Dear authors, dear all,

we have studied the vulnerability of LEDApkc against a reaction attack and would like to point to a new reaction attack which we think is relevant for this cryptosystem. The description of our attack is available at:

Best regards,

Tomas Fabsic, Viliam Hromada, Pavol Zajac
Dear Tomas, Viliam and Pavol,

thank you for pointing out this improved version of your previous statistical attack based on reactions.

We observe that the effectiveness of this attack has been verified under the following two assumptions:
1) \(n_0 = 2 \),
2) artificially increased DFR through modified system parameters.

In this respect, we have the following comments.

1) According to our preliminary evaluations, the number of candidates for \(G \) increases approximately as \(2^{n_0^2} p^{n_0^2} \), thus the efficiency of this attack against the LEDApkc instances with \(n_0 > 2 \) cannot be claimed (and we believe is questionable).
2) Assumption ii) ignores the fact that the number of decryptions to reconstruct the matrix \(Q \) depends also on the rate of change of the DFR as a function of the number of errors \(t \) near the working point of the code on the said curve. Therefore, the conclusions drawn by artificially changing the working point of the code cannot be easily generalized to the parameter sets in the LEDApkc proposal.

Based on the above considerations, we believe that the arguments provided in your paper are not sufficient to prove that this attack affects the LEDApkc instances with \(n_0 = 2 \) at their DFR working point. Concerning LEDApkc instances with higher \(n_0 \), there is no evidence of the efficiency of this attack even under the assumption of an artificially increased DFR.

In any case, please take into account that \(\text{DFR}^{-1} \) can be considered as a lower bound on the number of safe encryptions/decryptions for any LEDApkc keypair, independently of reaction attacks and their future evolution.

Best regards,
-- The LEDApkc team
Dear all,

we prepared a document as an official comment on LEDA\textsubscript{kem} and LEDA\textsubscript{pkc} (attached to this message and available at the url reported below) in which:

** We provide our quantification of the quantum and classic computational effort levels we considered as the computational requirements to break AES. We relied on classical circuit design estimates for the classical computing complexity, and on the work by Grassl et al. at PQCrypto 2016 for the quantum computing complexity.

** We delineate an automatic procedure to find an optimal set of parameters for LEDA\textsubscript{kem}/LEDA\textsubscript{pkc} matching the aforementioned security margin. We pair this procedure with the release of the sources of a parameter computation tool for LEDA\textsubscript{kem}/LEDA\textsubscript{pkc}. The sources are hereby placed in the public domain, and we welcome contributions and suggestions.

** Our approach to the estimation of the computational effort required to perform Information Set Decoding attacks was to evaluate their complexity in the finite regime (as opposed to employing asymptotic bounds), and to perform an exhaustive search in the parameter space of the algorithms.

We report that, concerning the parameter sizes of the LEDA cryptosystems, the advantages offered by more recent ISD algorithms over the proposal by Stern in 1988 are lower than a factor of 2^4.

** We report new running time and key size figures for the optimal parameter sets, showing a $\times 3.5$--$\times 6.8$ speedup on the reference implementation and a $\sim \times 2$ key size reduction w.r.t. the submission parameters.

** We propose a novel technique allowing us to design a set of QC-LDPC code parameters for use in LEDA\textsubscript{kem}/LEDA\textsubscript{pkc} deriving an upper bound to the code DFR in closed-form. This allows to include a bound on the DFR as a parameter design criterion.

** We report sample sets of parameters targeting an upper bound for the DFR of 2^{-64} for long term keys in LEDA\textsubscript{pkc}.

The full document is both attached to this message, and hosted at https://www.ledacrypt.org/archives/official_comment.pdf

The public domain software implementation of the automated procedure for the design of tight and optimal sets of parameters for the LEDA cryptosystems is available at https://github.com/LEDAcrypt/LEDAtools
At the same address, we also provide a software tool to compute the complexity of the considered ISD attacks, given a set of code parameters.

The header files containing the revised parameter sets which tightly match the security requirements are both hosted at
https://www.ledacrypt.org/archives/new_parameter_headerfiles.zip, and available on our github repositories, tagged as version 1.1.0 of the codebase. The revised codebase also includes the appropriate modifications to cope with an artificially higher number of errors being inserted in the message (i.e. a check for the number of errors has been added) and the modifications suggested in the previous official comments.

Best regards,
--LEDA team