From: BIEE <ylzhao@fudan.edu.cn>

Sent: Wednesday, December 27, 2017 6:36 AM
To: pgc-comments

Cc: pqc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: OKCN/AKCN/CNKE

Follow Up Flag: Follow up
Flag Status: Flagged

We are the owner of the proposal. Originally, we used the name “"OKCN/AKCN/CNKE” for our proposal, as OKCN, AKCN,
CNKE (together with SEC and E_8 lattice-code for error correction) are the key building blocks of this proposal. But the
name of "OKCN/AKCN/CNKE” is lengthy and is inconvenient for reference. For simplicity, we would like the proposal to
be called KCL that stands for “"Key Consensus from Lattice”.

Best regards
Yunlei

From: Markku-Juhani O. Saarinen <mjos.crypto@gmail.com>

Sent: Saturday, May 26, 2018 2:23 PM

To: pgc-forum

Subject: [pgc-forum] OFFICIAL COMMENT: Bit-flip ciphertext and key malleability in AKCN and OKCN
Hi,

Let's recall the basic notation for a KEM:

- Alice computes (PK, SK) = KeyGen() and sends public key PK to Bob.
- Bob computes (CT, K) = Encaps(PK) and sends ciphertext CT to Alice.
- Alice computes shared key K = Decaps(SK, CT).

We informally define two forms of malleability:

1. Ciphertext malleability (CT-Mal): A traditional definition of malleability is that it is possible to transform ciphertext CT
to another ciphertext CT' so that K' = Decaps(SK, CT') is related to K = Decaps(SK, CT).

2. Public key malleability (PK-Mal): A second form of malleability occurs if a transformed public key PK' will yield
transformed ciphertext (CT', K) = Encaps(PK') *and* decryption will yield K' = Decaps(SK, CT') where K and K' are related.

We note that there may be multiple distinct representations of the same public key (resulting in exactly same
ciphertext). Also many algorithms apply error correction, and are tolerant to some modifications of ciphertext.
Therefore we say that K is "related" to K' only when K =K'

| subjected most of the NIST PQC Project KEM candidates to a trivial experiment where a single bit is flipped in either
public key or ciphertext, and the Hamming distance of the resulting shared secrets is observed (expected value is n/2). It
is easy to assign a P value to the distances based on Chi”2 statistic.

Most candidates apply a hash function (or a similar mechanism) to remove observable biases in K vs K', but not all. Turns
out that sometimes a simple bit flip in PK or CT will result in easily recognizable change in K. In case of AKCN and OKCN,
the change in shared secret can be as small as a single bit (or none). There are many real-life protocol scenarios where
this can be very dangerous.

Tabulating the findings:

AKCN-MLWE:
CT-Mal - Extreme (distance often 1)
PK-Mal - Significant (distance often small <= 12)

AKCN-SEC:
CT-Mal - Extreme (distance often 1)
PK-Mal - Extreme (distance often 1)

OKCN-MLWE:
CT-Mal - Extreme (distance often 1)
PK-Mal - Extreme (distance often 1)

OKCN-SEC:
CT-Mal - Extreme (distance often 2)
PK-Mal - Extreme (distance often 1)

LIMA-EncapCPA:
CT-Mal - Extreme (distance often 1)

CFPKM:
CT-Mal and PK-Mal: Extreme. This cipher is broken in too many other ways as well.

Cheers,
- markku

You received this message because you are subscribed to the Google Groups "pgc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.

Visit this group at https://groups.google.com/a/list.nist.gov/group/pgc-forum/.

From: BEE <ylzhao@fudan.edu.cn>

Sent: Saturday, June 16, 2018 11:29 PM

To: pgc-comments

Cc: pgc-forum@list.nist.gov; mjos.crypto@gmail.com

Subject: OFFICIAL COMMENT: KCL (pka OKCN/AKCN/CNKE) Re: Bit-flip ciphertext and key malleability in

AKCN and OKCN

Dear Markku-Juhani:
Thanks for your comments, and sorry that | just noticed your comment.

| suggest what you pointed out on key malleability is a common issue applied to almost all KC/AKC mechnisms for KEM
from LWE and its variants, and actually should be viewed as an advantage of OKCN/AKCN. It has little effect in practice.

Recall that for both KC and AKC, the communicating two parties are trying to get key consensus from key materails with
noise. The noise can be just from the LWE problem, but also can be transmit errors (just the scenarios you considered as
key malleating attack). The design goal of all KC/AKC is to overcome such errors to a maximum extent. For KC, we proved
that the upper-bound has to obey: $2kd<q(1-1/g)S. In other words, when q (dominating security leverl), g
(dominating bandwidth), and kS (dominating key length) are fixed, the maximus distance d (dominating error
correction) between the key material of Alice and that of bob, has to obey: $d<[q(1-1/g)]1/2kS. This a rule that any KC has
to obey. Similarly, we proved that for any AKC, it is: Sd<[q(1-k/g)]/2kS.

Both OKCN and AKCN (almost) achieved this optimal upperbound, which means that they have the (almost) maxium
ability of error correction (as least correcting one-dimension error is considered). For error correction in D4 and ES8, they
can perform ever better.

So, we suggest what you pointed out are actually the advantageous feature of OKCN/AKCN (specfically, its optimality in
error correction), and a common issue related key KC/AKC from LWE and its variants.

When using a KEM (like Diffie-Hellman) for actual authenticated key exchange, the actual session-key is derived from the
resultant key of OKCN/AKCN and (part or whole of) the transcript. This is just the case of TLS1.3 (where its session-key is
dependent upon the whole transcript). This is also just the philosopy of our identity-concealed non-malleable AKE:
CNKE-MLWE (specified in pages 68-69 of our proposal).

BTW, KC-based KEM corresponds to Diffie-Hellman in the lattice world, while AKC-based to El Gamal (or key transport).
We note that, in TLS1.3, key transport is explicitly abandoned. From our view, KC-based is more versatile, and is more
compatible with TLS1.3.

Thanks!
Yunlei

From: BEE <ylzhao@fudan.edu.cn>

Sent: Wednesday, December 05, 2018 11:36 AM

To: pgc-comments

Cc: pqc-forum@list.nist.gov

Subject: On the Desirability and Preferability of OKCN-KEM vs. AKCN-KEM
Dear All:

Recently, we show an additional application of OKCN developed with our KCL-KEM proposal. Specifically, we show that
the deterministic version of OKCN (where the random eS is fixed to be zero) can be used to generalize and optimize
Dilithium (one of the most promising lattice-based signature proposals to NIST). This further justifies and highlights the
desiarability of OKCN as the same routine can be used for both KEM and signatures, which is useful to simplify the
system complexity of lattice-based cryptography. This result is now available from https://eprint.iacr.org/2018/1180 |

With is new observation, we would like to summarize the desirability/preferability of OKCN-KEM over AKCN-KEM.

(1) KC-based KEM corresponds to Diffie-Hellman key exchange in the lattice world, while AKC-based to El Gamal key
transport.

(2) When deploying AKC-based KEM in practice, if the randomness used by the responder (e.g., a low-power device like
smart card) is poor, it will significantly ruin the session-key security. In comparison, with KC-based KEM, the two
players play a symmetric role in generating the session-key, and thus the damage caused by poor randomness can be
alleviated. In particularly, symmetry is usually a desirable feature for cryptographic schemes in practice.

(3) On the same parameters S(g,m,g)$ (which imply the same bandwidth), OKCN-based KEM has lower error probability
than AKCN-based. Or, on the same parameters (q,m,d) (which imply the same error probability), OKCN-based KEM
has smaller bandwidth than AKCN-based. This comparison is enabled by the upper-bounds on these parameters proved
in our KCL proposal.

(4) KC-based KEM is more versatile, in the sense that it can also be straightforwardly adapted into a key transport
protocol or a CPA-secure PKE scheme. And in the above recent work, we show that the deterministic version of OKCN is
also afundamental building tool for lattice-based signature.

(5) KC-based KEM is more appropriate for incorporating into the existing standards like IKE and TLS that are based on
Diffie-Hellman via the SIGMA mechanism. We note that key transport is explicitly abandoned with TLS1.3.

Best regards
Yunlei

https://eprint.iacr.org/2018/1180

