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Abstract 
Moving-target defense has been hypothesized 

as a potential game changer in cyber defense, in
cluding that for computer networks. However there 
has been little work to study how much proac
tively changing a network’s configuration can in
crease the difficulty for attackers and thus improve 
the resilience of the system under attack. In this pa
per we present a basic design schema of a moving-
target network defense system. Based on this design 
schema, we conducted a simulation-based study to 
investigate the degree to which proactively chang
ing a network’s various parameters can decrease an 
adversary’s chance for success. We believe this is 
an important first step towards understanding why 
and how the concept of a moving target can be suc
cessfully applied to computer network defenses. 

1 Introduction 
In cyber space, attackers have an asymmet

ric advantage in that they have time to study our 
networks to determine potential vulnerabilities and 
choose the time of attack and gain the maximum 
benefit. Additionally, once an attacker acquires a 
privilege, that privilege can be maintained for a long 
time without being detected [5]. The static nature of 
current network configuration approaches has made 
it easy to attack and breach a system and to main
tain illegal access privileges for extended periods of 
time. Thus, a promising new approach to network 

security has been suggested called the moving target 
defense (MTD) [1]. While there are many facets of 
MTD, for computer networks, one can broadly in
terpret MTD as the fact that the network constantly 
changes to reduce/shift the attack surface area avail
able for exploitation by attackers. Here, the attack 
surface consists of the system resources exposed to 
attackers (e.g. the software residing on the hosts, 
the ports open to communicate between hosts, and 
vulnerabilities in the various components) as well 
as compromised network resources that can be used 
to further penetrate the system. While promising, 
there is little research to show that MTDs can work 
effectively in realistic networked systems. In fact, 
the approach is so new that there is no standard def
inition of what an MTD is in the context of network 
defense, what is meant by attack surface, or metrics 
to define the effectiveness of such systems. 

We believe a set of objective analytical mod
els should exist to predict the effectiveness of MTD 
systems to protect computer networks. Ideally, 
these analytical models would be useful at both de
sign time and runtime. As inputs to the models, 
a set of objective metrics are required that capture 
specific information related to the exploitable fea
tures of the system. The metrics must capture (1) 
the area that an attacker must search to determine 
the configuration of the system, (2) the modifiable 
aspects of the system, and (3) what is changing in 
the system configuration and how fast the configu

1
 

mailto:2psinghal@nist.gov
mailto:1{zrui,zhangs84,sdeloach,xou}@ksu.edu


ration is changing. While the metrics capture what 
and how the system is adapting, they should be re
latable to the effort required by an attacker to attack 
the system. Based on the configuration of the net
work being defended, the analytical models should 
capture the basic steps required to attack the system 
and determine the effectiveness of a proposed MTD 
system to defeat attacks attempting to exploit both 
known as well as unknown vulnerabilities. 

In this paper we present our preliminary design 
of a network moving-target defense system. Based 
on the design schema, we design analytical models 
and methods with an eye towards capturing the ef
fectiveness of the proposed MTD system. We then 
conduct simulation-based experimentation to exam
ine quantitatively the assumption that the MTD sys
tem can decrease attacker’s success likelihood. We 
believe such an analytical step is critical before one 
sets out to build a MTD network defense system. 
This is just our first step towards understanding and 
quantifying the impact of moving target defenses on 
computer networks. Our current analytical model 
is preliminary and only captures the attacker’s per
spective. A more comprehensive analysis will also 
take into account the cost and overhead of deploying 
the MTD system on the mission the network sup
ports. We will continue our research into a more 
comprehensive understanding and more realistic es
timation of MTD’s effectiveness on computer net
work defense, based on the insights gained from this 
initial first step. 

2 MTD design principles 
An MTD system is generally portrayed as a sys

tem that adapts randomly over time to make the net
work configuration appear chaotic to a potential at
tacker. An architecture of such a system is shown in 
Figure 1. Here, an Adaptation Engine orders (what 
appears to be) random adaptations to the network 
configuration at random intervals. These adapta
tions are carried out by a Configuration Manager 
who controls the configuration of the Physical Net
work. However, adaptations that were truly random 
in nature could quickly yield the system inopera
ble since services could be assigned to inappropriate 

Figure 1: Basic MTD system 

hosts or the communications paths required for the 
system to work appropriately could be interrupted. 
To enable apparently random adaptations work ef
fectively, the underlying MTD system must have 
an understanding of the functional and security re
quirements of the system. In our system, this un
derstanding is based on a Logical Mission Model 
that reflects the current Physical Network configu
ration as well as the functional and security require
ments of the network. With this information, the 
MTD system can make apparently random adapta
tions with an understanding of the requirements of 
the system and the current configuration. 

An alternative vision for MTD systems com
bines apparently random changes with intelligent 
control. In this version, adaptations can be selected 
either randomly or based on risk indicators such 
as vulnerability scanning results and IDS alerts. 
The basic concept combines purely random adapta
tions with fully reactive intrusion response systems, 
where all responses are made in terms of adapta
tions. The use of intelligent control techniques al
lows the MTD to react to suspected intrusions in
stead of simply adapting randomly. However, addi
tion of the random adaptations allows the MTD to 
effectively mitigate unpredicted attacks as well as 
mask the actions of the intelligent control system. 
By incorporating reactions into adaptations, the sys
tem can react to suspected intrusions much sooner 
than a normal intrusion response system since even 
responses to false positives will leave the system 
in an operational state with no more overhead ex
pended than for a random adaptation. The basic ar
chitecture of an intelligent MTD system is shown in 
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Figure 2: Intelligent MTD system 

Figure 2, which extends the basic MTD system of 
Figure 1. Figure 2 adds two new entities and ex
tends the function of the existing entities. The ba
sic operation of the random adaptation remains the 
same. However, we have added an Analysis Engine 
that takes real-time events from the Physical Net
work and the current configuration from the Config
uration Manager to determine possible vulnerabili
ties and on-going attacks. The Adaptation Engine 
now looks at the network’s current state along with 
the security state to determine if there is a security 
issue that needs to be addressed via a system adap
tation. If so, a set of adaptations dealing with the 
security issue is sent to the configuration manager 
in addition to other random adaptations. 

Adapting a network’s configuration will impact 
attack success for two main reasons: 1) the attacker 
needs to spend more time canvassing the network 
in order to identify topological information (both 
physical and logical) that will be useful in further 
attacks, and 2) the attacker cannot keep privileges 
gained for long and will have to frequently regain 
privileges. However, these reasons for success also 
imply two inherent challenges for an MTD sys
tem. First, the MTD system must provide legiti
mate users and applications with a way of locat
ing required resources in the midst of the adapta
tions. However, once a user account or application 
is compromised, the attacker would gain this abil
ity to locate resources, thus limiting the effective
ness of MTD systems. To address this challenge, 
the MTD system must limit the damage incurred by 

a compromised system component by limiting the 
knowledge the component has regarding the adapta
tion process. That is, a compromised user or appli
cation will not give an attacker complete knowledge 
of the locations of other resources. Nevertheless, 
an MTD will not be invincible simply because it is 
moving. An attacker can still incrementally accu
mulate knowledge and privileges as long as he is not 
detected. Thus rigorous analysis is needed to under
stand to what extend MTD can reduce the likelihood 
an attack can succeed in reaching its goal. The sec
ond challenges is that, while the MTD system can 
adapt by moving or “refreshing” an application or 
resource (e.g. using a fresh clean virtual machine 
(VM) to replace an existing VM), the transition pro
cess will likely disrupt services and introduce a nec
essary overhead cost. Thus, an understanding of 
the effect of adaptations on both the system per
formance and security improvement must be under
stood so that appropriate trade-offs can be made. 

2.1 Proof-of-concept MTD system 
Due to the lack of existing MTD systems to 

analyze, we must design a parameterized proof-of
concept MTD as a first step towards understand
ing and validating the technical merits of a MTD 
network defense system. While existing research 
on adaptive defense systems have focused on mod
ification of single low-level aspects of a network 
such as IP addresses, our vision is to develop a 
framework in which multiple aspects of the system 
can be modified simultaneously. Aspects that we 
plan to consider include IP addresses, ports, firewall 
settings, host-application assignments, application 
types/versions, and protocols. An overview of our 
framework is shown in Figure 3, which is similar to 
Figure 2 with details added. We illustrate our ap
proach with a simple example that supports a mis
sion planning system as well as allowing users to 
access mission related e-mails. The mission plan
ning system accesses three different databases: an 
asset database that includes the types and numbers 
of assets available to carry out mission planning, a 
target database that includes the latest intelligence 
on targets of interest, and a geographical database 
that includes maps and related geographical infor
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mation about the areas required for planning appro
priate ingress, target attack, and egress routes. We 
assume the planner also requires access to e-mail to 
coordinate with other organizations and users. 

A key concept of our design is the abstract Log
ical Mission Model that captures the network re
sources, the services used, and the dependencies be
tween services that are required to achieve the over
all mission of the network. The Logical Mission 
Model is based on DeLoach’s Organizational Model 
for Adaptive Computational Systems (OMACS) [7]. 
OMACS is a model based on human organizations 
that allows intelligent reasoning algorithms to as
sign agents to play roles in an organization in or
der to achieve specific organizational goals. Agents 
can only be assigned to a role if they possess all 
the capabilities required by that role. The OMACS 
model is general-purpose and has been successfully 
applied to multiagent systems, cooperative robotics, 
and distributed sensor networks. In this research, 
services are the network “roles” such as the Planner, 

AssetDB, TargetDB, and GeoDB. These roles sup
port the main “goals” of the network, which include 
allowing users to plan missions (Plan Mission) and 
allowing users to access e-mail (Email Access). In 
the implementation each role is instantiated on an 
physical or virtual host, which equate to OMACS 
“agents”. In addition, required network commu
nications between the roles is also specified in the 
Logical Mission Model. 

The moving-target mechanism is created by re
assigning physical (or virtual) resources (agents) 
to various roles as required to support the goals 
of the mission goal model. This process is car
ried out by the Adaptation Engine, which can be 
based on existing OMACS-based reorganization al
gorithms. These are closely related to traditional al
gorithms for allocating single-agent tasks to single-
task agents, for which efficient suboptimal algo
rithms exist [7, 8, 20]. The Adaptation Engine de
termines an acceptable assignment of roles to phys
ical resources based on the security state or a ran
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dom trigger, role requirements and computational 
capabilities required. An acceptable assignment is 
a near optimal assignment that is sufficiently differ
ent from the previous set of assignments so as to 
ensure the adaptation appears chaotic to an attacker. 

2.1.1 Resource Mapping System 

The reason for adapting can be either (1) purely 
random or (2) based on identification of possible at
tacks or known vulnerabilities by the Analysis En
gine, which produces a Conservative Attack Graph 
that indicates such potential threats. A conservative 
attack graph’s nodes represent captured assets by at
tackers. Unlike traditional attack graphs, a conser
vative attack graph will err on the security side and 
assume there is an attack path between any two as
sets as long as the attacker is able to identify the 
target asset from the source asset. Since the sys
tem is constantly adapting, the mapping from a role 
to the actual resources used to instantiate the role, 
including its IP addresses, is also constantly chang
ing. Thus in general an attacker will not be able 
to launch an attack from an asset to any other as
set. However, the assets need to perform their ex
pected functionalities and for this reason they need 
to know the assets with which they need to com
municate with (the dotted lines in Figure 4). There 
needs to be a mechanism to enable such legitimate 
locating of resources. In our design we call it the 
Resource Mapping System (RMS). 

The purpose of the RMS system is to serve as a 
security policy enforcement unit for each role. It is 
best implemented as a hardened system component. 

As shown in Figure 4, the role of the RMS module 
in our MTD design is two-folded: 

1. It coordinates with the Configuration Man
ager, which pushes the configuration to var
ious resources. All communication between 
system services must go through the RMS so 
that communications can be maintained even 
as the location of the services change. 

2. In an attempt to access and exploit services, 
the attacker may either (1) follow the RMS 
or (2) try to guess their locations. The 
first option forces them to follow a pre
defined pattern that significantly simplifies in
trusion detection and prevention. The sec
ond forces them to repeatedly conduct exten
sive reconnaissance to re-identify service lo
cations, thus increasing the attackers’ effort 
and the likelihood of revealing themselves. 

We envision that each critical role will be as
signed to a single VM, which will have a dedicated 
RMS to handle communication with other critical 
roles. Each RMS will only know the locations of 
the roles it needs to communicate with as defined 
by the communication requirements of its associ
ated role. The RMS could be transparent, working 
as an IP-layer proxy, or provide an API for send
ing network packets to abstract resources. In either 
case, all communications between mission-critical 
roles are controlled by the RMS even as their loca
tions change dynamically. 

A drawback to the RMS occurs if attackers com
promise a critical role/VM. In this case other roles 
for which the compromised role initiates commu
nications can be easily located and attacked since 
the compromised role’s RMS knows their location. 
However, the attacker must follow the exact com
munication pattern defined by the role model, thus 
dramatically reducing the potential attack surface. 
Here, adaptation comes to the rescue. Eventually, 
the VM of the compromised role will change and 
the attacker will lose any gained privileges. In this 
case, even low-confidence alerts could be used to 
trigger adaptations. We believe that the RMS sys
tem is best implemented as a thin layer between the 
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virtual machine monitor (VMM) and the VM’s op
erating system, so that a compromised VM cannot 
directly corrupt the integrity of the RMS. 

The actual reconfiguration of the physical re
sources is carried out via a Configuration Man
ager, which must be highly secure since obtaining 
it would enable an attacker to determine the system 
configuration quickly at any time. The Configura
tion Manager will work closely with the RMS to 
handle the communication among the critical ser
vices. 

2.2 Conservative Attack Graph 
An integral aspect of MTDs is that an attacker 

must continually re-gain the knowledge and privi
leges obtained through prior attacks. For example, 
VM refreshing will eliminate all privileges gained 
on the VM effectively forcing the attacker to take a 
step back in the plan toward the goal. This effect 
invalidates the typical monotonicity assumption [2] 
found in most attack-graph works where an attacker 
cannot lose a privilege after gaining it. In an MTD 
system, it becomes important to model losing privi
leges due to constant changes in the system config
uration. The frequency of such MTD mechanisms 
will affect how far an attacker can move forward in 
a system. Modeling such dynamism requires a state-
machine model, rather than the commonly used de
pendency attack graphs [10, 12, 14]. Previous state-
enumeration attack graphs [15, 19] have encoun
tered scalability challenges when applied to large 
networks [14]. However, for analyzing the MTD ef
fect on computer networks, we do not need to apply 
a fine-grained attack-graph model. Thus, we pro
pose a conservative attack graph, which assumes 
the existence of unknown vulnerabilities without 
enumerating every one of them. This assumption 
actually makes the state model smaller and will 
likely lend itself to stochastic analysis. 

As an example, Figure 5 shows the conserva
tive attack graph for the mission planning system 
depicted in Figure 3. The topology of the con
servative attack graph is partially derived from the 
role model that supports the mission goals. As 
shown in Figure 3, the Planner role initiates inter
actions (depicted by the arrows between roles) with 
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the AssetDB, TargetDB, GeoDB, and Mail Server 
roles. In our MTD system design, this security pol
icy is enforced by the RMS explained above. The 
only legitimate access paths in the system are (1) 
from the Internet to the Planner or the Mail Server 
and (2) from the Planner to the Mail Server and 
the three database servers (AssetDB, TargetDB, and 
GeoDB). The conservative attack graph captures 
these logical access paths. 

A key motivation of MTDs is that if an attacker 
deviates from the presumed access paths, e.g. by 
guessing wrong the location of the service to attack, 
it will fall into a decoy that can issue alerts and track 
the attacker’s activities. The RMS components on 
the virtual machines implement the network com
munication policy (derived from the role model) to 
adhere to the logical paths. If an RMS component 
is compromised, the attacker would be able to by
pass this control and try to access a service that is 
not exposed to the VM. However, in such situations 
the compromised RMS (and the attacker) would not 
know the location of those services and thus the at
tacker would have to correctly guess the IP address 
and port (among other aspects) of the next target, 
which is a low-probability event. Thus we can as
sume that a successful attack must follow the pre
defined service access paths, which dramatically re
duces the attack surface of the system. 

The conservative attack graph can be viewed as 
a state-transition system. Each arrow is annotated 
with a label describing the activities involved to 
move from one state to the next. The effort involved 
in the activities can be measured in various ways. 
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For example, one can ascribe a success-likelihood to 
time diagram to indicate how much time it will take 
the attacker to reach a certain success likelihood for 
a specific action. From each state, there will also be 
a probability for the attacker to be forced to “move 
back” to one of the prior state along the path, due 
to the MTD mechanisms. These will be added as 
additional transitions among states when designing 
metric models. 

3 Simulation-based Experiments 
To determine if our approach has merit, we 

devised a high-level simulation that reflects a 
MTD system. The simulation testbed was built 
on an existing network security simulator called 
NeSSi2 [18]. NeSSi2 is an open-source, discrete-
event based network security simulator with exten
sive support for constructing complex application-
level scenarios based on a simulated TCP/IP proto
col stack. Figure 6 shows our simulated network 
topology created in NeSSi2. 

3.1 Simulation Assumptions 
As the first step in our simulation-based re

search, we made a number of simplifying assump
tions in the adversary model and adaptation mecha
nisms. Such limitations are not inherent in the MTD 
system design and will be removed in our future re
search. 

3.1.1	 Assumptions on adversary model 
We assume that once a node is compromised, 

the attacker can immediately use the RMS to attack 
the next node in the attack path. The attacker is as
sumed to know the basic system architecture as de
fined by the Role Model and thus the attack is re
stricted to the four VMs assigned to the four roles. 
The attacker is assumed to know immediately when 
a resource it has compromised has been refreshed. 

3.1.2	 Assumptions on the adaptation mecha
nisms 

All adaptations are applied at a specified time 
interval and are random in nature. Adaptations are 
limited to VM refreshing, and all VMs assigned to 
a given role have the same configuration except for 
its ID and IP address. 

While these assumptions make the simulation 
easier, they are also tilted in favor of the attacker. 
First, we assume only a simple (as opposed to in
telligent) MTD system. Second, we only use VM 
refreshing thus we do not assume any variability 
of software versions, operating systems, etc. that 
would make compromises more difficult. We also 
assume the attacker knows the system design and 
that the attacker can immediately compromise the 
RMS thus allowing the attacker to immediately at
tack the next target. 

3.2 Moving mechanisms and attacks 
The three main components of our testbed in

clude the Defense component, the Attack compo
nent and the Ground Truth component. The De
fense component contains the Configuration Man
ager, three physical resources (hosts) and four active 
VMs. These four VMs can be assigned to any host 
to play any of the four roles: Planner, TargetDB, 
AssetDB, or GeoDB. The Configuration Manager 
is the core of the Defense component and combines 
the functionality of the Configuration Manager and 
the Adaptation Engine from Figure 3. At each simu
lation time interval, the Configuration Manager se
lects an adaptation by creating a new task, tnew = 
{role, host, vmid, ip}, by (1) randomly picking a 
role, (2) randomly picking a host, (3) generating a 
new unique VM ID, and (4) randomly picking an 
unassigned IP address. The Configuration Manager 
finds the associated old task, told = {role, host', 
vmid', ip'}, within its set of existing tasks, T , by 
matching role names. It then informs the old task’s 
current host, host', to shut down the vmid' VM and 
tells the new host, host, to start up a new VM at ad
dress ip to play the role. Finally, the Configuration 
Manager updates the Ground Truth component with 
the current configuration. 

The Attack component is responsible for sim
ulating the attack and makes extensive use of the 
CAG, which allows the attacker to know exactly 
where to attack in order to achieve its overall at
tack goal (to compromise the TargetDB). The At
tack component uses the CAG shown in Figure 7 to 
guide the attack. As we can see, the only available 
attack path is to penetrate from Internet to Planner, 
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Figure 6: Network Topology
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then from Planner to TargetDB. The edge values in 
the CAG denote the attacker’s probability of success 
of an attack launched from the one node to the next, 
if both nodes remain static. For example the 0.4 be
tween planner and TargetDB means that the attacker 
has a 40% chance of compromising the TargetDB 
if (1) it has already compromised the Planner and 
(2) the Configuration Manager does not adapt either 
the Planner or the TargetDB during the time step. In 
the real system, the edge values will be computed 
based on combining the probability of unknown and 
known vulnerabilities of the roles in the current con
figuration. 

Each simulated attack has several steps. First 
the current CAG is retrieved from the Ground Truth 
component. Next, after waiting Δt time intervals 
(which simulates the time required to launch an at
tack), an updated version of the CAG is retrieved 
and used to determine whether the attack has suc
ceeded or not. To determine attack success, we first 
generate a random value and check to see if it ex
ceeds the CAG edge value for the current attack. If it 

does, the simulation determines if the VMs on either 
the attacker’s current node or the attacked node have 
been refreshed; if either of them has been refreshed, 
the attack fails. If the attacker’s current node was 
the VM that was refreshed, the attacker is pushed 
back to its previous node. If neither were refreshed, 
the attack succeeds. 

The Ground Truth component maintains the cur
rent CAG and provides the connection between the 
Attack component and Defense component. The 
Ground Truth component receives task information 
from Configuration Manager and updates the CAG 
as required. It also supplies information from the 
current CAG to the Attack component when re
quested. 

The Attack component, Defense component, 
and Ground Truth component are implemented as 
NeSSi2 components along with the three host re
sources: hostA, hostB, hostC. These six compo
nents are loaded onto the corresponding nodes as 
shown in Figure 6. The hosts do not actually per
form their assigned role responsibilities, but merely 
exist to give the attacker something to attack. The 
results of our initial experiments are presented in the 
next section. 

4 Results and Discussion 
We conducted several experiments to see how 

the frequency of system adaptation could impact in
trusion attempts. We also included a control experi
ment where no adaptation occurred. In each exper
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Figure 8: Success of Individual Attacks 

iment, we assume a fixed Δt between each attack 
of 50 time intervals. However, due to the message 
delivery delay in the NeSSi2 simulator between the 
Attack and Ground Truth components (52 time in
tervals), the actual Δt was 102 time intervals. We 
ran 1000 experiments each for 5 different adaptation 
intervals (20, 50, 100, 200 and ∞). The adaptation 
interval corresponds to the time interval between the 
the Configuration Manager’s adaptation (∞ corre
sponds to the static system). 

Figure 8 shows the success of each individual 
attack between nodes for each adaptation interval. 
While the lines for each adaptation interval fluc
tuates initially due to small number of samples, it 
becomes more stable as the number of attacks in
crease. We can see that when the configuration re
mains static, the success ratio of each attack is ap
proximately 50%. However, as the adaptation inter
val shrinks, the individual attack success ratio also 
shrinks, eventually reaching 16.2% for a adaptation 
interval of 20 time intervals. 

Figure 9 provides a more complete look at the 
effect of the MTD as it measures the ability of the 
MTD to deter a completed attack from the Inter
net through the Planner to the TargetDB. Figure 9 
clearly shows that as the adaptation interval is re
duced, the effect of the MTD defense is clearly vis
ible. When the configuration is static, the number 
of completed attacks (out of 1000) is 245, while an 

Figure 9: Attacks Completed Against TargetDB 

adaptation interval of 100 reduces that number to 50 
and an adaptation interval of 20 allows only 5 suc
cessful attacks against the TargetDB. 

4.1 Discussion 
We believe these results demonstrate the 

promising effectiveness of moving target defense 
for enterprise computer networks. 

The design of our MTD is based on understand
ing the current situation, which is captured in a set 
of runtime models. These runtime models allow the 
system to reason over the current state of the sys
tem and produce adaptations to confuse and rebuff 
potential attackers. The simulation presented here is 
our first, and one of the first anywhere, simulation of 
MTD for enterprise network security. As such, the 
simulation implemented only a simple MTD system 
and did not demonstrate the full power of an MTD 
system. However, the results demonstrate a poten
tial effectiveness of MTD for enterprise computer 
networks and, thus, we plan to continue to make the 
simulated system more complex, increase the so
phisticated of the simulated attacks, and integrate 
in the full power of an intelligent MTD system. 

It is also clear that the simplicity of our exam
ple network made the task much easier for the at
tacker. Since the ability of the attacker to reach a 
particular node in the network is directly related to 
the length of the path the attacker must traverse to 
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reach it, it seems that the longer the path in the CAG 
to a node of interest, the more protection an MTD 
system provides. In the future we plan to further in
vestigate this phenomenon to see how it can be used 
in designing systems that are expected to work in an 
MTD environment. 

5 Related Work 
Most of the prior work on MTDs in a network 

context has been related to low-level techniques 
such as IP address shifting and network routing and 
topology control. We discuss several efforts. 

Dynamic network address translation. As part 
of the DARPA Information Assurance Program 
starting in 1999, BBN developed a dynamic ap
proach to active network defense in order to demon
strate the hypothesis that “Dynamic modification 
of defensive structures improves system assur
ance” [11]. Their goal was to inhibit an attacker’s 
ability to map the network, thus making attacks 
more difficult. Their approach made it appear as 
though the addresses and port numbers used by the 
network’s computers changed dynamically via Dy
namic Network Translation (DYNAT), which dis
guised host identity information in TCP/IP packets. 

BBN and Sandia National Labs ran several ex
periments of DYNAT’s capability to degrade an ad
versary’s ability to map a network. The experiments 
showed that DYNAT made it almost impossible to 
map the network while significantly increasing the 
attacker’s effort [11]. Even when teams discovered 
a host’s location or were able to hijack a session, 
their advantage was time-limited due to dynamic 
changes to translation seed values. The results also 
showed that DYNAT highlighted typical attacker ac
tions as obvious anomalies that made spotting the 
attacks much easier. Beating DYNAT is difficult 
[16] as a direct assault requires detailed knowledge 
of the address hopping mechanism as well as the 
compromise of a trusted device, algorithm, and ini
tial values and keying material. Indirect assaults us
ing phishing schemes could compromise the system 
and allow an external system to participate in the 
address hopping. However, there are several draw
backs [13, 16]; DYNAT requires that trusted com

puters on both sides of the communication be within 
the protection of DYNAT processes and there are 
problems related to application interoperability. 

Applications that participate in their own de
fense. In the DARPA’s APOD (Applications that 
Participate in their own Defense) project [4], BBN 
also proposed port and address hopping techniques 
to confuse would-be attackers and thus prevent them 
from identifying and ultimately attacking network 
computers. Essentially, this approach was similar to 
DYNAT, except that it applied port and address hop
ping at layers above TCP such as in CORBA calls 
and used off-the-shelf utilities for a more general so
lution. However, the same advantages and problems 
exist with the APOD approach as with the DYNAT 
approach. 

Network address space randomization. Anto
natos et al. use a similar network address space 
randomization (NASR) scheme to thwart hit list 
worms [3]. Their implementation, however, is much 
different as they configure DHCP servers to ex
pire the leases of hosts at various intervals to sup
port address randomization. They consider sev
eral different expiration policies including chang
ing host addresses only when hosts are rebooted as 
well as using timer-based settings. The soft change 
timer specifies the minimal interval between address 
changes when there is no activity on the host, while 
a hard change timer specifies the maximum time a 
host can maintain a given address, regardless of ac
tivity. Several experiments concluded that NASR 
can be useful for hit list worm defense, although ad
ditional research is needed. As with the DYNAT 
approach above, the researchers found that the ap
proach is also beneficial in making the worms easier 
to detect. 

Dynamic route adaptation. In [6], Compton pro
posed an approach to dynamically changing net
work packet routes so that observable traffic pat
terns change on a regular basis [6]. The goal of this 
work is to make network mapping more difficult and 
to make packet sniffing less effective. They devel
oped a new metric for topological network change 
that captures the difference in the required band
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width between two nodes. This measure was com
bined with a mixed integer linear programming ob
jective function designed to produce the optimal 
topology to produce near optimal solutions that are 
significantly different from the current solution. Re
sults showed that, on average, links were only ac
tive 33% of the time. The main drawback to this 
approach is the time required to come up with solu
tions, which ranged from minutes to days. To solve 
this problem, Greve developed a heuristic solution 
called the Network Obfuscation Heuristic (NOH) 
[9], which was created by supplementing a greedy 
pricing algorithm to produce a polynomial-time ap
proximation. Although the experiments to compare 
the two algorithms are not complete, they do re
veal that NOH significantly decreases the runtime in 
all cases (2 orders of magnitude for networks larger 
than 20 nodes) and that the deviation from the opti
mal solution is also acceptable for larger networks. 

Proactive obfuscation Proactive obfuscation is an 
approach to creating almost identical replicas of 
software applications that share identical function
ality with fewer shared vulnerabilities [17]. The ap
proach restarts fresh versions of servers periodically 
that react differently to identical attacks. Gener
ally, when attacked using known vulnerabilities, the 
modified servers either do not respond as expected 
or crash instead of being compromised. The authors 
propose to create these near identical replicas using 
semantics-preserving code transformations. The au
thors showed that with sufficient entropy in the ex
ecutables, the approach was effective at thwarting 
known attacks while their approach to automatically 
generate diverse executables did not greatly increase 
costs. 

6	 Conclusion 
In this paper we presented a preliminary design 

of a network moving-target defense system. We 
conducted simulation-based experiments to study 
the effects of randomly changing one aspect of the 
system — role to VM mapping, in reducing at
tacker’s success likelihood. The results show, as 
expected, reduced attack success likelihood with in
creasing frequency of changes. This is our very pre

liminary first step towards building a comprehen
sive evaluation and analysis framework for network 
moving-target defense research. 
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