Towards Probabilistic Identification
of Zero-day Attack Paths

Xiaoyan Sun*', Jun Daif, Peng Liu*, Anoop Singhal* and John Yen*
*Pennsylvania State University, University Park, PA 16802, USA
tCalifornia State University, Sacramento, CA 95819, USA
!National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
Email: {xzs5052, pliu, jyen} @ist.psu.edu, jun.dai@csus.edu, anoop.singhal @nist.gov

Abstract—Zero-day attacks continue to challenge the en-
terprise network security defense. A zero-day attack path is
formed when a multi-step attack contains one or more zero-day
exploits. Detecting zero-day attack paths in time could enable
early disclosure of zero-day threats. In this paper, we propose
a probabilistic approach to identify zero-day attack paths and
implement a prototype system named ZePro. An object instance
graph is first built from system calls to capture the intrusion
propagation. To further reveal the zero-day attack paths hiding
in the instance graph, our system constructs an instance-graph-
based Bayesian network. By leveraging intrusion evidence, the
Bayesian network can quantitatively compute the probabilities of
object instances being infected. The object instances with high
infection probabilities reveal themselves and form the zero-day
attack paths. The experiment results show that our system can
effectively identify zero-day attack paths.

I. INTRODUCTION

Defending against zero-day attacks is one of the most
fundamentally challenging security problems yet to be solved.
Zero-day attacks are usually enabled by unknown vulnerabil-
ities. The information asymmetry between what the attacker
knows and what the defender knows makes zero-day exploits
extremely hard to detect. Signature-based detection assumes
that a signature is already extracted from detected exploits.
Anomaly detection [1]-[3] may detect zero-day exploits, but
this solution has to cope with high false positive rates.

Considering the extreme difficulty of detecting individual
zero-day exploits, a substantially more feasible strategy is to
identify zero-day attack paths. In real world, to achive the
attack goal, attack campaigns rely on a chain of attack actions,
which forms an attack path. Each attack chain is a partial
order of exploits and each exploit is exploiting a particular
vulnerability. A zero-day attack path is a multi-step attack path
that includes one or more zero-day exploits. A key insight in
dealing with zero-day attack paths is to analyze the chaining
effect. Typically, it is not very likely for a zero-day attack chain
to be 100% zero-day, namely having every exploit in the chain
be a zero-day exploit. Hence, defenders can assume that 1)
the non-zero-day exploits in the chain are detectable; 2) these
detectable exploits have certain chaining relationships with the
zero-day exploits in the chain. As a result, connecting the
detected non-zero-day segments through a path is an effective
way of revealing the zero-day segments in the same chain.

Both alert correlation [4], [5] and attack graphs [6]-[9]
are possible solutions for generating potential attack paths, but
they are limited in revealing the zero-day ones. They both
can identify the non-zero-day segments (i.e., “islands”) of a
zero-day attack path; however, none of them can automatically

bridge all segments into a meaningful path and reveal the zero-
day segments, especially when different segments may belong
to totally irrelevant attack paths.

To address these limitations, Dai et al. proposed a system
called Patrol [10] to identify real zero-day attack paths from
a large set of suspicious intrusion propagation paths generated
through tracking dependencies between OS-level objects. The
set of suspicious dependency paths is usually very huge or even
suffers from serious path explosion problem. A root cause for
such explosion is that dependencies introduced by legitimate
activities and dependencies introduced by zero-day attacks are
often tangled together. Hence, Patrol made an assumption that
extensive pre-knowledge are available to distinguish real zero-
day attack paths from suspicious ones: common features or
attack patterns of known exploitations can be extracted at the
OS-level to help recognize future unknown exploitations if
similar features appear again. However, this assumption is too
strong in that 1) the acquirement of such pre-knowledge is
quite difficult. It is a very ad hoc and effort consuming process.
It relies heavily on the availability of the history for known
vulnerability exploitations; 2) Even if the history is available,
investigating and crafting the common features at OS-level
for all types of exploitations requires immeasurable amount of
human analysts’ efforts or even the whole community’s efforts.

Therefore, in this paper, we propose a probabilistic ap-
proach to identify the zero-day attack paths. Our approach is
to 1) establish an object instance graph to capture the intrusion
propagation, where an instance of an object is a “version”
of the object with a specific timestamp; 2) build a Bayesian
network (BN) based on the instance graph to leverage the
intrusion evidence collected from various information sources.
Intrusion evidence can be the abnormal system and network
activities that are noticed by human admins or security sensors
such as Intrusion Detection Systems (IDSs). With the evidence,
the instance-graph-based BN can quantitatively compute the
probabilities of object instances being infected. Connected
through dependency relations, the instances with high infection
probabilities form a path, which can be viewed as a zero-day
attack path. This approach does not require any pre-knowledge
for the common features of known exploitations at OS-level.

The significance of our approach is as follows: 1) Our
approach is systematic because Bayesian networks can incor-
porate literally all kinds of knowledge the defender has about
the zero-day attack paths. The knowledge includes but is not
limited to alerts generated by security sensors such as IDS and
Tripwire, reports provided by vulnerability scanners, system
logs, or even human inputs. 2) Our approach does not rely
on particular assumptions or preconditions. Therefore, it is

tl: process A reads file 1

A
t2: process A creates process B
t3: process A creates process C t6 2 L
t4: process B writes file 2 | process B | | process C |
t5: process C writes file 1 il4
t6: process B reads file 3 @
(a) Simplified system call log in time-order (b) SODG

Figure 1: An SODG generated by parsing an example set of simplified
system call log. The label on each edge shows the time associated with the
corresponding system call.

applicable to almost all kinds of enterprise networks. 3) Our
approach is elastic. Whenever new knowledge is gained about
zero-day attacks, such new knowledge can be incorporated and
the effectiveness of our approach can be enhanced. Whenever
erroneous knowledge is identified, our approach can easily get
rid of the negative effects of the wrong knowledge. 4) The tool
we built is automated. Today’s security analysis relies largely
on the manual work of human security analysts. Our automated
tool can significantly save security analysts’ time and address
the human resource challenge.

To summarize, we made the following contributions.

e To the best of our knowledge, this work is the first
probabilistic approach towards zero-day attack path
identification.

e We proposed constructing Bayesian network at the
system object level by introducing the object instance
graph.

e We have designed and implemented a system proto-
type named ZePro, which can effectively and automat-
ically identify zero-day attack paths.

II. RATIONALES AND MODELS

This paper classifies OS-level entities in UNIX-like sys-
tems into three types of objects: processes, files and sockets.
The operating system performs a set of operations towards
these objects via system calls such as read, write, etc. For
instance, a process can read from a file as input, and then write
to a socket. Such interactions among system objects enable
intrusions to propagate from one object to another. Generally
an intrusion starts with one or several seed objects that are
created directly or indirectly by attackers. The intrusion seeds
can be processes such as compromised service programs, or
files such as viruses, or corrupted data, etc. As the intrusion
seeds interact with other system objects via system call op-
erations, the innocent objects can get infected. We call this
process as infection propagation. Therefore the intrusion will
propagate throughout the system, or even propagate to the
network through socket communications.

To capture the intrusion propagation, previous work [14],
[15] has explored constructing system level dependency graphs
by parsing system call traces. This type of dependency graph is
known as System Object Dependency Graphs (SODGs). Each
system call is interpreted into three parts: a source object,
a sink object, and a dependency relation between them. The
objects and the dependencies respectively become nodes and
directed edges in SODGs. For example, a process reading a
file in the system call read indicates that the process (sink)

CPT at node p2
p1=T|p1=F
p2=T| 0.9 | 0.01
p2=F| 0.1 | 0.99

Figure 2: An example Bayesian network.

depends on the file (source). The dependency is denoted as
file—process. Similar rules as used in previous work [14],
[15] can be adopted to generate such dependencies by parsing
system calls such as read, write, fork, send, recv, and so on.
Figure 1b is an example SODG generated by parsing the
simplified system call log shown in Figure la.

A. Why use Bayesian Network?

The BN is a probabilistic graphical model that represents
the cause-and-effect relations. It is formally defined as a
Directed Acyclic Graph (DAG) that contains a set of nodes
and directed edges, where a node denotes a variable of interest,
and an edge denotes the causality relations between two
nodes. The strength of such causality relation is indicated
using a conditional probability table (CPT). Figure 2 shows
an example BN and the CPT tables associated with ps. Given
py is true, the probability of ps being true is 0.9, which can
be represented with P(py = T|p; = T) = 0.9. Similarly, the
probability of ps can be determined by the states of py and
p3 according to a CPT table at py. BN is able to incorporate
the collected evidence by updating the posterior probabilities
of interested variables. For example, after evidence po = T
is observed, it can be incorporated by computing probability
P(p1 = T|p2 = T)

The BN can be applied on top of the system level de-
pendency graph for the following benefits. First, BN is an
effective tool to incorporate intrusion evidence from a variety
of information sources. Alerts generated by different security
sensors are usually isolated from each other. As a unified
platform, BN is able to leverage these alerts as attack evidence
to aid the security analysis. Second, BN can quantitatively
compute the probabilities of objects being infected. The in-
ferred probabilities are the key guidance to identify zero-
day attack paths. By only focusing on the objects with high
infection probabilities, the set of suspicious objects can be
significantly narrowed down. The zero-day attack paths formed
by the high-probability objects through dependency relations
is thus of manageable size.

B. Problems of Constructing BN based on SODG

SODG has the potential to serve as the base of BN
construction. For one thing, BN has the capability of capturing
cause-and-effect relations in infection propagation. For another
thing, SODG reflects the dependency relations among system
objects. Such dependencies imply and can be leveraged to
construct the infection causalities in BN. For example, the
dependency process A—file I in an SODG can be interpreted
into an infection causality relation in BN: file I is likely to
be infected if process A is already infected. In such a way,
an SODG-based BN can be constructed by directly taking the
structure topology of SODG.

However, several drawbacks of the SODG prevent it from
being the base of BN. First, an SODG without time labels

cannot reflect the correct information flow according to the
time order of system call operations. This is a problem because
the time labels cannot be preserved when constructing BNs
based on SODGs. Lack of time information will cause incor-
rect causality inference in the SODG-based BNs. For example,
without the time labels, the dependencies in Figure 1b indicates
infection causality relations existing among file 3, process B
and file 2, meaning that if file 3 is infected, process B and
file 2 are likely to be infected by file 3. Nevertheless, the time
information shows that the system call operation “process B
reads file 3” happens at time t6, which is after the operation
“process B writes file 2” at time t4. This implies that the
status of file 3 has no direct influence on the status of file 2.
Second, the SODG contains cycles among nodes. For instance,
file 1, process A and process C in Figure 1b form a cycle. By
directly adopting the topology of SODG, the SODG-based BN
inevitably inherits cycles from SODG. However, the BN is an
acyclic probabilistic graphical model that does not allow any
cycles. Therefore, in this paper we propose a new type of
dependency graph, the object instance graph, to address the
above problems.

C. Object Instance Graph

In the object instance graph, each node is not an object, but
an instance of the object with a specific timestamp. Different
instances are different “versions” of the same object at different
time points, and can thus have different infection status.

Definition 1. Object Instance Graph

If the system call trace in a time window T[tyegin,tend] 18
denoted as X7 and the set of system objects (mainly processes,
files or sockets) involved in X7 is denoted as O, then the
object instance graph is a directed graph Gr(V, F), where:

e V is the set of nodes, and initialized to empty set &;

e [is the set of directed edges, and initialized to empty
set J;

e If a system call syscall € X7 is parsed into two
system object instances src;, sink;, ¢,7 > 1, and a
dependency relation dep.: src;—sink; , where src;
is the i*" instance of system object src € O, and
sink; is the j** instance of system object sink €
Or, then V =V U {sr¢;, sink;}, E = E U {dep.}.
The timestamps for syscall, dep., src;, and sink; are
respectively denoted as ¢_syscall, t_dep,, t_src;, and
t_sink;. The t_dep. inherits t_syscall from syscall.
The indexes ¢ and j are determined before adding src;
and sink; into V by:

o ForV srey, sink, € V, m,n > 1,if i,,,, and
Jmaz are respectively the maximum indexes of
instances for object src and sink, and;

o Ifdsrep € V, k>1, then ¢ = i4,, and
t_src; stays the same; Otherwise, ¢ = 1, and
t_src; is updated to t_syscall;

o If3Jsink, € V,z> 1, then j = jmaet1;
Otherwise, j = 1. In both cases t_sink; is
updated to t_syscall; If j > 2, then £ = E U
{deps: sink;_1—sink;}.

e Ifa—be E and b—c € F, then c transitively depends
on a.

file 1 instance 1

process A instance 1
2 3 85

file 3 instance 1 [process B instance 1][process C instance 1]
t6 T

6 t4 t5

N
file 2 instance 1 ‘If:;ﬁ»le linstance 2

Figure 3: An instance graph generated by parsing the same set of simplified
system call log as in Figure la. The label on each edge shows the time
associated with the corresponding system call operation. The dotted rectangle
and ellipse are new instances of already existed objects. The solid edges and
the dotted edges respectively denote the contact dependencies and the state
transition dependencies.

According to Definition 1, for src object, a new instance
is created only when no instances of src exist in the instance
graph. For sink object, however, a new instance is created
whenever a src—sink dependency appears. The underlying
insight is that the status of the src object will not be altered
by src—sink, while the status of sink will be influenced.
Hence a new instance for an object should be created when
the object has the possibility of being affected. A dependency
dep. is added between the most recent instance of src and
the newly created instance of sink. We name dep, as contact
dependency because it is generated by the contact between two
different objects through a system call operation.

In addition, when a new instance is created for an object,
a new dependency relation deps is also added between the
most recent instance and the new instance of the same object.
This is necessary and reasonable because the status of the new
instance can be influenced by the status of the most recent
instance. We name dep; as state transition dependency because
it is caused by the state transition between different instances
of the same system object.

The instance graph can well tackle the problems existing
in the SODG for constructing BNs. It can be illustrated using
Figure 3, an instance graph created for the same simplified
system call log as in Figure la. First, the instance graph is
able to reflect correct information flows by implying time
information through creating object instances. For example,
instead of parsing the system call at time ¢6 directly into file
3—process B, Figure 3 parsed it into file 3 instance 1—process
B instance 2. Comparing to Figure 1b in which file 3 has
indirect infection causality on file 2 through process B, the
instance graph in Figure 3 indicates that file 3 can only infect
instance 2 of process B but no previous instances. Hence in this
graph file 3 does not have infection causality on file 2. Second,
instance graphs can break the cycles contained in SODGs.
Again, in Figure 3, the system call at time ¢5 is parsed into
process C instance 1—file 1 instance 2, rather than process
C—file I as in Figure 1b. Therefore, instead of pointing back
to file 1, the edge from process C is directed to a new instance
of file 1. As a result, the cycle formed by file I, process A and
process C is broken.

III. INSTANCE-GRAPH-BASED BAYESIAN NETWORKS

To build a BN based on an instance graph and compute
probabilities for interested variables, two steps are required.
First, the CPT tables have to be specified for each node
via constructing proper infection propagation models. Second,

CPT at node sink;1

sink;=Infected sink;=Uninfected
srei=Infected[sre; =Uninfected | src; =Infected [sre; =Uninfected

sink;+1=Infected 1 1 - »
sink; 1 =Uninfected 0 0 1—7 1-p

**~_The rest of BN}
Ce 1 e !

CPT at node Observation

Figure 4: The infection propagation models.

evidence from different information sources has to be incor-
porated into BN for subsequent probability inference.

A. The Infection Propagation Models

In instance-graph-based BNs, each object instance has two
possible states, “infected” and “uninfected”. Our infection
propagation models deal with two types of infection causali-
ties, contact infection causalities and state transition infection
causalities, which correspond to the contact dependencies and
state transition dependencies in instance graphs.

Contact Infection Causality Model. This model captures
the infection propagation between instances of two different
objects. Contact infection causality is formed due to the
information flow between the two objects in a system call
operation. Figure 4 shows a portion of BN constructed when a
dependency src—+sink occurs and the CPT for sink; ;. When
sink; is uninfected, the probability of sink; i being infected
depends on the infection status of src;, a contact infection rate
7 and an intrinsic infection rate p, 0 < 7,p < 1.

The intrinsic infection rate p decides how likely sink;iq
gets infected given src; is uninfected. In this case, since src;
is not the infection source of sink;1, if sink; is infected,
it should be caused by other factors. So p can be determined
by the prior probabilities of an object being infected, which is
usually a very small constant number.

The contact infection rate 7 determines how likely sink;q
gets infected when src; is infected. The value of 7 determines
to which extent the infection can be propagated within the
range of an instance graph. In an extreme case where 7 =
1, all the object instances will get contaminated as long as
they have contact with the infected objects. In another extreme
case where 7 = 0, the infection will be confined inside the
infected object and does not propagate to any other contacting
object instances. Our system allows security experts to tune
the value of 7 based on their knowledge and experience. We
will evaluate the impact of 7 and p in Section VI.

State Transition Infection Causality Model. This model
captures the infection propagation between instances of the
same objects. We follow one rule to model this type of causal-
ities: an object will never return to the state of “uninfected”
from the state of “infected”l. That is, once an instance of
an object gets infected, all future instances of this object will
remain the infected state, regardless of the infection status of
other contacting object instances. This rule is enforced in the
CPT exemplified in Figure 4. If sink; is infected, the infection
probability of sink;; 1 keeps to be 1, no matter whether src; is
infected or not. If sink; is uninfected, the infection probability
of sink;, is decided by the infection status of src; according
to the contact infection causality model.

B. Evidence Incorporation

BN is able to incorporate security alerts from a variety
of information sources as the evidence of attack occurrence.

IThis rule is formulated based on the assumptions that no intrusion recovery
operations are performed and attackers only conduct malicious activities.

Actual=Infected | Actual=Uninfected
e~ Observation=True 0.9 Q.15
Actual State of an Instance | Observation=False /0.85

v v
False negative rate False positive rate

Figure 5: Local observation model [19].

In this paper, we adopt two ways to incorporate evidence.
First, add evidence directly on a node by providing the
infection state of the instance. If human security experts have
scrutinized an object and proven that an object is infected at
a specific time, they can feed the evidence to the instance-
graph-based BN by directly changing the infection status
of the corresponding instance into infected. Second, lever-
age the local observation model (LOM) [19] to model the
uncertainty towards observations. Human security admins or
security sensors may notice suspicious activities that imply
attack occurrence. Nonetheless, these observations often suffer
from false rates. As shown in Figure 5, an observation node
can be added as the direct child node to an object instance.
The implicit causality relation is that the actual state of the
instance can likely affect the observation to be made. If the
observation comes from security alerts, the CPT inherently
indicates the false rates of the security sensors. For example,
P(Observation = True | Actual = Uninfected) shows the false
positive rate and P(Observation = False | Actual = Infected)
indicates the false negative rate.

IV. SYSTEM DESIGN
Figure 6 shows the overall system design.

System call auditing and filtering. System call auditing is
performed against all running processes and should preserve
sufficient OS-aware information. Subsequent system call re-
construction can thus accurately identify the processes and files
by their process IDs or file descriptors. The filtering process
basically prunes system calls that involve redundant and very
likely innocent objects, such as the dynamic linked library files
or some dummy objects. We conduct system call auditing at
run time towards each host in the enterprise network.

System call parsing and dependency extraction. The col-
lected system call traces are then sent to a central machine
for off-line analysis, where the dependency relations between
system objects are extracted.

Graph generation. The extracted dependencies are then
analyzed line by line for graph generation. The generated
graph can be either host-wide or network-wide, depending
on the analysis scope. A network-wide instance graph can
be constructed by concatenating individual host-wide instance
graphs through instances of the communicating sockets.

BN construction. The BN is constructed by taking the
topology of an instance graph. The instances and dependencies
in an instance graph become nodes and edges in BN. The nodes
and the associated CPT tables are specified in a .net file, which
is one file type that can carry the instance-graph-based BN.

Evidence incorporation and probability inference. Evi-
dence is incorporated by either providing the infection state of
the object instance directly, or constructing an local observa-
tion model (LOM) for the instance. After probability inference,
each node in the instance graph receives a probability.

System Components

System Call Auditing
and Filtering

RN S U N
233

System Call Parsing and Graph
Dependency Extraction Generation

System Call Traces Dependencies

Interim Outputs

BN Construction

/—

Instance Graphs

Evidence Incorporation and
Probability Inference

A——

Instance Graphs with Probabilities

Zero-day Attack Path celp
Identification
Zero-day Attack

Instance-graph-based BN paths

=) Input —> Output

Figure 6: System design.

Zero-day attack paths identification. To reveal the zero-day
attack paths from the mess of instance graphs, the nodes with
high probabilities are to be preserved, while the link between
them should not be broken. We implemented an algorithm
based on the depth-first search (DFS) algorithm to tag each
node in the instance graph as either possessing high probability
itself, or having both an ancestor and a descendant with high
probabilities. The tagged nodes are the ones that actually
propagate the infection through the network, and thus should
be preserved in the final graph. Our system allows a probability
threshold to be tuned for recognizing high-probability nodes.
For example, if the threshold is set at 80%, only instances
that have the infection probabilities of 80% or higher will be
recognized as the high-probability nodes.

V. IMPLEMENTATION

The whole system includes online system call auditing and
off-line data analysis. System call auditing is implemented with
a loadable kernel module. For the off-line data analysis, our
prototype is implemented with approximately 2915 lines of
gawk code that constructs a .net file for the instance-graph-
based BN and a dot-compatible file for visualizing the zero-
day attack paths in Graphviz [21], and 145 lines of Java code
for probability inference, leveraging the API provided by the
BN tool Samlam [20].

An instance graph can be very large due to the introduction
of instances. Therefore, in addition to system call filtering, we
also develop several ways to prune that instance graphs while
not impede reflecting the major infection propagation process.

One helpful way is to ignore the repeated dependencies. It
is common that the same dependency may happen between two
system objects for a number of times, even through different
system call operations. For example, process A may write
file 1 for several times. In such cases, each time the write
operation occurs, a new instance of file I is created and a
new dependency is added between the most recent instance
of process A and the new instance of file I. If the status of
process A is not affected by any other system objects during
this time period, the infection status of file I will not change
neither. Hence the new instances of file I and the related new
dependencies become redundant information in understanding
the infection propagation. Therefore, a repeated src—sink
dependency can be ignored if the src object is not influenced
by other objects since the last time that the same src—sink
dependency appeared.

Another way to prune an instance graph is to ignore the
root instances whose original objects have never appear as the
sink object in a src—sink dependency during the time period
of being analyzed. For instance, file 3 in Figure 3 only appears

as the src object in the dependencies parsed from the system
call log in Figure 1a, so file 3 instance 1 can be ignored in the
simplified instance graph. Such instances are not influenced
by other objects in the specified time window, and thus are
not manipulated by attackers, neither. Hence ignoring these
root instances does not break any routes of intrusion sequence
and will not hinder the understanding of infection propagation.
This method is helpful for situations such as a process reading
a large number of configuration or header files.

A third way is to ignore some repeated mutual depen-
dencies, in which two objects will keep affecting each other
through creating new instances. One situation is that a process
can frequently send and receive messages from a socket. For
example, in one of our experiments, 107 new instances are
created respectively for the process (pid:6706, pcmd:sshd) and
the socket (ip:192.168.101.5, port: 22) due to their interaction.
Since no other objects are involved during this procedure, the
infection status of these two objects will keep the same through
all the new instances. Thus a simplified instance graph can
preserve the very first and last dependencies while neglect the
middle ones. Another situation is that a process can frequently
take input from a file and then write the output to it again after
some operations. The middle repeated mutual dependencies
could also be ignored in a similar way.

VI. EXPERIMENTS
A. Attack Scenario

To demonstrate the merits of our system and compare
experiment results with Patrol [10], we implemented a similar
attack scenario as in Patrol. We built a test-bed network and
launched a three-step attack towards it. Figure 7 illustrates
the attack scenario. Step 1, the attacker exploits vulnerability
CVE-2008-0166 [12] to gain root privilege on SSH Server
through a brute-force key guessing attack. Step 2, since the
export table on NFS Server is not set up appropriately, the
attacker can upload a malicious executable file to a public
directory on NFS. The malicious file contains a Trojan-horse
that can exploit a vulnerability on a specific workstation. The
public directory is shared among all the hosts in the test-bed
network so that a workstation may access and download this
malicious file. Step 3, once the malicious file is mounted and
installed on the workstation, the attacker is able to execute
arbitrary code on workstation. To verify the effectiveness of
our approach, we conducted two major sets of experiments by
providing different vulnerabilities in step 3. Due to space con-
straint, we only present the results for one set of experiment.
In this experiment, the malicious file contains a Trojan-horse
that exploits CVE-2009-2692 [11] existing in the Linux kernel
of workstation 3.

Attacker SSH Server

Databasg Server Workstation 1 Workstation 2

6 A . 5
Bruteforce key guessing NFS mount

DMZ Firewall

Internet

O

Other users in wild

25

Web Server Email Server

Intranet Firewall

&

Inside Firewall

\ / I .
Trojan horse download

— 3
R RN

NFS Server Workstation 3 Workstation 4

Figure 7: Attack scenario.

Since zero-day exploits are not readily available, we em-
ulate zero-day vulnerabilities with known vulnerabilities. For
example, we treat CVE-2009-2692 as zero-day vulnerabilities
by assuming the current time is Dec 31, 2008. In addition, the
configuration error on NES is also viewed as a special type of
unknown vulnerability because it is ruled out by vulnerability
scanners like Nessus. The strategy of emulation also brings
another benefit. The information for these “known zero-day”
vulnerabilities can be available to verify the correctness of our
experiment results.

To capture the intrusion evidence for subsequent BN prob-
ability inference, we deployed security sensors in the test-bed,
such as firewalls, Snort, Tripwire, Wireshark, Ntop and Nessus.
For sensors that need configuration, we tailored their rules or
policy files to match our hosts.

B. Experiment Results

While simultaneously logging the system calls on each host
and collecting the security alerts, we conducted the described
three-step attacks. After analyzing a total number of 143120
system calls generated by three hosts, we constructed an
instance-graph-based BN with 1853 nodes and 2249 edges.

Correctness. Given the evidence, Figure 8 illustrates the
identified zero-day attack path in the form of instance graphs.
The processes, files, and sockets are denoted with rectangles,
ellipses, and diamonds respectively. The intrinsic infection rate
p is set as 0.0001, and the probability threshold of recognizing
high-probability nodes is 80%. The contact infection rates 7
is respectively 0.9. We mark the evidence with red color and
the nodes that are verified to be malicious with grey color.
Figure 8 shows how the malicious file is uploaded from SSH
server to NSF server, and then gets executed on workstation
3. Therefore, Figure 8 has testified the effectiveness of our
approach for revealing actual zero-day attack paths.

It is worth noting that although no evidence is provided on
NFS Server, but the identified attack path can still demon-
strate how NFS Server contributes to the overall intrusion
propagation: the file workstation_attack.tar.gz is uploaded from
SSH Server to the /exports directory on NFS Server, and then
downloaded to /mnt on workstation 3. More importantly, the
identified path can expose key objects that are related to the
exploits of zero-day vulnerabilities. For example, the identified
system objects on NFS Server can alert system admins for
possible configuration errors because SSH Server should not
have the privilege of writing to the /exports directory. As
another example, the object PAGEQ: memory(0-4096) on work-
station 3 is also exposed as highly suspicious on the identified

Table I: The Collected Evidence

ID Host

El SSH Server
E2 Workstation 3
E3 Workstation 3
E4 Workstation 3

Evidence

Snort messages “potential SSH brute force attack”
Tripwire reports “/virus is added”

Tripwire reports “/etc/passwd is modified”
Tripwire reports “/etc/shadow is modified”

attack path. Page-zero is actually what triggers the null pointer
dereference and enables attackers gain privilege on workstation
3. Exposing the page-zero object can help system admins to
further diagnose how the intrusion happens and propagates.

Size of Instance Graph and Zero-day Attack Paths. We
also evaluated the size of instance graphs and the effective-
ness of our pruning techniques for reducing the number of
instances. Table II summarizes the impact of pruning instance
graphs for each host. It shows that the number of instances
is reduced from 39840 to 1853. On average each object has
2.03 instances, which is quite acceptable. To further gain the
object-level comprehension of zero-day attack paths, ZePro
also supports converting instance graphs to system object
dependency graph by merging all the instances belonging to
the same object into one node. Zero-day attack paths in SODG
contain only objects and can be used for verification when
details regarding instances are not needed. Figure 9 is the
SODG form of zero-day attack paths for Figure 8.

The experiment results have demonstrated that our sys-
tem ZePro substantially outperforms Patrol. Without any pre-
knowledge towards known vulnerability exploits and OS-level
exploitation features (which are mandatory information for
Patrol to work), Zepro generates much better results than
Patrol. In our experiment, the zero-day attack path identified
by Patrol contains 175 objects, while the path by our system is
composed of only 77 objects (Figure 9). Considering that the
total number of objects involved in original instance graph is
only 913, the 56% reduction of path size is substantial. More
importantly, when the extensive pre-knowledge is not available
(which is usual), ZePro remains as effective, but Patrol will
result in a large number of suspicious intrusion propagation
paths and is incapable of recognizing real attack paths hiding
in these candidates. For example, in Patrol’s dataset where
SSH server takes a workload of 1 request per 5 seconds, a
15-minute system call log generates 180 candidate paths that
tangle with the real zero-day attack paths.

Influence of Evidence. In our experiment, we choose a
number of nodes in Figure 8 as the representative interested
instances. Table IIT shows how the infection probabilities of
these instances change after each piece of evidence is fed
into BN. We assume the evidence is observed in the order
of attack sequence. In Table III, the results show that when

Server

ST

0||||0'“°|e a'
”"":mlll‘olwl ‘L

SSH Server

I

kmuuuu” ,nnmm:.

Workstation 3

Cae—s==r—

!IMM’:%:IIIIIIIIIIIIIIIIIIIII g |

Figure 8: The zero-day attack path in the form of an instance graph.

SSH Server

S Server

I e i] [o] [momrem] [ommre

‘Workstation 3
Figure 9: The object-level zero-day attack path.

no evidence is available, the infection probabilities for all
nodes are very low. When EI is added, only a few instances
on SSH Server receive probabilities higher than 60%. After
E2 is observed, the infection probabilities for instances on
Workstation 3 increase, but still not much. As E3 and E4 arrive,
5 of the 9 representative instances on all three hosts become
highly suspicious. Therefore, the evidence makes the instances
on the actual attack paths emerge gradually from the “sea” of
instances in the graph. It is also possible that the arrival of
some evidence may decrease probabilities of certain instances,
so that these instances will get removed from the final path. In
a word, as more evidence is collected, the revealed zero-day
attack paths become closer to the actual fact.

Influence of False Alerts. We assume that E4 is a false
alarm generated by Tripwire and evaluate its influence to the
BN output. Table IV shows that when only one piece of
evidence exists, the observation of E4 will at least greatly
influence the probabilities of some instances on Workstation

3. However, when other evidence is fed into BN, the influence
of E4 decreases. For instance, given just El, the infection
probability of 2006.2 is 97.78% when E4 is true, but should
be 29.96% if E4 is a false alert. Nonetheless, if all other
evidence is already input into BN, the infection probability of
22006.2 only changes from 81.13% to 81.3% if E4 becomes a
false alert. Therefore, the impact of false alerts can be reduced
as more evidence is collected.

Sensitivity Analysis and Influence of 7 and p. We also
performed sensitivity analysis and evaluated the impact of the
contact infection rate 7 and the intrinsic infection rate p by
tuning these numbers. p is usually set at a very low value,
so our experiment results are not very sensitive to the value
of p. Since 7 decides how likely sink; get infected given
src; is infected in a src;—sink; dependency, the value of
will definitely influence the probabilities produced by BN. If
a node is marked as infected, other nodes that are directly or
indirectly connected to this node should expect higher infection

Table II: The Impact of Pruning the Instance Graphs

SSH Server NFS Server Workstation 3
before | affer before | after before | after
number of syscalls in raw data trace 82133 14944 46043
size of raw data trace (MB) 13.8 2.3 7.9
number of extracted object dependencies 10310 11535 17516
number of objects 349 20 544
number of instances(nodes) in instance graph 10447 745 11544 39 17849 1069
number of dependencies(edges) in instance graph 20186 968 19863 37 34549 1244
number of contact dependencies 9888 372 8329 8 17033 508
number of state transition dependencies 10298 596 11534 29 17516 736
average time for graph generation(s) 14 11 6 5 13 11
.net file size(KB) 2000 123 2200 8 3600 180
Table III: The Influence of Evidence
Evidence SSH Server NFS Server Workstation 3
x4.1 x10.1 x253.3 x1007.1 x1017.1 x2006.2 x2083.1 x2108.1 x2311.32
No Evi. 0.56% 0.51% 0.57% 0.51% 0.54% 0.54% 0.51% 0.51% 1.21%
El 63.76% 57.38% 79.13% 57.38% 46.54% 41.92% 37.75% 24.89% 26.93%
E2 63.76% 57.38% 79.13% 57.38% 46.94% 42.58% 38.34% 27.04% 30.09%
E3 86.82% 78.14% 80.76% 84.50% 75.63% 81.26% 79.56% 75.56% 81.55%
E4 86.84% 78.16% 80.77% 84.53% 75.65% 81.3% 79.59% 75.60% 81.66%
Table IV: The Influence of False Alerts
Evidence x4.1 x10.1 x253.3 x1007.1 x1017.1 ~ x2006.2 x2083.1 x2108.1 x2311.32
Only EI E4=True 98.46% 88.62% 81.59% 98.20% 88.30% 97.78% 97.67% 90.23% 94.44%
E4=False | 56.33% 50.70% 78.60% 48.65% 37.60% 29.96% 24.92% 10.89% 12.48%
All Evidence E4=True 86.84% 78.16% 80.77% 84.53% 75.65% 81.3% 79.59% 75.60% 81.66%
E4=False | 86.74% 78.06% 80.76% 84.41% 75.54% 81.13% 79.42% 75.39% 81.38%

probabilities when 7 is bigger. Our experiments show that
adjusting 7 within a small range (e.g. changing from 0.9 to 0.8)
does not influence the output probabilities much, but a major
adjustment of 7 (e.g. changing it from 0.9 to 0.5) can largely
affect the probabilities. However, we still argue that although
7 influences the produced infection probabilities, it will not
greatly affect the identification of zero-day attack paths. Our
rationale is that the probability threshold of recognizing high-
probability nodes for zero-day attack paths can be adjusted
according to the value of 7. For example, when 7 is a small
number such as 50%, even nodes that have low infection
probabilities of around 40% to 60% should be considered as
highly suspicious because it is hard for an instance to get
infected with such a low contact infection rate.

Complexity and Scalability. We evaluated the time cost
for off-line data analysis, which includes the time for instance-
graph-based BN generation, BN probability inference and
zero-day attack path identification. The time cost for probabil-
ity inference depends on the algorithm employed in Samlam.
The time complexity can be O(]V|?) for both instance-graph-
based BN generation and zero-day attack path identification,
because the DFS algorithm is applied towards every node
in the instance graph. For our experiments that conduct the
off-line analysis on a host with 2.4 GHz Intel Core 2 Duo
processor and 4G RAM, Table II shows the time required
for constructing the instance-graph-based BN for each host,
so the total time of BN construction comes to around 27
seconds. For a BN with approximately 1854 nodes, assuming
that the evidence is already fed into BN and the algorithm
used is recursive conditioning, the average time cost is 1.57
seconds for BN compilation and probability inference, and
59 seconds for zero-day attack path identification. Combining
all the time required, the average data analysis speed is 280

KB/s, which is quite reasonable. The average memory used for
compiling the BN is 4.32 Mb. As for the run-time performance
overhead, the overall system slow-down caused by the system
call logging component is around 15% to 20% according to
the measurement with UnixBench and kernel compilation.

The scalability of the approach proposed in this paper can
be ensured by the following aspects. First, the time window
of collecting system call logs for analysis can be adjusted. For
example, individual systems can collect system calls and send
the logs to central machine for analysis every 30 or 40 minutes.
In our experiments, a 40-minute system call log generates a
BN with 1854 nodes. Smaller time window usually generates
smaller BN size, but not always. The BN size mainly depends
on the actual behavior of system call logs and cannot be
estimated in a determined way. Second, although an enterprise
network may contain a large number of hosts, the instance
graphs generated by the individual hosts are not necessarily
connected to each other. An actual network-wide instance
graph often contains one or several isolated instance graphs.
This also limits the size of individual BNs. Third, both instance
graph generation and zero-day attack path identification can be
conducted with parallel computing. Taking the current exper-
iment results for estimation, if an enterprise network contains
10000 hosts and an analysis cluster with 512 processors,
the time for instance graph generation and zero-day attack
path identification could be 2.93 minutes and 6.3 minutes
respectively. In addition, intensive research has been conducted
towards the scalability of BN compilation and probability
inference [23], [24]. A scalable parallel implementation using
junction tree has been developed for exact inference in BN
[24]. The recursive conditioning [25] algorithm we employed
in this paper even offers a smooth tradeoff between time and
space, which also enhances the scalability of BN inference.

VII. RELATED WORK

The work that is most related to us is Patrol [10]. It touches
the zero-day attack path problem at operating system level.
Our work also targets the same problem, but is substantially
different from Patrol in several aspects. First, Patrol relies
on extensive pre-knowledge regarding known vulnerability
exploitations to distinguish zero-day attack paths from the huge
number of candidate paths. However, such pre-knowledge is
extremely difficult to acquire and may not be useful when
zero-day exploits do not share common features with previous
exploits at OS-level. Instead, our approach does not require
any pre-knowledge, and solely rely on collected intrusion
evidence. Second, Patrol only conducts qualitative analysis and
treats every object on the identified paths as having the same
malicious status. Compared to Patrol, our approach quantifies
the infection status of each system object with probabilities.
By only focusing on system objects with relatively high
probabilities, the set of suspicious objects can be significantly
narrowed down and the size of revealed zero-day attack path
is relatively small. Third, Patrol performs reachability analysis
through tracking and thus generates a huge candidate pool
for zero-day attack paths. In contrast, our system does not
conduct tracking, but relies on the computed probabilities. The
paths containing highly suspicious objects reveal themselves
automatically. The dependency paths introduced by legitimate
activities and the dependency paths introduced by zero-day
attacks are therefore separated with ease.

Other related work includes system call dependency track-
ing and zero-day attack identification. System call dependency
tracking is first proposed in [14] to help the understanding
of intrusion sequence. It is then applied for alert correlation
in [4], [5]. Instead of directly correlating these alerts, our
system takes the alerts as evidence and quantitatively computes
the infection probabilities of system objects. [22] conducts an
empirical study to reveal the zero-day attacks by identifying the
executable files that are linked to exploits of known vulnerabil-
ities. A zero-day attack is identified if a malicious executable
is found before the corresponding vulnerability is disclosed.
Attack graphs have been employed to measure the security
risks caused by zero-day attacks [17], [18]. Nevertheless,
the metric simply counts the number of required unknown
vulnerabilities for compromising an asset, rather than detects
the actually occurred zero-day exploits. Our system takes an
approach that is quite different from the above work.

VIII. LIMITATION AND CONCLUSION

The current system still has some limitations. For example,
when some attack activities evade the system calls (it’s diffi-
cult, but possible), or the attack time span is much longer than
the analyzed time period, the constructed instance graphs may
not reflect the complete zero-day attack paths. In such cases,
our system can only reveal parts of the paths.

In conclusion, this paper proposes to use Bayesian net-
works to identify the zero-day attack paths. For this purpose,
an object instance graph is built to serve as the basis of
Bayesian networks. By incorporating the intrusion evidence
and computing the probabilities of objects being infected, the
implemented system ZePro can successfully reveal the zero-
day attack paths.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their valuable
comments. We also thank Dr. Adnan Darwiche for publicly
sharing Samlam and Arthur Choi for the help in Samlam
Usage. This work was supported by ARO W911NF-15-1-0576,
ARO WI11NF-13-1-0421 (MURI), CNS-1422594, and NIETP
CAE Cybersecurity Grant.

DISCLAIMER
This paper is not subject to copyright in the United States.
Commercial products are identified in order to adequately
specify certain procedures. In no case does such identifica-
tion imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that
the identified products are necessarily the best available for the

purpose.
REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Computing Surveys (CSUR), 2009.

[2] C. Kruegel, D. Mutz, E. Valeur, and G. Vigna. On the detection of
anomalous system call arguments. ESORICS, 2003.

[3] S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly detection.
IEEE S&P, 2006.

[4] S.T. King, Z. M. Mao, D. G. Lucchetti, P. M. Chen. Enriching intrusion
alerts through multi-host causality. NDSS, 2005.

[5] Y. Zhai, P. Ning, J. Xu. Integrating IDS alert correlation and OS-Level
dependency tracking. 1EEE Intelligence and Security Informatics, 2006.

[6] S. Jajodia, S. Noel, and B. O’Berry. Topological analysis of network
attack vulnerability. Managing Cyber Threats, 2005.

[71 P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based
network vulnerability analysis. ACM CCS, 2002.

[8] X. Ou, W. F. Boyer, and M. A. McQueen. A scalable approach to attack
graph generation. ACM CCS, 2006.

[9] X. Ou, S. Govindavajhala, and A. W. Appel. MulVAL: A Logic-based
Network Security Analyzer. USENIX security, 2005.

[10] J. Dai, X. Sun, and P. Liu. Patrol: Revealing zero-day attack paths
through network-wide system object dependencies. ESORICS, 2013.

[11] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2692

[12] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166

[13] Symantec Report. http://www.symantec.com/content/en/us/enterprise/
other_resources/b-istr_main_report_v19_21291018.en-us.pdf

[14] S. T. King, and P. M. Chen. Backtracking intrusions. ACM SIGOPS,
2003.

[15] X. Xiong, X. Jia, and P. Liu. Shelf: Preserving business continuity and
availability in an intrusion recovery system. ACSAC, 2009.

[16] Nessus. http://www.tenable.com/products/nessus-vulnerability-scanner.

[17] L. Wang, S. Jajodia, A. Singhal, S. Noel. k-zero day safety: Measuring
the security risk of networks against unknown attacks. ESORICS, 2010.

[18] M. Albanese, S. Jajodia, A. Singhal, L. Wang. An Efficient Approach
to Assessing the Risk of Zero-Day Vulnerabilities. SECRYPT, 2013.

[19] P. Xie, J. H. Li, X. Ou, P. Liu, and R. Levy. Using Bayesian networks
for cyber security analysis. DSN, 2010.

[20] Samlam. http://reasoning.cs.ucla.edu/samiam/.

[21] GraphViz. http://www.graphviz.org/.

[22] L. Bilge, and T. Dumitras. Before we knew it: an empirical study of
zero-day attacks in the real world. ACM CCS, 2012.

[23] Ole J. Mengshoel. Understanding the scalability of Bayesian network
inference using clique tree growth curves. Artificial Intelligence 174.12
(2010): 984-1006.

[24] V. Krishna Namasivayam, V. K. Prasanna. Scalable parallel implemen-
tation of exact inference in Bayesian networks. ICPADS, 2006.

[25] Adnan Darwiche. Recursive conditioning. Artificial Intelligence 126. 1
(2001): 5-41.

