
Simulation-based Approaches to Studying Effectiveness of

Moving-Target Network Defense

Rui Zhuang1, Su Zhang1, Scott A. DeLoach1, Xinming Ou1, and Anoop Singhal2

1Kansas State University
1{zrui,zhangs84,sdeloach,xou}@ksu.edu

2National Institute of Standards and Technology
2psinghal@nist.gov

Abstract
Moving-target defense has been hypothesized

as a potential game changer in cyber defense, in
cluding that for computer networks. However there
has been little work to study how much proac
tively changing a network’s configuration can in
crease the difficulty for attackers and thus improve
the resilience of the system under attack. In this pa
per we present a basic design schema of a moving-
target network defense system. Based on this design
schema, we conducted a simulation-based study to
investigate the degree to which proactively chang
ing a network’s various parameters can decrease an
adversary’s chance for success. We believe this is
an important first step towards understanding why
and how the concept of a moving target can be suc
cessfully applied to computer network defenses.

1 Introduction
In cyber space, attackers have an asymmet

ric advantage in that they have time to study our
networks to determine potential vulnerabilities and
choose the time of attack and gain the maximum
benefit. Additionally, once an attacker acquires a
privilege, that privilege can be maintained for a long
time without being detected [5]. The static nature of
current network configuration approaches has made
it easy to attack and breach a system and to main
tain illegal access privileges for extended periods of
time. Thus, a promising new approach to network

security has been suggested called the moving target
defense (MTD) [1]. While there are many facets of
MTD, for computer networks, one can broadly in
terpret MTD as the fact that the network constantly
changes to reduce/shift the attack surface area avail
able for exploitation by attackers. Here, the attack
surface consists of the system resources exposed to
attackers (e.g. the software residing on the hosts,
the ports open to communicate between hosts, and
vulnerabilities in the various components) as well
as compromised network resources that can be used
to further penetrate the system. While promising,
there is little research to show that MTDs can work
effectively in realistic networked systems. In fact,
the approach is so new that there is no standard def
inition of what an MTD is in the context of network
defense, what is meant by attack surface, or metrics
to define the effectiveness of such systems.

We believe a set of objective analytical mod
els should exist to predict the effectiveness of MTD
systems to protect computer networks. Ideally,
these analytical models would be useful at both de
sign time and runtime. As inputs to the models,
a set of objective metrics are required that capture
specific information related to the exploitable fea
tures of the system. The metrics must capture (1)
the area that an attacker must search to determine
the configuration of the system, (2) the modifiable
aspects of the system, and (3) what is changing in
the system configuration and how fast the configu

1

mailto:2psinghal@nist.gov
mailto:1{zrui,zhangs84,sdeloach,xou}@ksu.edu

ration is changing. While the metrics capture what
and how the system is adapting, they should be re
latable to the effort required by an attacker to attack
the system. Based on the configuration of the net
work being defended, the analytical models should
capture the basic steps required to attack the system
and determine the effectiveness of a proposed MTD
system to defeat attacks attempting to exploit both
known as well as unknown vulnerabilities.

In this paper we present our preliminary design
of a network moving-target defense system. Based
on the design schema, we design analytical models
and methods with an eye towards capturing the ef
fectiveness of the proposed MTD system. We then
conduct simulation-based experimentation to exam
ine quantitatively the assumption that the MTD sys
tem can decrease attacker’s success likelihood. We
believe such an analytical step is critical before one
sets out to build a MTD network defense system.
This is just our first step towards understanding and
quantifying the impact of moving target defenses on
computer networks. Our current analytical model
is preliminary and only captures the attacker’s per
spective. A more comprehensive analysis will also
take into account the cost and overhead of deploying
the MTD system on the mission the network sup
ports. We will continue our research into a more
comprehensive understanding and more realistic es
timation of MTD’s effectiveness on computer net
work defense, based on the insights gained from this
initial first step.

2 MTD design principles
An MTD system is generally portrayed as a sys

tem that adapts randomly over time to make the net
work configuration appear chaotic to a potential at
tacker. An architecture of such a system is shown in
Figure 1. Here, an Adaptation Engine orders (what
appears to be) random adaptations to the network
configuration at random intervals. These adapta
tions are carried out by a Configuration Manager
who controls the configuration of the Physical Net
work. However, adaptations that were truly random
in nature could quickly yield the system inopera
ble since services could be assigned to inappropriate

Figure 1: Basic MTD system

hosts or the communications paths required for the
system to work appropriately could be interrupted.
To enable apparently random adaptations work ef
fectively, the underlying MTD system must have
an understanding of the functional and security re
quirements of the system. In our system, this un
derstanding is based on a Logical Mission Model
that reflects the current Physical Network configu
ration as well as the functional and security require
ments of the network. With this information, the
MTD system can make apparently random adapta
tions with an understanding of the requirements of
the system and the current configuration.

An alternative vision for MTD systems com
bines apparently random changes with intelligent
control. In this version, adaptations can be selected
either randomly or based on risk indicators such
as vulnerability scanning results and IDS alerts.
The basic concept combines purely random adapta
tions with fully reactive intrusion response systems,
where all responses are made in terms of adapta
tions. The use of intelligent control techniques al
lows the MTD to react to suspected intrusions in
stead of simply adapting randomly. However, addi
tion of the random adaptations allows the MTD to
effectively mitigate unpredicted attacks as well as
mask the actions of the intelligent control system.
By incorporating reactions into adaptations, the sys
tem can react to suspected intrusions much sooner
than a normal intrusion response system since even
responses to false positives will leave the system
in an operational state with no more overhead ex
pended than for a random adaptation. The basic ar
chitecture of an intelligent MTD system is shown in

2

Logical Security
Model

security state

Logical Mission
Model

. vulnerabilities .

. adaptations .

current statenew state

real time
events configuration

Analysis Engine

Adaption
Engine

Configuration
Manager

. reflection .Physical Network

Figure 2: Intelligent MTD system

Figure 2, which extends the basic MTD system of
Figure 1. Figure 2 adds two new entities and ex
tends the function of the existing entities. The ba
sic operation of the random adaptation remains the
same. However, we have added an Analysis Engine
that takes real-time events from the Physical Net
work and the current configuration from the Config
uration Manager to determine possible vulnerabili
ties and on-going attacks. The Adaptation Engine
now looks at the network’s current state along with
the security state to determine if there is a security
issue that needs to be addressed via a system adap
tation. If so, a set of adaptations dealing with the
security issue is sent to the configuration manager
in addition to other random adaptations.

Adapting a network’s configuration will impact
attack success for two main reasons: 1) the attacker
needs to spend more time canvassing the network
in order to identify topological information (both
physical and logical) that will be useful in further
attacks, and 2) the attacker cannot keep privileges
gained for long and will have to frequently regain
privileges. However, these reasons for success also
imply two inherent challenges for an MTD sys
tem. First, the MTD system must provide legiti
mate users and applications with a way of locat
ing required resources in the midst of the adapta
tions. However, once a user account or application
is compromised, the attacker would gain this abil
ity to locate resources, thus limiting the effective
ness of MTD systems. To address this challenge,
the MTD system must limit the damage incurred by

a compromised system component by limiting the
knowledge the component has regarding the adapta
tion process. That is, a compromised user or appli
cation will not give an attacker complete knowledge
of the locations of other resources. Nevertheless,
an MTD will not be invincible simply because it is
moving. An attacker can still incrementally accu
mulate knowledge and privileges as long as he is not
detected. Thus rigorous analysis is needed to under
stand to what extend MTD can reduce the likelihood
an attack can succeed in reaching its goal. The sec
ond challenges is that, while the MTD system can
adapt by moving or “refreshing” an application or
resource (e.g. using a fresh clean virtual machine
(VM) to replace an existing VM), the transition pro
cess will likely disrupt services and introduce a nec
essary overhead cost. Thus, an understanding of
the effect of adaptations on both the system per
formance and security improvement must be under
stood so that appropriate trade-offs can be made.

2.1 Proof-of-concept MTD system
Due to the lack of existing MTD systems to

analyze, we must design a parameterized proof-of
concept MTD as a first step towards understand
ing and validating the technical merits of a MTD
network defense system. While existing research
on adaptive defense systems have focused on mod
ification of single low-level aspects of a network
such as IP addresses, our vision is to develop a
framework in which multiple aspects of the system
can be modified simultaneously. Aspects that we
plan to consider include IP addresses, ports, firewall
settings, host-application assignments, application
types/versions, and protocols. An overview of our
framework is shown in Figure 3, which is similar to
Figure 2 with details added. We illustrate our ap
proach with a simple example that supports a mis
sion planning system as well as allowing users to
access mission related e-mails. The mission plan
ning system accesses three different databases: an
asset database that includes the types and numbers
of assets available to carry out mission planning, a
target database that includes the latest intelligence
on targets of interest, and a geographical database
that includes maps and related geographical infor

3

security state

Conservative Attack Graph

. adaptations .

current state
new state

Random

real time events

configuration

Mission
Goal

Email
Access

Plan
Route

GeoDB

Planner

Mail Server

Assign
Assets

«composition»

Plan Mission

%

%

value

value

Physical
Resources

Roles

Mission Goals

supports

assigned

AssetDB

TargetDB

Select
Target

%

Security
GoalEmail Access

Assurance

AssetDB
Assurance «composition»

Plan Mission
Assurance

%

%

value

value

TargetDB
Assurance

%

AssetDB
Assurance

Internet
Access

Planner
Compromised

GeoDB
Compromised

TargetDB
Compromised

AssetDB
Compromised

Mail Server
Compromised

Logical Mission Model

Logical Security Model

MulVAL/SnIPS

Configuration
Manager

Security Goals

Physical
Network

reflection

Adaptation Engine

Figure 3: Design scheme for a network MTD system

mation about the areas required for planning appro
priate ingress, target attack, and egress routes. We
assume the planner also requires access to e-mail to
coordinate with other organizations and users.

A key concept of our design is the abstract Log
ical Mission Model that captures the network re
sources, the services used, and the dependencies be
tween services that are required to achieve the over
all mission of the network. The Logical Mission
Model is based on DeLoach’s Organizational Model
for Adaptive Computational Systems (OMACS) [7].
OMACS is a model based on human organizations
that allows intelligent reasoning algorithms to as
sign agents to play roles in an organization in or
der to achieve specific organizational goals. Agents
can only be assigned to a role if they possess all
the capabilities required by that role. The OMACS
model is general-purpose and has been successfully
applied to multiagent systems, cooperative robotics,
and distributed sensor networks. In this research,
services are the network “roles” such as the Planner,

AssetDB, TargetDB, and GeoDB. These roles sup
port the main “goals” of the network, which include
allowing users to plan missions (Plan Mission) and
allowing users to access e-mail (Email Access). In
the implementation each role is instantiated on an
physical or virtual host, which equate to OMACS
“agents”. In addition, required network commu
nications between the roles is also specified in the
Logical Mission Model.

The moving-target mechanism is created by re
assigning physical (or virtual) resources (agents)
to various roles as required to support the goals
of the mission goal model. This process is car
ried out by the Adaptation Engine, which can be
based on existing OMACS-based reorganization al
gorithms. These are closely related to traditional al
gorithms for allocating single-agent tasks to single-
task agents, for which efficient suboptimal algo
rithms exist [7, 8, 20]. The Adaptation Engine de
termines an acceptable assignment of roles to phys
ical resources based on the security state or a ran

4

Configuration
Manager

VM

RMS

GeoDB
VM

Planner
VM

Configuration Commands

Application Communications

RMS RMS

AssetDB

VM

Email

RMS

VM

RMS

TargetDB

adaptations

Host 1 Host 2 Host 3

Host 4

Figure 4: Resource Mapping System

dom trigger, role requirements and computational
capabilities required. An acceptable assignment is
a near optimal assignment that is sufficiently differ
ent from the previous set of assignments so as to
ensure the adaptation appears chaotic to an attacker.

2.1.1 Resource Mapping System

The reason for adapting can be either (1) purely
random or (2) based on identification of possible at
tacks or known vulnerabilities by the Analysis En
gine, which produces a Conservative Attack Graph
that indicates such potential threats. A conservative
attack graph’s nodes represent captured assets by at
tackers. Unlike traditional attack graphs, a conser
vative attack graph will err on the security side and
assume there is an attack path between any two as
sets as long as the attacker is able to identify the
target asset from the source asset. Since the sys
tem is constantly adapting, the mapping from a role
to the actual resources used to instantiate the role,
including its IP addresses, is also constantly chang
ing. Thus in general an attacker will not be able
to launch an attack from an asset to any other as
set. However, the assets need to perform their ex
pected functionalities and for this reason they need
to know the assets with which they need to com
municate with (the dotted lines in Figure 4). There
needs to be a mechanism to enable such legitimate
locating of resources. In our design we call it the
Resource Mapping System (RMS).

The purpose of the RMS system is to serve as a
security policy enforcement unit for each role. It is
best implemented as a hardened system component.

As shown in Figure 4, the role of the RMS module
in our MTD design is two-folded:

1. It coordinates with the Configuration Man
ager, which pushes the configuration to var
ious resources. All communication between
system services must go through the RMS so
that communications can be maintained even
as the location of the services change.

2. In an attempt to access and exploit services,
the attacker may either (1) follow the RMS
or (2) try to guess their locations. The
first option forces them to follow a pre
defined pattern that significantly simplifies in
trusion detection and prevention. The sec
ond forces them to repeatedly conduct exten
sive reconnaissance to re-identify service lo
cations, thus increasing the attackers’ effort
and the likelihood of revealing themselves.

We envision that each critical role will be as
signed to a single VM, which will have a dedicated
RMS to handle communication with other critical
roles. Each RMS will only know the locations of
the roles it needs to communicate with as defined
by the communication requirements of its associ
ated role. The RMS could be transparent, working
as an IP-layer proxy, or provide an API for send
ing network packets to abstract resources. In either
case, all communications between mission-critical
roles are controlled by the RMS even as their loca
tions change dynamically.

A drawback to the RMS occurs if attackers com
promise a critical role/VM. In this case other roles
for which the compromised role initiates commu
nications can be easily located and attacked since
the compromised role’s RMS knows their location.
However, the attacker must follow the exact com
munication pattern defined by the role model, thus
dramatically reducing the potential attack surface.
Here, adaptation comes to the rescue. Eventually,
the VM of the compromised role will change and
the attacker will lose any gained privileges. In this
case, even low-confidence alerts could be used to
trigger adaptations. We believe that the RMS sys
tem is best implemented as a thin layer between the

5

virtual machine monitor (VMM) and the VM’s op
erating system, so that a compromised VM cannot
directly corrupt the integrity of the RMS.

The actual reconfiguration of the physical re
sources is carried out via a Configuration Man
ager, which must be highly secure since obtaining
it would enable an attacker to determine the system
configuration quickly at any time. The Configura
tion Manager will work closely with the RMS to
handle the communication among the critical ser
vices.

2.2 Conservative Attack Graph
An integral aspect of MTDs is that an attacker

must continually re-gain the knowledge and privi
leges obtained through prior attacks. For example,
VM refreshing will eliminate all privileges gained
on the VM effectively forcing the attacker to take a
step back in the plan toward the goal. This effect
invalidates the typical monotonicity assumption [2]
found in most attack-graph works where an attacker
cannot lose a privilege after gaining it. In an MTD
system, it becomes important to model losing privi
leges due to constant changes in the system config
uration. The frequency of such MTD mechanisms
will affect how far an attacker can move forward in
a system. Modeling such dynamism requires a state-
machine model, rather than the commonly used de
pendency attack graphs [10, 12, 14]. Previous state-
enumeration attack graphs [15, 19] have encoun
tered scalability challenges when applied to large
networks [14]. However, for analyzing the MTD ef
fect on computer networks, we do not need to apply
a fine-grained attack-graph model. Thus, we pro
pose a conservative attack graph, which assumes
the existence of unknown vulnerabilities without
enumerating every one of them. This assumption
actually makes the state model smaller and will
likely lend itself to stochastic analysis.

As an example, Figure 5 shows the conserva
tive attack graph for the mission planning system
depicted in Figure 3. The topology of the con
servative attack graph is partially derived from the
role model that supports the mission goals. As
shown in Figure 3, the Planner role initiates inter
actions (depicted by the arrows between roles) with

Internet
Access

Planner
Compromised

GeoDB
Compromised

TargetDB
Compromised

AssetDB
Compromised

Mail Server
Compromised

- ID IP and Port
- ID Vulnerabilities
- Exploit
 Vulnerabilities

- ID Vulnerabilities
- Exploit
 Vulnerabilities

- ID Vulnerabilities
- Exploit
 Vulnerabilities

- ID Vulnerabilities
- Exploit
 Vulnerabilities

- ID Vulnerabilities
- Exploit
 Vulnerabilities

- ID IP and Port
- ID Vulnerabilities
- Exploit
 Vulnerabilities

p
ro

b
a

b
ility

o
f s

u
c
c
e

s
s

t - time

Figure 5: Conservative Attack Graph

the AssetDB, TargetDB, GeoDB, and Mail Server
roles. In our MTD system design, this security pol
icy is enforced by the RMS explained above. The
only legitimate access paths in the system are (1)
from the Internet to the Planner or the Mail Server
and (2) from the Planner to the Mail Server and
the three database servers (AssetDB, TargetDB, and
GeoDB). The conservative attack graph captures
these logical access paths.

A key motivation of MTDs is that if an attacker
deviates from the presumed access paths, e.g. by
guessing wrong the location of the service to attack,
it will fall into a decoy that can issue alerts and track
the attacker’s activities. The RMS components on
the virtual machines implement the network com
munication policy (derived from the role model) to
adhere to the logical paths. If an RMS component
is compromised, the attacker would be able to by
pass this control and try to access a service that is
not exposed to the VM. However, in such situations
the compromised RMS (and the attacker) would not
know the location of those services and thus the at
tacker would have to correctly guess the IP address
and port (among other aspects) of the next target,
which is a low-probability event. Thus we can as
sume that a successful attack must follow the pre
defined service access paths, which dramatically re
duces the attack surface of the system.

The conservative attack graph can be viewed as
a state-transition system. Each arrow is annotated
with a label describing the activities involved to
move from one state to the next. The effort involved
in the activities can be measured in various ways.

6

For example, one can ascribe a success-likelihood to
time diagram to indicate how much time it will take
the attacker to reach a certain success likelihood for
a specific action. From each state, there will also be
a probability for the attacker to be forced to “move
back” to one of the prior state along the path, due
to the MTD mechanisms. These will be added as
additional transitions among states when designing
metric models.

3 Simulation-based Experiments
To determine if our approach has merit, we

devised a high-level simulation that reflects a
MTD system. The simulation testbed was built
on an existing network security simulator called
NeSSi2 [18]. NeSSi2 is an open-source, discrete-
event based network security simulator with exten
sive support for constructing complex application-
level scenarios based on a simulated TCP/IP proto
col stack. Figure 6 shows our simulated network
topology created in NeSSi2.

3.1 Simulation Assumptions
As the first step in our simulation-based re

search, we made a number of simplifying assump
tions in the adversary model and adaptation mecha
nisms. Such limitations are not inherent in the MTD
system design and will be removed in our future re
search.

3.1.1	 Assumptions on adversary model
We assume that once a node is compromised,

the attacker can immediately use the RMS to attack
the next node in the attack path. The attacker is as
sumed to know the basic system architecture as de
fined by the Role Model and thus the attack is re
stricted to the four VMs assigned to the four roles.
The attacker is assumed to know immediately when
a resource it has compromised has been refreshed.

3.1.2	 Assumptions on the adaptation mecha
nisms

All adaptations are applied at a specified time
interval and are random in nature. Adaptations are
limited to VM refreshing, and all VMs assigned to
a given role have the same configuration except for
its ID and IP address.

While these assumptions make the simulation
easier, they are also tilted in favor of the attacker.
First, we assume only a simple (as opposed to in
telligent) MTD system. Second, we only use VM
refreshing thus we do not assume any variability
of software versions, operating systems, etc. that
would make compromises more difficult. We also
assume the attacker knows the system design and
that the attacker can immediately compromise the
RMS thus allowing the attacker to immediately at
tack the next target.

3.2 Moving mechanisms and attacks
The three main components of our testbed in

clude the Defense component, the Attack compo
nent and the Ground Truth component. The De
fense component contains the Configuration Man
ager, three physical resources (hosts) and four active
VMs. These four VMs can be assigned to any host
to play any of the four roles: Planner, TargetDB,
AssetDB, or GeoDB. The Configuration Manager
is the core of the Defense component and combines
the functionality of the Configuration Manager and
the Adaptation Engine from Figure 3. At each simu
lation time interval, the Configuration Manager se
lects an adaptation by creating a new task, tnew =
{role, host, vmid, ip}, by (1) randomly picking a
role, (2) randomly picking a host, (3) generating a
new unique VM ID, and (4) randomly picking an
unassigned IP address. The Configuration Manager
finds the associated old task, told = {role, host',
vmid', ip'}, within its set of existing tasks, T , by
matching role names. It then informs the old task’s
current host, host', to shut down the vmid' VM and
tells the new host, host, to start up a new VM at ad
dress ip to play the role. Finally, the Configuration
Manager updates the Ground Truth component with
the current configuration.

The Attack component is responsible for sim
ulating the attack and makes extensive use of the
CAG, which allows the attacker to know exactly
where to attack in order to achieve its overall at
tack goal (to compromise the TargetDB). The At
tack component uses the CAG shown in Figure 7 to
guide the attack. As we can see, the only available
attack path is to penetrate from Internet to Planner,

7

Figure 6: Network Topology

Internet Planner

0.4

0.4

0.4

0.6

GeoDB

TargetDB

AssetDB

Figure 7: Conservative Attack Graph

then from Planner to TargetDB. The edge values in
the CAG denote the attacker’s probability of success
of an attack launched from the one node to the next,
if both nodes remain static. For example the 0.4 be
tween planner and TargetDB means that the attacker
has a 40% chance of compromising the TargetDB
if (1) it has already compromised the Planner and
(2) the Configuration Manager does not adapt either
the Planner or the TargetDB during the time step. In
the real system, the edge values will be computed
based on combining the probability of unknown and
known vulnerabilities of the roles in the current con
figuration.

Each simulated attack has several steps. First
the current CAG is retrieved from the Ground Truth
component. Next, after waiting Δt time intervals
(which simulates the time required to launch an at
tack), an updated version of the CAG is retrieved
and used to determine whether the attack has suc
ceeded or not. To determine attack success, we first
generate a random value and check to see if it ex
ceeds the CAG edge value for the current attack. If it

does, the simulation determines if the VMs on either
the attacker’s current node or the attacked node have
been refreshed; if either of them has been refreshed,
the attack fails. If the attacker’s current node was
the VM that was refreshed, the attacker is pushed
back to its previous node. If neither were refreshed,
the attack succeeds.

The Ground Truth component maintains the cur
rent CAG and provides the connection between the
Attack component and Defense component. The
Ground Truth component receives task information
from Configuration Manager and updates the CAG
as required. It also supplies information from the
current CAG to the Attack component when re
quested.

The Attack component, Defense component,
and Ground Truth component are implemented as
NeSSi2 components along with the three host re
sources: hostA, hostB, hostC. These six compo
nents are loaded onto the corresponding nodes as
shown in Figure 6. The hosts do not actually per
form their assigned role responsibilities, but merely
exist to give the attacker something to attack. The
results of our initial experiments are presented in the
next section.

4 Results and Discussion
We conducted several experiments to see how

the frequency of system adaptation could impact in
trusion attempts. We also included a control experi
ment where no adaptation occurred. In each exper

8

Figure 8: Success of Individual Attacks

iment, we assume a fixed Δt between each attack
of 50 time intervals. However, due to the message
delivery delay in the NeSSi2 simulator between the
Attack and Ground Truth components (52 time in
tervals), the actual Δt was 102 time intervals. We
ran 1000 experiments each for 5 different adaptation
intervals (20, 50, 100, 200 and ∞). The adaptation
interval corresponds to the time interval between the
the Configuration Manager’s adaptation (∞ corre
sponds to the static system).

Figure 8 shows the success of each individual
attack between nodes for each adaptation interval.
While the lines for each adaptation interval fluc
tuates initially due to small number of samples, it
becomes more stable as the number of attacks in
crease. We can see that when the configuration re
mains static, the success ratio of each attack is ap
proximately 50%. However, as the adaptation inter
val shrinks, the individual attack success ratio also
shrinks, eventually reaching 16.2% for a adaptation
interval of 20 time intervals.

Figure 9 provides a more complete look at the
effect of the MTD as it measures the ability of the
MTD to deter a completed attack from the Inter
net through the Planner to the TargetDB. Figure 9
clearly shows that as the adaptation interval is re
duced, the effect of the MTD defense is clearly vis
ible. When the configuration is static, the number
of completed attacks (out of 1000) is 245, while an

Figure 9: Attacks Completed Against TargetDB

adaptation interval of 100 reduces that number to 50
and an adaptation interval of 20 allows only 5 suc
cessful attacks against the TargetDB.

4.1 Discussion
We believe these results demonstrate the

promising effectiveness of moving target defense
for enterprise computer networks.

The design of our MTD is based on understand
ing the current situation, which is captured in a set
of runtime models. These runtime models allow the
system to reason over the current state of the sys
tem and produce adaptations to confuse and rebuff
potential attackers. The simulation presented here is
our first, and one of the first anywhere, simulation of
MTD for enterprise network security. As such, the
simulation implemented only a simple MTD system
and did not demonstrate the full power of an MTD
system. However, the results demonstrate a poten
tial effectiveness of MTD for enterprise computer
networks and, thus, we plan to continue to make the
simulated system more complex, increase the so
phisticated of the simulated attacks, and integrate
in the full power of an intelligent MTD system.

It is also clear that the simplicity of our exam
ple network made the task much easier for the at
tacker. Since the ability of the attacker to reach a
particular node in the network is directly related to
the length of the path the attacker must traverse to

9

reach it, it seems that the longer the path in the CAG
to a node of interest, the more protection an MTD
system provides. In the future we plan to further in
vestigate this phenomenon to see how it can be used
in designing systems that are expected to work in an
MTD environment.

5 Related Work
Most of the prior work on MTDs in a network

context has been related to low-level techniques
such as IP address shifting and network routing and
topology control. We discuss several efforts.

Dynamic network address translation. As part
of the DARPA Information Assurance Program
starting in 1999, BBN developed a dynamic ap
proach to active network defense in order to demon
strate the hypothesis that “Dynamic modification
of defensive structures improves system assur
ance” [11]. Their goal was to inhibit an attacker’s
ability to map the network, thus making attacks
more difficult. Their approach made it appear as
though the addresses and port numbers used by the
network’s computers changed dynamically via Dy
namic Network Translation (DYNAT), which dis
guised host identity information in TCP/IP packets.

BBN and Sandia National Labs ran several ex
periments of DYNAT’s capability to degrade an ad
versary’s ability to map a network. The experiments
showed that DYNAT made it almost impossible to
map the network while significantly increasing the
attacker’s effort [11]. Even when teams discovered
a host’s location or were able to hijack a session,
their advantage was time-limited due to dynamic
changes to translation seed values. The results also
showed that DYNAT highlighted typical attacker ac
tions as obvious anomalies that made spotting the
attacks much easier. Beating DYNAT is difficult
[16] as a direct assault requires detailed knowledge
of the address hopping mechanism as well as the
compromise of a trusted device, algorithm, and ini
tial values and keying material. Indirect assaults us
ing phishing schemes could compromise the system
and allow an external system to participate in the
address hopping. However, there are several draw
backs [13, 16]; DYNAT requires that trusted com

puters on both sides of the communication be within
the protection of DYNAT processes and there are
problems related to application interoperability.

Applications that participate in their own de
fense. In the DARPA’s APOD (Applications that
Participate in their own Defense) project [4], BBN
also proposed port and address hopping techniques
to confuse would-be attackers and thus prevent them
from identifying and ultimately attacking network
computers. Essentially, this approach was similar to
DYNAT, except that it applied port and address hop
ping at layers above TCP such as in CORBA calls
and used off-the-shelf utilities for a more general so
lution. However, the same advantages and problems
exist with the APOD approach as with the DYNAT
approach.

Network address space randomization. Anto
natos et al. use a similar network address space
randomization (NASR) scheme to thwart hit list
worms [3]. Their implementation, however, is much
different as they configure DHCP servers to ex
pire the leases of hosts at various intervals to sup
port address randomization. They consider sev
eral different expiration policies including chang
ing host addresses only when hosts are rebooted as
well as using timer-based settings. The soft change
timer specifies the minimal interval between address
changes when there is no activity on the host, while
a hard change timer specifies the maximum time a
host can maintain a given address, regardless of ac
tivity. Several experiments concluded that NASR
can be useful for hit list worm defense, although ad
ditional research is needed. As with the DYNAT
approach above, the researchers found that the ap
proach is also beneficial in making the worms easier
to detect.

Dynamic route adaptation. In [6], Compton pro
posed an approach to dynamically changing net
work packet routes so that observable traffic pat
terns change on a regular basis [6]. The goal of this
work is to make network mapping more difficult and
to make packet sniffing less effective. They devel
oped a new metric for topological network change
that captures the difference in the required band

10

width between two nodes. This measure was com
bined with a mixed integer linear programming ob
jective function designed to produce the optimal
topology to produce near optimal solutions that are
significantly different from the current solution. Re
sults showed that, on average, links were only ac
tive 33% of the time. The main drawback to this
approach is the time required to come up with solu
tions, which ranged from minutes to days. To solve
this problem, Greve developed a heuristic solution
called the Network Obfuscation Heuristic (NOH)
[9], which was created by supplementing a greedy
pricing algorithm to produce a polynomial-time ap
proximation. Although the experiments to compare
the two algorithms are not complete, they do re
veal that NOH significantly decreases the runtime in
all cases (2 orders of magnitude for networks larger
than 20 nodes) and that the deviation from the opti
mal solution is also acceptable for larger networks.

Proactive obfuscation Proactive obfuscation is an
approach to creating almost identical replicas of
software applications that share identical function
ality with fewer shared vulnerabilities [17]. The ap
proach restarts fresh versions of servers periodically
that react differently to identical attacks. Gener
ally, when attacked using known vulnerabilities, the
modified servers either do not respond as expected
or crash instead of being compromised. The authors
propose to create these near identical replicas using
semantics-preserving code transformations. The au
thors showed that with sufficient entropy in the ex
ecutables, the approach was effective at thwarting
known attacks while their approach to automatically
generate diverse executables did not greatly increase
costs.

6	 Conclusion
In this paper we presented a preliminary design

of a network moving-target defense system. We
conducted simulation-based experiments to study
the effects of randomly changing one aspect of the
system — role to VM mapping, in reducing at
tacker’s success likelihood. The results show, as
expected, reduced attack success likelihood with in
creasing frequency of changes. This is our very pre

liminary first step towards building a comprehen
sive evaluation and analysis framework for network
moving-target defense research.

Acknowledgement. This work was supported by
the Air Force Office of Scientific Research under
award no. FA9550-12-1-0106, and U.S. National
Science Foundation under award no. 1038366 and
1018703. Any opinions, findings and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views of the above agencies.

7	 Acknowledgement
This work was supported by the Air Force

Office of Scientific Research under award no.
FA9550-12-1-0106, and U.S. National Science
Foundation under award no. 1038366 and 1018703.
Any opinions, findings and conclusions or recom
mendations expressed in this material are those of
the authors and do not necessarily reflect the views
of the above agencies.

References
[1] National Cyber Leap Year Summit 2009 co

chairs’ report, networking and information
technology research and development. Tech
nical report, 2009.

[2] Paul	 Ammann, Duminda Wijesekera, and
Saket Kaushik. Scalable, graph-based network
vulnerability analysis. In Proceedings of 9th
ACM Conference on Computer and Commu
nications Security, nov 2002.

[3] S. Antonatos, P. Akritidis, E.P. Markatos, and
K.G. Anagnostakis. Defending against hitlist
worms using network address space random
ization. Comput. Netw., 51(12):3471–3490,
August 2007.

[4] Michael Atighetchi, Partha Pal, Franklin Web
ber, and Christopher Jones. Adaptive use of
network-centric mechanisms in cyber-defense.
In IEEE Intl. Symp. on Object-Oriented Real-
Time Distributed Computing, 2003.

11

[5] Devlin	 Barrett. Hackers penetrate nas
daq computers. http://online.wsj.com/article/,
February 2011.

[6] Matthew	 D., Kenneth M. Hopkinson,
Gilbert L. Peterson, and James T James
T. Moore. Network obfuscation through
polymorphic routing and topology control.
IEEE Transactions on Dependable and Secure
Computing, 2012. In preparation.

[7] Scott A. DeLoach, Walamitien Oyenan, and
Eric Matson. A capabilities-based model for
adaptive organizations. Autonomous Agents
and Multi-Agent Systems, 16:13–56, 2008.
10.1007/s10458-007-9019-4.

[8] Brian P. Gerkey and Maja J. Mataric.	 A for
mal analysis and taxonomy of task alloca
tion in multi-robot systems. The International
Journal of Robotics Research, 23(9):939–954,
2004.

[9] Gabriel H. Greve.	 Network Security Toolkit
Including Heuristic Solutions For Trust Sys
tem Placement and Network Obfuscation.
Master’s thesis, Air Force Institute of Technol
ogy, Wright-Patterson AFB, Ohio, 2010.

[10] Sushil	 Jajodia, Steven Noel, and Brian
O’Berry. Topological analysis of network at
tack vulnerability. Managing Cyber Threats:
Issues, Approaches and Challanges, 2003.

[11] D.L. Kewley and J.F. Bouchard. Darpa infor
mation assurance program dynamic defense
experiment summary,. Systems, Man and
Cybernetics, Part A: Systems and Humans.,
31:331–336, 2001.

[12] R.P. Lippmann, K.W. Ingols, C. Scott, K. Pi
wowarski, K.J. Kratkiewicz, M. Artz, and
R.K.Cunningham. Evaluating and strength
ening enterprise network security using attack
graphs. Technical report, MIT Lincoln Labo
ratory, 2005.

[13] J. Michalski, C. Price, E. Stanton, E. L. Chua,
K. Seah, W. Y. Heng, and T. C. Pheng. Fi
nal report for the network security mecha
nisms utilizing network address translation
ldrd project. Technical Report Technical Re
port SAND2002-3613, Sandia National Labo
ratories, November 2002.

[14] Xinming Ou, Wayne F. Boyer, and Miles A.
McQueen. A scalable approach to attack
graph generation. In 13th ACM Conference on
Computer and Communications Security, Oct
2006.

[15] Cynthia Phillips and Laura Painton Swiler.
graph-based system for network-vulnerability
analysis. In NSPW 98: Proceedings of
the 1998 workshop on New security paradig,
1998.

[16] Keith A. Repik. Defeating Adversary Network
Intelligence efforts with Active Cyber Defense
Techniques. Master’s thesis, Air Force In
stitute of Technology, Wright-Patterson AFB,
Ohio, 2008.

[17] Tom Roeder and Fred B. Schneider.	 Proac
tive obfuscation. ACM Trans. Comput. Syst.,
28(2):4:1–4:54, July 2010.

[18] S. Schmidt, R. Bye, J. Chinnow, K. Bsufka,
A. Camtepe, and S. Albayrak. Application-
level simulation for network security. SIMU
LATION, 86:311–330, 2010.

[19] Oleg Sheyner,	 Joshua Haines, Somesh Jha,
Richard Lippmann, and Jeannette M. Wing.
Automated generation and analysis of attack
graphs. In Proceedings of the 2002 IEEE Sym
posium on Security and Privacy, 2002.

[20] Christopher Zhong and Scott A. DeLoach.
Runtime models for automatic reorganiza
tion of multi-robot systems. In 6th Inter
national Symposium on Software Engineer
ing for Adaptive and Self-Managing Systems
(SEAMS 2011)., May 2011.

12

http://online.wsj.com/article

