From: zhenfei <zzhang@onboardsecurity.com>

Sent: Tuesday, January 23, 2018 10:32 AM
To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: NTRUEncrypt
Attachments: signature.asc

Dear all,

We would like to thank Jingnan He and Xianhui Lu for pointing out a bug in our code.
In the discrete Gaussian sampling algorithm ntru-pke-1024/DGS.c

void DGS(inté4 t *v, /* output vector */

const uintl6_t dim, /*input dimension */

const uint8 t stdev) /*input standard deviation */,
where the stdev is 724 and therefore requires more than 8 bits to store.
We have fixed this bug. The updated code will be available at
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission

Best regards,

The NTRU team

https://www.onboardsecurity.com/nist-post-quantum-crypto-submission

From: hassan LAAJI <hmhingenieur@gmail.com>

Sent: Sunday, March 25, 2018 11:11 PM
To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: NTRUEncrypt

Hello, i'm very happy to contact you about your implementation in NIST.
| have a remark in your implementation:
perhaps with your compiler version it works goodly but in mine i find problem:
in file dgs.h :
void DGS (int64_t *v, [* output vector */
const uintl6_t dim, /*input dimension */
const [l stdev) /*input standard deviation */
{

and

void DDGS (int64_t *v,
const uintl6_t dim,
const uinté4_t stdev,

unsigned char *seed,
g- seed_len)
but in file poly.h :
void DGS (
inté4_t *v,
const uintl6_t N,

const [l stdev);

/* deterministic DGS */

void DDGS (int64_t *v,
const uintl6_t dim,
const uint64_t stdev,

unsigned char *seed,
M scco_cn)
You must do the same types of parameters functions in both files : dgs.h ; poly.h
it work when i changed in both files:

oid DGS (int64 t *v, [* output vector */
const uintl6_t dim, /*input dimension */
const Juint16] stdev) /*input standard deviation */

{

and
void DDGS (int64_t *v,
const uintl6_t dim,
const uint64_t stdev,
unsigned char *seed,
| seed len)

Best regards

From: EL HASSANE LAAII <e.laaji@ump.ac.ma>

Sent: Thursday, April 05, 2018 5:58 PM
To: pgc-comments; pgc-forum@list.nist.gov
Subject: OFFICIAL COMMENT: NTRUEncrypt

Hi Researchers;

About document title: NTRUencrypt A Lattice Based Cryptography Algorithm: Page 5, algorithm 3 NTRU-pke Decrypt. |
want to ask you if in line 2, itis t=c-m, or t=c-m’? Because m will be computed in line 6.

The same for algorithm 8.

Best regards.

From: EL HASSANE LAAII <e.laaji@ump.ac.ma>

Sent: Monday, April 09, 2018 7:32 AM

To: pgc-comments; pgc-forum@list.nist.gov
Subject: Re: OFFICIAL COMMENT: NTRUEncrypt
Hi,

| have another remark:

- in doc :algorithm 1 you compute the public key as: h=g/(pf+1)

- but in EESS section 9.1.1 you compute the public key as: h=p* g/(pf+1) or like you wrire: h=fA(-1) *g*p where f=1+pF
Why you add p factor ?

Best regards

Le jeudi 5 avril 2018, EL HASSANE LAAJI <e.laaji@ump.ac.ma> a écrit :
Hi Researchers;

About document title: NTRUencrypt A Lattice Based Cryptography Algorithm: Page 5, algorithm 3 NTRU-pke Decrypt. |
want to ask you if in line 2, itis t=c-m, or t=c-m’? Because m will be computed in line 6.

The same for algorithm 8.

Best regards.

From: Zhenfei Zhang <zzhang@onboardsecurity.com>

Sent: Monday, April 09, 2018 8:04 AM

To: EL HASSANE LAAJI

Cc: pqc-comments; pgc-forum@list.nist.gov

Subject: Re: [pqc-forum] Re: OFFICIAL COMMENT: NTRUEncrypt
Hi El,

> About document title: NTRUencrypt A Lattice Based Cryptography Algorithm: Page 5, algorithm 3 NTRU-pke Decrypt. |
want to ask you if in line 2, itis t=c-m, or t=c-m’? Because m will be computed in line 6.

> The same for algorithm 8.

Thanks for pointing this out. Yes it is a typo - should be t =c-m".

- in doc :algorithm 1 you compute the public key as: h=g/(pf+1)
- but in EESS section 9.1.1 you compute the public key as: h=p* g/(pf+1) or like you wrire: h=fA(-1) *g*p where f=1+pF

It's an inconsistency of the description in the report and the EESS1 spec.

In the end we will be using pg/(pf+1) in the encryption scheme - it doesn't really matter if we encode g/(pf+1) or
pg/(pf+1) in the public key.

In the report we slightly changed it so that both NTRUEncrypt and pgNTRUSign uses a same key gen function

- in pgNTRUSign we no longer have the p factor for the public key.

On that note, | just noticed an another typo: algorithm 2, line 5, it should be: t = p*r*h.

Regards,
Zhenfei

On Mon, Apr 9, 2018 at 7:31 AM, EL HASSANE LAAJI <e.laaji@ump.ac.ma> wrote:
Hi,
| have another remark:
- in doc :algorithm 1 you compute the public key as: h=g/(pf+1)
- but in EESS section 9.1.1 you compute the public key as: h=p* g/(pf+1) or like you wrire: h=fA(-1) *g*p where f=1+pF
Why you add p factor ?

Best regards

Le jeudi 5 avril 2018, EL HASSANE LAAJI <e.laaji@ump.ac.ma> a écrit :
Hi Researchers;

About document title: NTRUencrypt A Lattice Based Cryptography Algorithm: Page 5, algorithm 3 NTRU-pke Decrypt.
| want to ask you if in line 2, itis t=c-m, or t=c-m’? Because m will be computed in line 6.

The same for algorithm 8.

Best regards.

