
A Model Towards Using Evidence From Security Events
For Network Attack Analysis

Changwei Liu 1, Anoop Singhal 2, Duminda Wijesekera 1
1 Department of Computer Science, George Mason University, Fairfax VA 22030 USA

2 National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg MD 20899 USA
{ cliu6,dwijesek}@gmu.edu, anoop.singhal@nist.gov

Keywords: Network forensics, Anti-forensics, Evidence graph, Attack graph, Inductive reasoning, Abductive reasoning, Admissibility

Abstract: Constructing an efficient and accurate model from security events to determine an attack scenario for an enterprise network is
challenging. In this paper, we discuss how to use the information obtained from security events to construct an attack scenario
and build an evidence graph. To achieve the accuracy and completeness of the evidence graph, we use Prolog inductive and
abductive reasoning to correlate evidence by reasoning the causality, and use an anti-forensics database and a corresponding
attack graph to find the missing evidence.

1. INTRODUCTION

Investigators of digital crime look for evidence so that they
can construct potential attack scenarios with the hope that
they can be more convincing than the ones presented by the
defense. However, attackers who launch attacks against
enterprise networks tend to use sophisticated techniques
such as multi-host, multi-step attacks and anti-forensics,
which makes finding real evidence difficult. Besides, the
defense may question the admissibility of presented
evidence, rebut the arguments presented by the prosecution
or present an alternative scenario that fits the evidence
presented by the prosecution that would absolve the
accused of wrongdoing. Consequently, using incomplete
evidence to re-construct the attack scenario that can
withstand a rebuttal is challenging.

Enterprise systems generate events to show their state
changes that are categorized by criticality and recorded in
event logs. Although the topic of using IDS logs as forensic
evidence has been controversial, they provide the first level
of information for forensics analyst [4]. Many researchers
have proposed to aggregate redundant alerts and correlate
them to determine multi-step attacks [1, 9]. However, most
reported work used non-automated ad-hoc methods. In
order to partially automate forensic analysis, Wang et al.
proposed a hierarchical reasoning framework to correlate
alerts using so-called local rules and group them using so-
called global rules [7]. The end result of this hierarchical
reasoning system forms an evidence graph that visualizes
multi-host, multi-step attacks in an enterprise network.

Although there is extensive work regarding using
evidential reasoning in formulating hypothesis and
collecting evidence in criminal investigations [2], to the
best of our knowledge, [7] is one of the few that proposed
to use reasoning to correlate attack scenarios represented by
security event alerts. However, this work did not implement
an end-to-end system to fully automate the forensics
analysis process. Besides, this work left two problems un-
resolved: (1) Variable alternative hypotheses could explain
the same attack scenario in the situation where the evidence
has been destroyed, but only one of them is correct; (2) The
evidence that can provide security advice to a network
administrator might not be admissible in a court of law. In
this paper, we propose to implement a Prolog reasoning
based model to automate multi-host, multi-stage
vulnerability analysis on an attacked enterprise network.
Because Prolog can easily query information from SQL
database table and is well known to be more suitable tool
for implementing programs with explicit domain
knowledge representation [7]. Also, we propose to use an
anti-forensics database and a corresponding logical attack
graph to help resolve the two problems mentioned above.
We implement our model by extending an end-to-end
framework and reasoning system MulVAL [13,15].

The rest of the paper is organized as follows. Section 2
describes background. Section 3 is related work. Section 4
describes the experimental network, and Section 5
introduces attack graphs and the tool used in the paper.
Section 6 is our main contribution, which describes our
model of building evidence graphs for network attack

analysis under the situation where anti-forensics is used.
We conclude this paper in Section 7.

2. BACKGROUND

2.1 Digital Forensics and Anti-forensics

Digital forensics uses scientifically validated methods to
collect, validate and preserve digital evidence derived from
digital sources [20]. Digital forensics investigators analyze
data from enterprise systems and use imaging and analysis
tools to extract data from physical or storage media
memory to do content analysis [23]. While live analysis
risks getting changing data from a computer, dead analysis,
although better, requires terminating all system processes
[23].

Analyzing network data presumes that some monitoring
tools have saved network traffic or event logs [24, 25].
Network IDS alerts provide first clues about potential
attacks. However, the large quantities and false positives of
the IDS alerts make the analysis difficult. As a solution, [5]
uses a fault graph based on safety properties and security
policies to impose a structure on log data so that the IDS
can decide what data is necessary to log for forensic
analysis in a way that facilitates determining the attack
scenario and its effect.

Attackers use anti-forensics tools as attempts that
negatively affect the existence, amount, and/or quality of
evidence from a crime scene, or make the examination of
evidence difficult or impossible to conduct [21]. Current
anti-forensic techniques include (1) attacking data and (2)
attacking tools [21]. Techniques used to attack data include
overwriting stored (meta) data, deleting files or media,
hiding information using obfuscation, steganography,
encryption or unallocated (slack) spaces, etc. [21].
Techniques used to attack forensics tools interfere with or
mislead forensic analysis by crafting images or data that is
unusable by tools [14].

2.2 Evidence Graph

An Evidence Graph is a graphical model that presents
intrusion evidence and their dependency, which can be used
to ascertain multi-stage, multi-step attacks in enterprise
networks [7]. We modify the formal definition from [11] as
follows.

Definition 1(Evidence Graph): An evidence graph is a
sextuple G=(Nh,Ne,E, L, Nh-Attr, Ne-Attr,), where Nh and
Ne are two set of disjoint nodes representing host computers
involved in the attack and its related evidence; E ⊆(Nh ×Ne)
∪(Ne×Nh); L is mapping from a node to its label; Nh-Attr
and Ne-Attr are attributes to host and evidence nodes
respectively.
• Attributes for Host Nodes
a. Host ID: Identity of a host node.
b. States: Host node category consisting of one or many of

the “source”, “target”, “stepping-stone” and “affiliated”.
Affiliated hosts have suspicious interactions with an
attacker, one of victims or stepping-stone.
c. Time stamps: Time stamps that record the attack states
of a machine.
• Attributes for Evidence Nodes
a. General attributes: Includes event initiator, event
target, event description and event time stamp(s).
b. Relevancy: Measurement of impact on attack success,
which includes the irrelevant true positive = 0, Unable to
verify = 0.5 and Relevant true positive =1.

2.3 MulVAL, Prolog and Datalog

In this paper, we use and extend MulVAL, a Datalog based
attack graph generation system, to reason the correlation
between evidence collected allegedly after a multi-stage,
multi-step attack. We also use XSB [17], a Prolog based in-
memory deductive database engine as a rule engine [3].

3. RELATED WORK

Reasoning has been used to link evidence and claims about
attacks by using expert knowledge. In this area, [2] uses
inductive and abductive reasoning to model potential crime
scenarios and correlate evidence, and [6] uses a Bayesian
inference to evaluate how well a given criminal evidence
can choose one scenario over possible alternatives.
However, both works are based on traditional criminal
forensics. For network forensics, [7] uses a global and local
reasoning system that is based on expert knowledge to
correlate evidence and intuitively visualize attack scenarios
by creating an evidence graph. In this work, rule based
fuzzy cognitive map is used to model expert knowledge in
order to reason the evidence correlation. Neither work [2,
6] nor [7] uses Prolog programming language to formalize
expert knowledge, evidence, and access control policy to
automate network attack analysis, which is our contribution
in this paper. Besides, [7] did not consider how to handle
the situations where anti-forensics techniques have been
used and there might be variable alternative hypotheses
about the missing evidence, which instead will be discussed
in this paper.

4. EXPERIMENTAL NETWORK

Figure 1: Experimental Attacked Network

Table 1: Machine IP address and Vulnerability

Machine IP Address/Port Vulnerability
Attacker 129.174.124.122

Workstations 129.174.124.184/185/
186

HTML Objects
Memory Corruption
Vulnerability (CVE-
2009-1918)

Webserver1--
Product Web

129.174.124.53:8080

SQL Injection
(CWE89)

Webserver2--
Portal Web

129.174.124.53:80 SQL Injection
(CWE89)

Administrator 129.174.124.137 Cross Site Scripting
Flaw (XSS)

Database
server 129.174.124.35

Figure 1 is the topology of an experimental network we use
in this paper. Table 1 has the IP addresses of computers and
their vulnerability information. In Figure 1, the external
Firewall 1 controls network access from the Internet to the
enterprise network, where a webserver hosts two web
services--Apache HTTP Server at Port 80 and Apache
Tomcat Server at Port 8080. The internal Firewall 2
controls the access to a SQL database server, which can be
accessed by the webserver and employees’ workstations in
the network. The administrator has administrative privilege
on the webservers. SNORT is used as an IDS and firewall
in this network. We also configured both web servers and
the database server to log all access and queries. Sample of
the SNORT alerts, web server access records and Database
query log is displayed in Appendix 1.

5. ATTACK GRAPHS AND TOOLS

Attack graphs can serve as a basis for network attack
detection, defense and forensics analysis [10]. Given a set
of vulnerabilities in a system, an attack graph analysis
provides investigators with potential attack steps that the
attacker can take to reach the attack goals. In this paper, we
use an attack graph as an assistance tool to find missing

evidence. We redefined Ou et al.’s logical attack graph
model [15] as follows [11].

Definition 2(Logical Attack Graph): A = (Nr, Np, Nd,
E, L, G) is an attack graph, where Nr, Np, Nd are called
derivation nodes, primitive and derived fact nodes
respectively; E ⊆ ((Np∪Nd)×Nr)∪(Nr ×Nd); L is a mapping
from a node to its label; G ⊆ Nd is an attacker’s final goals.

This model uses logical statements in the form of
primitive facts to represent network configurations and
vulnerabilities. A derived node consists of facts derived by
applying an interaction rule to other primitive facts and
prior derived facts. A successful interaction is called a
derivation node, which is represented by an ellipse. A
diamond and a box represent a derived node and a primary
fact node respectively. An example logical attack graph is
displayed in Figure 2.

Figure 2: A Sample Logical Attack Graph

Many tools generate attack graphs and security analysts
use them to secure systems and networks. The tool that
generates a logical attack graph as Figure 2 is called
MulVAL [13], which uses XSB [17], a Prolog system, to
evaluate the Datalog interaction rules on input facts.
Datalog is a syntactic subset of Prolog. MulVAL uses
Datalog literals (such as L(args)) to model
network/computer configuration and vulnerability as input
facts, and uses Datalog interaction rules to track simulation
trace by modeling all attack techniques and security
semantics. The interactive rules have the form: L(args):-
L1(args1),…..Ln(argsn). MulVal is arranged so that an
execution trace for a query/queries produces an attack
graph.

For example, in Table 2, we have two sample general
rules. Rule 1 means that the “competent” “Victim” who
operates host computer “H” could access the malicious
input “Software” if (1) “MaliciousMachine” can visit “H”
by “httpProtocol” and “httpPort”, and (2) the attacker is
located in the “MaliciousMachine”. Rule 2 means the
attacker gets the permission “Perm” on the host computer
“H”, if (1) vulnerability exists in the “Software” on host
computer “H” that can be reached by “remote Client” with
privilege escalation- “privEscalation”; (2) the “Victim” has
the permission “Perm” on the host computer “H”; and (3)
the competent “Victim” who operates host computer “H”
accesses the malicious input-“Software”.

In the interactive rules, the capital identifier in every
literal is a variable that will be instantiated by concrete
terms during Prolog run time. MulVAL uses an input file to

hold all the concrete terms (facts). For example, Table 3
holds the facts that correspond to two rules in Table 2. If a
query is made to Rule 2 in Table 2, Prolog interpreter will
instantiate all variables by concrete terms in Table 3 to
decide if corresponding literals in Table 2 are true, and if
the evaluation on the rules succeeds. If it succeeds, this rule
records the successful derivation into a trace file, which
forms the attack path. The trace steps of querying Rule 2
form an attack graph in Figure 3.

Table 2: MulVAL Reasoning Rules

Rule
1

interaction_rule(
 (accessMaliciousInput(H, Victim, Software) :-
 competent(Victim),
 hacl(H, MaliciousMachine, httpProtocol, httpPort),
 attackerLocated(MaliciousMachine)),
 rule_desc('Browsing a malicious website')).

Rule
2

interaction_rule((execCode(H, Perm) :-
 vulExists(H, _, Software, remoteClient, privEscalation),
 hasAccount(Victim, H, Perm),
 accessMaliciousInput(H, Victim, Software)),
 rule_desc('remote exploit for a client program')).

Table 3: Machine/Network Configuration Facts

attackerLocated(internet).
 //The attacker is from Internet
competent(employee).
 //The user of the workstation is a competent employee
hacl(workStation,internet,httpProtocol,httpPort).
 //Workstation can be accessed from Internet
hasAccount(employee,workStation,root).
 //The employee has root privilege on the workStation
isClient(MaliciousSite).
 //The employee accessed a malicious link
eviExists(workStation,'CVE-2009-1918',MalicousSite).
 //The workstation has CVE-2009-1918 vulnerability, which can
be triggered by accessing a malicious link
vulProperty('CVE-2009-1918',remoteClient,privEscalation).
 //This vulnerability allows the attacker comprise the machine

The logical statement and reasoning in MulVAL greatly
reduces the size complexity of an attack graph. However,
even with this model, a logical attack graph is still too large
even for a small network, since this reasoning engine
traverses all possible derivation paths. Forensics analysts
need visualization tools to look at such an attack graph.
Besides, because such a logical attack graph is constructed
by using vulnerability information, some attack path(s)
might be missing or incorrect if the corresponding
exploit/vulnerability information is not complete or correct
[16]. These drawbacks are hindrance for us to use an attack

graph to do forensics analysis, which is the reason why we
use evidence to construct attack scenarios for forensics
analysis. In this paper, we propose to use and extend
MulVAL reasoning rules to achieve this.

1. execCode(workStation,root)
2. Rule 3(remote exploit for a client program)
3: accessMaliciousInput(workStation,employee,_)
4. Rule 23(Browsing a malicious website)
5. attackerLocated(internet)
6. hacl(workStation,internet,httpProtocol,httpPort)
7. competent(employee)
8. has Account(employee,workStation,root)
9. vulExists(workStation,'CVE-2009-
 1918',_,remoteClient,privEscalation)

Figure 3: An Attack Graph Generated by Using Rules in
Table 2 against Facts in Table 3

6. OUR REASONING BASED MODEL

This section explains our model that uses and extends
MulVAL to correlate event related evidence including
alerts and log to create an evidence graph. The sample
model is shown in Figure 4 (different shapes represent
different processing stages). In this model, we first
preprocess the evidence that is related to corresponding
security events, and then use a three-stage process to
construct the attack scenario in the form of a graph.

6.1 Pre-processing Evidence

As mentioned in 2.1, in order to reduce the large quantities
and false positives of alerts, we adopted the method in [5]
for the logging. At this stage, we pre-process IDS alerts and
log information to serve the next three-stage evidence
correlation process. First, we remove all alerts and log
information whose IP addresses are not related to the
attacked network. Afterwards, we categorize the alerts or
log information as primary evidence and secondary
evidence. While primary evidence is explicit and direct
about the attack, the secondary evidence is implicit.

Figure 4: The System Model for Constructing Attack Scenario

Table 4: Formalized Alert/Log Example

ID Time Stamp Source IP Destination IP Content Vulnerability Validation

SA1 8/13/13 12:10 129.174.124.122 129.174.124.184 SHELLCODE x86 inc ebx NOOP CVE-2009-1918 True

Table 5: Vulnerability Database

Vulnerability OS Software Version Attack Action

CVE-2009-
1918 Windows IE

IE 5.01
SP4; IE 6
SP1;IE 6
Win XP
SP2
…

Allows remote
attackers to
execute
arbitrary code
via a crafted
HTML
document

One example of a primary evidence is an alert from a IDS
system. An example of a secondary evidence is that “only
the attacker was logged in at that time”. We mainly use
primary evidence to reconstruct the attack scenarios. Only
when the primary evidence is not available, we use
corresponding secondary evidence.

In our experiment, we have following alerts as primary
evidence: (A) “SHELLCODE x86 inc ebx NOOP” alerts
that are from the attacker to workstations; (2) “SQL
Injection Attempt --1=1” alerts from the attacker to
“Portal” Web Service; (3) “WEB-MISC cross site scripting
attempt” alerts from the attacker to the administrator. Our
second evidence includes other log information recorded by
webservers and the database server, which includes all
clients’ web access and database query history.

Because XSB-ODBC interface allows XSB users to
query databases through ODBC connections, we formalize

evidence to SQL records by using the following attributes:
ID, Timestamp, Source IP, Destination IP, Content,
Vulnerability and Validation (See Table 4 as example).
Here, “vulnerability” holds its NVD item that corresponds
to the evidence [19]. The field “validation” is used to
determine if an alert is a false alert or not. To validate an
attack, we use tools to investigate the attacked host
computers, confirming that the attack has been successfully
launched. Because there can be multiple alerts or log items
on the same attack action, in order to save storage and
improve the efficiency, we only save one instance of the
repeated alerts. Besides, we formalize the vulnerability
information from NVD to a database table as given in
Table 5, using it to pre-evaluate the admissibility of
corresponding evidence. For example, according to Table
5, “CVE-2009-1918” only works in IE, so the admissibility
of the alert towards a Linux machine should be zero. The
admissibility is up to the judge, but our evaluation could
provide important reference to the court.

6.2 Correlation Stage 1: Inductive Reasoning

In order to correlate alerts and other evidence, we take the
timestamp of preprocessed evidence as the order to reason
if there is any causality between the attack states
represented by the corresponding evidence. Because
MulVAL reasoning rules use vulnerability information as
Datalog literals, we use the corresponding “Vulnerability”
to represent a piece of evidence. In this case, we can take

Table 6: The Anti-Forensic Technique/Tool Vulnerabilities Database

ID Category Tool Technique Windows Linux Priviledge Access Vulneraibility Effect

A1 Attack tool Obfuscate
signature

All All User Internet SNORT Rule Bypass being detected
by rules

D1 Destroy
data

BCWipe Delete file
content

98 Above All User Computer Delete data
permanently

D2 Destroy
data Remove log

file All All User Internet
MySql 5.0 above

set log off
command

Set general log off

.. …

the “Vulnerability” and its corresponding network/machine
configurations as facts against the MulVAL interaction
reasoning rules to see if we can get any derived result, and
check if there is any matching evidence. Correspondingly,
we make the correlation between the two pieces of
evidence that represent the pre and post conditions of the
attack. If there is no matching evidence, further
investigation should be performed to see if there is any
other data to support evidence. If the derived result is a
failure, there will be no correlation here. Following the
time-stamp order, we move on to the next piece of evidence
and repeat the above process.

 Figure 5: Match Evidence for Derived Result from Reasoning

For example, in Figure 5, by querying the reasoning
rules in Table 2 on the alert in Table 4(“SHELLCODE x86
inc ebx NOOP--Buffer Overflow Attack”), we got the
derived result that the workstation could be compromised.
Because there is no available evidence in evidence SQL
database showing that the workstation has been
compromised, we used tools to investigate the workstation
and were able to find the data to prove that the workstation
has been compromised. Correspondingly, we correlated the
attacker to the “compromised” workstation via the “buffer

overflow attack” evidence.
The above correlation is a forward traversing process,

which uses rules to find the consequence (post-condition)
of an attack indicated by the corresponding evidence. We
call it inductive reasoning.

In the case where no any evidence can be found to
validate the derived attack consequence, we use an anti-
forensics database (Table 6) and the corresponding
technique described in [12] to reconstruct the attack
scenario. Our paper [12] discusses this method in details.

6.3 Correlation Stage 2: Abductive Reasoning

If inductive reasoning cannot correlate evidence in the
Alert/Log evidence table to form an attack step, we use
abductive reasoning to find the cause of a given piece of
alert/log evidence. For example, if we know that a certain
alert can be generated only from this application then we
can create a hypothesis that “this application must be
running”. This is an example of reasoning using abduction.
We may not see any explicit evidence of this application as
the attacker might have deleted all the evidences. It is
possible that a combination of some sequence of events
can possibly produce a given piece of available alert or log
information.

Hypothesis is needed for abductive reasoning.
Specifically, by analyzing the given evidence (validated
alert or log information), forensics experts could use their
empirical expert knowledge or NVD advisory database to
determine what attack would cause the attack consequence
represented by the given evidence. By using this hypothesis
as the attack cause, we do inductive reasoning as mentioned
in 6.2, seeing if we can get the expected derived result
matching the given evidence. If such a match or several
matches exist, it proves that the hypothesis could be the
right attack cause of the attack consequence represented by
the given evidence. Therefore, investigators can investigate
further to find supporting evidence in order to substantiate
and validate the hypothesis. As mentioned in 6.2, in the
case where there is no supporting evidence, the anti-
forensics database and technique described in [12] should
be used, because the attacker might have used anti-
forensics techniques to destroy any evidence.

Different forensics experts might have different
opinions, and it is possible that the defense rebuts the
arguments presented by the prosecution or present an
alternative scenario that fits the evidence presented by the
prosecution. As such, we apply the same reasoning rules to
all possible hypotheses on the attack cause of the given
evidence, comparing the derived results to see if any of
them is more reasonable and convincing than alternatives.
In order to easily compare different hypotheses, we
implemented a GUI interface to display different
hypotheses and their corresponding derived results from the
reasoning.

6.4 Stage 3: Global Reasoning

At this stage, we do a final examination on the evidence
graphs generated from stage 1 and stage 2, which might
have incomplete attack path(s), since only the consecutive
attack steps are correlated. To do so, we map the
constructed evidence graphs to the corresponding logical
attack, examining if there is any unsupported attack path
[11]. If such an unsupported attack path exists, with the
information provided by the logical attack graph, we do
abductive reasoning from stage 2, seeing if the unsupported
attack path could be completed. Our paper [11] has a
detailed discussion about the mapping algorithm, which is
used here. In order to reduce the attack graph size, we only
use the related vulnerability and network/computer
configuration to get a sub-attack graph [18].

7. CONCLUSIONS

We have proposed a network forensics model, which
extends a Prolog logic based system, MulVAL, to
automate the causality correlation between evidence
collected from security events in an enterprise network. In
this model, we use different methods, including inductive
reasoning, abductive reasoning and mapping the evidence
to a logical attack graph to construct an evidence graph for
network forensics analysis. In order to resolve the problem
of missing evidence, an anti-forensics database was used to
explain how the attack was launched. Our case study
showed that such a reasoning system could automate the
network forensics analysis, even under the situations where
the attacker has destroyed the evidence.

DISCLAIMER

This paper is not subject to copyright in the United States.
Commercial products are identified in order to adequately
specify certain procedures. In no case does such
identification imply recommendation or endorsement by
the National Institute of Standards and Technology, nor
does it imply that the identified products are necessarily the
best available for the purpose.

REFERENCES

 [1] H. Debar ,A. Wespi, Aggregation and correlation of intrusion-
detection alerts, In Recent Advances in Intrusion Detection,
LNCS 2212, pages 85 – 103, 2001.

[2] Keppens, J. and Zeleznikow, J. (2003). A Model based
Reasoning approach for generating plausible crime scenarios
from evidence. Proceedings of the 9th International
Conference of Artificial Intelligence and Law, 51–59. ACM
Press, New York.

[3] K.F Sagonas, T. Swift, D.S. Warren, XSB as an Efficient
Deductive Database Engine. In Proc. of the 1994 ACM
SIGMOD International Conference on Management of Data,
ACM Press, 1994, pp. 442–453.

[4] Sommer P. Intrusion Detection Systems as Evidence, Recent
Advances in Intrusion Detection 1998, RAID98, Electronic
version retrieved 17th December 2003

[5] S. P. Peisert. A Model of Forensic Analysis Using Goal-
Oriented Logging. PhD thesis, Department of Computer
Science and Engineering, University of California, San Diego,
March 2007.

[6] J. Keppens, Q. Shen, and B. Schafer. Probabilistic abductive
computation of evidence collection strategies in crime
investigation. In PTroceedings of the 10th International
Conference on Artificial Intelligence and Law, 2005.

[7] W.Wang, T.E.Daniels, A graph based approach toward
network forensics analysis, ACM Transactions on Information
and Systems Security 12 (1) (2008).

[8] Federal Rules of Evidence, Dec 1, 2010.
[9] O. Dain,R. Cunningham, “Building scenarios from a

heterogeneous alert stream”, In Proceedings of the 2001 IEEE
Workshop on Information Assurance and Security, pages
231–235, June 2001.

[10] S. Jha, O. Sheyner, and J. Wing. Two formal analyses of
attack graphs. In Proceedings of the 2002 Computer Security
Foundations Workshop, pages 45–59, Nova Scotia, June
2002.

[11] C. Liu, A. Singhal, D. Wijesekera, Mapping Evidence Graphs
to Attack Graphs, IEEE International Workshop on
Information Forensics and Security, December, 2012.

[12] C. Liu, A. Singhal, D. Wijesekera. Using Attack Graphs in
Forensic Examinations. ARES, page 596-603. IEEE
Computer Society, (2012).

[13] MulVALV1.1, Jan30, 2012.
http://people.cis.ksu.edu/xou/mulval/.

[14] M. Whitteker, "Anti-forensics: Breaking the forensic
process", Information Systems Security Association Journal,
pp. 10-16, November 2008.

[15] Ou, X., Boyer, W.F., McQueen, M.A., A scalable approach
to attack graph generation, In 13th ACM Conference on
Computer and Communications Security (CCS), pp. 336345
(2006).

[16] A. Singhal and X. Ou. Security risk analysis of enterprise
networks using probabilistic attack graphs. Technical Report

NISTIR 7788, National Institute of Standards and
Technology, September 2011.

[17] David S. Warren et al. The XSB system version 3.1 volume
1: Programmer's manual. Technical Report Version released
on August, 30, Stony Brook University, USA, 2007.

[18] C. Liu, A. Singhal, D. Wijesekera, Merging Evidence Sub
Graphs to Create an Integrated Evidence Graph for Network
Forensics Analysis, Ninth Annual IFIP WG 11.9 International
Conference on Digital Forensics, January, 2013

[19] National Vulnerability Database, http://nvd.nist.gov.
[20] A. Jaquith, “Security Metrics: Replacing Fear, Uncertainty,

and Doubt”, Addison Wesley, Mar 26, 2007.
[21] Rogers, M. (2006, March 22). Panel session at CERIAS 2006

Information Security Symposium, retrieved September 11,
2007, from
http://www.cerias.purdue.edu/symposium/2006/materials/pdfs
/antiforensics.pdf

[22] Erbacher, R.F.: Validation for Digital Forensics. In: 2010
Seventh International Conference on Information Technology:
New Generations, ITNG (2010).

[23] S. Garfinkel, “Network forensics: tapping the Internet,”
http://www.oreillynet.com/pub/a/network/2002/04/26/nettap.h
tml.

[24] Kent, K., Chevalier, S., Grance, T., & Dang, H. (2006),
Guide to Integrating Forensics Techniques into Incident
Response, National Institute of Standards and Technology
(NIST) Special Publication (SP) 800-86, NIST, Computer
Security Division, Information Technology Laboratory,
Gaithersburg, MD.
http://csrc.nist.gov/publications/nistpubs/800-86/SP800-
86.pdf, December 4, 2006.

[25] S. Chen, K. Zeng, and P. Mohapatra, “Efficient data
capturing for network forensics in cognitive radio networks,”
in19th IEEE International Conference on Network Protocols,
2011.

APPENDIX

1: SAMPLE ALERT AND LOG

Alert :
[**] [1:1390:8] SHELLCODE x86 inc ebx NOOP [**]
[Classification: Executable Code was Detected] [Priority: 1]
08/13-12:26:10.399734 129.174.124.122:4444 -> 129.174.124.184:3044
TCP TTL:128 TOS:0x0 ID:32723 IpLen:20 DgmLen:1500 DF
A* Seq: 0x7776AFF3 Ack: 0x9B7896FF Win: 0xFFFF TcpLen:
20

[**] [1:1390:8] SHELLCODE x86 inc ebx NOOP [**]
[Classification: Executable Code was Detected] [Priority: 1]
08/13-12:26:19.399734 129.174.124.122:4444 -> 129.174.124.185:3044
TCP TTL:128 TOS:0x0 ID:32723 IpLen:20 DgmLen:1500 DF
A* Seq: 0x7776AFF3 Ack: 0x9B7896FF Win: 0xFFFF TcpLen:
20

Apache Tomcat Webserver Log:
……
AT_log 1: 129.174.124.122 - - [13/Aug/2013:14:35:34 -
0400] "GET /lab/Test HTTP/1.1" 200 368

MySQL General Query Log:
Gen_log 1:
130813 14:37:29 40 Connect root@localhost on lab
 …
 40 QuerySET GLOBAL general_log = 'ON'
 40 Queryselect * from profiles where
name='Alice' AND password='alice' or '1'='1'
Gen_log 2:
130813 14:39:56 41 Connect root@localhost on lab
 …
 41 QuerySET GLOBAL general_log = 'ON'
 41 Queryselect * from profiles where name='Bob'
AND password='bob123'
... …

http://nvd.nist.gov/
http://www.oreillynet.com/pub/a/network/2002/04/26/nettap.html
http://www.oreillynet.com/pub/a/network/2002/04/26/nettap.html
http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf
http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf
http://129.174.124.122:4444/
http://129.174.124.184:3044/
http://129.174.124.122:4444/
http://129.174.124.184:3044/

	1. INTRODUCTION
	2. BACKGROUND

