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Abstract—A network security metric is desirable in 
evaluating the effectiveness of security solutions in dis-
tributed systems. Aggregating CVSS scores of individual 
vulnerabilities provides a practical approach to network 
security metric. However, existing approaches to aggre-
gating CVSS scores usually cause useful semantics of 
individual scores to be lost in the aggregated result. In this 
paper, we address this issue through two novel approaches. 
First, instead of taking each base score as an input, 
our approach drills down to the underlying base metric 
level where dependency relationships have well-defined 
semantics. Second, our approach interprets and aggregates 
the base metrics from three different aspects in order to 
preserve corresponding semantics of the individual scores. 
Finally, we confirm the advantages of our approaches 
through simulation. 

I. INTRODUCTION 

Today’s critical infrastructures and enterprises are 
increasingly dependant on the reliable functioning of 
distributed systems. In securing such systems, a network 
security metric is desirable since you cannot improve 
what you cannot measure. By applying a security metric 
immediately before, and after, deploying security solu-
tions, we can judge those solutions’ relative effective-
ness in a direct and precise manner. Such a capability 
will make securing networks a science, rather than an 
art. 

The Common Vulnerability Scoring System (CVSS) 
is a widely adopted standard [10], which allows security 
analysts and vendors to assign numerical scores to vul-
nerabilities based on their relative severity. CVSS scores 
of known vulnerabilities are already available through 
public vulnerability databases (e.g., the NVD [11]). 
CVSS thus provides a practical foundation for develop-
ing network security metrics. On the other hand, CVSS 
is mainly intended for ranking individual vulnerabilities. 
It does not directly provide a way for aggregating indi-
vidual scores into an overall metric of network security. 
Naive ways for aggregating scores (e.g., taking the 

average or maximum value) usually lead to misleading 
results, whereas existing attack graph-based approaches 
can achieve improved results [5], [3], [14]. 

In this paper, we first observe that most existing 
approaches to aggregating CVSS scores may cause 
useful semantics of individual scores to be lost in two 
ways. First, vulnerabilities’ dependency relationship is 
currently either ignored or handled in an arbitrary way, 
which brings doubts to the metric results and prevents 
their adoption. Instead of taking the base score as a 
black box input, we break it down to the underlying base 
metrics in which dependency relationships have well-
defined semantics. Second, only the attack probability 
is currently considered for aggregating CVSS scores, 
which may limit the scope of application and lead to 
misleading results since different aspects will demand 
different algebra for aggregating the scores. To address 
this issue, we interpret and aggregate CVSS scores 
from three aspects, namely, probability, effort, and skill. 
Finally, we confirm the advantages of our approach 
through simulation. 

The contribution of this paper is three-fold. First, 
the novel approach of base metric-level aggregation 
can preserve more semantics and consequently produce 
more meaningful metric results. Second, interpreting 
and aggregating CVSS scores from different aspects 
allows different semantics to be extracted from CVSS 
scores, and consequently may broaden the scope of 
application for the CVSS standard itself. Third, to the 
best of our knowledge, the simulation presented in 
this paper is among the first efforts on numerically 
evaluating security metrics. 

The rest of this paper is organized as follows. Sec-
tion II reviews background information. Section III 
presents the base metric-level aggregation. Section IV 
addresses three different aspects. Section V presents 
simulation results. Finally, Section VI reviews related 
work and Section VII concludes the paper. 

mailto:anoop.singhal@nist.gov
mailto:jajodia@gmu.edu
mailto:che,wang}@ciise.concordia.ca


 

  

 

 

 

 

 

 

 

 

    

    

II. PRELIMINARIES 

We first briefly review the CVSS standard to make 
our paper more self-contained. We then demonstrate 
limitations of existing approaches through an example. 

A. The CVSS Standard 

In CVSS, each vulnerability is assigned a base score 
(BS) ranging from 0 to 10, based on two groups of 
totally six base metrics [10]. These base metrics will 
stay constant over time, and across different user en-
vironments. Optionally, the base score can be adjusted 
with temporal and environmental scores to reflect time 
or application-specific factors (the temporal and envi-
ronmental scores are generally not available in vulner-
ability databases, and are not considered in this paper). 
Specifically, 

•	 The Exploitability metric group measures the 
relative difficulty to exploit a vulnerability: 

–	 AccessV ector measures the distance from 
which the vulnerability can be accessed. Possi-
ble values include Local (e.g., physical access 
required), AdjacentNetwork (e.g., accessible 
from local subnets), and Network  (e.g., ac-
cessible from the Internet). 

–	 AccessComplexity measures the complex-
ity to exploit the vulnerability once an at-
tacker has the required access. Possible val-
ues include High  (e.g., admin/root privilege 
required), Medium(e.g., user privilege re-
quired), Low (e.g., exploitable with default 
account). 

–	 Authentication measures the amount of re-
quired authentication effort. Possible values 
include Multiple (e.g., authentications re-
quired at both OS and applications), Single 
(e.g., authentication required at OS only), and 
None  (e.g., no authentication required). 

•	 The Impact  group measures the potential con-
sequences of exploiting a vulnerability. For each 
metric in this group, the possible values are 
None  (e.g., no impact to confidentiality), Partial  
(e.g., modification of some files possible), and 
Complete (e.g., resource rendered completely un-
available). 

The six base metrics will be mapped to fixed numer-
ical values (details omitted) and used to calculate the 
base score (BS) with the base equation (see Equation 1). 

B. Limitations of Existing Approaches 

Figure 1 shows a toy network with two hosts (1 
and 2) on different subnets and an attacker’s host 0 

in the Internet. We consider two cases based on this 
network. In Case 1, we assume host 1 to be a UNIX 
server running a telnet service and host 2 a Windows 
XP workstation running the Universal Plug and Play 
(UPnP)  service.  In  Case 2, host 1 and 2 swap their  OS  
(and corresponding services). In both cases, the firewalls 
disallow any traffic except accesses to those services. 

firewall firewall 

host 0 host 1 host 2 

Case 1: vtelnet Case 1: vUPnP 

Case 2: vUPnP Case 2: vtelnet 

Case 1: 

Case 2: 

〈vUPnP,1,2〉〈vtelnet,0,1〉 

〈vtelnet,1,2〉〈vUPnP,0,1〉 

〈root,1〉 

〈root,1〉 

Figure 1. An Example Network 

〈root,2〉 

〈root,2〉 

We assume the telnet service contains the vulnera-
bility CVE-2007-0956 [11], denoted by vtelnet, which 
allows remote attackers to bypass authentication and 
gain system accesses via providing special usernames 
to the service. Also, the UPnP service contains the 
vulnerability CVE-2007-1204 [11], denoted by vUP  nP  , 
which is a stack overflow that allows attackers on the 
same subnet to execute arbitrary codes via sending 
specially crafted requests. Table I shows their CVSS 
base metrics [11]. By applying Equation 1, we can 
calculate the base score BS = 7.6 for vtelnet and 
BS = 6.8 for vUP  nP  . 

Average and Maximum: First, consider two naive 
ways for aggregating the CVSS scores, taking the 
average value (7.2 in both Case 1 and 2) and maximum 
value (7.6 in both cases), respectively. Since the average 
and maximum values are both defined over a set, they 
do not depend on where vulnerabilities are located in 
a network, or how they are related to each other. For 
example, if we assume the UNIX server in Figure 1 to 
be the only important asset, then intuitively the overall 
security is quite different between Case 1 (an attacker 
can directly attack the UNIX server on host 1) and Case 
2 (he/she must first compromise the Windows worksta-
tion on host 1 before attacking host 2). Nonetheless, 
by taking the average or maximum value, we cannot 
distinguish between the two cases. 

Attack Graph-Based Approach [14]: The above 
naive approaches lead to misleading results because 
they ignore causal relationships between vulnerabilities. 
Such causal relationships can be modeled in attack 
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BS = round to 1 decimal((0.6 ∗ Impact  + 0.4 ∗ Exploitability − 1.5) ∗ f(Impact)) 

Impact  =  10.41 ∗ (1 − (1 − ConfImpact) ∗ (1 − IntegImpact) ∗ (1 − AvailImpact)) 

Exploitability =  20  ∗ AccessV ector ∗ AccessComplexity ∗ Authentication 

f (Impact) = 0 if Impact = 0, 1.176 otherwise (1) 

Metric Group Metric Metric Value of vtelnet Metric Value of vUP  nP  

Exploitability 
Access Vector 
Access Complexity 
Authentication 

Network (1.00) 
High (0.35) 
None (0.704) 

Adjacent Network (0.646) 
High (0.35) 
None (0.704) 

Impact 
Confidentiality 
Integrity 
Availability 

Complete (0.660) 
Complete (0.660) 
Complete (0.660) 

Complete (0.660) 
Complete (0.660) 
Complete (0.660) 

Base Score (BS) 7.6 6.8 

Table I
 
THE CVSS BASE METRICS AND SCORES OF TWO VULNERABILITIES
 

graphs, as illustrated in the lower portion of Figure 1. 
Each triple (v, h1, h2) inside an oval represents an 
exploit of vulnerability v on host h2 from host h1; each 
pair (c, h) represents a security-related condition c on 
host h. 

The attack graph-based approach [14] converts the 
CVSS base scores into probabilities. The probabilities 
are then aggregated based on following causal relation-
ships: An exploit is reachable only if all of its pre-
conditions are satisfied (that is, a conjunction); a condi-
tion is satisfied as long as one reachable exploit has that 
condition as its post-condition (that is, a disjunction). 

In Case 1 of our example, we would assign 
7.6/10 = 0.76 to (vtelnet, 0, 1), and  6.8/10 = 0.68 to 
(vUP  nP  , 1, 2) (and 1 to both conditions). We can then 
calculate the new value for (root, 1) to be 0.76 and 
(vUP  nP  , 1, 2) and (root, 2) to be 0.76 × 0.68 = 0.52. 
Similarly, we will obtain the same result for Case 2. 
At first glance, this might seem reasonable since the 
attacker is exploiting the same two vulnerabilities in 
both cases. However, upon more careful observation, 
this is not the case. First, we recall that the vulnerability 
vUP  nP  (CVE-2007-1204) requires the attacker to be 
within the same subnet as the victim host. In Case 1, 
exploiting vtelnet on host 1 helps the attacker to gain 
accesses to local network, and hence makes it easier to 
exploit host 2. In contrast, in Case 2, there is no such 
effect due to the reversed order of exploits. Clearly, this 
difference between the two cases cannot be captured by 
the identical result 0.52 produced by this approach. 

Bayesian Network (BN)-Based Approach [3]: Next 
we consider the Bayesian network-based approach [3]. 
The lower left-hand side of Figure 2 shows the BN 
corresponding to Case 2 of our example. The lower 
right-hand side of Figure 2 depicts the corresponding 
Conditional Probability Table(CPT) for each exploit in 

Case 2. The probability of reaching the goal state, 
which is assumed as exploiting both vulnerabilities in 
this example, can be calculated as P (vtelnet = T ) =  �

vUP  nP  ∈{T,F  } P (vtelnet = T, vUP  nP  ) = 0.52. 

vtelnet 

vUPnP 

0.76 

0.68 

vtelnet 

T F 
0.76 0.24 

vUPnP 

vtelnet T F 
T 0.8 0.2 
F 0 1 

Goal State 

vUPnP 

vtelnet 

0.68 

0.72 

vUPnP 

T F 
0.68 0.32 

vtelnet 

vUPnP T F 
T 0.76 0.24 
F 0 1 

Goal State 

Figure 2. Bayesian Network-Based Approach [3] 

The upper left-hand side of Figure 2 depicts the 
BN for Case 1. Since exploiting vtelnet on host 1 
makes it easier to exploit vUP  nP  on host 2, according 
to this approach, we should assign to P (vUP  nP  = 
T |vtelnet = T ) a value higher than the one directly 
derived from the base score (that is, 0.68). If we assign, 
say, 0.8, then the possibility of achieving the goal state 
is P (vUP  nP  = T ) =  

�
vtelnet∈{T,F  } P (vUP  nP  = 

T, vtelnet) = 0.61. This result is more accurate since 
it reflects the dependency relationship between the two 
exploits. However, note that we have chosen an arbitrary 
value 0.8 because this approach does not provide means 
for determining that value, which is clearly a limitation. 

III. BASE METRIC-LEVEL METRIC AGGREGATION 

This section presents our approach to aggregating 
CVSS base metrics in order to remove the aforemen-
tioned limitations of existing approaches. 
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A. Overview 

Our key observation is that all the existing approaches 
discussed in the previous section take the CVSS base 
scores as their inputs; the base score is regarded as 
a black box, and the underlying base metrics are not 
involved in the process of aggregating scores. However, 
we notice that the dependency relationships between 
vulnerabilities are usually only visible at the level of 
base metrics, which prevents those approaches from 
properly handling such relationships. 

Instead of working at the base score level, our ap-
proach drills down to the underlying base metric level. 
To build intuitions, we revisit the example shown in 
Figure 1. In that example, the dependency relationship 
can be easily modeled at the base metric level as 
follows. When an attacker successfully exploits vtelnet 
on host 1, he/she can gain accesses to the local network 
of host 2, which is required for exploiting vUP  nP  on 
host 2. At the base metric level, this simply means the 
AccessV ector metric of vUP  nP  , which has the value 
AdjacentNetwork, should be replaced with Network, 
since the attacker is effectively accessing vUP  nP  re-
motely (using host 1 as a stepping stone). 

With this adjustment to the base metric 
AccessV ector, we can apply Equation 1 to recalculate 
a new  effective base score, which is equal to 0.76 in 
this case. Clearly, similar to the BN-based approach [3], 
our approach also produces a result higher than the 
original value 0.68. However, unlike the arbitrary value 
chosen in [3], our result has inherited the well defined 
semantics from the base metrics. 

The final score corresponding to Case 1 shown in 
Figure 1 can now be calculated as P (vUP  nP  = T ) =  �

vtelnet∈{T,F  } P (vUP  nP  = T, vtelnet) = 0.58. In  
Table II, we summarize our discussions about the above 
example and compare the results produced by different 
approaches. 

B. The Formal Approach 

We are now ready to formalize our approach 1. We  
assume an attack graph is given as a directed graph 
G = (E ∪ C, {(x, y) : (y ∈ E ∧ x ∈ pre(y)) ∨ (x ∈ E ∧ 
y ∈ post(x))}) where E, C, pre(), and  post() denote 
a set of exploits (each of which is a triple (v, hs, hd)
denoting an exploit of vulnerability v on host hd from 
host hs), a set of security-related conditions, a function 
that maps an exploit to the set of its pre-conditions, and 

1Due to space limitations, we will only present the model and 
leave out algorithms for constructing the model, which are essentially 
modified versions of BN construction algorithms. 

a function that maps an exploit to the set of its post-
conditions, respectively [1]. 

We call a condition initial condition if it is not the 
post-condition of any exploit. A sequence of exploits 
is called an attack sequence if for every exploit e in 
the sequence, all its pre-conditions are either initial 
conditions, or post-conditions of some exploits that 
appear before e in that sequence. We say an exploit 
'	 'e is an ancestor of another exploit e, if  e appears 

before e in at least one minimal attack sequence (that is, 
an attack sequence of which no subsequence is a valid 
attack sequence). 

We also assume the CVSS base metrics can be 
obtained for each exploit e as a vector bm of six numeric 
values, each of which corresponds to a base metric [10]. 
We will use the notation bm[AV ], bm[AC], . . .  , bm[A] 
to denote each corresponding element of the vector 
bm. Finally, we assume the dependency relationships 
between exploits are given using a function adj(), as  
formalized in Definition 1. That is, how the base metric 
of an exploit e is affected by another exploit e' will be 

'reflected in the given value of adj(e, e ,m). 
Definition 1: Given an attack graph G with the set 

of exploits E, define a function adj() : E × E × 
'{AV,AC,  Au,C, I, A} →  [0, 1], and call adj(e, e ,m) 

the adjusted value for metric m of exploit e due to e'. 
Next, we formalize the concept of effective base 

metric and effective base score in Definition 2. For each 
exploit e, the effective base metric simply takes the orig-
inal base metric if no adjusted value is given. Otherwise, 
the effective base metric will take the highest adjusted 
value defined over any ancestor of e (note that an exploit 
may be affected by many exploits in different ways, 
leading to more than one adjusted values), because a 
metric should always reflect the worst case scenario 
(that is, the highest value) 2. The effective base score 
basically applies the same equation to effective base 
metrics instead of the original metrics. In the definition, 
both effective base metric and score can be defined 
with respect to a given subset of exploits, which will 
be necessary later for the discussions in Section IV. 

Definition 2: Given an attack graph G with the set of 
exploits E, the adjusted values given by function adj(), 
the CVSS base metric vector bm for each e ∈ E, and  
any E' ⊆ E (E' will be omitted if E' = E), we define 

•	 the effective base metric vector ebm of e with 
respect to E' as 

–	 ebm[m] = bm[m], for each m ∈ 

2This also explains how a mutual dependency between two exploits 
will be handled, that is, by taking the dependency that yields the 
higher aggregated value. 
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Approaches Case 1 Case 2 Summary 

Average 7.2 7.2 Ignoring causal relationships 
(exploiting one vulnerability enables the other) Maximum 7.6 7.6 

Attack graph-based approach [14] 0.52 0.52 
Ignoring dependency relationships 
(exploiting one vulnerability makes the other easier) 

BN-Based approach [3] 0.61 0.52 Arbitrary adjustment for dependency relationships 
Our approach 0.58 0.52 Adjustment with well-defined semantic 

Table II
 
COMPARISON OF DIFFERENT APPROACHES
 

' {AV,AC,Au  , C, I, A}, if  adj(e, e ,m) is not 
'defined for any ancestor e of e in E ' . 

' ' –	 ebm[m] =  adj(e, e ,m), if  adj(e, e ,m) is the 
'highest value defined over any ancestor e of 

e in E ' . 
•	 the effective base score ebs of e as the base 

score calculated using Equation 1 with base metrics 
replaced by corresponding effective base metrics. 

Definition 3 formalizes a Bayesian network (BN)-
based model for aggregating the effective base scores. 
The directed graph is directly obtained from the attack 
graph. The conditional probabilities are assigned ac-
cording to the causal relationships between an exploit 
and its pre- and post-conditions. Since the dependency 
relationships between exploits are already reflected in 
our definition of effective base scores, the BN needs 
not to explicitly model them. With the BN model, we 
can easily calculate the probability of satisfying any 
given goal conditions (or equivalently, the probability 
of important network assets being compromised). 

Definition 3: Given attack graph G with exploits E, 
and the effective base score ebs for each e ∈ E, we  
define a Bayesian network B = (G, Q) where 

•	 G is the attack graph interpreted as a directed graph 
with each vertex representing a random variable 
taking either T (true) or F (false), and the edges 
representing the direct dependencies among those 
variables. 

•	 Q is the collection of conditional probabilities 
assigned as the following. 

–	 P (c = T |e = T ) = 1, for each e ∈ E 
satisfying c ∈ post(e). 

–	 P (e = T | � (c = T )) = ebs/10.∀c∈pre(e)

C. An Example 

We now illustrate our approach by applying it to the 
example shown in Figure 3. The left-hand side shows a 
fictitious attack graph in which the dotted lines indicate 
dependency relationships, whose details will be given 
shortly. The right-hand side gives the corresponding 
model obtained by applying our formal framework as 
introduced above. 

Specifically, we assume exploit B will give an at-
tacker accesses to local network, which is required 
for exploiting D (since its base metric AV is Local), 
as indicated by the dotted line from B to D. This  
dependency relationship is modeled using the function 
adj() on the right-hand side. Also, we assume that 
exploit C does not require an authenticated account 
(its base score Au is None), and exploiting C will 
give attackers the required account for exploiting D, 
as indicated by the dotted line from C to D, and  
modeled using the function adj() on the right-hand 
side. Therefore, we can replace the base metric of 
exploit D with its effective base metric, as shown on 
the right-hand side, in order to calculate its effective 
base score as 8.77 (we assume the impact metrics 
to be Complete, Complete, and  Partial). We then 
calculate P (D = T ) using the BN model shown in 
Figure 4 as P (D = T ) =  P (D = A,B,C∈{T,F  }
T |B, C)P (C|A, B)P (A)P (B) = 0.27. 

A B 

T F T F 

0.943 0.057 0.795 0.205 

C 
A B T F 
T F 0 1 
F F 0.877 0.123 
T T 0.877 0.123 
F T 0.877 0.123 

D 

A B C T F 
F F F 0 1 
T F F 0 1 
F T F 0 1 
T T F 0 1 
F F T 0.795 0.205 
T F T 0.795 0.205 
F T T 0.877 0.123 
T T T 0.877 0.123 

Figure 4. The BN Model 

IV. THREE ASPECTS OF CVSS SCORES 

We first demonstrate the need for interpreting and 
aggregating base scores from three aspects in Sec-
tion IV-A. We then extend our approach in Section IV-B 
and illustrate it through an example in Section IV-C. 

A. The Need for Different Aspects 

The CVSS base metrics and scores can be interpreted 
in different ways. In this paper, we will consider three 
aspects of such metrics and scores (note that each metric 
or score may potentially be interpreted in one or more 
of those three aspects). 
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c

c0

A 

C 

c1

ci4

B 

i1 ci2 ci3 Adjusted Values: 
adj(D, C, AV ) = 7.95 
adj(D, B, Au) = 6.33 

Base Scores: 
Exploits AV AC Au bs 

A 
B 
C 
D 

Network 
Network 
Network 

Local 

Low 
Medium 
Medium 
Medium 

None 
Single 
None 

Single 

9.43 
7.95 
8.77 

6 

D Effective base metric of D: 
ebmD = (Network, Medium, None) 

cgoal 
Effective base score of D: 

ebsD = 8.77 

Figure 3. An Example Attack Graph (Left) and The Corresponding Model (Right) 

•	 First, as discussed in the previous section, the 
difference in scores may indicate different prob-
abilities of attacks. For example, the numeri-
cal score assigned to the AccessV ector metric 
value of AdjacentNetwork is lower than that 
of Network, which can be interpreted as that a 
vulnerability requiring local accesses has a lower 
attack probability than one that is remotely acces-
sible. 

•	 Second, we can also interpret the difference in 
scores as the minimum amount of time and effort 
by an average attacker. For example, a vulnerability 
requiring multiple authentications at both OS and 
applications will likely demand more time and 
effort than one that requires no authentication. 

•	 Third, the difference in scores may also im-
ply the minimum skill level of an attacker 
who can successfully exploit that vulnerability. 
For example, exploiting a vulnerability with its 
AccessComplexity score as High  will likely 
require more skills than exploiting one that has the 
value Low. 

Interpreting the CVSS scores from different aspects 
will also require different methods for aggregating such 
scores. We demonstrate this fact through an example. 
Figure 5 shows a network consisted of four hosts (host 
1 through 4) and another host on the internet (host 0). 
We assume there are firewalls between the hosts that 
prevent any traffic except those indicated by lines shown 
in the figure. We also assume host 1 through 4 each has 
a vulnerability, denoted by a letter inside parentheses. 
Finally, we assume the base scores are partially ordered, 
that is, vulnerability B is more severe than all others, 
and A is more severe than C (for simplicity, we do not 
explicitly distinguish between base scores and effective 
base scores in this example). We now consider how 
the scores should be aggregated for each of the three 
aspects. 

host 0 host 1 host 2 host 3 

(B) 

host 4 

(C)(A) 

(D) 

Figure 5. An Example of Different Aspects 

•	 First, suppose we have assigned probabilities PA, 
PB , PC , and  PD to those four vulnerabilities based 
on the base scores. Also suppose host 3 is our 
main concern. The probability of host 3 being 
compromised can be calculated as P = PA ∗(PB ∗ 
PC /(PB + PD)) ∗ PC . Next, suppose we remove 
host 4 from the network. The probability will 
change to P = PA ∗PB ∗PC , which is now smaller 
(i.e., host 3 is less likely to be compromised). 
This is reasonable since, by removing host 4, an 
attacker now has only one choice, that is, to reach 
host 3 via host 2. Finally, suppose we further 
remove host 2 from the network, the probability 
now becomes P = PA ∗ PC , which is larger. This 
is also reasonable since an attacker now only needs 
to compromise host 1 before reaching host 3. 

•	 Next, by considering a different aspect, the effort 
of an attacker, we can derive a different story. First, 
suppose we have assigned some effort scores FA, 
FB , FC , and  FD to the four vulnerabilities based 
on their base scores (we will discuss how the effort 
scores should be defined later). 
Without considering dependency relationships, the 
effort spent on exploiting vulnerabilities will 
clearly be additive. Therefore, addition is the nat-
ural way to aggregate the effort scores. However, 
there is one more complication. In this example, 
an attacker may compromise host 3 in two ways, 
either through host 2 or host 4. Since a metric 
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should measure the worst case scenario, it should 
yield the minimum effort required to compromise 
host 3. That is, F = FA +FB +FC (note that FB 

is less than FD due to our assumption). 
If we remove host 4 from the network, we can 
easily see that the effort score will remain the same, 
F = FA +FB +FC , instead of becoming smaller, 
like in the above case of attack probability. This 
is reasonable since vulnerability D is not on the 
minimum-effort attack sequence so its removal will 
not affect the effort score. If we further remove 
host 2 from the network, we can see that the effort 
score now reduces to F = FA + FC . 

•	 Finally, by considering the third aspect, the skill 
level of an attacker, we can derive yet another story. 
First, suppose we have assigned some effort scores 
SA, SB , SC , and  SD to the four vulnerabilities 
based on their base scores. Based on our assump-
tion, we have that SB is the smallest among the 
four and SA is less than SC . It is now easy to see 
that to compromise host 3, the minimum level of 
skills required for any attacker is SC regardless of 
which sequence of attacks is being followed. Also, 
whether we remove host 4 or host 2 (or even host 
1) from the network does not affect the skill score. 

B. Aggregating Scores for Different Aspects 

We now formalize our approach to aggregating scores 
for the effort and skill aspects. For both aspects, we will 
only consider the exploitability metric group, that is, the 
first three elements of the effective base metric vector. 

In Definition 4, the formula and constants are merely 
designed to convert the exploitability score (defined in 
CVSS as the multiplication of the three metrics) to the 
same domain as the CVSS base score for consistency. 
The effective base metric vector of each exploit is now 
defined with respect to a given subset of exploits since 
whether a base metric needs to be adjusted will depend 
on which attack sequence is involved. 

Definition 4: Given an attack graph G with the set of 
exploits E and the effective base metric vector ebm for 
each e ∈ E with respect to some E ' ⊆ E, we define for 
e both the effort score es(e) and skill score ss(e) with 

0.6395respect to E ' as	 − 0.2794.ebm[AV ]∗ebm[AC]∗ebm[Au]
Although both scores are defined in the same way, 

they will need to be aggregated differently, as demon-
strated in the previous section. Definition 5 formalizes 
the way we aggregate those scores. Roughly speaking, 
for aggregating effort score, we find an attack sequence 
whose summation of effort scores is the minimum 
among all attack sequences (although such an attack 
sequence is not necessarily unique, the minimum value 

is always unique); for aggregating skill scores, we find 
an attack sequence that whose maximum effort score is 
the minimum among all attack sequences. 

Definition 5: Given an attack graph G with the set 
of exploits E, and the effort score es(e) and skill score 
ss(e) for each e ∈ E, we define 

•	 the accumulative effort score of e as 
F (e) = min({� es(e ' ) : q is an attack e1∈q 
sequence with e as its last element}) (here es(e ' ) 
is defined with respect to q). 

•	 the accumulative skill score of e as 
' S(e) = min({max({ss(e ' ) : e ∈ q}) :  

q is an attack sequence with e as its last element}) 
(here ss(e ' ) defined with respect to q). 

C. An Example 

Now we demonstrate how our approach can be ap-
plied to calculate the accumulative effort and skill scores 
through a more elaborated example. The left-hand side 
of Figure 6 shows an example attack graph in which 
two attack sequences can both lead to the assumed goal 
condition. In the upper right-hand side we show CVSS 
metrics of the vulnerabilities. The dashed lines in the 
attack graph indicate dependency relationships between 
the exploits. Specifically, the adjusted AccessV ector 
metric value of C should be Network  and the adjusted 
Authentication metric value of F should be None. 

The calculated cumulative effort scores and cumula-
tive skill scores are shown on the lower right-hand side. 
Note that in calculating the scores for each sequence, 
we need the effort and skill scores that are defined with 
respect to that sequence. In particular, exploit F has two 
different effort and skill scores, since its effective base 
metric Authentication is adjusted in sequence q2 (due 
to exploit E) but not in sequence q1. 

V. SIMULATION 

This section presents simulation results 3. Our objec-
tive is to compare our approach to existing ones through 
numerical results and to examine how close those results 
are to the statistically expected results represented by 
simulated attackers. To the best of our knowledge, the 
simulation presented here is among the first efforts on 
experimentally evaluating network security metrics. 

We employ the Boston university Representative 
Internet Topology gEnerator(BRITE) [2] to generate 
simulated network topologies. Vulnerability information 
is injected into the generated network topologies to 
obtain network configurations. Finally, attack graphs are 

3To the best of our knowledge, there do not exist public datasets 
that contain a sufficient number of real world attack graphs which can 
be used for experiments. 
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vA 
vB 
vC 
vD 
vE 
vF 

Network 
Network 
Local 
Local 
Network 
Network 

Low 
Medium 
Low 
Medium 
Medium 
Medium 

None 
None 
None 
None 
Single 
Single 

1 
1.21 
1 (w.r.t.  q1) 
3.49 
1.59 
1.59 (w.r.t. q1) 
and 1.21 (w.r.t. q2) 

Attack Sequence Effort F (F ) Skill S(F ) 
q1 : A → B → C → F 
q2 : A → B → D → E → F 

4.8 
8.5 

1.59 
3.49 

Figure 6. An Example Attack Graph (Left) and The Effort and Skill Scores (Right) 

generated from the configurations using the standard 
two-pass procedure [1]. All simulations are conducted 
on a computer equipped with a 3.0GHz CPU and 8GB 
RAM. 

The objective of the first two simulations is to evalu-
ate our approach from the aspect of attack probability, as 
detailed in Section III. For simplicity, we assign random 
base metrics to vulnerabilities, and dependency rela-
tionships to pairs of vulnerabilities, while leaving more 
realistic approaches for future work. We then apply both 
our approach and the existing BN-based approach by 
Frigault et al. [3] to calculate the probability of attacks 
with respect to a set of randomly chosen goal condi-
tions. We also compare our results to the percentage 
of simulated attackers (each of which is modeled as a 
random subset of exploitable vulnerabilities) who can 
successfully reach the goal conditions. 

In Figure 7, the X-axis is the average effective base 
score of all vulnerabilities in each network divided by 
10, denoted by β. The  Y -axis is either the aggregated 
score of attack probability (for both our approach and 
the approach by Frigault et al.) or the percentage 
of successful attackers. Each result is the average of 
500 simulations on different network configurations. 
The curve Simulation corresponds to the simulated 
attackers, which is used as a baseline for comparison. 
The line β corresponds to the naive approach of taking 
the average base score among all vulnerabilities in a 
network, which is clearly inaccurate. 

In Figure 7, the curve S0 corresponds to our approach 
and the curve S1 the approach by Frigault et al.. Clearly, 
our result is closer to the simulated attackers than theirs. 
Also, our probability is always higher than theirs due 
to the proper handling of dependency relationships. In 
Figure 7, we have assigned dependency relationships to 
n pairs of randomly chosen vulnerabilities where n is 
drawn from a uniform distribution on [0, 3]. Figure 8 
shows a similar simulation, except that we increase the 
amount of dependency relationships to n pairs where 
n is now drawn from a (uniform distribution on [0, 5]. 
The results show that our approach is still very close to 

the simulated attackers, whereas Frigault’s result further 
deviates from the baseline results. 

The objective of the next simulation is to study the 
deviation of aggregated scores from the baseline of 
simulated attackers. For this purpose, Figure 9 depicts 
the results computed on 800 different networks. The 
X-axis is the percentage of simulated attackers who 
can reach the goal conditions, and the Y -axis is the 
aggregated probability score. The dots S0 and S1 cor-
respond to the results of our approach and Frigault’s, 
respectively. The two solid lines labeled with S0 and S1 

represent the average probability score within each 0.05 
interval of the X-axis. The two polygon areas depict the 
distribution of aggregated scores produced by the two 
approaches. As we can see from the figure, our results 
evenly spread around the simulated attackers’ results 
(represented by the diagonal line), whereas Frigault’s 
results are almost always lower. 

The next simulation aims to evaluate our approach 
from the skill aspect. For this purpose, each simulated 
attacker is randomly assigned a skill level based on 
exponential distribution (significantly less attackers pos-
sess a higher level of skills). Each simulated attacker 
can only exploit those vulnerabilities whose skill scores 
(as defined in Section IV) are no greater than the 
attacker’s assigned skill level. In Figure 10, the X-axis 
is the percentage of successful simulated attackers, and 
the Y -axis is either the skill score produced by our 
approach or the skill level of simulated attackers. Each 
result is the average of 100 simulations. The curve Skill 
metric is the cumulative skill score of our approach; 
the curve Minimal skill corresponds to the lowest skill 
level of simulated attackers among those who can reach 
the goal conditions. We can see that those two curves 
almost overlap each other, indicating the accuracy of our 
approach. The curve Average skill shows the average 
skill level among successful simulated attackers, which 
has the same trend, but is always higher than our result. 
The curve Vulnerability average shows the average skill 
score of all vulnerabilities to be not so good a metric. 

The last simulation evaluates our approach from the 
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Figure 9. Distribution of Probability Scores 

effort aspect. For this purpose, each simulated attacker 
is randomly assigned aneffort threshold based on expo-
nential distribution (less attackers are willing to spend 
more effort). We assume each simulated attacker will 
only exploit those vulnerabilities whose effort scores 
(as defined in Section IV) are no greater than the 
attacker’s assigned effort threshold. In Figure 11, the X-

20 

axis is the percentage of successful simulated attackers, 
and the Y -axis is either the effort score or the effort 
threshold (of simulated attackers). The curve Effort 
metric is the cumulative effort score of our approach; 
the curve Minimal effort and Average effort respectively 
correspond to the lowest and average effort threshold 
of those simulated attackers who successfully reach the 
goal conditions. Again, we can see our effort scores 
closely match the minimum required effort and follow 
the same trend as the average effort. 

VI. RELATED WORK 

General reviews of security metrics are given in [7]. 
An early effort measures the difficulty of attacks in 

15 

10 

5 

0  
0 0.1 0.2 0.3 0.4 0.5 0.6 

Success rate of simluated attackers 

Figure 11. The Effort Aspect 

terms of time and efforts based on a Markov model [12]. 
More recently, several security metrics are proposed by 
aggregating CVSS scores based on attack graphs [3], 
[16]. The minimum efforts required for executing each 
exploit is used as a metric in [13]. A mean time-to-
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compromise metric is proposed based on the predator 
state-space model (SSM) used in the biological sciences 
in [8]. Homer and Ou propose using MinCostSAT for 
automated network reconfiguration with numeric cost 
assigned to each configuration [4]. Attack surface mea-
sures how likely a software is vulnerable to attacks [9]. 
In this paper, we limit our discussions to known vul-
nerabilities. A few recent work attempt to rank zero 
day attacks, including ordering different applications in 
a system by consequences of having a single zero day 
vulnerability [6], and a metric model based on counting 
the total number of zero day vulnerabilities that an 
network can resist [15]. 

VII. CONCLUSION 

In this paper, we have addressed two important lim-
itations of existing approaches to aggregating CVSS 
scores, namely, the loss of useful semantics in handling 
dependency relationships and the loss of semantics 
from different aspects. We have proposed the novel 
approaches of handling dependency relationships at the 
base metric level, and aggregated CVSS metrics from 
three different aspects. The simulation results confirmed 
the advantages of our approach. Future work will be 
directed to incorporating temporal and environmental 
scores, considering other aspects for interpreting the 
scores, and experiments with more realistic settings. 
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