
Chapter 1

A LOGIC-BASED NETWORK FORENSICS
MODEL FOR EVIDENCE ANALYSIS

Changwei Liu, Anoop Singhal and Duminda Wijesekera

Abstract Modern-day attackers tend to use sophisticated multi-stage/multi-host
attack techniques and anti-forensics tools to cover their attack traces.
Due to the limitations of current intrusion detection and forensic anal
ysis tools, reconstructing attack scenarios from evidence left behind by
the attackers of an enterprise system is challenging. In particular, re
constructing attack scenarios by using intrusion detection system (IDS)
alerts and system logs that have too many false positives is a big chal
lenge.

In this paper, we present a model and an accompanying software
tool that systematically addresses how to resolve the above problems to
reconstruct attack scenarios that could stand up in court. These prob
lems include a large amount of data including non-relevant data, missing
evidence and incomplete evidence destroyed by using anti-forensic tech
niques. Our system is based on a Prolog system using known vulnera
bility databases and an anti-forensic database that we plan to extend to
a standardized database like the existing NIST National Vulnerability
Database (NVD).

In this model, we use different methods, including mapping the evi
dence to system vulnerabilities, inductive reasoning and abductive rea
soning, to reconstruct attack scenarios. The goal of this work is to
reduce the security investigators’ time and effort in reaching definite
conclusion about how an attack occurred. Our results indicate that
such a reasoning system can be useful for network forensics analysis.

Keywords:	 Network forensics, cybercrime, digital evidence, Prolog reasoning, net
work attack scenario, evidence graph, admissibility

2

1. Introduction

Network forensics is the science that deals with the capture, recording
and analysis of network events and traffic for detecting intrusions and
investigating them, which involves post mortem investigation of the at
tack and is initiated after the attack has happened. Different stages of
legal proceedings (obtaining a warrant or evidence to the jury) require
constructing an attack scenario from an attacked system. In order to
present the scenario that is best supported by evidence, digital foren
sics investigators analyze all possible attack scenarios reconstructed from
the available evidence, which includes false negatives, or those items of
evidence that are missing or destroyed (in part or as a whole) due to
reasons like (1) the tools used for digital forensics are not able to capture
some attacks, and (2) attackers use anti-forensic techniques to destroy
evidence.

Although using IDS alerts and system logs as forensic evidence has
been contested in courts, they provide the first level of information to
forensics analysts on creating potential attack scenarios [15]. In or
der to reconstruct potential attack scenarios by using evidence such as
IDS alerts, researchers have proposed aggregating redundant alerts by
similarities and correlating them by using pre-defined attack scenarios
to determine multi-step, multi-stage attacks [11, 16]. Currently, this
method is non-automated and rather ad-hoc. As an improvement, Wang
at el. [1] proposed automating the process by using a fuzzy-rule based
hierarchical reasoning framework to correlate alerts using so-called lo
cal rules and group them using so-called global rules. However, this
approach falls apart when evidence is destroyed, and it does not assess
the potential of the evidences admissibility so that the constructed at
tack scenario presented to a judge or jury has legal standing. In order
to resolve these problems, we propose to build a rule-based system to
automate the attack scenario reconstruction process that is cognizant
of the admissibility standards for evidence. Our rule base provides (1)
correlation rules to coalesce security event alerts and system logs, (2)
rules to explain missing or destroyed evidence (with the support of an
anti-forensics database) by using what if scenarios, and (3) rules to judge
some of the acceptability standards of evidence. We show the viability
of our system by building a prototype using Prolog.

1.1	 The Model of Using Evidence from Security
Events for Network Attack Analysis

The paper presented here is based on our preliminary proposed Prolog
reasoning based model described in [2] , which is created by extending

3 Liu, Singhal & Wijesekera

Figure 1. Architecture of MulVAL and Extended Models

an attack graph generation tool MulVAL [10] that is implemented on
XSB Prolog [12].

The architecture of MulVAL and our extended model is illustrated in
Figure 1. The extended modules in this model are shown in gray color,
which include (1) the module “evidence” that uses MITRE’s OVAL
database [9] or expert knowledge (if there is no corresponding entry
in OVAL database) to convert evidence from the attacked network to
corresponding software vulnerability and computer configuration that
MulVAL takes; (2) the modules “anti-forensics” database and “expert
knowledge” database that are integrated into the extended MulVAL to
generate explanations for the missing or destroyed evidence; (3) the mod
ules of “Federal Rules on Evidence” and “Access Control” that are cod
ified to the extended architecture for evidence acceptability judgment.

The rest of the paper is constructed as follows. Section 2 is background
and related work. Section 3 is a motivating network example. Section
4 explains how we use rules to reconstruct an attack scenario from the
obtained evidence. Section 5 discusses our approaches of adding pred
icates and rules to implement the proposed model. Section 6 presents
our experiment result and section 7 concludes the paper.

2. Background and Related Work

2.1 MulVAL, XSB and Logical Attack Graph

MulVAL is a Prolog based system that automatically identifies se
curity vulnerabilities in enterprise networks [7]. Running on XSB Pro
log, MulVAL uses tuples to represent vulnerability information, network
topology and computer configurations to determine if they give rise to

4

Figure 2. an Example Logical Attack Graph

potential attack traces. The graph composed of all attack traces gener
ated by this system is defined as a logical attack graph.

Definition 1 : A = (Nr, Np, Nd, E, L, G) is a logical attack graph,
where Nr, Np and Nd are sets of derivation, primitive and derived fact
nodes, E ⊆ ((Np ∪ Nd) × Nr) ∪ (Nr × Nd), L is a mapping from a node
to its label, and G ⊆ Nd is the final goal of an attacker [4, 7].

Figure 2 shows an example logical attack graph. A primitive fact
node (box) represents specific network configuration or vulnerability in
formation that is corresponding to a host computer. A derivation node
(ellipse) represents a successful application of an interaction rule on input
facts, including primitive facts and prior derived facts. The successful
interaction results in a derived fact node (diamond), which is satisfied
by the input facts.

2.2 Evidence Graph

Different from an attack graph that predicts potential attacks, an
evidence graph is constructed by using evidence, aiming to hold attackers
to their crimes towards an enterprise network.

Definition 2 : An evidence graph is a sextuple G=(Nh, Ne, E , L, Nh -
Attr, Ne-Attr), where Nh and Ne are two sets of disjoint nodes repre
senting a host computer involved in an attack and the related evidence,
E ⊆ (Nh × Ne) ∪ (Ne × Nh), L is mapping from a node to its label,
Nh-Attr and Ne-Attr are attributes of a host node and an evidence node
respectively [3].

The attributes of a host node include “host ID”, “states” and “times
tamps”. The “states” consist of the states before and after a particular
attack step, which can be “source”, “target”, “stepping-stone” or “af
filiated” [3, 4]. The attributes of an evidence node describe the event
initiator, target and its timestamp.

5 Liu, Singhal & Wijesekera

Figure 3. an Experimental Attacked Network

2.3 Related Work

Reasoning has been used to correlate evidence to reconstruct crime
scenarios. In the area of non-digital forensics, researchers use inductive
and abductive reasoning to model potential crime scenarios and correlate
evidence [13]. In the area of digital forensics, paper [1] described a fuzzy-
rule base to correlate attack steps substantiated by aggregated security
event alerts. This schema aggregates security event alerts by checking if
they have the same source-destination pair, belong to the same attack
class and fall within a self-extending time window. A self-extending
time window is elongated to include all alerts within a predefined time
difference to the original event. However, this work did not provide
a good way to resolve the problem when the evidence is missing or
incomplete, nor did it use any standards to determine the acceptability
of evidence. In order to solve these limitations, we proposed to use an
anti-forensics database to implement the expert knowledge, so that it
can help generate hypotheses about the missing or destroyed evidence
to substantiate an expert’s default assumptions [6], and use MITRE’s
OVAL database and corresponding federal rules on digital evidence to
determine the potential acceptability of digital evidence [5]. Some of
the proposed solutions were not implemented, which will be discussed
in this paper.

3. A Network Example

Figure 3 is an example network from [5]. Based on this network, in or
der to explain how to use an anti-forensic database to help find explana
tions on destroyed evidence, we used anti-forensics techniques to remove

6

Table 1. Machine IP Address and Vulnerability

Machine IP Address/Port Vulnerability

Attacker 129.174.124.122

Workstations 129.174.124.184/185/186 HTML Objects Memory Corruption Vulnerability
(CVE-2009-1918)

Webserver1–Product
Web Service

129.174.124.53:8080 SQL Injection (CWE89)

Webserver2–Portal
Web Service

129.174.124.53:80 SQL Injection (CWE89)

Administrator 129.174.124.137 Cross Site Scripting Flaw (XSS)

Database server 129.174.124.35

Table 2. Formalized Evidence of the Alerts and Log from Figure 3

Timestamp Source IP Destination IP Content Vulnerability

08\13-12:26:10 129.174.124 .122:4444 129.174.124. 184:4040 SHELLCODE x86 inc ebx CVE-2009
NOOP 1918

08\13-12:27:37 129.174.124 .122:4444 129.174.124. 184:4040 SHELLCODE x86 inc ebx CVE-2009
NOOP 1918

08\13-14:37:27 129.174.124 .122:1715 129.174.124. 53:80 SQL Injection Attempt CWE89

08\13-16:19:56 129.174.124 .122:49381 129.174.124. 137:8080 Cross Site Scripting XSS

08\13-14:37:29 129.174.124 .53 129.174.124. 35 name=’Alice’ AND pass CWE89
word=’alice’ or ’1’=’1’

...

some evidence. Table 1 shows the machine IP address and vulnerability
information. By exploiting vulnerabilities listed in Table 1, the attacker
was able to successfully launch the following attacks: (1) compromis
ing a workstation (CVE-2009-1918) to access the database server, (2)
using the vulnerability on the product web application (SWE89) to at
tack the database server, and (3) exploiting a cross-site scripting (XSS)
vulnerability on a chatting forum hosted by the portal web service to
steal the administrator’s session ID so that the attacker can send out
phishing emails to the clients, tricking them to update their confidential
information.

In this experimental network, the installed intrusion detection sys
tem, configured webserver and database server were able to detect some
attacks and log malicious accesses, which, however, had false positives
(e.g., the attack attempts that were not successful). Besides, because
SNORT used for IDS did not have corresponding rules or the actual at
tack activities looked benign, some attacks might not be caught by the
IDS, and therefore did not log any IDS alerts as evidence. Two such
examples are: (1) the phishing URLs the attacker sent to the clients

7 Liu, Singhal & Wijesekera

for confidential information updating could not be caught; (2) the at
tacker’s accessing the database server from the compromised workstation
was thought benign. In addition, the attacker compromised the worksta
tion and obtained root privilege, which enabled him to use anti-forensic
techniques to delete the evidence left on the workstation. Under these
conditions where evidence is missing or destroyed, we need to find a way
to show how the attack might have happened.

4. Attack Scenarion Reconstruction

4.1 Rules and Facts Used for Reasoning

As stated in Section 1, we used the formalized vulnerability/forensics
database constructed from MITRE’s OVAL [9] to convert IDS alerts and
corresponding system logs to the corresponding vulnerability entries for
an attack scenario reconstruction (expert knowledge is used only when
the corresponding entry cannot be found in OVAL) [2]. Table 2 shows
the converted evidence from our experimental network in Figure 3 , and
Figure 4 are the concrete predicates written from these items of evidence,
corresponding computer configuration and network topology, which will
instantiate the corresponding predicates in reasoning rules during a Mul-
VAL run. In these predicates, (1) Predicate “attackedHost” represents
a destination victim computer; (2) Predicate “hacl” means a host access
control list; (3) Predicate “advances” represents the access rights within
the firewall, which were used by the attacker to reach the next com
puter after the attacker had comprised a computer as stepping-stone;
(4) Predicate “timeOrder” ensures that an attack step’s start time and
end time fell within a reasonable interval; and (5) predicates “vulEx
ists”, “vulProperty” and “networkServiceInfo” as follows represent an
attack step on the target computer(the first term in the predicate of
“networkServiceInfo”).

“vulExists(workStation1, ’CVE-2009-1918’, httpd).
vulProperty(’CVE-2009-1918’, remoteExploit,privEscalation).
networkServiceInfo(workStation1 , httpd, tcp , 80 ,apache).”

Figure 5 shows one of the reasoning rules that describe generic attack
techniques in this logic-based network forensic system. Each rule has
Prolog tuples deriving the post-conditions from the pre-conditions of
an attack step. For example, the rule in Figure 5 represents, if (1) the
attacker has compromised the victim’s computer (Line 3), (2) the victim
has the privilege “Perm” on the host computer “Host”(Line 4), and (3)
the attacker can access the victim’s computer (Line 5), then the evidence
representing the three preconditions as the cause is correlated to the
evidence representing the attacker has obtained the victim’s privilege on

8

/*Final attack victims*/
attackedHost(execCode(admin,)).
attackedHost(execCode(dbServer, ,)).
attackedHost(execCode(admin,)).

/* Network topology and access control policy*/

attackerLocated(internet).

hacl(internet, webServer, tcp, 80).

hacl(webServer, dbServer, tcp, 3660).

hacl(workStation1, dbServer, tcp, 3660).

hacl(workStation2,dbServer,tcp,3660).

hacl(internet, workStation1, ,).

hacl(internet,workStation2, ,).

hacl(internet,admin, ,).

hacl(H,H, ,).

advances(webServer,dbServer).

advances(workStation,dbServer)

/*Timestamps used to find the evidence dependency*/
timeOrder(webServer,dbServer,14.3727,14.3729).
timeOrder(workStation1,dbServer,12.2610,14.3730).

/* Configuration and attack information of workStation1 */
vulExists(workStation1, ’CVE-2009-1918’, httpd).
vulProperty(’CVE-2009-1918’, remoteExploit, privEscalation).
networkServiceInfo(workStation1 , httpd, tcp , 80 , apache).

...

Figure 4. Input Facts in the Form of Predicates Representing Evidence

/**** Interaction Rules *****/
1. interaction rule(
2. (execCode(Host, Perm) :
3. principalCompromised(Victim),
4. hasAccount(Victim, Host, Perm),
5. canAccessHost(Host)),

6. rule desc(’When a principal is compromised any machine he has an account on

will also be compromised’,0.5)).

Figure 5. An Example Reasoning Rule

the host computer (Line 2). Line 1 is a string that uniquely identifies a
rule, and Line 6 is the description of the rule.

4.2 Evidence Graph Generation

Querying the logic-based system that has not been integrated with
any anti-forensic database and evidence acceptability standards gen

Liu, Singhal & Wijesekera 9

1:execCode(admin,apache) 2:RULE 2 (remote exploit of a server pro
gram)

3:netAccess(admin,tcp,80) 4:RULE 7 (direct network access)
5:hacl(internet,admin,tcp,80) 6:attackerLocated(internet)
7:networkServiceInfo(admin,httpd,tcp,
80,apache)

8:vulExists(admin,’XSS’,httpd, remoteEx
ploit,privEscalation)

9:execCode(workStation1,apache) 10:RULE 2 (remote exploit of a server pro
gram)

11:netAccess(workStation1,tcp,80) 12:RULE 7 (direct network access)
13:hacl(internet,workStation1,tcp,80) 14: networkService

Info(workStation1,httpd, tcp,80,apache)
15:vulExists(workStation1,’CVE-2009
1918’, httpd,remoteExploit,privEscalation)

16:execCode(workStation2,apache)

17:RULE 2 (remote exploit of a server pro
gram)

18:netAccess(workStation2,tcp,80)

19:RULE 7 (direct network access) 20:hacl(internet,workStation2,tcp,80)
21:networkServiceInfo(workStation2,httpd,
tcp,80,apache)

22:vulExists(workStation2,’CVE-2009
1918’, httpd,remoteExploit,privEscalation)

23:netAccess(dbServer,tcp,3660) 24: RULE 6 (multi-hop access)
25:hacl(webServer,dbServer,tcp,3660) 26:execCode(webServer,apache)
27:RULE 2 (remote exploit of a server pro
gram)

28:netAccess(webServer,tcp,80)

29:RULE 7 (direct network access) 30:hacl(internet,webServer,tcp,80)
31:networkServiceInfo(webServer,httpd,tcp,
80,apache)

32:vulExists(webServer,’CWE89’,httpd,
remoteExploit,privEscalation)

Figure 6. Experimental Network Attack Scenario Reconstructed from the Alert/Log

10

erates the attack scenario as Figure 6 (The table below describes the
notations of all nodes) with the corresponding evidence (hence an ev
idence graph) in the logical form defined in Definition 1, where all
facts including primary facts(boxes) and derived facts(diamonds) be
fore a derivation node(an ellipse) represent the pre-conditions before
an attack step, and all facts after a derivation node represent post-
conditions after the attack step. Figure 6 shows the four attack paths
constructed by this process: (1) the attacker used a cross-site script
ing attack (XSS) to steal the administrator’s session ID and there
fore obtain the administrator’s privilege (6→ 4 → 3 → 2 → 1); (2)
the attacker used a web application that does not sanitize users’ in
put (CWE89) to launch a SQL injection attack towards the database
(6 → 29 → 28 → 27 → 26 → 24 → 23); (3) the attacker used a
buffer overflow vulnerability (CVE-2009-1918) to compromise worksta
tions (6→ 12 → 11 → 10 → 9 and 6 → 19 → 18 → 17 → 16).

Because corresponding evidence is missing and destroyed, the phishing
attack that has been observed on the clients’ computers and the attack
towards the database server done by using the compromised workstations
were not constructed and shown in Figure 6. Also, because the available
evidence used for attack scenario reconstruction has not been validated
by any standards of acceptability, Figure 6 might not reflect the real
attack scenario, and hence has little impact in a court of law.

5.	 Extending MulVAL for Attack Scenario
Reconstruction

5.1	 Using Anti-forensic Database to Explain
Missing/Destroyed Evidence

We use abductive reasoning and an anti-forensic database in our
Prolog-based framework to explain how a host computer might have
been attacked when the evidence is missing or destroyed [2, 6].

By using abductive reasoning, our extended Prolog logic-based frame
work can provide all potential general explanations about how an at
tacker might have successfully launched a particular attack. For exam
ple, in order to find the explanations on how the database server in
Figure 3 might have been attacked, we constructed a query file as il
lustrated in Figure 7 to query the extended logic-based system to show
all attack steps that would cause “execCode(dbServer,user)” (the at
tack on the database server) as the explanatory hypotheses. In Fig
ure 7, lines 2 to 5 require the system to list all attack steps of “exec
Code(dbServer,user)” and write the results to “queryresult.P” file(line
2 opens output stream for writing to “queryresult.P” and line 5 closes

11 Liu, Singhal & Wijesekera

1. query:
2. tell(’queryresult.P’),
3. writeln(’execCode(dbServer,user):’),
4. listing(execCode(dbServer,user)),
5. told.

Figure 7. Example of Querying the System for Explanatory Hypotheses

Table 3. The Anti-forensic Database

ID Category Tool Technique Windows Linux Privilege Access Software Effect

A1 attack obfuscate all all user remote SNORT bypass
tool signature client detection

D1 destroy BC- delete file 98+ all user local delete
data Wipe content client data per

manently

...

the output stream). The returned query results indicate that three pos
sible hypotheses could cause “execCode(dbServer,user)”. They are (1)
using a compromised computer as the stepping stone, (2) using the vul
nerability of the database access software, and (3) using the legitimate
account in the database server to inject malicious input.

Once all possible hypotheses have been generated, in a subsequent
evaluation process, our extended Prolog logic-based framework uses an
anti-forensic database to decide which explanation could be the best.
Table 3 is the example anti-forensic database constructed in paper [6],
which instantiates our constructed predicate “anti Forensics(Category,
Tool, Technique, Windows, Linux, Privilege, Access, Program, Conse
quence)” as illustrated in Line 1 of Figure 8 so that it can work with the
hypotheses obtained from the corresponding abductive rules to evaluate
if a particular hypothesis could result in the post conditions collected
from an attacked computer when the attack evidence is missing or has
been destroyed.

Line 2 to 11 in Figure 8 are two rules that illustrate using “anti
Forensics(Category, Tool, Technique, Windows, Linux, Privilege, Ac
cess, Program, Consequence)” to evaluate whether the hypothesis that
the attacker has used the vulnerability on the database access software
to attack the database is the best explanation in the experimental net
work. In the first rule (Line 2 to 7), the head “vulHyp(H, vulID,
Software, Range, Consequence)” (the hypothetical vulnerability the at
tacker might have used) is derived from three sets of predicates: (1) the
hypothesis obtained from one of the results of Figure 7(Line 3 to 5),
(2) the “anti-Forensics” predicate in Line 6, where the variable terms

12

1. anti Forensics(Category, Tool, Technique, Windows, Linux, Privilege, Access, Pro
gram, Consequence).

2. vulHyp(H, vulID, Software, Range, Consequence) :
//the following three predicates are from abductive reasoning result
3. vulExists(Host, vulID, Software, Access, Consequence),
4. networkServiceInfo(Host,Software,Protocol,Port,Perm),
5. netAccess(Host,Protocol,Port).
//introduce a hypothetical vulnerability
6. anti Forensics(Category, Tool, Technique, OS, Privilege, Access, Software, Effect).
7. hostConfigure(Host, OS, Software).

8. with hypothesis(vulHyp, Post-Condidtion) :
9. cleanState,
10. assert(vulHyp(H, vulID, Software, Range, Consequence)),
11. post-Condition.

Figure 8. Codifying Anti-forensics Database to Explain Missing/Destroyed Evidence

(“Category”, “Tool”, “Technique”, “Windows”, “Linux”, “Privilege”,
“Access”, “Program”, “Consequence”) will be instantiated by the corre
sponding concrete data from Table 3 during the system run, (3) the con
figuration of the host (in Line 7) where the evidence has been destoryed
by attacker’s using anti-forensic technique. In the second rule (from Line
8 to Line 11), we assert the derived fact “vulHyp(H, vulID, Software,
Range, Consequence)” obtained from the first rule to the logic runtime
database (Line 10), checking whether the asserted hypothetical condition
results in the post conditions(Line 11). The predicate “cleanstate” (Line
9) is used to retract all previous asserted dynamic clauses that might af
fect the asserted “vulHyp(H, vulID, Software, Range, Consequence)”.
Once the asserted “vulHyp” is proved to cause the post conditions, the
hypothesis is evaluated as the potential cause of the attack. Investigators
should perform a further investigation or even simulate the attack for
the purpose of validation, especially when there are different hypotheses
that can explain the same attack.

5.2	 Integrating Evidence Acceptability
Standards

Federal admissibility criteria of evidence place additional constraints
on the data and their handling procedures, which include the chain of
custody issues. Whenever the admissibility of digital evidence is called
into question, the following federal rules are applied: (1) Authenticity
(Rules 901 and 902), (2) Hearsay or not (Rule 801-807), (3) Relevance
(Rule 401), (4) Prejudice (Rule 403), (5) Original writing (Rule 1001

13 Liu, Singhal & Wijesekera

1008)[8], where the most important rule is relevance criterion. Without
considering these constraints, the prosecution runs the risk of evidence
being ruled as insufficient.

In order to ascertain the legal admissibility standards of evidence, we
codified the federal rules into our Prolog logic-based framework [5] to de
termine the admissibility of evidence. The original MulVAL rules only
use positive predicates in order not to increase the complexity of the sys
tem. We extended the system with negation to disqualify unacceptable
evidence for admissibility judgement.

Extended logic programs have two kinds of negations—default nega
tion representing procedural failure to find facts and explicit negation
(classic negation) representing known negative facts [12]. Because a de
fault negated predicate cannot be used as the head of a Prolog rule, we
use default negated predicates (expressed by using “\+” in XSB Prolog)
in the body of a rule to exclude impossible facts, and use an explicit
negated predicate (expressed by using “-” in XSB Prolog) as the head
of a rule to judge if a derived fact representing corresponding evidence
holds. In case the logic program that includes negated predicates in
cluding explicit negated predicates and corresponding rules generates
execution cycles due to negated predicates, we ensure that the program
is stratified [14]. Figure 9 shows an example stratified prolog logic pro
gram, which uses both positive and explicit negated predicates to deter
mine if the attacker can get access to a host computer (i.e., webserver
or workstation in our example) by using the network protocol and ports
shown between Line 9 to Line 12. The conclusion (between Line 13 to
Line 20) shows that the attacker can access the webserver by TCP at
Port 80, but Port 8080. As such, only the evidence based on accessing
webserver by using TCP through Port 80 can be acceptable to construct
attack scenarios.

In addition to using (explicit) negated predicates to exclude unaccept
able evidence, according to the federal rules on digital evidence, we added
rules related to “timestamp”, “relevancy” and “not hearsay” to enhance
the determination of evidence acceptability. Predicate“timeOrder” is
used to verify whether the attack steps are constructed in a chronologi
cal order and the corresponding evidence falls in a reasonable timeframe;
Predicate “vulRelevance” models expert knowledge, bug-report and vul
nerability database to determine if the given evidence is relevant to the
observed attack, and Predicate “notHearsay” is used to ensure that the
evidence resource is not declared “hearsay”(e.x., verbal report is gener
ally not admissible in law). Our paper [5] has a detailed discussion on
relating the federal rules on digital forensics to the extended MulVAL
framework, so we skip the details here.

14

1. nnetAccess(H,Protocol,Port):
2. nattackerLocated(Zone),
3. nhacl(Zone, H, Protocol, Port).

4. -nnetAccess(H, Protocol, Port) :
5. nattackerLocated(Zone),
6. -nhacl(Zone, H, Protocol, Port).

7. nattackerLocated(internet).
8. -nattackerLocated(webServer).
9. nhacl(internet,webServer,tcp,80).
10. nhacl(internet,workstation,tcp,4040).
11. nhacl(internet,workstation,udp,6060).
12. -nhacl(internet,webServer,tcp,8080).

13. | ?- -nnetAccess(webServer,tcp,8080).
14. yes
15. | ?- nnetAccess(webServer,tcp,8080).
16. no
17. | ?- nnetAccess(webServer,tcp,80).
18. yes
19. | ?- -nnetAccess(webServer,tcp,80).
20. no

Figure 9. Example Rule that Uses Explicit Negation

6. Experimental Results

We tested our framework with our experimental evidence data, and
obtained a new evidence graph as shown in Figure 10 with the follow
ing changes. First, the attack path (N ode6 → N ode19 → N ode18 →
N ode17 → N ode16) on “Workstation 2” from Figure 6 has been re
moved, because the evidence is not acceptable as false negatives have
been used (According to MITRE OVAL database, the “Workstation 2”
is a Linux machine that uses Firefox as the web browser, which does
not support a successful attack by using “CVE-2009-1918” that only
succeeds on Windows Internet Explorer). Second, a new attack path
“node1 → node42 → node43” representing that the attacker launched
a phishing attack towards the clients by using the compromised admin
istrators session ID has been added. This is obtained by using abduc
tive reasoning on predicate “exec(client,)” and a further investigation
on the declared “hearsay” (the clients’ phishing reports). Third, an at
tack path between the compromised workstation and the database server
(node27 → node38 → node11) has been added—with the use of an anti-
forensics database, our reasoning system found out that the attacker
used the compromised workstation to get access to the database server.

15 Liu, Singhal & Wijesekera

Figure 10. New Reconstructed Attack Scenarios by Using the Extended MulVAL

The reason why we could not find evidence is because the attacker was
able to remove all evidence by using the escalated root privilege obtained
maliciously.

We realized that the reconstructed attack scenario (given in Figure
10) by using our extended framework is different from the one (given
in Figure 6) that we constructed by using the framework without the
extension discussed in Section 5, showing that the extended framework
can find the missing/destroyed evidence and enhance the acceptability
of the reconstructed attack scenarios.

7. Conclusions and Future Work

We have proposed a network forensics model, which extends a Prolog
logic-based reasoning framework, MulVAL, to automate the causality
correlation between evidence collected from security events in an en
terprise network. In this model, we use different methods, including

16

inductive reasoning, abductive reasoning, working with an anti-forensics
database and legal acceptability standards for evidence to construct an
evidence graph for network forensics analysis. Our extension also ex
cludes evidence such as false positives that are not admissible and pro
vides explanations for the missing or destroyed evidence. In addition,
our framework can automate the process of using evidence that supports
a given level of acceptability standard for attack scenario reconstruc
tion. Our ongoing work is trying to (1) find the best explanation when
there are different explanations towards the same attacked network, (2)
validate our system in realistic attack scenarios, and (3) work with cy
bercrime attorneys to ensure that acceptability determinations can be
useful to them. Also, as the support to this extended network forensic
Prolog-based framework, we plan to work with NIST to standardize the
anti-forensics database.

DISCLAIMER
This paper is not sub ject to copyright in the United States. Com

mercial products are identified in order to adequately specify certain
procedures. In no case does such identification imply recommendation
or endorsement by the National Institute of Standards and Technology,
nor does it imply that the identified products are necessarily the best
available for the purpose.

References

[1] W. Wang, T.E. Daniels, A graph based approach towards network
forensics analysis, ACM Transactions on Information and System
Security (TISSEC), 12 (1), Oct 2008.

[2] C. Liu, A. Singhal and D. Wijesekera, A Model Towards Using
Evidence From Security Events For Network Attack Analysis, 11th
International Workshop on Security in Information Systems, April
2014.

[3] C. Liu, A. Singhal, D. Wijesekera, Mapping Evidence Graphs to At
tack Graphs, IEEE International Workshop on Information Foren
sics and Security, Dec 2012.

[4] C. Liu, A. Singhal, and D. Wijesekera, Creating Integrated Evidence
Graphs for Network Forensics, IFIP Int. Conf. Digital Forensics
2013: 227-241.

[5] C.	 Liu, A. Singhal, and D. Wijesekera, Relating Admissibility
Standards for Digital Evidence to Attack Scenario Reconstruction,
JDFSL 9(2): 181-196 (2014).

17 Liu, Singhal & Wijesekera

[6] C. Liu, A. Singhal, and D. Wijesekera, Using attack graphs in foren
sic examinations, in Proceedings of the 7th International Conference
on Availability, Reliability and Security (ARES ’12), pp. 596603,
IEEE, Prague, Czech Republic, August 2012.

[7] X. Ou, W. Boyer and M. McQueen, A scalable approach to attack
graph generation, Proceedings of the Thirteenth ACM Conference
on Computer and Communications Security, pp. 336345, 2006.

[8] Federal	 Rules of Evidence, Dec 1, 2010. Retrieved from
http://www.uscourts.gov/uscourts/rulesandpolicies/rules/2010

[9] MITRE	 Open Vulnerability and Assessment Language-A
Community-Developed Language for Determining Vulnerabil
ity and Configuration Issues on Computer Systems, retrieved from
https://oval.mitre.org/.

[10] MulVAL: A logic-based	 enterprise network security analyzer, re
trieved from http://www.arguslab.org/mulval.html.

[11] O. Dain,R. Cunningham, Building scenarios from a heterogeneous
alert stream, In Proceedings of the 2001 IEEE Workshop on Infor
mation Assurance and Security, pages 231-235, June 2001.

[12] David S. Warren	 et al. The XSB system version 3.1 volume 1:
Programmer’s manual. Technical Report Version released on Au
gust, 30, Stony Brook University, USA, 2007. (Available from URL:
http://xsb.sourceforge.net/).

[13] J. Keppens and J. Zeleznikow, A model based reasoning approach
for generating plausible crime scenarios from evidence, In Proceed
ings of the 9th International Conference on Artificial Intelligence
and Law (2003).

[14] M. Fitting, M. Ben-Jacob, Stratified and Three-Valued Logic Pro
gramming Semantics, Proceedings of the 5th International Confer
ence and Symposium on Logic Programming (1988), pp. 10541069.

[15] Sommer, P.	 (2003), Intrusion Detection Systems as Evidence, In
Recent Advances in Intrusion detection 1998(RAID98), 1998.

[16] H.	 Debar, A. Wespi, Aggregation and correlation of intrusion-
detection alerts, In Recent Advances in Intrusion Detection 2001,
LNCS 2212, pages 85103, 2001.

http:http://xsb.sourceforge.net
http://www.arguslab.org/mulval.html
http:https://oval.mitre.org
http://www.uscourts.gov/uscourts/rulesandpolicies/rules/2010

