Dear authors, deal all,

The current specification (and implementation) of LEDAkem seems to fail to achieve CCA security. LEDAkem tries to construct an IND-CCA-secure KEM by applying the conversion in [30] to a OW-CPA-secure deterministic PKE. The authors would not notice the chosen-ciphertext attacks in [A1] and [A3, Appendix K] against KEM/Hybrid PKE in [30].

LEDAkem
=======
* The public key is M in \(F_{2^{p \times n}} \).
* The encapsulation algorithm chooses \(e \leftarrow F_{2^n} \) with \(HW(e) = t \), and outputs a ciphertext \(s = M e^T \) and a session key \(K = KDF(e) \).
* The decapsulation algorithm recovers \(e \) from \(s \) by using the secret key and outputs \(k_s = KDF(e) \). If \(s \) is invalid, the decapsulation algorithm returns a "pseudorandom" key \(k_s = KDF(s) \).

The footnote 1 of [30] suggests \(k_s = KDF(s) \), which is not pseudorandom.

Chosen-Ciphertext Attack against the current LEDAkem

The following CCA exists even if the scheme is perfectly correct. See [A1] and [A3, Appendix K]. For \(i = 0, \ldots, n-1 \), let \(u_i \) be the \(i \)-th unit vector of dimension \(n \).

* Assume that a ciphertext \(s = M e^T \) is given and assume that \(e[0] = 0 \).
* For \(i = 1, \ldots, n-1 \), we query \(s_i = s + M \{ u_0 + u_i \}^T \) and obtain the result.
* Set \(e[i] = 0 \) if \(k_s = KDF(s_i) \); else set \(e[i] = 1 \).
* Compute \(K = KDF(e) \)

If \(e[i] = 1 \), then \(HW(e + u_0 + u_i) = t \). On the other hand, if \(e[i] = 0 \), then \(HW(e + u_0 + u_i) = t + 2 > t \). This breaks the onewayness of KEM.

Note
=====
If DFR is 0, it is easy to fix the problem.

* Persichetti's thesis suggests to use \(KDF(s') \), where \(s' = L_{(n_0-1)} \) in the LEDAkem context.
* [A1] and [A2] suggests to use \(KDF(\pi(s)) \), where \(\pi \) is a random permutation. Notice that this \(\pi \) should be pseudorandom. Otherwise, one can still check if a ciphertext is valid or invalid by checking the answer is random or deterministic.
* [HHK17] and [SXY17] suggests to use \(Hash(\text{secret-seed},s) \) (or \(KDF(\text{secret-seed},s) \)).
[30]: Edoardo Persichetti:
"Secure and Anonymous Hybrid Encryption from Coding Theory" in PQCrypto 2013

[A1]: Pierre-Louis Cayrel, Cheikh Thiecoumba Gueye, El Hadji Modou Mboup, Ousmane Ndiaye, and Edoardo Persichetti:
"Efficient Implementation of Hybrid Encryption from Coding Theory" in C2SI 2017

[A2]: Edoardo Persichetti:
"Code-based Key Encapsulation from McEliece's Cryptosystem" in MACIS2017

[A3]: Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Christine van Vredendaal:
(http://eprint.iacr.org/2016/461)

Regards,
Keita Xagawa