S
2: Output: Plaintext M and state S
3: padr(C) = C0‖ · · · ‖C`M−1
4: for i from 0 to `C − 2 do
5: Mi ← Ci ⊕ Sr
6: S ← Πρ(Ci, (Sc ⊕ (0c−2‖10))
7: end for
8: M`M−1 ← C`M−1 ⊕ Sr
9: S ← Πρ(C`M−1, Sc ⊕ (0c−3‖100))

10: M`M−1 ← bM`M−1cm%r

11: return M = M0‖ · · · ‖M`M−1 and S

the indices 128 to 191 in the state. Given the state S = (s0, s1, · · · , s318, s319), the tag
extraction function, denoted by ExtTag(S), extracts the tag as follows:

ExtTag(S) = s128s129 · · · s191‖s192s193s13 · · · s254s255.

Table 2.10: The tag extraction algorithm

Algorithm 5 Finalization algorithm

1: Input: State S and key K
2: Output: Tag T
3: padr(K) = K0‖K1

4: S ← Π14((Sr ⊕K0), Sc)
5: S ← Π14((Sr ⊕K1), Sc)
6: return T ← ExtTag(S)

Figure 2.4: Modes for authentication encryption with associated data, ρ = 7 and 9 for
Sycon AEAD 128 r64 and Sycon AEAD 128 r96, respectively

2.3 Sycon Mode: Hash Algorithm

A hash function accepts a message of an arbitrary length as input and outputs a message
digest of a fixed length. Mathematically, H : {0, 1}∗ → {0, 1}`h where `h is the length
of the digest. We use our Sycon permutation in the unified sponge mode [9] to achieve
the hash function. The parameters for the hash function and the security claims are
provided in Tables 2.11 and 2.12, respectively. The hash algorithm consists of three
steps, namely loading the initial vector (iv2) into the state, absorbing the message and
squeezing the hash value. The 64-bit iv2 is loaded into the state bits (s128, s129, · · · , s191)

10



positions, and the remaining state bits are set to zero, which is denoted as LOADIV(iv2),
i.e., LOADIV(iv2) = 0128‖iv2‖0128. The description of the steps for the hashing are given in
Algorithm 6. Figure 2.5 depicts an overview of the hash algorithm.

Table 2.11: Recommended parameters for Sycon HASH

Algorithm IV (iv2) Digest (`h) Rate r Capacity c Rounds (Πρ)
ρ

Sycon HASH 256 0x1C0A80D42C6E63C5 256 64 256 14

Table 2.12: Security claims for the Sycon hash algorithm (in bits)

Algorithm Preimage 2nd preimage Collision
resistance resistance resistance

Sycon HASH 256 192 128 128

Algorithm 6 The Sycon hash algorithm

1: Input: State S, iv2, and message M
2: Output: Message digest D
3: padr(M) = M0‖ · · · ‖M`M−1
4: S ← LOADIV(iv2)
5: for i from 0 to `M − 1 do
6: S ← Π14((Sr ⊕Mi), Sc)
7: end for
8: D0 ← Sr
9: S = (Sr, Sc)← Π14(S)

10: D1 ← Sr
11: S = (Sr, Sc)← Π14(S)
12: D2 ← Sr
13: S = (Sr, Sc)← Π14(S)
14: D3 ← Sr
15: return D = D0‖D1‖D2‖D3.

Figure 2.5: A block diagram of the Sycon HASH 256 algorithm
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Chapter 3

Security Analysis

In this chapter, we discuss the security features of Sycon. We use the provably secure
sponge mode to guarantee the security of Sycon authenticated encryption and hash al-
gorithms. To ensure the security of the Sycon algorithms, we investigate the security
of the Sycon permutation against cryptanalytic attacks such as differential and linear
cryptanalysis, impossible differential cryptanalysis, and zero-sum distinguisher.

3.1 Differential and Linear Cryptanalysis

We investigate the security of the Sycon permutation against differential and linear crypt-
analysis. Differential [10] and linear cryptanalysis [18] are the two most powerful tech-
niques to analyze symmetric-key primitives. A practical approach to measure the resis-
tance against differential and linear cryptanalysis is to count the minimum number of
differential and linear active S-boxes. These optimization problems can be modelled as a
mixed integer linear programming problem (MILP), and some MILP solver like Gurobi
[1] can be used to solve them as was shown in [19] for word oriented cipher like AES [15].
However, the MILP modelling slightly differs when it comes to analyse bit oriented ciphers
like PRESENT [11]. We follow the MILP modelling for bit oriented ciphers as shown in
[21], and count the number of active S-boxes for both differential and linear cryptanalysis
for few rounds.

3.1.1 Differential Cryptanalysis

The maximum differential probability of Sycon’s S-box is 2−2. The differential branch
number is 3, so diffusion itself starts from the S-box layer, which is further enhanced
by passing through the SD layer and the FIST permutation layer. Table 3.1 provides a
summary of the number of active S-boxes for the first few rounds. Thus, in 4 rounds, the

Table 3.1: Number of active S-boxes

Number of rounds 1 2 3 4

Active S-boxes 1 4 11 51∗

differential attack complexity1 reaches at the order of 2102
∗
.

1The (∗) mark indicates the bound that Gurobi MILP solver gave us at the best.
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3.1.2 Linear Cryptanalysis

The maximum linear probability of Sycon ’s S-box is 2−2. The linear branch number is
3 which helps to increase the number of active S-boxes for linear trails. Below we present
the number of linearly active S-boxes for a few rounds.

Table 3.2: Number of active Sboxes

Number of rounds 1 2 3 4

Active Sboxes 1 4 9 39∗∗

The complexity for the linear attack2 in 4 rounds is 278
∗∗

.

3.2 Impossible Differential Cryptanalysis

To find the existence of impossible differentials in the Sycon permutation, we need to
check whether an input-output difference pair, denoted by (∆i,∆o), that is impossible or
not. We apply the same MILP based automated technique as done in [20, 14]. We only
search for one-weight input and output differences. As a result, for 4 rounds, we get the
following impossible input and output difference pair. We are not aware of any attack
that can be launched by exploiting this property of the permutation.

Table 3.3: Impossible differnce pair for 4 rounds

Input Difference (∆i)

0x0000000000000000000000000001000000000000
0000000000000000000000000000000000000000

Output Difference (∆o)

0x0000000000000000000000000000000000000000
0000000000000000000000000000002000000000

3.3 Zero-sum Distinguisher

We check the validity of the zero-sum distinguisher [5] on the Sycon permutation Π, which
was first shown to distinguish the Keccak permutation [9]. For any function φ : Fn2 → Fn2 ,
the set {X1, . . . , X`} ⊂ F2 is said to be zero-sum if

∑`
i=1Xi = 0 and

∑`
i=1 F (Xi) = 0.

Clearly, any function having this property can be distinguished from a random permuta-
tion. Suppose F is an iterated permutation that F = φt. Let deg(F ) denote the degree
of F . Consider an intermediate round r, and compute the degree of (φ−1)r and φt−r.
Suppose there is an s < n such that

deg(φ−1)r < s and deg(φt−r) < s

Then fix (n−s) bits of the output of r (φr), and vary all possible s bits. Then the sum
of images of these 2s elements under φ−1 will be zero as deg(φ−1)r < s. Further, the sum
of images of these 2s elements under φn−r will also be zero as deg(φt−r) < s. Therefore,
we have a zero-sum distinguisher for F . Lower the degree of φ and φ−1 and lower the
number of rounds of F , better the chance of having zero-sums.

2The (∗∗) mark indicates the bound that Gurobi MILP solver gave us at the best.
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The degrees of Sycon S-box and its inverse are 2 and 3, respectively. Thus, the degrees
of Π and Π−1 are 2 and 3 also. Therefore, the degree of Πt ≤ min(2t, n − 1), and the
degree of (Π−1)t ≤ min(3t, n−1). However, as noted in [13], the Walsh spectrum of S-box
plays an important role in bounding the overall degree of the permutation. For instance,
if there are ns S-boxes present in the round function and each Walsh spectrum value is
divided by 2ws , then we have

deg(φr) ≤ n− ns · ws + deg(φr−1).

Applying this to the Sycon permutation, we get that

deg(Π−1)7 ≤ 320− 64 · 3 + deg(Π−1)6 = 192,

which is much less than min(319, 37). In fact, this trick was applied in [12] to show
the existence of zero-sums in the Keccak permutation much efficiently. If we apply the
same technique, we will not be able to show the existence of a zero-sum in the Sycon
permutation. However, using the observation of [12] which adds one intermediate round
for free, existence of zero-sum can be shown as follows. Fix the 320− 260 = 60 input bits
to the 6th round. If we vary 260, then all 260/5 = 52 S-boxes receive all possible values
5-bits and so are their outputs. Then the images of these all possible 260-bits sum to zero
as the degree of (Π−1)5 is 35 = 243. Secondly, the output of the S-box layer of the 6th
round will go through linear layer (no degree enhancement) followed by the rounds 7 to
14, that is 8 rounds in total. The degree of Π8 = 28 = 256. That means images of these
outputs of 6th round S-box layer will also sum to zero. Hence the zero-sum distinguisher
is shown to exist for the full Sycon permutation (ρ = 14). However, the complexity is
2260, which is way too high that the security claim that Sycon has, though it proves that
Sycon is not an ideal permutation.
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Chapter 4

Design Rationale for Sycon

In this chapter we discuss the rationale behind Sycon . We focus on choosing the com-
ponents in such a way that they lead to low implementation cost in both hardware and
software.

4.1 Choosing the Mode

For the choice of modes, we want to leverage existing provably secure modes to instantiate
the Sycon permutation to obtain an AE and a hash function. In the literature, there are
several lightweight variants of the sponge construction with goals of making the modes
efficient and secure, for example, making key absorption efficient, domain separation for
preventing attacks, and reducing the round of the permutation for efficiency [6]. The mode
of Sycon AEAD is a MonkeyDuplex mode where the key absorption is inspired from the
sLiSCP mode [3], which is lightweight, and the domain separation is inspired from NORX
[4]. For the hash algorithm, we use the sponge mode of operation [9]. These modes are
widely used and have been proven secure.

One advantage of MonkeyDuplex mode in the lightweight AE applications, is that
this mode does not require any key-schedule and it is efficient due to reduced internal
rounds of the permutation. Otherwise this would have been an additional burden on the
implementation. We take the advantage of flexible number of rounds of the permutation
that processes associated data or the message part, as these parts of the mode do not need
ideal permutation as compared to the initiation part. An interesting feature of this mode
is that the same permutation works in the decryption, and overall overhead for decryption
over encryption is minimal.
Security guarantee. The security of the AEAD modes of Sycon directly follows that of
the MonkeyDuplex mode. An improved security bound of sponge-based constructions for
authenticated encryption is proved in [17] in terms of the key size, the permutation state

size, and the capacity size. More precisely, the security bound is min{2κ, 2c, 2
320
2 } where

κ and c are chosen in such a way that we can achieve 128-bit security for both instances
(see Tables 2.5 and 2.7). For the keyed sponge, the relation between the usage exponent
and the capacity is given by c ≥ a + κ + 1 [8]. Relying on these two results, the security
claims of Sycon algorithms are justified.

4.2 Choosing the S-boxes

We chose the 5× 5 S-box with good cryptographic properties as well as efficient hardware
and (bit-sliced) software implementations. The software efficiency of the S-box is defined
as the minimum number of instructions need to implement the S-box. A lot of effort has
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been given to choose the S-box. We set the cut-off to choose S-boxes that need below 30 GE
(under 65nm technology), and with differential uniformity 8, nonlinearity 8, differential
branch number 3 and linear branch number 3. While constructing such S-boxes, we set
another criterion that the S-box should have less number of terms in the ANF. By setting
differential and linear branch number to 3, we ensure an increasing number of active S-
boxes per round for differential and linear trails. As a result, we obtain the S-box as
mentioned in Table 2.1.

4.3 Choosing the Linear Diffusion Layer

Once the S-box is decided, we chose the SubBlockDiffusion layer which has an efficient
hardware implementation. We stick to the linear branch number 4 for the SubBlockDiffu-
sion layer. The implementation cost for the linear transformation x⊕(x≪ r1)⊕(x≪ r2)
depends on the rotation constant pair (r1, r2). First, we have generated all such diffusion
layers with linear branch number 4 and classified those based on the number of XOR
gates needed to implement them. As per our design we need five linear diffusion functions
that act on 64-bits. We choose differential branch number 4 as a trade-off between the
implementation cost and the number of active S-boxes. We choose linear diffusion func-
tion of the form x 7→ x ⊕ (x <<< r1) ⊕ (x <<< r2). Obviously this type of functions
are highly software friendly. On the other hand they ensure that the Hamming weight of
each row/column is 3. Apparently these type of functions need 128 XORs, however, we
search for all possible rotation constant pairs (r1, r2), where we can take the advantage of
subexpression elimination, so that the final XOR requirement come below 128. We chose
five such pairs that are listed in Section 2.1.3.

4.4 Choosing the Round Constant

The main reason for introducing the round constant is to destroy the symmetry in the
round output. For an efficient hardware implementation, every time we generate distinct
5 tuples that is produced by a 5-stage LFSR with primitive polynomial x5 + x3 + 1 that
costs 2 XORs and 5 flip-flops. We decide to load the round constant whose 128 MSBs and
128 LSBs are all zeros, so that it serves our purpose at the same time puts less burden on
the implementation.

4.5 Choosing the Bit Permutations

The primary reason to choose PL2 is to lift the branch number after the linear diffusion
layer. We look for the bit permutation (FIST permutation) which result in a higher number
of branch numbers at the end of certain number of rounds. Further, we search for such bit
permutation in a special class. Note that in case of hardware, the bit permutation comes
for free. However, for software (given the state size is more than 64-bits), implementing
it needs few more instructions depending upon the implementation platform. The beauty
of the FIST construction of bit permutation is that it can be handled in separate five
64-bit blocks, which further boils down to process 16 and 8-bit words. Therefore, FIST
construction is suitable for as low as 8 bit microcontrollers.
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4.6 Choice of Initial Vectors

The initial vectors uniquely identity different AEAD and hash instances of Sycon. The
initial vectors iv1 used in Sycon AEAD 128 r96 and iv2 in Sycon HASH 256 are obtained
by taking the output of the Riemann Zeta function [16] evaluated at 2 and 3, respectively,
and then considering the 19 decimal places in the hex representation.
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Chapter 5

Efficiency Evaluation of Sycon

In this chapter, we report the hardware implementation results in FPGAs and ASICs. We
also assess the performance of the Sycon permutation, authenticated encryption and the
hash algorithms on high-speed CPUs as well as microcontrollers.

5.1 Hardware Implementation Results

5.1.1 FPGA and ASIC Synthesis Results

The Hardware implementation was carried out using Verilog HDL and for FPGA the
design was synthesized on the Xilinx Vivado while the ASIC synthesis was done on Syn-
opsis Design Compiler using UMC 65nm technology. Two variants of Sycon have been
implemented with the main difference being the implementation of the Sbox layer.

For the first variant, an iterative strategy has been followed to implement the under-
lying Sycon permutation. Entire state is processed using 64 parallel Sbox-es. The round
function has been realized combinatorially. A 320-bit register has been used to store the
state after every iteration of the round function. For the authenticated encryption mode,
after one application of the permutation, the message is absorbed into the state and ap-
propriate domain separators are applied before the message is fed back. The ciphertext
blocks and the tag are output at appropriate times based on the algorithm. The hashing
mode is similar except the fact that the message is now xored only in the absorption phase
while the hash output happens in the squeezing phase as per the sponge construction. The
datapaths of both the modes are furnished in Fig. 5.1 and Fig. 5.2.

For the second variant, a single Sbox is used to process the entire state serially in 64
clock cycles. This is achieved using a 320-bit circular shift register where the first 5-bits are
processed through the Sbox and fed into the last 5-bits. Detailed FPGA results for three
different target devices are given in Table 5.1 while the ASIC area results are furnished
in Table 5.2. The difference in area between the two variants for both the modes can be
appreciated in terms of the FPGA LUT count and ASIC GE.

5.2 Efficiency Evaluation in Software

5.2.1 Bit-Sliced efficiency on 64-bit CPUs

We have implemented the Sycon permutation, AEAD and hash algorithms in the bit-
sliced fashion using the SIMD Intel Intrinsics including SSE2 and AVX2. The SSE2
supports operations on 128-bit XMM registers and AVX2 supports operations on 256-bits
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Figure 5.1: Sycondatapath for authenticated encryption mode

Figure 5.2: Sycondatapath for hashing mode

YMM registers. We use two different CPUs, namely Skylake and Haswell to obtain ef-
ficiency results. The codes were compiled using gcc 5.4.0 (Skylake) and llvm 10.0.0

(Haswell) with -g -Wall -O2 -fomit-frame-pointer -funroll-all-loops flags. Al-
gorithm 7 presents an equivalent (bit-sliced) representation of the Sycon permutation.
Table 5.3 presents the speed for the Sycon permutation, authenticated encryption and
hash algorithms. The speed is measured in terms of the number of clock cycles per byte.
The best speed achieved by the Sycon permutation is 3.23 cpb in the AVX2 implementa-
tion. When computing the speed for Sycon AEAD, we chose a plaintext message of length
2048 bits and an associated data of length 128 bits where the speed computation includes
executions of initialization, AD processing, encryption and tag generation algorithms.

5.2.2 Efficiency on microcontroller

To assess the software performance of Sycon on microcontrollers, we have implemented
the Sycon authenticated encryption and hash algorithms on the 8-bit Atmel Atmega32 and
a 32-bit MIPS32 from MIPS Technologies. The 8-bit Atmel Atmega32 microcontroller has
2 Kbytes of flash, 32 KBytes of RAM and 32 8-bit general purpose registers. MIPS32 has
32 32-bit general purpose registers. We implement the Sycon instance in assembly, and
the AVR Simulator IDE was used to write the code. In our implementations, we implement
the S-box in the bitsliced fashion, instead of look up table, to achieve highest efficiency
while reducing memory. We use a plaintext of 572 bits in our experiment to obtain cycles
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Table 5.1: FPGA and ASIC implementation results

Parallel Sbox Serial Sbox

Sycon
Variant

FPGA
Platform

Slice
Registers

Slice
LUTs

Frequency
(MHz)

Slice
Registers

Slice
LUTs

Frequency
(MHz)

AEAD r64

Spartan-7
(xc7s50ftgb196-1)

328 693 246.9 335 651 188.7

Kintex-7
(xc7k160tfbv676-2)

328 693 416.7 335 651 333.3

Artix-7
(xc7a200tfbv484-3)

328 693 358.4 335 651 277.8

AEAD r96

Spartan-7
(xc7s50ftgb196-1)

328 727 246.9 335 682 188.7

Kintex-7
(xc7k160tfbv676-2)

328 727 425.5 335 682 333.3

Artix-7
(xc7a200tfbv484-3)

328 727 358.4 335 682 277.8

HASH 256

Spartan-7
(xc7s50ftgb196-1)

326 646 250.0 333 471 232.6

Kintex-7
(xc7k160tfbv676-2)

326 646 476.2 333 471 384.6

Artix-7
(xc7a200tfbv484-3)

326 646 363.6 333 471 327.9

Table 5.2: ASIC area results with UMC 65nm technology

Chip Area

Sycon
Variant

µm2 kGE

AE r64
(Parallel Sbox)

8148.79 6.37

AE r64
(Serial Sbox)

6618.56 5.17

Hash
(Parallel Sbox)

8007.68 6.26

for AEAD and hash instances. For instance, the Sycon permutation evaluation requires
17,791 cycles, and the throughput of the permutation is 444.78 cycles/byte. Table 5.4
presents the cycle counts, code sizes in bytes, and cycles per byte.
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Table 5.3: Performance of the Sycon permutation, AE and hash algorithms on 64-bit
CPUs. The performance is measured in terms of clock cycles per byte (cpb).

Functionality Intel Core i5 CPU@2.6 GHz Intel i7-6700 CPU@3.40GHz

(Haswell) (Skylake)

AVX2 SSE2 AVX2 SSE2
Π14 permutation 3.88 7.65 3.23 5.54
Sycon AEAD 128 r64 12.75 22.44 14.20 20.55
Sycon HASH 256 17.61 34.75 23.57 43.27

Table 5.4: Performance of different Sycon instances on Atmega32 (8-bit) and MIPS32
(32-bit) microcontrollers

Sycon Sycon AEAD 128 r64 Sycon AEAD 128 r96 Sycon HASH 256
Platform 8-bit 32-bit 8-bit 32-bit 8-bit 32-bit 8-bit 32-bit
Cycles 33,037 17,791 347,525 186,047 333,245 178,289 430,275 233,585

Code size[Bytes] 1,092 1,904 1,379 2,116 1,384 2,128 1,213 2,024

Cycles/byte 825.92 444.78 4,826.74 2,583.99 4,682.40 2,476.24 5,976.04 3,244.24
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Appendix A

Test Vectors and Sycon
Permutation Details

In this section, we present the test vectors for all Sycon instances, and some details about
the bit permutations and S-box.

A.1 Test Vectors for Sycon Permutations, AE and Hash

Here we present the test vectors for two authenticated encryption algorithms and the hash
algorithms.
Sycon Permutation. The input and output after 14 rounds of the permutation are as
follows.
Input:
0000000000000000000000000000000000000000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Output:
31DED502D85527B07357D8E2BFA2AA39DED003A4D911131FBC9A5BA15618C464F23AD59EC3F5F72B

The step-by-step input-outputs of the permutation for 14 rounds are given below:

0000000000000000000000000000000000000000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

5715FDAABFF55F00A8AA0AFAAFFDFF5FFFFFFFFFD03FFFFFFFFFFFFFFFFFFFFF5555555555555555

299478D4E7704576AC8F0952ABDDB639336B85EF2634A01A5A8974D984001EE4531EAEAEDC855246

4AB269C2B739F02BD52273F4B6138AFF5E8CB33018FA4FCD9F65866DF08C297F61DFEC1016AFC40B

24535F18E691605BB8D53E1D651C1DA4DBDB83ACF527A8E8DEBDC83DB1BE8DF371B0D84C06DEC747

47740C7E603DF3C110111211F57A0128AF1B30AD328734AD3EBAFEFD0418C1138E85EF0694539BD5

C4D5E5FD63F897A2481F485070E19DEF3550612135D228432A7404D07263DF01318D79367BE9DDAD

3818F0EB0C0C3C2A62BADF200D727F0146B58F352ABBFFBD57ABC8A1B8ED42F55B6C5C3E1AFE06A2

7E8F444890FDDE0DC7881CB8C3605682A6439188F2D54B07226991FE7E606AE70BD50EB3B255F54C

FF5D5CCB135C8E5B4BE107B7B2980366074C1AAF48D8B28FC7DCCEAABA6CD24333C50987A984898B

8417A7027EF861358DFAC8AE0657E23432EE9F374CF795E9F7BC8C29A5DBD6D5770038408539EB7E

0DB1A793BA7C670FBCD388A4668E3049E1D4E999313222EF422D6E5004A9A15D61A0400474D072F5

4EBE001A4A2799D269ED1BF88EE5650E02A10F92CE0441A63A97143AEE31C03DD34E9CE23D79C294

BF31DB1311CB4BDF52B66CDCA995591EE013B6D076253D77ACD8FA96C18D0F0E534C52AC396D9AD5

31DED502D85527B07357D8E2BFA2AA39DED003A4D911131FBC9A5BA15618C464F23AD59EC3F5F72B
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Test Vectors for Sycon AEAD 128 r64:

Key 000102030405060708090A0B0C0D0E0F

Nonce 000102030405060708090A0B0C0D0E0F

Associated data 05AE023DC3105DA62894A16A0E260956

Plaintext “To authenticate, or not to authenticate”
Plaintext (byte) 546F2061757468656E7469636174652C206F72206E6F7420746F2061757468656E746963617465

Ciphertext 0535E98A36A013905C884ED69C752D05F81C3D57EA7DA62C5857B66824E8361A8C0B2FC9691B74

Tag D744AB39F5233F2FD6357A9BE330D9A2

Test Vectors for Sycon AEAD 128 r96:

Key 000102030405060708090A0B0C0D0E0F

Nonce 000102030405060708090A0B0C0D0E0F

Associated data 05AE023DC3105DA62894A16A0E260956

Plaintext “To authenticate, or not to authenticate”
Plaintext (byte) 546F2061757468656E7469636174652C206F72206E6F7420746F2061757468656E746963617465

Ciphertext 164F4F0463781EF41C3A512264B74C3B06A53BD345B8EB8E3B8D8F0930AC920591B16C4A3B5DF9

Tag 06F990758FE75620A11210C7095EBECD

Test Vectors for Sycon HASH 256:

Plaintext “To authenticate, or not to authenticate”
Plaintext (byte) 546F2061757468656E7469636174652C206F72206E6F7420746F2061757468656E746963617465

Digest 95088252C915EF0B5013BEA358ACEB366096D2E179603ED49D1BF60A9BF52956

A.2 Details of PLayer and S-box of Π

In this section, we provide two bit permutation layers PL1 and PL2, the difference distri-
bution table and the linear approximation tables of the S-box.
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Table A.1: Bit permutation PL1

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PL1(i) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PL1(i) 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

PL1(i) 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

PL1(i) 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

PL1(i) 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

PL1(i) 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

PL1(i) 161 166 171 176 181 186 191 196 201 206 211 216 221 226 231 236

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

PL1(i) 241 246 251 256 261 266 271 276 281 286 291 296 301 306 311 316

i 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

PL1(i) 2 7 12 17 22 27 32 37 42 47 52 57 62 67 72 77

i 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

PL1(i) 82 87 92 97 102 107 112 117 122 127 132 137 142 147 152 157

i 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

PL1(i) 162 167 172 177 182 187 192 197 202 207 212 217 222 227 232 237

i 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

PL1(i) 242 247 252 257 262 267 272 277 282 287 292 297 302 307 312 317

i 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

PL1(i) 3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78

i 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

PL1(i) 83 88 93 98 103 108 113 118 123 128 133 138 143 148 153 158

i 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

PL1(i) 163 168 173 178 183 188 193 198 203 208 213 218 223 228 233 238

i 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

PL1(i) 243 248 253 258 263 268 273 278 283 288 293 298 303 308 313 318

i 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

PL1(i) 4 9 14 19 24 29 34 39 44 49 54 59 64 69 74 79

i 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

PL1(i) 84 89 94 99 104 109 114 119 124 129 134 139 144 149 154 159

i 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

PL1(i) 164 169 174 179 184 189 194 199 204 209 214 219 224 229 234 239

i 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

PL1(i) 244 249 254 259 264 269 274 279 284 289 294 299 304 309 314 319

29



Table A.2: Bit permutation PL2

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PL2(i) 51 68 178 215 285 52 69 179 216 286 53 70 180 217 287 54

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PL2(i) 71 181 218 272 55 72 182 219 273 56 73 183 220 274 57 74

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

PL2(i) 184 221 275 58 75 185 222 276 11 116 154 231 309 12 117 155

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

PL2(i) 232 310 13 118 156 233 311 14 119 157 234 312 15 120 158 235

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

PL2(i) 313 0 121 159 236 314 1 122 144 237 315 2 123 145 238 316

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

PL2(i) 19 76 170 239 269 20 77 171 224 270 21 78 172 225 271 22

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

PL2(i) 79 173 226 256 23 64 174 227 257 24 65 175 228 258 25 66

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

PL2(i) 160 229 259 26 67 161 230 260 35 124 162 223 261 36 125 163

i 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

PL2(i) 208 262 37 126 164 209 263 38 127 165 210 264 39 112 166 211

i 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

PL2(i) 265 40 113 167 212 266 41 114 168 213 267 42 115 169 214 268

i 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

PL2(i) 43 92 130 199 301 44 93 131 200 302 45 94 132 201 303 46

i 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

PL2(i) 95 133 202 288 47 80 134 203 289 32 81 135 204 290 33 82

i 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

PL2(i) 136 205 291 34 83 137 206 292 59 100 138 255 317 60 101 139

i 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

PL2(i) 240 318 61 102 140 241 319 62 103 141 242 304 63 104 142 243

i 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

PL2(i) 305 48 105 143 244 306 49 106 128 245 307 50 107 129 246 308

i 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

PL2(i) 27 84 186 247 277 28 85 187 248 278 29 86 188 249 279 30

i 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

PL2(i) 87 189 250 280 31 88 190 251 281 16 89 191 252 282 17 90

i 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

PL2(i) 176 253 283 18 91 177 254 284 3 108 146 207 293 4 109 147

i 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

PL2(i) 192 294 5 110 148 193 295 6 111 149 194 296 7 96 150 195

i 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

PL2(i) 297 8 97 151 196 298 9 98 152 197 299 10 99 153 198 300

The algebraic normal form of the S-box is as follows.

y0 = x0 ⊕ x1x3 ⊕ x2x3 ⊕ x3x4 ⊕ x4
y1 = x0x1 ⊕ x0x3 ⊕ x0 ⊕ x1x3 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4
y2 = x0x2 ⊕ x1 ⊕ x2x4 ⊕ x2 ⊕ x3
y3 = x0 ⊕ x2x3 ⊕ x2 ⊕ x3x4 ⊕ x3 ⊕ 1

y4 = x0x4 ⊕ x0 ⊕ x1 ⊕ x3
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Table A.3: DDT of S-box

HHH
HHHδ

∆
0 1 2 t3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 4 0 4 0 4 0 4 0 0 0 0 0 0 0 0 0 4 0 4 0 4 0 4
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
4 0 0 0 8 0 0 0 8 0 0 8 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0
7 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 0 0 0 0 4 4 4 4
9 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2
10 0 8 8 0 0 0 0 0 8 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 4 4 0 0 4 4 0 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 4 4 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
13 0 0 2 2 2 2 0 0 2 2 0 0 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0 0 0 2 2
14 0 4 4 0 0 4 4 0 4 0 0 4 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
16 0 0 0 4 0 0 0 4 0 0 4 0 0 0 4 0 0 0 0 4 0 0 0 4 0 0 4 0 0 0 4 0
17 0 4 0 4 0 0 0 0 4 0 4 0 0 0 0 0 0 4 0 4 0 0 0 0 4 0 4 0 0 0 0 0
18 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 0 0 4 0 0 0 4
19 0 0 0 0 4 0 4 0 0 0 0 0 4 0 4 0 0 0 0 0 4 0 4 0 0 0 0 0 4 0 4 0
20 0 0 0 0 0 0 0 0 0 8 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 8 0 0
21 0 0 0 0 8 0 8 0 0 0 0 0 0 0 0 0 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 4 4 0 0 4 4 0 0 0 0 0 0 0 0 0 4 0 0 4 4 0 0 4
23 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0
24 0 2 2 0 0 2 2 0 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 0 2 2 0 0 2 2 0
25 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
26 0 2 2 0 0 2 2 0 2 0 0 2 2 0 0 2 0 2 2 0 0 2 2 0 2 0 0 2 2 0 0 2
27 0 0 4 4 0 0 0 0 0 0 4 4 0 0 0 0 0 0 4 4 0 0 0 0 0 0 4 4 0 0 0 0
28 0 4 4 0 0 0 0 0 0 0 0 0 4 0 0 4 0 0 0 0 4 0 0 4 0 4 4 0 0 0 0 0
29 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0
30 0 4 4 0 0 0 0 0 0 0 0 0 4 0 0 4 0 0 0 0 0 4 4 0 4 0 0 4 0 0 0 0
31 0 0 0 0 4 4 0 0 0 0 0 0 4 4 0 0 4 4 0 0 0 0 0 0 4 4 0 0 0 0 0 0

Table A.4: LAT of S-box

HH
HHH

HHH
HH

Input
Mask

Output
Mask

0 1 2 t3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 -4 4 0 0 0 0 0 0 -4 4 0 0 0 0 0 8 -4 -4 0 0 0 0 0 -8 -4 -4 0
2 0 0 0 0 0 -4 4 0 0 0 0 -8 4 0 0 4 0 4 0 4 0 0 4 4 -4 0 4 0 0 0 4 -4
3 0 0 0 0 0 0 0 0 0 0 0 -8 -4 -4 4 -4 0 -4 0 -4 0 4 0 4 4 0 -4 0 0 4 0 -4
4 0 0 0 4 0 0 0 4 0 0 -4 0 0 0 -4 0 0 -4 -4 4 8 4 4 -4 0 4 0 0 0 4 0 0
5 0 0 0 -4 0 -4 -4 4 -8 0 -4 0 0 4 0 0 0 -4 4 4 0 0 0 4 0 -4 0 0 0 0 -4 0
6 0 0 0 4 0 4 -4 4 0 0 4 0 -4 0 4 4 0 0 4 0 0 4 0 0 -4 4 4 0 0 -4 -4 -4
7 0 8 0 4 0 0 0 -4 0 0 -4 0 -4 4 0 -4 0 0 -4 0 0 0 -4 0 -4 -4 4 0 0 0 0 -4
8 0 0 0 0 0 0 4 4 0 0 0 8 0 0 4 -4 0 0 0 0 0 0 4 4 0 0 0 -8 0 0 4 -4
9 0 0 0 0 0 4 0 4 0 0 0 -8 0 4 0 -4 0 0 0 0 0 -4 0 -4 0 0 0 -8 0 -4 0 4
10 0 0 0 0 8 -4 0 4 0 0 0 0 -4 0 -4 0 8 4 0 -4 0 0 0 0 4 0 4 0 0 0 0 0
11 0 0 0 0 0 0 -4 -4 0 0 0 0 -4 -4 0 0 8 -4 0 4 0 -4 4 0 -4 0 -4 0 0 -4 4 0
12 0 0 0 4 0 0 -4 0 0 0 4 0 0 0 0 -4 0 4 4 4 0 4 0 0 0 -4 0 0 -8 4 4 4
13 0 0 0 -4 0 4 0 0 -8 0 4 0 0 -4 -4 -4 0 4 -4 4 0 0 -4 0 0 4 0 0 0 0 0 -4
14 0 0 0 4 8 4 0 0 0 0 -4 0 4 0 0 0 0 0 4 0 0 -4 -4 4 -4 4 -4 0 0 4 0 0
15 0 -8 0 4 0 0 4 0 0 0 4 0 -4 4 -4 0 0 0 -4 0 0 0 0 4 -4 -4 -4 0 0 0 -4 0
16 0 0 0 4 0 -4 4 4 0 0 -4 0 0 -4 0 0 0 0 0 4 -8 4 -4 -4 0 0 -4 0 0 -4 0 0
17 0 8 0 -4 0 0 0 4 8 0 4 0 0 0 -4 0 0 0 0 4 0 0 0 4 0 0 -4 0 0 0 -4 0
18 0 0 0 -4 0 0 0 -4 0 0 -4 0 -4 -4 0 4 0 4 0 0 0 4 0 0 -4 0 0 -8 0 4 -4 4
19 0 0 0 -4 0 4 4 4 0 0 -4 0 -4 0 4 -4 0 4 0 0 0 0 4 0 -4 0 0 8 0 0 0 4
20 0 0 -8 0 0 4 4 0 0 -8 0 0 0 -4 -4 0 0 -4 4 0 0 0 0 0 0 -4 4 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 8 4 -4 0 0 -4 -4 0 8 -4 4 0
22 0 0 0 0 0 0 0 0 0 8 0 0 4 -4 -4 -4 0 0 4 -4 0 0 4 -4 -4 -4 0 0 0 0 -4 -4
23 0 0 8 0 0 4 4 0 0 0 0 0 -4 0 0 4 0 0 4 4 0 -4 0 -4 4 -4 0 0 0 4 0 -4
24 0 0 0 -4 0 4 0 0 0 0 -4 0 0 4 -4 4 0 0 0 -4 0 4 0 0 0 0 -4 0 -8 -4 4 -4
25 0 8 0 4 0 0 4 0 -8 0 4 0 0 0 0 4 0 0 0 -4 0 0 4 0 0 0 -4 0 0 0 0 4
26 0 0 0 4 0 0 -4 0 0 0 -4 0 -4 -4 -4 0 -8 4 0 0 0 -4 4 4 4 0 0 0 0 -4 0 0
27 0 0 0 4 -8 4 0 0 0 0 -4 0 4 0 0 0 8 4 0 0 0 0 0 4 4 0 0 0 0 0 -4 0
28 0 0 0 0 0 -4 0 -4 0 -8 0 0 0 4 0 -4 0 4 4 0 0 0 4 -4 0 4 -4 0 0 0 -4 -4
29 0 0 8 0 0 0 4 -4 0 0 0 0 0 0 -4 -4 0 -4 4 0 0 4 0 4 0 4 4 0 0 -4 0 4
30 0 0 8 0 0 0 -4 4 0 -8 0 0 4 -4 0 0 0 0 -4 -4 0 0 0 0 -4 -4 0 0 0 0 0 0
31 0 0 0 0 8 4 0 -4 0 0 0 0 4 0 4 0 0 0 -4 4 0 4 4 0 4 -4 0 0 0 -4 -4 0

A.3 Bit-sliced Representation of the Permutation
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Algorithm 7 SyconΠ14

1: procedure Sycon
2: Input: S = A0‖A1‖A2‖A3‖A4 and {rci}
3: Output: S
4: for i = 0...13 do

//Sbox Layer

5: t0 = A2 ⊕A4

6: t1 = t0 ⊕A1

7: t2 = A1 ⊕A3

8: t3 = A0 ⊕A4

9: t4 = t3 ⊕ (t1 ∧A3)
10: A1 ← ((¬A1) ∧A3)⊕ t1 ⊕ ((¬t2) ∧A0)
11: t1 = ((¬t3) ∧A2)⊕ t2
12: A3 ← ((¬t0) ∧A3)⊕A0 ⊕ (¬A2)
13: A4 ← ((¬A4) ∧A0)⊕ t2
14: A0 ← t4; A2 ← t1;

//SubBlockDiffusion Layer

15: A0 ← A0 ⊕ (A0 ≪ 11)⊕ (A0 ≪ 22)
16: A1 ← A1 ⊕ (A1 ≪ 13)⊕ (A1 ≪ 26)
17: A2 ← A2 ⊕ (A2 ≪ 31)⊕ (A2 ≪ 62)
18: A3 ← A3 ⊕ (A3 ≪ 56)⊕ (A3 ≪ 60)
19: A4 ← A4 ⊕ (A4 ≪ 6)⊕ (A4 ≪ 12)

//AddRoundConstant Layer

20: A2 ← A2 ⊕ rci
//PLayer (P)

21: A0 ← ROT16(A0, 11)
22: A0 ← ByteShuffle(A0, π0)
23: A1 ← ROT16(A1, 4)
24: A1 ← ByteShuffle(A1, π1)
25: A2 ← ROT16(A2, 10)
26: A2 ← ByteShuffle(A2, π2)
27: A3 ← ROT16(A3, 7)
28: A3 ← ByteShuffle(A3, π3)
29: A4 ← ROT16(A4, 5)
30: A4 ← ByteShuffle(A4, π4)
31: end for
32: Set S ← (A0, A1, A2, A3, A4)
33: end procedure
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