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Chapter 1

Introduction

WAGE is a 259-bit lightweight permutation based on the Welch-Gong (WG) stream
cipher [20, 21]. It is designed to achieve an efficient hardware implementation for
Authenticated Encryption with Associated Data (henceforth “AEAD”), while pro-
viding sufficient security margins. To accomplish this, the WAGE components and
mode of operation are adopted from well known and analyzed cryptographic prim-
itives. The design of WAGE, its security properties, and features are described as
follows.

• WAGE nonlinear layer: WG permutation over F27 and a new 7-bit Sbox. The
WG cipher, including the WG permutation, is a well-studied cryptographic
primitive and has low hardware cost.

• WAGE linear layer: An LFSR with low hardware cost and good resistance
against differential and linear cryptanalysis.

• WAGE security: Simple analysis and good bounds for security using auto-
mated tools such as CryptoSMT solver [15] and Gurobi [1].

• Functionality: Authenticated Encryption with Associated Data.

• WAGE mode of operation: Unified sponge duplex mode [3] that has a
stronger keyed initialization and finalization phase.

• Security claims: Offers 128-bit security. Accepts a 128-bit key and nonce.

• Hardware performance: Efficient in hardware. Achieves a throughput of
606.92 Mbps at 2990 GE for 65 nm CMOS.

• Microcontroller performance: WAGE is implemented on three different
microcontroller platforms, namely ATmega128, MSP430F2370, and LM3S9D96
(Cotex M3). The best throughput for the permutation is achieved on LM3S9D96,
which is 286.78 Kbps
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1.1 Notation

The following notation will be used throughout the document.

Notation Description

X � Y,X ⊕ Y,X||Y Bitwise AND, XOR and concatenation of X and Y

X ⊗ Y Finite field multiplication of X and Y

S 259 bit state of WAGE

Sj, Sj,k stage j of state S and k-th bit of stage Sj, where j ∈
{0, . . . , 36} and k ∈ {0, . . . , 6}

Sr, Sc r-bit rate part and c-bit capacity part of S (r = 64, c =
195)

F27 Finite field F27

f, ω Defining polynomial for F27 and its root, i.e., f(ω) = 0

` LFSR feedback polynomial

WGP Welch-Gong permutation over F27

SB 7-bit Sbox

rci1, rc
i
0 7-bit round constants

K,N, T key, nonce and tag

k, n, t length of key, nonce and tag in bits (k = n = t = 128)

AD,M,C associated data, plaintext and ciphertext (in blocksADi,Mi, Ci)

`X length of X in words where X ∈ {AD,M,C}
Kj, Nj word j of key and nonce, j = 0, 1

K̂j, N̂j 7-bit tuple of key and nonce, j = 0, . . . , 17

WAGE-AE WAGE authenticated encryption scheme

WAGE-E WAGE encryption

WAGE-D WAGE decryption
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1.2 Outline

The rest of the document is organized as follows. In Chapter 2, we present the com-
plete specification of the WAGE. We summarize the security claims of our submission
in Chapter 3. In Chapter 4, we present the rationale of our design by justifying the
choice of each component and its respective parameters and provide the detailed
security analysis in Chapter 5. The details of our hardware implementations and
performance results in ASIC CMOS 65 nm and FPGA are provided in Chapter 6. In
Chapter 7, we discuss the efficiency of WAGE on microcontroller implementations.
Finally, we conclude with references and test vectors in Appendix A.
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Chapter 2

Specification of WAGE

2.1 WAGE AEAD Algorithm

WAGE is an iterative permutation with a state size of 259 bits inspired by the
initialization phase of the Welch-Gong (WG) cipher [20, 21]. It operates in a uni-
fied duplex sponge mode [3] to offer authenticated encryption with associated data
(AEAD) functionality. The AEAD algorithm (WAGE-AE-k) processes an r-bit data
per call of WAGE and is parameterized by the secret key size k. The AEAD algo-
rithm WAGE-AE-k consists of two algorithms, namely an authenticated encryption
algorithm WAGE-E and a verified decryption algorithm WAGE-D.

Encryption. The authenticated encryption algorithm WAGE-E takes as input a
secret key K of length k bits, a public message number N (nonce) of size n bits, a
block header AD (a.k.a, associated data) and a message M . The output of WAGE-E
is an authenticated ciphertext C of the same length as M , and an authentication
tag T of size t bits. Mathematically, WAGE-E is defined as

WAGE-E : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t

with
WAGE-E(K,N,AD,M) = (C, T ).

Decryption. The decryption and verification algorithm takes as input the secret
key K, nonce N , associated data AD, ciphertext C and tag T , and outputs the
plaintext M of same length as C if the verification of tag is correct or ⊥ if the tag
verification fails. More formally,

WAGE-D : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {{0, 1}∗ ∪ ⊥}

where
WAGE-D(K,N,AD,C, T ) ∈ {M,⊥}.

6
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2.2 Recommended Parameter Set

In Table 2.2, we list the recommended parameter set for WAGE-AE-128. The length
of each parameter is given in bits and d denotes the amount of allowed data (includ-
ing both AD and M) before a re-keying is required.

Table 2.1: Recommended parameter set for WAGE-AE-128

Functionality Algorithm r k n t log2(d)

AEAD WAGE-AE-128 64 128 128 128 64

2.3 Description of the WAGE Permutation

WAGE is an iterative permutation and its round function is constructed by tweaking
the initialization phase of the WG cipher over F27 where an additional Welch-Gong
permutation (WGP) and four 7-bit Sboxes (SB) are added to achieve faster confusion
and diffusion. We opt for a design based on a combination of an LFSR with WGP
and SB, which provides a good trade-off between security and hardware efficiency.
The core components of the round function are an LFSR, two WGPs and four SBs,
which are described below in detail.

2.3.1 Underlying finite field

WAGE operates over the finite field F27 , defined using the primitive polynomial
f(x) = x7 + x3 + x2 + x + 1. Elements of the finite field F27 are represented using
the polynomial basis PB = {1, ω, . . . , ω6}, and an element a ∈ F27 is given by

a =
6∑
i=0

aiω
i, ai ∈ F2

and its vector representation is

[a]PB = (a0, a1, a2, a3, a4, a5, a6).

To represent a 7-bit finite field element as a byte, a 0 is appended on the left. For
unambiguity, we include the conversion to binary as an intermediate step:

[a]PB = (a0, a1, a2, a3, a4, a5, a6)→ [a]b = (0, a0, a1, a2, a3, a4, a5, a6)→ [a]hex = (h1, h0)

Table 2.2 shows some examples of the conversion to HEX:

2.3.2 The LFSR

The internal state S of the permutation is composed of 37 stages and given by
S = (S36, · · · , S1, S0), where each Sj holds an element from the finite field F27

7
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Table 2.2: Examples of conversion of the field elements to HEX
27 26 25 24 23 22 21 20 161 160

a ∈ F27 0 a0 a1 a2 a3 a4 a5 a6 h1 h0

1 0 1 0 0 0 0 0 0 4 0

ω 0 0 1 0 0 0 0 0 2 0

1 + ω 0 1 1 0 0 0 0 0 6 0

1 + ω6 0 1 0 0 0 0 0 1 4 1

represented using the PB, i.e., Sj = (Sj,0, Sj,1, Sj,2, Sj,3, Sj,4, Sj,5, Sj,6). The WAGE
LFSR is defined by the feedback polynomial

`(y) = y37 + y31 + y30 + y26 + y24 + y19 + y13 + y12 + y8 + y6 + ω,

which is primitive over F27 . The linear feedback fb is computed as follows:

fb = S31 ⊕ S30 ⊕ S26 ⊕ S24 ⊕ S19 ⊕ S13 ⊕ S12 ⊕ S8 ⊕ S6 ⊕ (ω ⊗ S0).

2.3.3 The nonlinear components

In this subsection, we provide the details of the WGP and SB.

The Welch-Gong Permutation (WGP). The cryptographic properties of the WG
permutation and transformation have been widely investigated in the literature [13].
We use a decimated WGP with low differential uniformity and high nonlinearity.
Using the decimation d = 13, the differential uniformity for WGP is 6, and its
nonlinearity is 42. The WGP7 over F27 is defined as

WGP7(x) = x+ (x+ 1)33 + (x+ 1)39 + (x+ 1)41 + (x+ 1)104, x ∈ F27 .

A decimated WG permutation with decimation d such that gcd(d, 2m − 1) = 1 is
defined as

WGP7(xd) = xd + (xd + 1)33 + (xd + 1)39 + (xd + 1)41 + (xd + 1)104, x ∈ F27 .

We use the decimation d = 13 and denote it by WGP(x) = WGP7(x13). The max-
imum algebraic degree of its components is 6. An Sbox representation of WGP is
given in Table 2.3 in a row-major order. The 7-bit finite field elements are repre-
sented in hex using the technique provided in Table 2.2.
SBox (SB). We construct a lightweight 7-bit Sbox in an iterative way. Let the
input be x = (x0, x1, x2, x3, x4, x5, x6). The nonlinear transformation Q is given by

Q(x0, x1, x2, x3, x4, x5, x6) = (x0⊕(x2∧x3), x1, x2, x3⊕(x5∧x6), x4, x5⊕(x2∧x4), x6).

The bit permutation P is given by

P (x0, x1, x2, x3, x4, x5, x6) = (x6, x3, x0, x4, x2, x5, x1).

8
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Table 2.3: Hex representation of WGP
00 12 0a 4b 66 0c 48 73 79 3e 61 51 01 15 17 0e
7e 33 68 36 42 35 37 5e 53 4c 3f 54 58 6e 56 2a
1d 25 6d 65 5b 71 2f 20 06 18 29 3a 0d 7a 6c 1b
19 43 70 41 49 22 77 60 4f 45 55 02 63 47 75 2d
40 46 7d 5c 7c 59 26 0b 09 03 57 5d 27 78 30 2e
44 52 3b 08 67 2c 05 6b 2b 1a 21 38 07 0f 4a 11
50 6a 28 31 10 4d 5f 72 39 16 5a 13 04 3c 34 1f
76 1e 14 23 1c 32 4e 7b 24 74 7f 3d 69 64 62 6f

One-round R of the Sbox SB is obtained by composing the nonlinear transformation
Q and the bit permutation P , and is given by R = Q ◦ P where

R(x0, x1, x2, x3, x4, x5, x6) = (x6, x3⊕(x5∧x6), x0⊕(x2∧x3), x4, x2, x5⊕(x2∧x4), x1).

The 7-bit Sbox SB is constructed by iterating the function R 5 times, followed by
applying Q once, and then complementing the 0th and 2nd components. Mathe-
matically,

(x0, x1, x2, x3, x4, x5, x6)← R5(x0, x1, x2, x3, x4, x5, x6)

(x0, x1, x2, x3, x4, x5, x6)← Q(x0, x1, x2, x3, x4, x5, x6)

x0 ← x0 ⊕ 1

x2 ← x2 ⊕ 1.

SB has a differential uniformity of 8 and a nonlinearity of 44. The maximum alge-
braic degree of its components is 6.

Although SB is defined bit-wise, the interpretation of the 7 bits is identical to the
interpretation of the coefficients of the finite field element represented in polynomial
basis. The hex representation of SB is provided in Table 2.4 and the conversion to
hex is the same as that of WGP.

Table 2.4: Hex representation of SB
2e 1c 6d 2b 35 07 7f 3b 28 08 0b 5f 31 11 1b 4d
6e 54 0d 09 1f 45 75 53 6a 5d 61 00 04 78 06 1e
37 6f 2f 49 64 34 7d 19 39 33 43 57 60 62 13 05
77 47 4f 4b 1d 2d 24 48 74 58 25 5e 5a 76 41 42
27 3e 6c 01 2c 3c 4e 1a 21 2a 0a 55 3a 38 18 7e
0c 63 67 56 50 7c 32 7a 68 02 6b 17 7b 59 71 0f
30 10 22 3d 40 69 52 14 36 44 46 03 16 65 66 72
12 0e 29 4a 4c 70 15 26 79 51 23 3f 73 5b 20 5c

2.3.4 Description of the core permutation

The WAGE permutation is a 259-bit permutation consisting of a 37-stage NLFSR
defined over F27 . It is based on the initialization phase of the WG cipher and utilizes

9
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5 additional Sboxes to update the internal state. At the i-th iteration, the internal
state is denoted by Si = (Si36, S

i
35, · · · , Si1, Si0). The round function that updates 6

stages of the register nonlinearly is viewed as

• Updating with initialization of the WG cipher:

Si+1
36 ← WGP(Si36)⊕Si31⊕Si30⊕Si26⊕Si24⊕Si19⊕Si13⊕Si12⊕Si8⊕Si6⊕ (ω⊗Si0)

• Updating one stage with WGP:

Si+1
18 ← Si19 ⊕WGP(Si18)

• Updating four stages with SB:

Si+1
4 ← Si5 ⊕ SB(Si8)

Si+1
10 ← Si11 ⊕ SB(Si15)

Si+1
23 ← Si24 ⊕ SB(Si8)

Si+1
29 ← Si30 ⊕ SB(Si15).

A schematic diagram of the round function is presented in Figure 2.1. A pair of
7-bit round constants (rc1, rc0) is XORed with the pair of stages (36, 18) to destroy
similarity among state updates. On an input S0, an output of the permutation
is obtained by applying the round function, denoted by WAGE-StateUpdate, 111
times, i.e., S111 ← WAGE-StateUpdate111(S0). An algorithmic description of WAGE
is provided in Algorithm 1.

Algorithm 1 WAGE permutation

1: Input : S0 = (S0
36, S

0
35, · · · , S0

1 , S
0
0)

2: Output : S111 = (S111
36 , S

111
35 , · · · , S111

1 , S111
0 )

3: for i = 0 to 110 do:
4: Si+1 ← WAGE-StateUpdate(Si, rci1, rc

i
0)

5: return S111

6: Function WAGE-StateUpdate(Si):
7: fb = Si31 ⊕ Si30 ⊕ Si26 ⊕ Si24 ⊕ Si19 ⊕ Si13 ⊕ Si12 ⊕ Si8 ⊕ Si6 ⊕ (ω ⊗ Si0)
8: Si+1

4 ← Si5 ⊕ SB(Si8)
9: Si+1

10 ← Si11 ⊕ SB(Si15)
10: Si+1

18 ← Si19 ⊕WGP(Si18)⊕ rci0
11: Si+1

23 ← Si24 ⊕ SB(Si8)
12: Si+1

29 ← Si30 ⊕ SB(Si15)
13: Si+1

36 ← fb ⊕WGP(Si36)⊕ rci1
14: Si+1

j ← Sij+1, j ∈ {0, · · · , 36}\{4, 10, 18, 23, 29, 36}
15: return Si+1

10
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Si
36 Si

35 Si
34 Si

33 Si
32 Si

31 Si
30 Si

29 Si
28 Si

27 Si
26 Si

25 Si
24 Si

23 Si
22 Si

21 Si
20 Si

19

WGP SB SB

Si
17Si

18 Si
16 Si

15 Si
14 Si

13 Si
12 Si

11 Si
10 Si

9 Si
8 Si

7 Si
6 Si

5 Si
4 Si

3 S2i Si
1 Si

0

WGP SB SB

⊕
ω

rci1

rci0

Figure 2.1: The i-th round of the WAGE permutation

2.3.5 Round constants

We use two 7-bit round constants at each round of WAGE. The round constants are
listed in Table 2.5. The interpretation of the hex values of round constants in terms
of polynomial basis is the same as for SB, and hence details are omitted.

Table 2.5: Round constants of WAGE
Round i Round constant (rci1, rc

i
0)

0 - 9 (3f, 7f) (0f, 1f) (03, 07) (40, 01) (10, 20) (04, 08) (41, 02) (30, 60) (0c, 18) (43, 06)
10 - 19 (50, 21) (14, 28) (45, 0a) (71, 62) (3c, 78) (4f, 1e) (13, 27) (44, 09) (51, 22) (34, 68)
20 - 29 (4d, 1a) (66, 73) (5c, 39) (57, 2e) (15, 2b) (65, 4a) (79, 72) (3e, 7c) (2f, 5f) (0b, 17)
30 - 39 (42, 05) (70, 61) (1c, 38) (47, 0e) (11, 23) (24, 48) (49, 12) (32, 64) (6c, 59) (5b, 36)
40 - 49 (56, 2d) (35, 6b) (6d, 5a) (7b, 76) (5e, 3d) (37, 6f) (0d, 1b) (63, 46) (58, 31) (16, 2c)
50 - 59 (25, 4b) (69, 52) (74, 3a) (6e, 5d) (3b, 77) (4e, 1d) (33, 67) (4c, 19) (53, 26) (54, 29)
60 - 69 (55, 2a) (75, 6a) (7d, 7a) (7f, 7e) (1f, 3f) (07, 0f) (01, 03) (20, 40) (08, 10) (02, 04)
70 - 79 (60, 41) (18, 30) (06, 0c) (21, 43) (28, 50) (0a, 14) (62, 45) (78, 71) (1e, 3c) (27, 4f)
80 - 89 (09, 13) (22, 44) (68, 51) (1a, 34) (66, 4d) (39, 73) (2e, 5c) (2b, 57) (4a, 15) (72, 65)
90 - 99 (7c, 79) (5f, 3e) (17, 2f) (05, 0b) (61, 42) (38, 70) (0e, 1c) (23, 47) (48, 11) (12, 24)
100 - 109 (64, 49) (59, 32) (36, 6c) (2d, 5b) (6b, 56) (5a, 35) (76, 6d) (3d, 7b) (6f, 5e) (1b, 37)
110 (46, 0d)

2.4 WAGE-AE-128Algorithm

WAGE uses the unified sponge duplex mode to provide the AEAD functionality [3]. A
WAGE instance is parametrized by a key of length k, denoted as WAGE-AE-k. Algo-
rithm 2 presents a high-level overview of WAGE-AE-128. The encryption (WAGE-E)
and decryption (WAGE-D) WAGE-AE-128 are shown in Figure 2.2. In what follows,
we first illustrate the rate and the capacity part of the state, and then the padding
rule. We then describe each phase of WAGE-E and WAGE-D.

2.4.1 Rate and capacity part of state

The internal state S of WAGE is divided into two parts, namely the rate part Sr
and the capacity part Sc. The 0-th bit of stage S36, i.e., S36,0, and all bits of stages
S35, S34, S28, S27, S18, S16, S15, S9 and S8 constitute Sr (shaded orange in Figure 2.3),
while all remaining bits in the state constitute Sc. The rationale for the choice of

11
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Algorithm 2 WAGE-AE-128 algorithm
1: Authenticated encryption WAGE-E(K,N,AD,M):

2: S ← Initialization(N,K)

3: if |AD| 6= 0 then:

4: S ← Processing-Associated-Data(S,AD)

5: (S,C)← Encyption(S,M)

6: T ← Finalization(S,K)

7: return (C, T )

8: Initialization(N,K):

9: S ← load-AE(N,K)

10: S ←WAGE(S)

11: for i = 0 to 1 do:

12: S ← (Sr ⊕Ki, Sc)

13: S ←WAGE(S)

14: return S

15: Processing-Associated-Data(S,AD):

16: (AD0|| · · · ||AD`AD−1)← padr(AD)

17: for i = 0 to `AD − 1 do:

18: S ← (Sr ⊕ADi, Sc ⊕ 0c−7||1||06)

19: S ←WAGE(S)

20: return S

21: Encryption(S,M):

22: (M0|| · · · ||M`M−1)← padr(M)

23: for i = 0 to `M − 1 do:

24: Ci ←Mi ⊕ Sr

25: S ← (Ci, Sc ⊕ 0c−7||0||1||05)

26: S ←WAGE(S)

27: C`M−1 ← trunc-msb(C`M−1, |M | mod r)

28: C ← (C0, C1, . . . , C`M−1)

29: return (S,C)

30: padr(X):

31: X ← X||10r−1−(|X| mod r)

32: return X

33: trunc-lsb(X,n):

34: return (xr−n, xr−n+1, . . . , xr−1)

1: Verified decryption WAGE-D(K,N,AD,C, T ):
2: S ← Initialization(N,K)

3: if |AD| 6= 0 then:

4: S ← Processing-Associated-Data(S,AD)

5: (S,M)← Decyption(S,C)

6: T ′ ← Finalization(S,K)

7: if T ′ 6= T then:

8: return ⊥
9: else:

10: return M

11: Decryption(S,C):

12: (C0|| · · · ||C`C−1)← padr(C)

13: for i = 0 to `C − 2 do:

14: Mi ← Ci ⊕ Sr

15: S ← (Ci, Sc ⊕ 0c−7||0||1||05)

16: S ←WAGE(S)

17: M`C−1 ← Sr ⊕ C`C−1

18: C`C−1 ← trunc-msb(C`C−1, |C| mod r)||trunc-lsb(M`C−1, r − |C| mod r))

19: M`C−1 ← trunc-msb(M`C−1, |C| mod r)

20: M ← (M0,M1, . . . ,M`C−1)

21: S ←WAGE(C`C−1, Sc ⊕ 0c−7||0||1||05)

22: return (S,M)

23: Finalization(S,K):

24: for i = 0 to 1 do:

25: S ←WAGE(Sr ⊕Ki, Sc)

26: T ← tagextract(S)

27: return T

28: trunc-msb(X,n):

29: if n = 0 then:

30: return φ

31: else:

32: return (x0, x1, . . . , xn−1)

the Sr positions is explained in Section 4.7. The rate part Sr of the state is used for
both absorbing and squeezing.

For example, the 64-bit bits of a message block are absorbed into the Sr as
follows:

S36 ← (m63, 0, . . . , 0 ) v D9 S18 ← (m28, . . . ,m34) v D4

S35 ← (m56, . . . ,m62) v D8 S16 ← (m21, . . . ,m27) v D3

S34 ← (m49, . . . ,m55) v D7 S15 ← (m14, . . . ,m20) v D2

S28 ← (m42, . . . ,m48) v D6 S9 ← (m7 , . . . ,m13) v D1

S27 ← (m35, . . . ,m41) v D5 S8 ← (m0 , . . . ,m6 ) v D0

The tuples above are labeled with Dk, k = 0, . . . , 9, that are used as data inputs
to Sr; they carry the associated data bits, the message bits during encryption, the
ciphertext bits during decryption, and the key bits during the initialization and

12
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Figure 2.2: Schematic diagram of the WAGE-AE-128 algorithm
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Figure 2.3: Schematic diagram of absorbing and squeezing phase of WAGE-AE-128.

finalization phases. Figure 2.3 shows the Dk XORed to the appropriate stages S111
j ,

j ∈ {36, 35, 34, 28, 27, 18, 16, 15, 9, 8}, shaded orange. The two domain separator bits
ds1 and ds0 are XORed to the first two bits of Sc, namely S111

0,1 and S111
0,0 respectively.

2.4.2 Padding

Padding is necessary when the length of the processed data is not a multiple of the
rate r value. Since the key size is a multiple of r, we get two key blocks K0 and
K1, so no padding is needed. Afterwards, the padding rule (10∗), denoting a single
1 followed by required number of 0’s, is applied to the message M so that its length
after padding is a multiple of r. The resulting padded message is divided into `M
r-bit blocks M0‖ · · · ‖M`M−1. A similar procedure is carried out on the associated
data AD which results in `AD r-bit blocks AD0‖ · · · ‖AD`AD−1. In the case where no
associated data is present, no processing is necessary. We summarize the padding
rules for the message and associated data below.
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padr(M) ←M‖1‖0r−1−(|M | mod r)

padr(AD) ←
{
AD‖1‖0r−1−(|AD| mod r) if |AD| > 0

φ if |AD| = 0

Note that in case of AD or M whose length is a multiple of r, an additional
r-bit padded block is appended to AD or M to distinguish between the processing
of partial and complete blocks.

2.4.3 Loading key and nonce

The state is loaded with a 128-bit nonce N = (n0, . . . , n127) and 128-bit key K =
(k0, . . . , k127). The remaining three bits of S are set to zero. Both the nonce and
the key are divided into 7-bit tuples as follows:

• for 0 ≤ i ≤ 8, N̂i = (n7i, . . . , n7i+6) and K̂i = (k7i, . . . , k7i+6)

• for 9 ≤ i ≤ 17, N̂i = (n7i+1, . . . , n7i+7) and K̂i = (k7i+1, . . . , k7i+7)

• K̂∗18 = (k63, k127, n63, n127, 0, 0, 0)

The state S is initialized as follows:

S36,S35,S34,S33,S32,S31,S30,S29,S28 ← N̂16,N̂14,N̂12,N̂10,N̂8,N̂6,N̂4,N̂2,N̂0

S27,S26,S25,S24,S23,S22,S21,S20,S19 ← K̂17,K̂15,K̂13,K̂11,K̂9,K̂7,K̂5,K̂3,K̂1

S18,S17 ← K̂∗18,N̂15

S16,S15,S14,S13,S12,S11,S10,S9 ← N̂17,N̂13,N̂11,N̂9 , N̂7,N̂5,N̂3,N̂1

S8, S7, S6, S5, S4, S3, S2, S1, S0 ← K̂16,K̂14,K̂12,K̂10,K̂8,K̂6,K̂4,K̂2,K̂0

This loading scheme is further discussed in Section 4.7. We use load-AE(N,K)
to denote the process of loading the state with nonce N and key K in the positions
described above.

2.4.4 Initialization

The goal of this phase is to initialize the state S with the public nonce N and the key
K. The state is first loaded using load-AE(N,K) as described above, and then the
two key blocks K0 and K1, with K = K0||K1, are absorbed into the state, with the
WAGE permutation applied each time. The steps of the initialization are described
as follows.

S ← WAGE(load-AE(N,K))

S ← WAGE(Sr ⊕K0, Sc)

S ← WAGE(Sr ⊕K1, Sc)

14
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2.4.5 Processing associated data

If there is associated data, then for each absorbed block of AD, a domain separator
bit is XORed to the current value of S0,0. Then the WAGE permutation is applied
to the whole state. This phase is defined in Algorithm 2.

S ← WAGE(Sr ⊕ ADi, Sc ⊕ 0c−7||1||06), i = 0, . . . , `AD − 1

2.4.6 Encryption

This phase is similar to the processing of associated data, however, the domain
separator bit is XORed to the current value of S0,1. In addition, each message block
Mi, i = 0, . . . , `M − 1, is XORed to Sr part of the internal state as described in
Section 2.4.1, which gives the corresponding ciphertext block Ci, which is extracted
from the Sr part of the state as well. After that, the WAGE permutation is applied
to the internal state S.

Ci ← Sr ⊕Mi,

S ← WAGE(Ci, Sc ⊕ 0c−7||0||1||05), i = 0, · · · , `M − 1

To minimize communication overhead, the last ciphertext block is truncated so
that its length is equal to that of the last unpadded message block. The details of
this phase are given in Algorithm 2.

2.4.7 Finalization

After the extraction of the last ciphertext block, the domain separator is reset to
zero. First, the two 64-bit key blocks K = K0||K1 are absorbed into the state, with
the WAGE permutation applied each time. Then, the tag is extracted from the S
positions used for loading the nonce during load-AE(N,K). The finalization steps
are mentioned below and illustrated in Algorithm 2.

S ← WAGE((Sr ⊕Ki), Sc), i = 0, 1

T ← tagextract(S).

The function tagextract(S) extracts the 128-bit tag T = T̂0||T̂1|| . . . ||T̂17||T̂ ∗18 from
the S positions that were used to load the 7-bit tuples of the nonce N during load-
AE(N,K), namely stages S36 ,. . . , S28 and S18 . . .S9. The 7-bit T̂i tuples are given
by:

T̂16,T̂14,T̂12,T̂10,T̂8,T̂6,T̂4, T̂2, T̂0 ← S36,S35,S34,S33,S32,S31,S30,S29,S28

T̂15,T̂13,T̂11,T̂9,T̂7,T̂5, T̂3, T̂1 ← S16,S15,S14,S13,S12,S11,S10,S9

T̂ ∗18,T̂17 ← S18,S17

where

T̂i = (t7i, . . . , t7i+6), for 0 ≤ i ≤ 17, and

T̂ ∗18 = (−,−, t126, t127,−,−,−).

15
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Note that for T̂ ∗18, only the second two bits of stage S18 are used, the remaining
stage bits are discarded, as indicated by the − sign.

2.4.8 Decryption

The decryption procedure is symmetrical to encryption and illustrated in Algorithm 2.
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Chapter 3

Security Claims

WAGE is designed to provide authenticated encryption with associated data func-
tionality. We assume a nonce-respecting adversary and do not claim security in the
event of nonce reuse. If the verification procedure fails, the decrypted ciphertext
and the new tag should not be given as output. Moreover, we do not claim security
for the reduced-round versions of WAGE-AE-128. The security claims of WAGE-AE-
128 are summarized in Table 3.1. Note that the security for integrity in Table 3.1
includes the integrity of plaintext, associated data and nonce.

Table 3.1: Security claims of WAGE-AE-128 (in bits)

Confidentiality Integrity Authenticity Data limit

128 128 128 64
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Chapter 4

Design Rationale

WAGE is a hardware-oriented AE scheme. Our design philosophy for the WAGE
permutation is to reuse and adopt the initialization phase of the well-studied WG
cipher. More specifically, we use the initialization phase of the WG cipher over F27 .
Feedback shift registers (FSR) are widely used as basic building blocks in many
cryptographic designs, due to their simple architecture and efficient implementa-
tions. We choose a design for a lightweight permutation based on word-oriented
shift registers and substitution boxes (Sboxes).

Our parameter selection was aimed at reducing the hardware implementation
cost. First, we exhaustively collected pre place-and-route (pre-PAR) synthesis re-
sults for the CMOS 65 nm area of the WGP for F2m , m ∈ {5, 7, 8, 10, 11, 13, 14, 16},
and all polynomial bases, to find the balance between security and hardware imple-
mentation area. Once the field was set, we searched for the Sboxes based on their
hardware cost, differential uniformity and nonlinearity, and exhaustively searched
for symmetric feedback polynomials with a low number of nonzero terms, and with
good security properties.

4.1 Mode of Operation

WAGE adopts the sLiSCP sponge mode [3] as its mode of operation. The adopted
mode is a slight variation of well the analyzed traditional sponge duplex mode [4]
and offers the following features.

• Provable security bounds when instantiated with an ideal permutation [5, 14].

• No key scheduling is required.

• Inverse free as the permutation is always evaluated in the forward direction.

• Encryption and decryption functionalities are identical and can be imple-
mented with the same hardware circuit (only r-bit MUXs are required to
replace the rate part of state).

• The length of processed data is not required beforehand.

• Strong keyed initialization and finalization phases, where the key is absorbed
in the state using the XORs of the rate part. This ensures that key recovery
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is hard, even if the internal state is recovered. Universal forgery with the
knowledge of the internal state is not practical.

• Domain separators are used for each processed data block and they are changed
with each new phase, rather than with last data block in the previous phase.
This leads to a more efficient hardware implementation. This method was
shown to be secure in [14].

4.2 WAGE State Size

Our main aim was to choose b (state size) that provides 128-bit AE security. For a
b-bit permutation with b = r+ c (r-bit rate and c-bit capacity), operating in sponge
duplex mode, the best known bound is min{2b/2, 2c, 2k} [14]. This implies that for
k = 128, b ≥ 256. In section 4.4.1 we choose the operating finite field as F27 and
accordingly b = 259. The values of r = 64 and c = 195 are chosen to have an
efficient and low-cost hardware implementation. Our choice of (b, r, c) satisfies the
NIST-LWC requirements [19] and 264 bits of data can be processed per key.

4.3 Choice of Linear Layer

The linear layer of WAGE is composed of 1) L1 : a feedback polynomial of degree
37, which is primitive over F27 and 2) L2 : input and output tap positions of WGP
and SB Sboxes. There exist many choices for L1 and L2, which results in a tradeoff
between security and efficient implementations. Thus, we restrict our search to ones
which are lightweight and offer good security bounds. Note that we can not have
only L1 or only L2 as the linear layer, because that would result in slower diffusion.
The required criteria for L1 and L2 are:

1. To have a lighter L1 we look for a feedback polynomial of the form

`(y) = y37 +
36∑
j=1

cjy
j + ω, cj ∈ F2,

where ω is the root of the chosen field polynomial f(x), which is also a primitive
element of F27 . Including ω, we chose feedback polynomials with 10 nonzero
tap positions (cj = 1) that are symmetric and need only 70 XOR gates to
implement in hardware. In order to allow hardware optimizations in the future,
e.g.parallelization, we prefer polynomials that minimize the position j of the
biggest non-zero cj. This pushes the taps as far to the right as possible,
therefore we fixed the highest coefficients to zero.

2. A combination of L1 and L2 for which computing the minimum number of
active Sboxes is feasible and enable us to provide bounds for differential/linear
distinguishers.

We found 23 symmetric polynomials with 10 non-zero taps (Table 5.1 in Sec-
tion 5)[12]. The first column shows the candidate polynomials listed with their
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nonzero coefficients cj. We chose the one that provides the maximum resistance
against cryptanalytic attacks, such as differential and linear attacks. More precisely,
we have:

L1 : y37 + y31 + y30 + y26 + y24 + y19 + y13 + y12 + y8 + y6 + ω,

L2 : {(36, 36), (34, 30), (27, 24), (18, 19), (15, 11), (8, 5)},

where (a, b) ∈ L2 denotes the (input, output) position of an Sbox (Figure 2.1).

4.4 Nonlinear Layer of WAGE

We now justify the choices for the components in the nonlinear layer of the WAGE
permutation. The nonlinear layer consists of two WGPs and four sboxes SB, specified
in Section 2.3.3. The number of WGPs and sboxes was chosen to achieve faster
confusion and diffusion.

4.4.1 The Welch-Gong permutation (WGP)

The natural choice of the finite field for low-cost hardware, while maintaining ease
of software implementations, is F28 . However, the pre-PAR hardware area for the
WGP over F28 , averaged over all irreducible polynomials, is 546 GE, which is bigger
than two F27 WGP hardware modules, hence we choose the finite field F27 for WAGE.

The polynomial basis PBi = {1, ωi, . . . , ω6
i } was chosen for the representation of

the field elements, where ωi is a root of the defining polynomial fi(x), i.e. fi(ωi) = 0.
The polynomial fi(x) was chosen to minimize the hardware implementation area of
WGP with a decimation exponent 13 and of multiplication with the constant term
of the LFSR feedback polynomial. As we use the polynomial basis, the smallest area
constant term is ωi. To estimate the area of the constant term multiplier, we used
the Hamming weight of the matrix for multiplication by ωi w.r.t. to the basis PBi.
The pre-PAR results for CMOS 65 nm implementations of the WGP modules and
the constant terms are listed in Table 4.1: they show 18 primitive polynomials of
degree 7, denoted fi(x). Each of the fi has a different root ωi, which in turn gives
a different PBi. Thus, the implementation results change with the field defining
polynomial. The smallest area for WGP and constant term multiplier was found for
the defining polynomial x7 + x3 + x2 + x+ 1.

4.4.2 The 7-bit sbox (SB)

The search for lightweight 7-bit Sboxes explored variants with different nonlinear-
ity, differential uniformity and number of rounds, balancing with small hardware
cost; the Sboxes explored were in the range of 55 – 65 GE for their pre-PAR im-
plementation area. While constructing the 7-bit Sboxes, we chose the nonlinear
transformations Q that have efficient hardware implementation and varied all 5040
(= 7!) bit permutations (P). The chosen Sbox SB, described in Section 2.3.3, has
differential uniformity 8 and nonlinearity 44, and can be implemented with just
58 GE.
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Table 4.1: Area implementation results for the defining polynomials fi(x) for F27

Defining polynomial constant term WGP sum†
fi(x) area [ GE] area [ GE] [ GE]

x7 + x+ 1 2 258 260

x7 + x3 + 1 16 247 263

x7 + x3 + x2 + x+ 1 10 245 255

x7 + x4 + 1 23 243 266

x7 + x4 + x3 + x2 + 1 22 255 277

x7 + x5 + x2 + x+ 1 24 258 282

x7 + x5 + x3 + x+ 1 6 261 267

x7 + x5 + x4 + x3 + 1 16 264 280

x7 + x5 + x4 + x3 + x2 + x+ 1 19 251 270

x7 + x6 + 1 14 270 284

x7 + x6 + x3 + x+ 1 28 248 276

x7 + x6 + x4 + x+ 1 29 261 290

x7 + x6 + x4 + x2 + 1 27 265 292

x7 + x6 + x5 + x2 + 1 16 257 273

x7 + x6 + x5 + x3 + x2 + x+ 1 26 257 283

x7 + x6 + x5 + x4 + 1 31 259 290

x7 + x6 + x5 + x4 + x2 + x+ 1 20 254 274

x7 + x6 + x5 + x4 + x3 + x2 + 1 14 255 269

† sum of the constant term impl. area and the WGP impl. area

4.5 Number of Rounds

Our rationale for the number of rounds (say nr) is to choose a value for which the
behavior of WAGE is close to a random permutation. We now justify our choice of
nr = 111 as follows.

1. WAGE adopts a shift register based structure with 37 7-bit words, and hence
nr ≥ 37, otherwise the words will not be mixed among themselves properly,
which leads to meet/miss-in-the-middle attacks.

2. For nr = 74, the MEDCP of WAGE equals 2−4×59 = 2−236 > 2−259. Thus,
to push the MEDCP value below 2−259, nr ≥ 74. However, it is infeasible to
compute the value of MEDCP for nr ≥ 74. Thus, we expect that for nr = 111,
MEDCP << 2−259 (see Section 5.1.1).
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4.6 Round Constants

The round constants are added to mitigate the self-symmetry based distinguishers
as mentioned in Section 2.3.5. We use a single 7-stage LFSR to generate a pair
of constants at each round. Our choice of the utilized LFSR polynomial ensures
that each pair of such constants does not repeat, due to the periodicity of the 8-
tuple sequence constructed from the decimated m-sequence of period 127. Below
we provide the details of how to generate the round constants.

4.6.1 Generation of round constants

We use an LFSR of length 7 with feedback polynomial x7 + x + 1 to generate
the round constants of WAGE. To construct these constants, the same LFSR is
run in a 2-way parallel configuration, as illustrated in Figure 4.1. Let a denote
the sequence generated by the initial state (a0, a1, . . . , a6) of the LFSR without
parallelization. The parallel version of this LFSR outputs two sequences, both of
them using decimation exponent 2. More precisely,

• rci0 corresponds to the sequence a with decimation 2

• rci1 corresponds to the sequence a shifted by 1, then decimated by 2

ai+6 ai+4 ai+2 ai

ai+5 ai+3 ai+1

ai+8

ai+7

Figure 4.1: The LFSR for generating WAGE round constants.

The computation of round constants does not need any extra circuitry, but rather
uses a feedback value ai+7 together with all 7 state bits, annotated in Figure 4.1. In
Figure 4.2 we show how the 8 consecutive sequence elements are used to generate
round constants. The round constants are given by:

rci0 = ai+6‖ai+5‖ai+4‖ai+3‖ai+2‖ai+1‖ai
rci1 = ai+7‖ai+6‖ai+5‖ai+4‖ai+3‖ai+2‖ai+1

rci1︷ ︸︸ ︷
ai+7, ai+6, ai+5, ai+4, ai+3, ai+2, ai+1, ai︸ ︷︷ ︸

rci0

Figure 4.2: Two 7-bit step constants, generated from 8 consecutive sequence ele-
ments

We provide an example of the hex conversion of constants from LFSR sequence
in Appendix A.3. The first five round constant pairs are shown in Table A.1.
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4.7 Loading and Tag Extraction

The 128-bit key K and 128-bit nonce N are divided into 7-bit tuples In software
we work with bytes, and since WAGE is using 7-bit tuples, we have “left-over” bits
k63 and n63; instead of shifting all remaining key and nonce bits by 1, the bits n63

and k63 are put into the last key block K̂∗18, which makes the initialization and key
absorption efficient for the software implementation.

Recall the data inputs Dk, k = 0, . . . 9, in the shift register as shown in Figure 2.1.
In order to minimize the hardware overhead, we reuse the data inputs Dk for loading.
However, instead of XORing the Dk with previous stage content, the Dk data is fed
directly into the corresponding stage. We have 10 Dk inputs, but must load the
entire state, i.e. 37 stages. The stages without Dk inputs will be loaded by shifting.
We divide the stages without Dk inputs into loading regions, e.g.the loading region
S8, . . . , S0 can be loaded through the data input D0 and has length 9, hence will
require 9 shifts for loading. The loading region S8, . . . , S0 is the last part of the
shift register in Figure 2.3, and has a nonlinear input from the SB, which must be
disconnected during the loading. The remaining 3 SB must also be grounded. By
inspecting the shift register, we find two other loading regions of length 9, namely
region S27, . . . , S19 (loaded through D5) and region S36, . . . , S28 (loaded through
D9). We decided to split the remaining 10 consecutive stages into two regions,
one of length 8 and another of length 2. The region of length 8 are the stages
S16, . . . , S9, loaded through D3, and the region of length 2 the stages S18, S17, loaded
through D4. Note that there is no need to disconnect the two WGP because they
are automatically disabled by loading through D9 and D4.

These five loading regions, annotated with Dk used for loading, are listed below
in a way that reflects their respective lengths. The Ki and Nj tuples on the right
show the contents of the stages Sj after the loading is complete.

S36,S35,S34,S33,S32,S31,S30,S29,S28 ←D9 N̂16,N̂14,N̂12,N̂10,N̂8,N̂6,N̂4,N̂2,N̂0

S27,S26,S25,S24,S23,S22,S21,S20,S19 ←D5 K̂17,K̂15,K̂13,K̂11,K̂9,K̂7,K̂5,K̂3,K̂1

S18,S17 ←D4 K̂∗18,N15

S16,S15,S14,S13,S12,S11,S10,S9 ←D3 N̂17,N̂13,N̂11,N̂9, N̂7,N̂5,N̂3,N̂1

S8, S7, S6, S5, S4, S3, S2, S1, S0 ←D0 K̂16,K̂14,K̂12,K̂10,K̂8,K̂6,K̂4,K̂2,K̂0

The actual loading process for regions S18, . . . , S9 and S8, . . . , S0 is shown in
Table 4.2. The table shows the shifting of data through the register stages in 9
shifts. The stages are shown in the second row of Table 4.2, and the values “-” in
the table denote the old, unknown values, which will be overwritten by the specified
Ki and Nj blocks by the time the loading is finished. The state of stages S18, . . . S0

after shifting 9 times, i.e. after the loading is finished, is visible from the last row.
The tag is extracted in a similar fashion, from the positions that were loaded with

nonce tuples. For example, the state region S16, . . . , S9, which was loaded through
D3, will be extracted through the output that belongs to the D1 input. Similarly,
the state region S18, S17 will be extracted through the output belonging to the D3

input and the region S36, . . . , S28 through the output belonging to the D6 input.
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Table 4.2: Loading into the shift register through data inputs D4, D3 and D0

shift D4 D3 D0

count S18,S17 S16, S15, S14, S13,S12,S11,S10,S9 S8, S7, S6, S5, S4, S3, S2, S1, S0

1 - - - - - - - - - - K̂0 - - - - - - - -

2 - - N̂1 - - - - - - - K̂2, K̂0 - - - - - - -

3 - - N̂3, N̂1 - - - - - - K̂4, K̂2, K̂0 - - - - - -

4 - - N̂5, N̂3, N̂1 - - - - - K̂6, K̂4, K̂2, K̂0 - - - - -

5 - - N̂7, N̂5, N̂3, N̂1 - - - - K̂8, K̂6, K̂4, K̂2, K̂0 - - - -

6 - - N̂9, N̂7, N̂5, N̂3, N̂1 - - - K̂10,K̂8, K̂6, K̂4, K̂2,K̂0 - - -

7 - - N̂11,N̂9, N̂7, N̂5, N̂3, N̂1 - - K̂12,K̂10,K̂8, K̂6, K̂4,K̂2,K̂0 - -

8 N̂15 - N̂13,N̂11,N̂9, N̂7, N̂5, N̂3, N̂1 - K̂14,K̂12,K̂10,K̂8, K̂6,K̂4,K̂2,K̂0 -

9 K̂18N̂15 N̂17,N̂13,N̂11,N̂9, N̂7, N̂5, N̂3, N̂1 K̂16,K̂14,K̂12,K̂10,K̂8,K̂6,K̂4,K̂2,K̂0

The longest tag extraction region is also of length 9.

4.8 Choice of Rate Positions

The internal state constitutes of a rate part and a capacity part in which the ad-
versary has freedom to inject messages into the state through the rate part. The
rate positions in the state, as given in Section 2.4.1, are chosen by considering the
security and efficient hardware implementation. From a security point of view, the
chosen rate positions allow the input bits to be processed by the six Sboxes and
diffused by the feedback polynomial as soon as possible after absorbing the message
into the state, thus a faster confusion and diffusion is achieved. Moreover, our choice
ensures any injected differences to activate Sboxes in the first two rounds which also
enhances resistance to differential and linear cryptanalysis.

Exploiting the shifting property, the length of the process of updating the rate
positions is minimized. The current choice of rate positions also allows an efficient
loading and tag extraction within 9 consecutive clock cycles.

4.9 Relationship to WG ciphers

The WG cipher is a family of word-oriented stream ciphers based on an LFSR, a WG
transformation and a WG permutation module over an extension field. The first
family member, WG-29 [20], proceeded to Phase 2 of the eSTREAM competition [8].
Later, the lightweight variants WG-5 [2], WG-7 [17] and WG-8 [10] were proposed
for constrained environments, e.g. RFID, and WG-16 [24, 11, 9] was proposed for
4G LTE.

We adopt the initialization phase of the WG cipher where we chose a decimated
WG permutation with good cryptographic properties and tweak it to construct the
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round function of WAGE. Our proposed tweak brings faster confusion and diffusion
in the state update. We choose the decimated WG permutation with decimation
d = 13 for which its differential uniformity is 6 and nonlinearity 42 [18].

We make the tweak hardware efficient so that by disconnecting the second WGP
module and all four SB modules, and keeping the domain separator 0, the round
function of WAGE becomes identical to the WG initialization phase.

4.10 Statement

The authors declare that there are no hidden weaknesses in WAGE-AE-128.
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Chapter 5

Security Analysis

5.1 Security of WAGE Permutation

In this section, we analyze the security of the WAGE permutation against generic
distinguishers. Formally, we show that WAGE with 111 rounds is indistinguishable
from a random permutation. In the following, we denote the nonzero coefficients
ci ∈ {0, 1} of a degree 37 primitive polynomial l(y) = y37 +

∑36
i=1 ciy

i + ω ∈ F27 by
the vector ~c.

5.1.1 Differential distinguishers

In WAGE, we use two distinct 7-bit Sboxes namely, WGP and SB as the nonlin-
ear components. The differential probabilities of the Sboxes are 2−4.42 and 2−4,
respectively. To evaluate the maximum expected differential characteristic proba-
bility (MEDCP), we bound the minimum number of active Sboxes using a Mixed
Integer Linear Programming (MILP) model that takes as input ~c, the position of
Sboxes and the number of rounds r. It then returns the minimum number of active
Sboxes denoted by nr(~c). In Table 5.1, we list the values of nr(~c) for varying ~c and
r ∈ {37, 44, 51, 58, 74}.

The MEDCP is then given by:

MEDCP = max(2−4.42, 2−4)nr(~c) = 2−4×nr(~c).

Note that for r = 74 and ~c = (31, 30, 26, 24, 19, 13, 12, 8, 6), we have MEDCP =
2−4×59 = 2−236 > 2−259. Since, the MILP solver [1] is unable to finish for r > 74,
we expect that for our choice of ~c, n111(~c) ≥ 65. This is because for each additional
7 rounds, the number of active Sboxes increases by at least 6 (see row 10 in Table
5.1) which implies MEDCP ≤ 2−260 < 2−259.

5.1.2 Diffusion behavior

To achieve full bit diffusion, i.e., each output bit of the permutation depends on all
the input bits, we need at least 21 rounds. This is because the 7 bits of S36 is shifted
to S0 in 21 clock cycles. However, as the feedback function consists of 10 taps and
all six Sboxes (2 WGP and 4 SB) individually have the full bit diffusion property,
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Table 5.1: Minimum number of active Sboxes nr(~c) for varying primitive polynomials
Primitive poly. coefficients Rounds r

~c 37 44 51 58 74

24, 23, 22, 21, 19, 6, 5, 4, 3 18 26 30 35 51
29, 27, 24, 23, 19, 11, 9, 6, 5 23 31 36 41 54
29, 28, 23, 22, 19, 11, 10, 5, 4 21 28 34 40 54
29, 28, 24, 20, 19, 11, 10, 6, 2 21 27 34 40 54
30, 28, 27, 21, 19, 12, 10, 9, 3 22 30 34 39 54
30, 29, 28, 26, 19, 12, 11, 10, 8 20 30 37 44 57
31, 25, 23, 21, 19, 13, 7, 5, 3 20 29 33 38 54
31, 26, 23, 20, 19, 13, 8, 5, 2 20 26 34 39 54
31, 28, 23, 21, 19, 13, 10, 5, 3 19 27 33 39 53
31, 30, 26, 24, 19, 13, 12, 8, 6 24 30 38 44 59
32, 25, 24, 21, 19, 14, 7, 6, 3 19 28 34 39 54
32, 29, 25, 22, 19, 14, 11, 7, 4 19 28 36 41 57
32, 29, 27, 22, 19, 14, 11, 9, 4 23 31 37 41 57
32, 29, 27, 24, 19, 14, 11, 9, 6 23 31 37 39 55
32, 30, 28, 24, 19, 14, 12, 10, 6 23 29 38 44 58
32, 31, 21, 20, 19, 14, 13, 3, 2 21 26 30 36 47
33, 27, 26, 20, 19, 15, 9, 8, 2 21 30 35 39 55
33, 29, 28, 21, 19, 15, 11, 10, 3 22 27 35 39 53
33, 30, 29, 26, 19, 15, 12, 11, 8 21 31 38 44 57
33, 31, 23, 22, 19, 15, 13, 5, 4 23 31 36 41 55
33, 31, 28, 23, 19, 15, 13, 10, 5 23 30 36 41 -
33, 31, 29, 22, 19, 15, 13, 11, 4 22 32 37 44 -
33, 31, 30, 25, 19, 15, 13, 12, 7 23 34 39 44 -

WAGE achieves the full bit diffusion in at most 37 rounds. Accordingly, we claim
that meet/miss-in-the middle distinguishers may not cover more than 74 rounds as
74 rounds guarantee full bit diffusion in both the forward and backward directions.

5.1.3 Algebraic degree

The WGP and SB sboxes have an algebraic degree of 6. Note that if we only have
WGP sbox at position S36 along with feedback polynomial and exclude all other
sboxes and intermediate XORs, then we get the original WG stream cipher [20].
Such a stream cipher is resistant to attacks exploiting the algebraic degree if non-
linear feedback is used in the key generation phase [23, 22].

Given that WAGE has 6 Sboxes and we use nonlinear feedback for all of them,
we expect that 111-round WAGE is secure against integral attacks.

5.1.4 Self-symmetry based distinguishers

WAGE employs two 7-bit round constants, rc0 and rc1, which are XORed to S36

and S18, respectively. The round constant tuple is distinct for each round, i.e.,
(rci0, rc

i
1) 6= (rcj0, rc

j
1) for 0 ≤ i, j ≤ 110 and i 6= j. This property ensures that all

the rounds of WAGE are distinct and thwart attacks which exploit the symmetric
properties of the round function [7, 16].
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5.2 Security of WAGE-AE-128
The security proofs of modes based on the sponge construction rely on the in-
distinguishability of the underlying permutation from a random one [4, 6, 5, 14].
In previous sections, we have shown that the behavior of the WAGE permutation
for 111 rounds is close to a random permutation. Thus, the security bounds of
the sponge duplex mode are applicable to WAGE-AE-128. Moreover, we assume
a nonce-respecting adversary, i.e, for a fixed K, nonce N is never repeated dur-
ing encryption queries. Then, considering a data limit of 2d, the k-bit security is
achieved if c ≥ k + d+ 1 and d � c/2 [5]. The parameter set of WAGE (see Table
2.2) with actual effective capacity 193 (2 bits are lost for domain separation) satisfies
this condition, and hence WAGE-AE-128 provides 128-bit security for confidentiality,
integrity and authenticity.
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Chapter 6

Hardware Design And Analysis

In this chapter, we describe the hardware implementation of the WAGE permutation
and the WAGE module, which supports both authenticated encryption and verified
decryption functionalities.

6.1 Hardware Design Principles

In this section, we describe the design principles and assumptions that we follow
while implementing WAGE and WAGE module.

1. Multi-functionality module. The system should support both the oper-
ations, namely authenticated encryption and verified decryption, in a single
module, because lightweight applications generally cannot afford the extra
area for separate modules. As a result, the area for the system will be greater
compared to a single-function module.

2. Single input/output ports. In small devices, ports can be expensive, and
optimizing the number of ports may require additional multiplexers and control
circuitry. To ensure that we are not biasing our design in favour of the system
and at the expense of the environment, the key, nonce, associated data, and
message all use a single data-input port. Similarly, the output ciphertext, tag,
and hash all use a single output port.

3. Valid-bit protocol and stalling capability. The environment may take
an arbitrarily long time to produce any piece of data. For example, a small
microprocessor could require multiple clock cycles to read data from the mem-
ory and write it to the system’s input port. We use a single-phase valid bit
protocol, where each input or output data signal is paired with a valid bit to
denote when the data is valid. The receiving entity must capture the data in
a single clock cycle, which is a simple and widely applicable protocol. The
system shall wait in an idle state, while signalling the environment that it is
ready to receive.

4. Use a “pure register-transfer-level” implementation style. In par-
ticular, use only registers, not latches; multiplexers, not tri-state buffers; and
synchronous, not asynchronous reset.
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6.2 Interface and Top-level Module

In Figure 6.1, we depict the block diagram of the top-level WAGE module. The
description of each interface signal is given in Table 6.1.

FSM lfsr c

datapath

lfsr c en

lfsr c reset

control
con

st

o ready

o valid

o datai data

reset

i mode

i dom sep

i valid

i padding

2

2

64 70 6470

WAGE module

Figure 6.1: Top-level module and interface

Table 6.1: Interface signals
Input signal Meaning Output signal Meaning

reset resets the state machine o ready hardware is ready
i mode mode of operation o data output data
i dom sep domain separator o valid valid data on o data
i padding the last block is padded
i data input data
i valid valid data on i data

WAGE-AE-128 performs two operations the authenticated encryption (WAGE-E)
and verified decryption (WAGE-D). We use the i mode input signal to distinguish
between the two operations.

The environment separates the associated data and the message/ciphertext, and
performs their padding if necessary, as specified in Section 2.4.2. The control input
i pad is used to indicate that the last i data is padded. The domain separators,
provided by the environment, serve as an indication of the phase change, e.g., for
transition between processing associated data, encryption/decryption, and finaliza-
tion. The WAGE module is unaware of the lengths `AD, `M and `C , hence no internal
counters for the number of processed blocks are needed.

6.3 The WAGE Datapath

Figure 6.2 shows the schematic for the WAGE datapath. The right side of the figure
depicts the two symmetrical nonlinear portions of WAGE, namely the SBs and WGPs.
The two round constants produced by lfsr c are being XORed to the outputs of the
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WGPs. Note that the lfsr c used for the generation of the round constants is not
shown in Figure 6.2.

In the following sections, we first briefly illustrate the implementation details of
WAGE datapath and WAGE module. We also provide an estimate and the actual
numbers for their hardware areas.

lfsr_en

absorb
replace
load

sb_off
is_tag

SB

i_data
i_dom_sep

wage_lfsr

WGP

SB

SB

round_const

WGP

SB

o_data

Wage datapath

Figure 6.2: WAGE datapath

6.3.1 Components of WAGE datapath

Below we list the building blocks of WAGE datapath with a short descriptions of
their implementations.

• wage lfsr. The LFSR has 37 stages with 7 bits per stage, and a feedback with
10 taps and a module for multiplication with the constant ω.

• WGP module. For smaller fields like F27 , the WGP area, when implemented
as a constant array in VHDL/Verilog, i.e., as a look-up table, is smaller than
when implemented with basic arithmetic blocks (implementing multiplications
and exponentiations to the powers of two) [2, 17, 10]. However, the WGP is
not stored in hardware as a memory array, but rather as a net of AND, OR
and NOT gates, derived and optimized by the synthesis tools.

• SB module. The SB is implemented in unrolled fashion, i.e., as a purely
combinational logic, composed of 5 copies of R, followed by a Q and the final
two NOT gates (Section 2.3.3).

In Table 6.2, we provide an estimate of the hardware area needed for implemen-
tation of the WAGE permutation datapath. For the CMOS 65 nm we use an estimate
of 3.75 GE for a 1-bit register and 2.00 GE for a 2-input XOR gate. The row “other
XORs” contains the XOR gates needed to add the values from the modules SB and
WGP, and the lfsr c constants to the wage lfsr stages. We also report the actual
implementation results for the WAGE permutation area.
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Table 6.2: WAGE permutation hardware area estimate
Component Estimate Count Estimate per

per unit [ GE] component [ GE]
wage lfsr registers 3.75 37× 7 971
wage lfsr feedback XORs 2.00 10× 7 140
wage lfsr feedback ω 10† 1 10
SB 58† 4 232
WGP 245† 2 490
lfsr c 45† 1 45
Other XORs 2.00 8× 7 112
WAGE permutation - Total estimated area 2000

pre-PAR CMOS 65 nm implementation area results
WAGE permutation 2051†
† pre-PAR implementation results

6.3.2 The WAGE module and the control

During the WAGE permutation, most stages will shift just as in a regular LFSR. The
only exception are the stages where the nonlinear inputs, i.e., the outputs from both
WGPs and all four SB, are XORed into the state. For the encryption, the WAGE
permutation datapath is modified to accommodate loading and absorbing (during
initialization, processing of associated data, finalization and encryption). Firstly,
XOR gates and accompanying multiplexers are added to the Sr stages of wage lfsr for
absorbing. Another XOR and a multiplexer is needed for the the domain separator.
To support decryption as well, another layer of multiplexers is added to wage lfsr.
Finally, more multiplexers are used to turn off the nonlinear components during the
loading and tag extraction. All added signals, gates and the multiplexers, except the
ones needed for the domain separator, are 7-bits wide. The control signals shown in
Figure 6.2 are self-explanatory and details are omitted.

6.4 Hardware Implementation Results

In this section, we provide the ASIC CMOS and FPGA implementation results of
WAGE permutation and WAGE module. We first give the details of the used synthesis
and simulation tools and then present the performance results.

Synthesis and simulation tools and libraries for the
ASIC implementation

Logic synthesis Synopsys Design Compiler vN-2017.09

Physical synthesis Cadence Encounter 2014.13-s036 1

Simulation Mentor Graphics QuestaSim 10.5c

ASIC cell library 65nm STMicroelectronics CORE65LPLVT, 1.25V, 40C
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Synthesis tools for the FPGA implementation

Logic synthesis Mentor Graphics Precision 64-bit 2016.1.1.28 (for Intel/Altera),
Xilinx ISE Project Navigator 14.4 P.49d (for Xilinx)

Physical synthesis Altera Quartus Prime 15.1.0 SJ Standard Edition (for In-
tel/Altera), Xilinx ISE Project Navigator 14.4 P.49d (for Xil-
inx)

6.4.1 Performance results

In Tables 6.3 and 6.4, we present the performance results of the WAGE permutation
and the WAGE module.

Table 6.3: pre-PAR ASIC CMOS 65 nm implementation results

Frequency Area Throughput

Module [MHz] [GE] [Mbps]

WAGE permutation 1429 2051 –

WAGE module 1053 2994 607

Table 6.4: post-PAR FPGA implementation results

Extract† Frequency # of # of # of

Module attribute [MHz] Slices FFs LUTs

Xilinx Spartan 3 (xc3s200-5ft256)

WAGE permutation
yes 145 139 161 168

no 160 282 237 313

WAGE module
yes 96 326 212 531

no 92 455 284 699

Xilinx Spartan 6 (xc6slx9-3ftg256)

WAGE permutation
yes 214 42 161 134

no 218 89 237 211

WAGE module
yes 129 144 232 367

no 134 149 281 431

Frequency # of # of # of

Module [MHz] LC FFs LUTs

Intel / Altera Stratix IV (EP4SGX70HF35M3)

WAGE permutation 92 195 195 129

WAGE module 73 372 372 259

† WAGE module includes a shift register wage lfsr and two constant array modules (WGPs) . We set the attributes

SHREG EXTRACT, ROM EXTRACT and RAM EXTRACT to (dis)allow optimizations to shift-register configuration

LUTs and Block RAMs, hence two sets of implementation results. When memory is inferred, 1 RAMB16 is used

for Spartan 3, and 1 RAMB8BWER for Spartan 6.
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Chapter 7

Software Efficiency Analysis

The WAGE permutation is designed to be efficient on heterogeneous resource con-
strained devices, which imposes the primitive to be efficient in hardware as well as
in software. We assess the efficiency of the WAGE permutation and its modes on
three different microcontroller platforms.

7.1 Software: Microcontroller

We implemented the WAGE permutation and WAGE-AE-128 on three distinct mi-
crocontroller platforms. For WAGE-AE-128, we implement only encryption, because
decryption is the same as encryption, except updating the rate with ciphertext.
Our codes were written in assembly language to achieve optimal performance. We
choose: 1) the Atmel ATmega128, an 8-bit mocrocontroller with 128 Kbytes of pro-
grammable flash memory, 4.448 Kbytes of RAM, and 32 general purpose registers of
8 bits, 2) MSP430F2370, a 16-bit mocrocontroller from Texas Instruments with 2.3
Kbytes of programmable flash memory, 128 Bytes of RAM, and 12 general purpose
registers of 16 bits, and 3) ARM Cortex M3 LM3S9D96, a 32-bit microcontroller with
524.3 Kbytes of programmable flash memory, 131 Kbytes of RAM, and 13 general
purpose registers of 32 bits. We focus on four key performance measures, namely
throughput, code size (Kbytes), energy (nJ), and RAM (Kbytes) consumption.

For WAGE-E , the scheme is instantiated with a random 128-bit key and a 128-bit
nonce. Note that the throughput of the WAGE-AE , which is processing words, is
smaller than that of the WAGE permutation. For producing a ciphertext and a tag
by WAGE-E , (5 + `) executions of the permutation are required where ` is the total
number of the 64-bit data blocks including the associated data, plaintext message
and padding if needed. We chose two combinations of the numbers of the AD block
(`AD) and the message block (`M), which are: 1) (`AD, `M) = (0, 16), meaning no
AD and 1024-bit plaintext message; and 2) (`AD, `M) = (2, 16), meaning 128-bit AD
and 1024-bit plaintext message. Table 7.1 presents the performance of the WAGE
permutation and its modes for these two choices of AD and message lengths.
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Table 7.1: Performance of WAGE on microcontrollers
Cryptographic Platform Clock freq. Memory usage [Bytes] Setup Throughput Energy/bit

primitive Device Bit [MHz] SRAM Flash [Cycles] [Kbps] [nJ]
WAGE Permutation ATmega128 8 16 802 4132 19011 217.98 568
WAGE Permutation MSP430F2370 16 16 4 5031 23524 176.16 135
WAGE Permutation LM3S9D96 32 16 3076 5902 14450 286.78 1162

WAGE-E (lAD = 0, lM = 16) ATmega128 8 16 808 4416 362888 45.15 2741
WAGE-E (lAD = 0, lM = 16) MSP430F2370 16 16 46 5289 433105 37.83 628
WAGE-E (lAD = 0, lM = 16) LM3S9D96 32 16 3084 6230 278848 58.76 5673
WAGE-E (lAD = 2, lM = 16) ATmega128 8 16 808 4502 397260 41.24 3001
WAGE-E (lAD = 2, lM = 16) MSP430F2370 16 16 46 5339 474067 34.56 687
WAGE-E (lAD = 2, lM = 16) LM3S9D96 32 16 3084 6354 305284 53.67 6210
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Appendix A

Test Vectors

A.1 WAGE Permutation

Input:00000000000000000000000000000000000000000000000000000000000000000

Output:0FA82908FEA670F1B8609F00420FC3376A52DCA922061FED7C568F785C22B4A4C

A.2 WAGE-AE-128
Key : 00111122335588DD 00111122335588DD

Nonce : 111122335588DD00 111122335588DD00

Associated data : 1122335588DD0011 1122335588DD00

Plaintext : 335588DD00111122 335588DD001111

Ciphertext : 4B7CD23D07D75575 5EA2ADEC4FEFF3

Tag : D03CF7894D6D3697 C2B1758D41E78344

A.3 Round Constants Conversion

The round constants are translated to HEX values as shown in Table 2.2.
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Table A.1: Generation of the first five round constant pairs (rci1, rc
1
0)

clk. (current)
cycle LFSR state (current) subsequence bits HEX

a7 a6 a5 a4 a3 a2 a1 a0
0 1 1 1 1 1 1 1 1 1 1 1 7 F ← rc00

1 1 1 0 1 1 1 1 1 1 3 F ← rc01
a9 a8 a7 a6 a5 a4 a3 a2

1 0 1 1 1 0 0 1 1 1 1 1 1 F ← rc10
0 1 1 0 0 0 1 1 1 1 0 F ← rc11

a11 a10 a9 a8 a7 a6 a5 a4
2 0 0 1 1 0 0 0 0 1 1 1 0 7 ← rc20

0 0 1 0 0 0 0 0 1 1 0 3 ← rc21
a13 a12 a11 a10 a9 a8 a7 a6

3 0 0 0 1 0 0 0 0 0 0 1 0 1 ← rc30
0 0 0 1 0 0 0 0 0 0 4 0 ← rc31

a15 a14 a13 a12 a11 a10 a9 a8
4 0 0 0 0 1 0 0 0 0 0 2 0 ← rc40

1 0 0 0 0 1 0 0 0 0 1 0 ← rc41
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