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1 Introduction

The purpose of this document is to present CPFKM: a Key Encapsulation Mechanism
Scheme. CPFKM is a based on the problem of solving a system of noisy non linear poly-
nomials, also known as the PoSSo with Noise Problem. Applications based on PoSSo with
Noise problem was first dealt by Faugere et al. in [2] introducing Symmetric Pollycracker
Encryption schemes. Our scheme largly borrows its design rationale from key ecapsulation
schemes based on the Learning With Errors(LWE) problem[11] and its derivatives. Some
of these include the Peikert’s Passivly secure KEM[10] and FRODO[6] which are based
on the Ring-LWE problem[7]. The main motivation of buiding this scheme is to have a
key exchange and encapsulation scheme based on the hardness of solving system of noisy
polynomials. Not many attacks have been reported against PoSSo with noise problem. This
is quite interesting as the PoSSo problem had been proposed quite a long time back and
then very recently, [2] gave an encryption scheme.

2 General algorithm specification (part of 2.B.1)

2.1 Parameter Space

The scheme involves the following parameters :

• q, a large positive integer, which defines the finite field Fq for the Polynomial Ring P,
where we define our system of equations. It is taken of the form of 2k for some k ∈ Z+,

• n, the number of variables which defines the Polynomial Ring P,

• m, number of equations in the system of equations,

• s, is an integer which defines the range of values from where the secret and errors are
chosen uniformly,

• B, is the number of most significant bits which are chosen to createa session key,

2.2 Secret-key and Public-key

The secret key is a concatenation of a random seed value and a secret vector sa ∈< 0, s >n

chosen randomly from a uniform distribution Un
s . The seed helps to generate a system of

polynomails f ′
1, · · · , f

′
n ∈ Fq[x1, · · · , xn] which is later used in the public key. It has the

following structure,
SK = (seed||sa)
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The public key in CPFKM is a concatenation of the same random seed value and vector
b1 ∈ F

m
q . This vector b1 is result of solving the set of quadritic (may be higher degree also)

polynomials with some added noise f1, · · · , fm ∈ Fq[x1, · · · , xn] over the chosen random
secret value sa. So each ith component of the vector is defined as follows

b1i
= fi(sa)

and each fi is a noisy polynomial of the structure

fi(x1, · · · , xn) = f ′
i(x1, · · · , xn) + ei

where ei is some noise chosen uniformly from the same range < 0, s > as sa. The public has
the follwoing structure

PK = (seed||b1)

The Key Encapsulation is defined by three main algorithms namely KeyGen, Encapas and
Decaps. The protocol has been has been summarized in Figure 1.

2.3 Functions in the KEM

2.3.1 KeyPair Generation

Function : crypto kem keypair(PK,SK)

The public key and the secret key are generated as a part of the KeypairGen function. The
function generates a random value namely, seed. It takes use of another internal function
called PolGen which, using the input of seed, generates a system of m multivariate quadritic
polynomials {f1(x) · · ·fm(x)} in n variables where x = {x1, x2, · · · , xn}. The coefficients
of the polynomials are chosen from [0, qα]. The seed, which is an input to this function,
is further an input to the random function which pseudo-randomly generates the coefficients.

This Polgen function has been summarized below

• For each of the m quadritic polynomial fi create a structure of three vectors QD ∈
Z
n(n+1)/2)
qα , L ∈ Z

n
qα , C ∈ Zqα. The structure holds the coefficients of the polynomials

such that QD holds the coefficients of the quadritic monomials, L holds the coefficients
for the linear monomials and C holds the constant term,

• using a random function and the seed, populate these vectors

• return fi

There after the KeyGen algorithm randomly generates a secret vector sa of dimension n
from the uniform distribution Un

s . An error vector e1 ∈ U
m
s is also generated. Each of the

polynoamials fi, from the earlier generated system of quadritic polynomials using Polgen,
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Alice Bob
KeyGen() :

seed
$
←− {0, 1}8

f ← PolGen(seed)

sa
$
←− Un

s

e1
$
←− Um

s

b1 ← f(sa) + e1
PK← seed||b1, SK← seed||sa

PK
−−−−−−−−−−−−−→
∈Zm×1

q ×{0,1}SEEDSIZE

Encaps():
seed,b1← unpack pk(PK)
f ← PolGen(seed)

sb
$
←− Un

s

e2
$
←− Um

s

b2 ← f(sb) + e2

e3
$
←− Um

s

b3 ← f(sb)⊙ b1 + e3
c← CrossRound(b3, B)
KeyB ←Rounding(b3, B)
ct← c||b2

ct
←−−−−−−−−
∈Zm×1

q ×Z
m×1

2

Decaps():
b2, c← unpackct(ct)

seed, sa← unpacksk(SK)
f ← PolGen(seed)

KeyA ← Red(f(sa)⊙ b2, c, B)

Figure 1: Our KEM Scheme based on PoSSo With noise

are evaluated over the secret vector sa and noise is added to them to generate another vector
b1 where

b1i
← (fi(sa) + e1i

) mod q

for ith component of the vector.

Finally the Public Key PK is made by concatenating the seed along with this vector
b1 using the pack pk function. The Secret Key SK is formed by concatenating seed and
the secret vector sa using the pack sk funtion. The function then outputs the PK and SK.
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2.3.2 KeyEncapsulation

Function : crypto kem enc(ct,SS,PK)

The encapsulation process encodes the shared secret using the public key of Alice. It
takes use of some extra functions which have been defined below.

1. CrossRound(w,B):This function takes in an integer w ∈ [0, q) and given B, outputs
the (B + 1)’th most significant bit of log q-bit binary representation of w, which has
been referred to as the CrossRound bit.

CrossRound(w,B) = ⌊w · 2−B̄+1⌋ mod 2

This function can be extended to a vector of integers w ∈ [0, q)m. Thus on an input
of a vector, CrossRound works independetly on each component of vector and outputs
another vector carrying the Crossround bit.

2. Rounding(w,B): This function takes in an integer w ∈ Z+ and given B, outputs the
B most significant bits of log q-bit binary representation of (w + 2B̄−1) mod q , where
B̄ = Ceiling(log q)− B.

Rounding(w,B) = ⌊((w + 2B̄−1) mod q) · 2−B̄⌋

where ⌊·⌋ is the Floor function. This function can be extended to a vector of inte-
gers w ∈ Z

m
+ . Thus on an input of a vector, Rounding works independetly on each

component of vector and outputs another vector carrying the Rounding value of each
component.

3. ⊙ : This function takes in two vectors a and b returns a vector y which is a component
wise scalar product of a and b. I.e , yi = ai · bi for each ith component of the vectors.

Thus the function for Key encapsulation follows the follwing procedure for creation and
encapsulation of the shared key.

1. Encaps takes in the PK and then uses the unpack pk1 process to get b1 and the seed.

2. Uses the seed and the PolGen function to generate the same system of quadritic poly-
nomials {f1(x) · · · fm(x)} in n variables where x = {x1, x2, · · · , xn}

3. Randomly sample vectors sb← Un
s , e2 ← U

m
s and e3 ← U

m
s .

4. Computes b2i
= (fi(sb) + e2i

) mod q for each ith component of the vector.

5. Compute b3i
= fi(sb)⊙ b1i

+ e3i
for each of the i component.

1The details of the functions pack sk, unpack sk, pack pk, unpack pk, pack ct, unpack ct can be found in

the repository
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6. Uses the CrossRound(b3, B) function over the vector b3 to output a hint vector c.

7. The key for Bob, KeyBob is derived using the Rounding(b3, B) function thus giving
the B most significant bits of each of the i component of b3.

8. Returns ct = pack ct(b2, c) and SS = KeyBob.

2.3.3 KeyDecapsulation

Function : crypto kem dec(SS,ct,SK)

Alice does the decapsulation process which uses the ciphertext ct from Bob and uses
Alice’s secret key SK, to derive the shared secret key SS. The kem dec function calls
another function called Red. The function is described below.

Red(w, c, B): On input of vectors w ∈ Z
m
+ and c ∈ Z

m
2 , Red(w, c, B) outputs

Rounding(v, B), where v is the closest element to w such that CrossRound(v, B) =
c. This function takes in w = f(sa) ⊙ b2, and follows the procedure below for each ith
component of the vector independently,

• checks CrossRound(wi mod q, B) if its equal to ci or not. If its true, then it returns
Rounding(wi, B).

• If the value is false, then it adds 2B̄−2 − 1 to wi and then checks if CrossRound(wi +
2B̄−2−1 mod q, B) is equal to ci or not. If true then returns Rounding(wi+2B̄−2−1, B)

• If still false, then substracts 2B̄−2 − 1 from wi and checks if CrossRound(wi − 2B̄−2 +
1 mod q, B) is equal to ci or not. If true then returns Rounding(wi − 2B̄−2 + 1, B).

• If still false, then it returns 0 .

So the decapsulation function follows the steps below

1. Uses unpack sk(SK) to get the secret vector sa and seed used by Alice earlier to
generate her public key PK.

2. Unpacks the ciphertext ct using unpack ct, to get b2 and the hint vector c

3. Use the seed to generate the same system of polynomials fi.

4. Computes fi(sa)⊙ b2i
for each ith component.

5. Calls the Red function on the input of f(sa)⊙b2, the hint vector c and B, the number
of bits over which the key reconciliation has been agreed upon. The Red function
outputs SS = KeyAlice .

6. Returns KeyAlice.
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2.4 Correctness

We consider a large modulus q as a power of 2. For a choice of 1 ≤ B < log q − 1 let,
B̄ = log q −B . We also consider that We define the following terms just for purpose of our
proof.

Definition 1 (Interval). A set of 2B̄ consecutive positive integers which is represented as
< i · 2B̄, (i+ 1) · 2B̄ − 1 > for i = 0 to ∞.

Definition 2 (Subinterval). A set of 2B̄−1 consecutive positive integers which is represented
as < i · 2B̄−1, (i+ 1) · 2B̄−1 − 1 > for i = 0 to ∞.

Thus an interval has positive integers with the same exact most significant bits except the
B̄ least significant bits in their binary representation, whereas a subinterval has positive
integers with the same most significant bits except the B̄ − 1 least significant bits. Thus, a
subinterval splits up an interval equally according to their B̄th least significant bit.

Let us denote a simple modulus map h : Z+ →< 0, q − 1 > as

h(v) = v mod q

Lemma 1. Suppose we have a large modulus q being a power of 2. With the definition of
the modulus map as above, a subinterval I ∈ Z+, maps to a subinterval in < 0, q − 1 >, i.e
h(I) ∈< 0, q − 1 > is another subinterval.

Proof. Now we have q = 2k, such that k is large enough, then q mod 2B̄−1 = 0. Thus it is a
starting value/point of some subinterval. So for any subinterval I =< i ·2B̄−1, (i+1) ·2B̄−1−
1 >,

h(I) =< i · 2B̄−1 mod q, ((i+ 1) · 2B̄−1 − 1) mod q >

=< i · 2B̄−1 mod 2k, ((i+ 1) · 2B̄−1 − 1) mod 2k >

=< i · 2B̄−1 mod (2k−B̄+1 · 2B̄−1), ((i+ 1) · 2B̄−1 − 1) mod (2k−B̄+1 · 2B̄−1) >

=< (i mod 2k−B̄+1) · 2B̄−1, (((i+ 1) mod 2k−B̄+1) · 2B̄−1 − 1) mod 2k >

=< (i mod 2k−B̄+1) · 2B̄−1, ((i mod 2k−B̄+1 + 1) · 2B̄−1 − 1) mod 2k >

=< j · 2B̄−1, ((j + 1) · 2B̄−1 − 1) mod 2k >

Now j < 2k−B̄+1, this implies that (j +1) · 2B̄−1 ≤ 2k, which means that (j + 1) · 2B̄−1− 1 <
2k.Hence we can write

h(I) =< j · 2B̄−1, (j + 1) · 2B̄−1 − 1 >

where j = (i mod 2k−B̄+1) is an integer. We see that h(I) is also has a form of an subinterval.
Thus any subinterval ∈ Z+ is mapped to some subinterval I ′ = h(I) ⊂< 0, q − 1 >.

We assume that any integer ∈< 0, q − 1 > has a binary representation in log q
bits.
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Lemma 2. For a large modulus q = 2k, when two positive integers v and w lie in the
same subinterval, their CrossRound bits are same and when in adjacent intervals, then their
CrossRound bits are different.

Proof. Let’s assume they lie in the same subinterval I, then

v, w ∈ I =< i · 2B̄−1, (i+ 1) · 2B̄−1 − 1 >

for some particular value of i. From the definition of the mapping h, we see that
v mod q ∈ h(I) and w mod q ∈ h(I), i.e they are in the same subinterval h(I). This
implies that the B̄th least significant bit of v mod q and w mod q are the same, since in an
subinterval all the bits except the B̄ − 1 least significant bits are same for all intergers in
the subinterval (Definition 2). And from the definition of the CrossRound function (Section
??), this B̄th least significant bit is the CrossRound bit. Hence when both v and w are in
the same subinterval, their CrossRound bits are equal.

Now let v and w lie in two adjacent subintervals. We denote the two subintervals as
v ∈ I1 =< i · 2B̄−1, (i + 1) · 2B̄−1 − 1 > and w ∈ I2 =< (i + 1) · 2B̄−1, (i + 2) · 2B̄−1 − 1 >
for some i. Then I1 maps onto some subinterval I ′1 = h(I1) ⊂< 0, q − 1 > and I2 onto
I ′2 = h(I2) ⊂< 0, q − 1 >. Here

I ′1 = h(I1) =< j · 2B̄−1, (j + 1) · 2B̄−1 − 1 >

I ′2 = h(I2) =< ((j + 1) mod 2k−B̄+1) · 2B̄−1, ((j + 2) mod 2k−B̄+1) · 2B̄−1 − 1 >

where j = (i mod 2k−B̄+1). As j 6= ((j + 1) mod 2k−B̄+1), hence I ′1 6= I ′2, i.e they dont map
on to the same subinterval in < 0, q − 1 >.
It is also important to note that as h is just a simple modulus map and the modulus q is
a power of 2, so for any v ∈ Z+, h(v) is the log q least significant bits of binary representa-
tion of v. Hence there is no change in the B̄th least significant bit after the modulo operation.

As I1 and I2 are two adjacent subintervals, they differ by their B̄th least significant
bit. This implies that h(I1) and h(I2) have different B̄th least significant bit, as the
mapping doesnt change the log q least significant bits of any integer in I1 or I2.
Now v mod q ∈ h(I1) and w mod q ∈ h(I2). So their CrossRound bits, which is the B̄th
least significant bit are different.

Thus now to prove the correctness, we propose the following Theorem.

Theorem 1. Let the choice of a large modulus q which is a power of 2. Let us represent for
any ith component of the vectors b3 and f(sa)·b2 as v = b3i

∈ Z+ and w = fi(sa)·b2i
∈ Z+.

The above Key exchange protocol is correct with a high probailty i.e KAlice = KBob when for
all i components of the vectors of dimension m,

w ∈ (v′ − 2B̄−2 − 1, v] ∪ [v, v′′ + 2B̄−2 + 1)
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where v′ = ⌊v · 2−B̄+1⌋ · 2B̄−1, v′′ = v′ + 2B̄−1 and B̄ = Ceiling(log q)− B. B is the number
of most significant bits chosen for key agreement such that 1 ≤ B < Ceiling(log q)− 1 and
| · | gives the absolute value component wise.

Proof. Let us consider the integers, b31
= v ∈ Z+ and f1(sa) · b21

= w ∈ Z+. Consider the
subintervals I1 and I2 such that v ∈ I1 and w ∈ I2.

1. Case 1 : When v and w lie in the same subinterval,i.e I1 = I2. So from Lemma 2, we
conclude that CrossRound(v mod q,B) = CrossRound(w mod q,B).
Thus Alice performs Rounding(w,B) as a part of the Red function to get ⌊((w +
2B̄−1) mod q) · 2−B̄⌋ and Bob does Rounding(v, B)= ⌊((v + 2B̄−1) mod q) · 2−B̄⌋.
Since both v and w are in same subinterval, this implies that v+2B̄−1 and w+2B̄−1 are
also in same subinterval. Now from Lemma 1,we can infer that both (v+2B̄−1 mod q)
and (w + 2B̄−1 mod q) lie again in the same subinterval in < 0, q − 1 >. We assumed
that any interger in < 0, q − 1 > has a log q-bit binary representation, Hence the B
most significant bits for both are also equal, as in a subinterval for any two integers all
the bits excpet the B̄ − 1 least significant bits are equal. Hence we conclude that

⌊((w + 2B̄−1) mod q) · 2−B̄⌋ = ⌊((v + 2B̄−1) mod q) · 2−B̄⌋

=⇒ KAlice = KBob

2. Case 2: When v and w lie in adjacent intervals. From Lemma 2, CrossRound(v mod
q,B) 6= CrossRound(w mod q,B).
So, according to the Red function, first we add 2B̄−2− 1 to w to get w′ = w+2B̄−2− 1
. Now, as per Lemma 3, only two subcases are possible, either w′ ∈ I1 or w′ ∈ I2.

If w′ ∈ I1, then this implies that by Lemma 2, CrossRound(v mod q,B) =
CrossRound(w′ mod q,B). This is another instance of Case 1. Therefore Alice
performs Rounding(w′, B) inside the Red function and Bob computes Rounding(v, B).
As per Case 1 we conclude, KAlice = KBob.

Now consider the other subcase, i.e when w′ ∈ I2. By Lemma 2 it means that
CrossRound(v mod q,B) 6= CrossRound(w′ mod q,B). Hence following steps of the
Red function, we substract, 2B̄−2 − 1 from w to get w′′ = w − 2B̄−2 + 1. Now again
two subcases are possible (Lemma 3), w′′ ∈ I1 or w′′ ∈ I2.

If w′′ ∈ I1, then we have CrossRound(v mod q,B) = CrossRound(w′′ mod q,B)
by Lemma 2. We thus find another instance of Case 1. Hence, Alice does
Rounding(w′′, B) and Bob does Rounding(v, B), which gives us KAlice = KBob.

Now let us look at the remaining case of w′′ ∈ I2. At this stage of Red function, we
already have that w′ ∈ I2 and w ∈ I2 while v ∈ I1 and I1 6= I2. w′ ∈ I2 and w′′ ∈ I2
imples that w lies in middle of the subinterval I2. This means that

w /∈ (v′ − 2B̄−2 − 1, v′ − 1] ∪ I1 ∪ [v′′ + 1, v′′ + 2B̄−2 + 1)
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But this is in contradiction to our initial assumption.

3. Case 3: When v and w lie in two different subintervals separated by atleast one
interval. This implies that |w − v′| > 2B̄−1 or |w − v′′| > 2B̄−1. From our assumption,
we have that if w /∈ I1, then either |w− v′| < 2B̄−2− 1 or |w− v′′| < 2B̄−2− 1. We find
a clear contradiction to our assumption.

So, if the assumption of our theorem holds, after the Rounding operation, the protocol
produces the same key for Alice and Bob.

Lemma 3. Suppose we have two subintervals I1 amd I2 such that for two positive intergers,
v ∈ I1 and w ∈ I2. We also have

w ∈ (v′ − 2B̄−2 − 1, v′ − 1] ∪ I1 ∪ [v′′ + 1, v′′ + 2B̄−2 + 1)

where v′ = ⌊v·2−B̄+1⌋·2B̄−1 and v′′ = v′+2B̄−1 . For w′ = w+2B̄−2−1 and w′′ = w−2B̄−2+1,
only two cases are possible, w′ and w′′ are either in I1 or I2.

Proof. To see that this is true, suppose w′ /∈ I1 and w′ /∈ I2. This means that |w′−v′′| > 2B̄−1.
Which further implies that |w− v′′| > 2B̄−2− 1, which is in clear contradiction to our initial
assumption about w being in the range given. So w′ must lie in either I1 or I2. The proof is
similar for w′′.

Now the assumption in the Theorem 1 is dependent on the range s. We would like to
determine the range by fixing the rest of the parameters. Let the choice of q be 2k. The
choice of the range from which the error and secret is chosen, let’s suppose be s = Round(2β).
From Theorem 1, we get

|b3i − fi(sa) · b2i| < 2(log q−B−2)

=⇒ |e3i + e1i · b2i − e2i · b1i| < 2(log q−B−2)

=⇒ s+ s · |b1|max + s · |b2|max < 2(log q−B−2)

If we replace |b1|max and |b2|max by |b| = max(|b1|max, |b2|max) we get

s+ 2 · s · |b| < 2(log q−B−2) (1)

The choice of the coefficients is from [0, qα], hence the maximum possible value of a coeffcient
is qα ≈ 2αk. First we need to determine the maximum possible value for |b|.
Now,

b = f(s) + e

b = (
n

∑

i,j

aijxixj +
n

∑

i

bixi + c) + e

= O(n2) · 2αk · 22β + n · 2αk · 2β + 2αk + 2β

Now that we have a maximum value of |b| in terms of n, we can now look at LHS of Eqn 1,

s+ 2 · s · |b|

12



Replacing the corresponding values we obtain

LHS = 23β22 logn+αk+1 + 22β(2lognαk+1 + 1) + 2β(2αk+1 + 1) (2)

RHS of Eqn 1 is 2log q−B−2. Replacing we get

RHS =
2k

2B+2

So putting together the LHS and RHS of Eq 1, we have

23β22 logn+αk+1 + 22β(2lognαk+1 + 1) + 2β(2αk+1 + 1) <
2k

2B+2
(3)

Corollary 1 (Asymptotic Result). With the choice of large modulus q = 2k, the above
proposed protocol succeeds with high probabilty , if following holds

β <

(

k(1− α)− B − 2− 2 logn

3

)

Corollary 1 gives an approximate upper bound for the range s = 2β. Thus choosing s the
range accordingly (Ref. figure 2) for sampling our error and secret, our key exchange and
agreement works correctly. Although for accurate working of the protocol with probabilty
1, we need a much stricter bound which can be obtained by solving the Eq 3 for the variable
β, in terms of the other variables α, B and k. A good choice of the other parameters is
k > 7 logn, B = 25 and α = 0.3

10 20 30 40 50 60 70 80 90 100
2

3

4

5

n

β

Figure 2: Plot showing the relationship of β, the factor influencing the range s, with n for a
choice of k = 8 logn, B = 4 and α = 0.3

The choice for B, the number of most significant bits chosen per sample has been set to 4(for
our recomended parameters), as compared to the reconciliation mechanism by Peikert [10]
which extracts a single bit per sample. This choice is backed by the fact that an exhaustive
search for directly finding the shared secret will take at least 24m operations and our goal is
that 4m should be larger than atleast our initial target of 128 bits of security.
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2.5 Failure

The assumption on which our key agreement works is that fi(sa) · b2i lies in a range of
integers (v′ − 2B̄−2 − 1, v] ∪ [v, v′′ + 2B̄−2 + 1) , where v = b3i

, v′ = ⌊v · 2−B̄+1⌋ · 2B̄−1 and
v′′ = v′ +2B̄−1. When the difference |b3i− fi(sa) ·b2i| is less than < q/2B+2, then it always
works with probabilty 1. When the difference is ≥ 3q/2B+2 then the probabilty is 0. In
between the two extremes of 2B̄−2 and 3 · 2B̄−2, the probability of success decreases linearly.
Let us denote the probabilty of success for a component of the m dimensional system as ps.
So

ps =











1, if |v − w| < 2B̄−2

0, if |v − w| ≥ 3 · 2B̄−2

3·2B̄−2−|v−w|

2B̄−1
if 2B̄−2 ≤ |v − w| < 3 · 2B̄−2

(4)

Now the probabilty distribution of the distance |v−w| is uniform , since all the parameters
effecting the distance, namely, the error terms e1, e2, e3 and coefficients of fi and the secrets
sa and sb all follow an uniform distribution. So, from equation 2, we can see that the error
is bounded by

Maxerr(β) = 23β22 logn+αk+1 + 22β(2lognαk+1 + 1) + 2β(2αk+1 + 1)

So, the total probabilty of success of the scheme is given by,

Ps(β) =







(

∑a
0

1
Maxerr(β)

)m

= 1, if Maxerr(β) < 2B̄−2

(

∑a
0

1
Maxerr(β)

+
∑b

i=a+1
3·2B̄−2−i

2B̄−1·Maxerr(β)

)m

, otherwise.
(5)

where a = min(2B̄−2 − 1,Maxerr(β)) , b = min(3 · 2B̄−2 − 1,Maxerr(β)) and m = n + 1 is
the number of samples that we use for our system/scheme. Thus the probabilty of failure of
the scheme is given by Pf(β) = 1− Ps(β).

3 List of parameter sets (part of 2.B.1)

Following the analysis of Section 8, we propose below a set of 2 parameters for 128 and 182
bits of classical security.

3.1 Parameter set CFPKM128

We choose log q = 50, n = 80, m = 81, B = 6 , SEEDSIZE = 48 bytes, COFSIZE = 4096
and RANGE = 7. This gives a public key of size 696 bytes, secret key of 128 bytes and a
shared secret of size 81 bytes.
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3.2 Parameter set CFPKM182

We choose log q = 55, n = 115, m = 116, B = 6 , SEEDSIZE = 67 bytes, COFSIZE =
16384 and RANGE = 6. This gives a public key of size 928 bytes, a secret key of 182 bytes
and a shared secret of 116 bytes.

4 Design rationale (part of 2.B.1)

In the past few years, multivariate schemes[12, 5] have been gathering a lot of attension in the
crypto world. New public key encryptions and signatures based on multivariate cryptography
have been proposed. But Key encapsulation Mechanisms and Key exchange/agreement
schemes based on multivariate cryptography has not been touched upon very much. The
main rationale of creating a Key Encapsulation mechanism based on multivariate non linear
polynomials is the idea of a new problem based on solving a system of non-linear noisy
equations , also known as the PoSSo with noise problem.

Definition 3. Let K be a finite field and P = {f1, · · · , fm} ⊂ K[x1, · · · , xn] be a system of
polynomials. The problem of polynomial system with noise (PoSSo with Noise) is finding a
solution (x1, · · · , xn) ∈ F

n such that for all fi ∈ K, we have fi(x1, · · · , xn) + ei = 0, where
ei is error chosen from a certain distribution.

. This problem has similar bearings to the Learning with Error problems, with a distinct
difference of this being non-linear.That is why the PoSSo with noise problem can be possibly
stated in both its search as well as decision versions.

Search PoSSo With noise. The problem of finding a solution to a system of
noisy non-linear equations.

Decision PoSSo with noise. The problem of deciding whether a solution is an
actual solution to the system of noisy non linear equations.

This above definition of hardness of Decision PoSSo With noise problem is the main
rationale behind developing this scheme. In order to break our protocol, the main moti-
vation is to find the secret sa or sb used by either of Alice or Bob. We have a system of
equations

b11 = f1(x) + e11

b12 = f2(x) + e12
...

b1m = fm(x) + e1m

This is a system of non-linear multivariate polynomials, whose solution is x = sa. The
process of finding this solution is the exact hard problem of Search PoSSo with Noise, while
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if an adversary is able to find a candidate solution, the problem of deciding whether it is an
actual solution or not is the problem of Decision PoSSo With noise. The Posso with Noise
problem has been proved to be NP-hard [2]

5 Detailed performance analysis (2.B.2)

5.1 Description of platform

Computer OS Architecture Processor Frequency RAM Version of gcc
Laptop Linux Mint 18.1 x86 64 i7-6600U 2.60 GHz 31.3 GiB gcc 5.4.0

Table 1: Materials

5.2 Time

The following measurements are for the KEM. For the measures, it runs a number of tests
such that the global used time is greater than 10 seconds and the global tim eis divided
by the number of tests. For our scheme with CFPKM128 the key generation, takes 72 ms.
The encapsulation scheme takes on a average about 108 ms(over a run of 30 tests) The
decapsulation of the shared secret key takes about 143 ms.

5.3 Space

Sizes are straightforwardly calculated from parameters (and confirmed in various experi-
ments). From the structure of public key we see that it involves the seed and the public
vector b1. The total size of public key for CFPKM128 turns out to be 696 bytes. The secret
key is 128 bytes for the parameters of CFPKM128. The ciphertexts are 729 bytes long,
whereas the shared secret is of 81 bytes.

5.4 How parameters affect performance

The Key Encapsulation is mainly effected by the number of equations m in our system,
the range s and also by the number of most significant bits B that we use in our scheme.
From Section 2.5, we see that the schemes failure probabilty is a function of the range s. his
probabilty is over the m equations used in the scheme. So the efficiency of the scheme is
dependent on both s and m. Also from Section 8, the fastest attack, exhaustive search over
the secret, tells us that the security of the scheme is a factor of both s and m.
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6 Expected strength (2.B.4) in general

The security of our key encapsulation mechanism can be reduced down to the PoSSo with
noise problem.

6.1 Security of the Key Encapsulation Mechanism

Theorem 2. Given two samples, our KEM is IND-CPA secure, assuming the hardness of
Posso with noise. In other words, for any adversary A, there exists an adversary B such
that

AdvCPA
KEM ≤ 2 · AdvPoSSoWN

n,m (B)

Proof. It proceeds by the sequence of games shown in Figure 3. Let Ei be the event that the
adversary guesses the bit b∗ in Game i.

Game 0. Let A be an adversary that is executed in the IND-CPA attack game. Let us call
it as Game 0. Now

AdvCPA
KEM = |Pr[E0]− 1/2| (6)

Game 1 In this game, the Public key is chosen uniformly randomly. It is possible to verify
that there exists an adversary B with the same running time as that of A such that

|Pr[E0]− Pr[E1]| ≤ AdvPoSSoWN
n,m (B) (7)

In other words, Game 0 and Game 1 are computationally indisguinshable from each other
under the Decision PoSSo with Noise hardness assumption.

Game 2. in this game, the values of ct and K in place of being calculated through the
Encapsulation process, are replaced by uniform random values. In Game 2, the values ct
and K are chosen from uniform disributionm thus the adversary has no information about
the bit b∗ and therefore

Pr[E2] = 1/2 (8)

Again there exists an adversary B with the same running time as that of A such that

|Pr[E1]− Pr[E2]| ≤ AdvPoSSoWN
n,m (B) (9)

Thus the Game 1 and Game 2 are again computationallty indisnguishable. Thus we can
conclude from the sequence [6-9] of equations we get the required result.
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Game 0: Game 1: Game 2:
1.f ←$ GF (qα)[x1, · · ·xn] 1.f ←$ GF (qα)[x1, · · ·xn] 1.f ←$ GF (qα)[x1, · · ·xn]
2. PK,SK ←KeyGen1(f) 2. SK ← U 2. SK ← U

3. PK ←$ U 3. PK ←$ U
3.ct,K ← Encaps1(PK) 4. ct,K ← Encaps1(PK) 4. ct←$ U

5. K←$ U
4. K’←$ U256(0, 1) 5. K’←$ U256(0, 1) 6. K’←$ U256(0, 1)
5. b∗ ←$ {0, 1} 6. b∗ ←$ {0, 1} 7. b∗ ←$ {0, 1}
6. if b∗ = 0 7. if b∗ = 0 8. if b∗ = 0
Return(f,PK,ct,K) Return(f,PK,ct,K) Return(f,PK,ct,K)
7. else 8. else 9. else
Return(f,PK,ct,K’) Return(f,PK,ct,K’) Return(f,PK,ct,K’)

Figure 3: Sequence of games for the proof

7 Expected strength (2.B.4) for each parameter set

7.1 Parameter set CFPKM128

The expected security level of this implemetation is 128 bits. From Section8, we find that
the exhasutive search attack over the secret is the most efficiet of all the attacks discussed.
With the set parameter, we find it takes 2129 number of operations, which is more than the
level of security we are looking for.

7.2 Parameter set CFPKM182

The expected security level of this is 182 bits.

8 Analysis of known attacks (2.B.5)

In this part we provide the summary of the main attacks against CFPKM. In Section 8.1
we consider the Arora-Ge method of solving a system of noisy equations by removing the
error and then using Grobner Basis techniques. In Section 8.2, we consider the possiblilty of
a exhaustive search over the secret. We also consider the exhaustive search over the secret
and then using Grobner Basis techniques to solve the resultant system of equations with
Grobner Basis.

In order to break our protocol, the main motivation is to find the secret sa or sb used by
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either of Alice or Bob. We have a system of equations

b11 = f1(x) + e11

b12 = f2(x) + e12
...

b1m = fm(x) + e1m

This is a system of non-linear multivariate polynomials, whose solution is x = sa. The
process of finding this solution is the exact hard problem of PoSSo with Noise. In the
following sections, we discuss the possible methods of solving this problem and thus provide
the hardness results, which relates to our problem.

Any solution that is provided by the solving using following methods, what is the
guarantee that it is the solution. Or what property tells us that our system has uniqueness
of solution. This narrows down to the effety

8.1 Usign Arora-Ge GB method

For solving our system of equations using Gröbner Basis solving techniques, we need the
polynomials in the form which has no errors. This approach has been used in [1, 3]. In our
case, we have b1 = f(sa) + e1 and b2 = f(sb) + e2. Here f(x) is a quadritic polynomail.
The errors are chosen from a discrete uniform distribution over a range [0, s].

So suppose we represent our error as η, then η = b − f(x). Here x is vector of
variables indexed as x1, x2, ....xn. We have m number of these equations. Let us represent

P (η) = η
s
∏

j=1

(η − j)

Choosing the system of equations represented b1 = f(sa)+e1. So replacing η = b1i−fi(x),
we get a system of equations represented as

Pi(b1i − fi(x)) = (b1i − fi(x))

s
∏

j=1

(b1i − fi(x)− j)

Hence we a system of m polynomials in n variables of degree d = 2s+2 , keeping in account
of the degree of each fi being 2 (i.e quadritic).
Now this polynomial Pi = 0 when x = sa. Also the secret is chosen uniformly from the
range [0, s). In addition to our system of polynomials, we have another set of n equations of
the form

x1(x1 − 1) · · · (x1 − s) = 0
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x2(x2 − 1) · · · (x2 − s) = 0

...

xn(xn − 1) · · · (xn − s) = 0

So if we are able to find a Gröbner Basis of this system of equations along with system
Pi(x) = 0, then we will be able to recover sa.

Jean Charles Faugere’s F5 algorithm computes the Gröbner Basis of a system of
polynomials defined in a Polynomial Ring. The complexity of F5 algorithm [4] over a
system of m′ polynomials(forming a semi-regular sequence) in Zq is given by

O
(

m′Dreg

(

n +Dreg

Dreg

)ω
)

, as Dreg →∞

where 2 ≤ ω < 3 is a linear algebra constant and Dreg is a degree of regularity of
< P1, P2, ...Pm′ >.

Assumption: The system of equations Pi(x) = 0, can be considered to be semi-
regular sequence, since coefficients of fi(x) are (pseudo)random by choice.

So its Hilbert polynomail[8] is given by

H(z) =
(1− zs+1)n(1− zd)m

′

(1− z)n
(10)

where d = 2s + 2 and m′ is the number of available equations and n is the number of
variables. The Degree of regularity Dreg is given by the index of the first non-positive
coefficient in the expansion of the Hilbert polynomial.

The number of samples that is assumed the attacker can have and running the F5 is
m′ = n(1 + 1

logn
).

8.2 Exhuastive Search

8.2.1 Over the secret

It is also possible that the attacker can do an exhasutive search over the possible values of
the secret sa or sb. The secret is chosen from [0, s]n. Since sa is a vector with dimension n,
hence following the worst-case scenario, the attacker has to compute sn possible solutions.
So the number of operations is sn. Since s ≈ nβ , hence the number of operations in
exhaustive search turns out to be nβn.
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n Dreg Arora-Ge-GB(ω := 2.35 ) Arora-Ge-GB(ω := 2 )
10 11 51 44
15 14 70 60
20 17 88 77
25 19 104 90
30 22 122 106
35 25 141 121
40 42 195 169
45 46 217 186
50 50 238 204
55 55 262 224
60 59 283 243
65 63 304 261
70 67 325 279
75 71 346 297
80 75 367 315
85 79 389 333

Table 2: Parameters with s ≈ n0.25

Note 1. If we increase the value of our range s, then the time for exhaustive search increases.
But this in turn also increases the degree of regularity and hence also the time complexity of
the Arora-Ge GB attack.

8.2.2 Over the error

With SODA approach

Another possible way of an attack is to do an exhaustive search over the possible values of
the error, and then problem reduces to just solving a system of m non-linear equations in n
variables. Using the SODA paper[9] allows us to solve the system of equations faster than
brute force. So once the brute force (time complexity being sm)over the error values has
been solved. We have the set of equations with known errors , hence we now have a system
of equations

f1(x)− b11 − e1 = 0

f2(x)− b12 − e2 = 0

...

fm(x)− b1m − em = 0
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n s AG-GB Ex-Sec Ex-Err-SODA Ex-Err-GB(Dreg) HYB
30 2 106 30 74 94 (9) 191
35 2 121 35 86 107 (10) 224
40 3 168 63 120 157 (14) 251
45 3 186 71 134 174 (15) 276
50 3 204 79 149 190 (16) 307
55 3 224 87 164 206 (17) 338
60 3 243 95 178 222 (18) 364
65 3 261 103 193 238 (19) 394
70 3 279 111 208 258 (21) 420
75 3 297 119 223 274 (22) 451
80 3 315 129 237 290 (23) 481
85 3 333 135 252 306 (24) 507
90 3 351 142 267 322 (25) 538
95 3 370 151 281 338(26) 568
100 3 389 158 296 354(27) 594
105 3 404 166 311 374(29) 624
110 3 425 174 325 390(30) 649
115 3 442 182 340 406(31) 680
120 3 460 190 355 422(32) 711

Table 3: Comparing time complexity with s ≈ n0.25, all time complexity values in log2.
The column AG-GB represents the Arora-Ge style Gröbner Basis attack, EX-Sec represents
Exhaustive search over the Secret sa, EX-Err represents the Exhaustive search over the errrs
and then using SODA and Gróbner Basis algorithms and finally HYB represents the hybrid
approach from Section 8.3

Now [9] states the time complexity is

O

(

qn ·

(

log q

ek

)−n)

for finding the satisfiablity of a system of equations where the solutions are in Fq. So in total
the time complexity of doing a exhaustive search of the error and then the SODA algo is
therefore

sm · O

(

sn ·

(

log s

ek

)−n)

With Gröbner Basis approach

Yet another alternative approach would be to find the Gröbner Basis of this system of
equations. Finding Gröbner basis through Jean Charles Faugere’s F5 [4], takes

O

(

m ·Dreg

((

n +Dreg

Dreg

)ω))

22



So the total complexity including the exhaustive search over the errors is

sm ·

(

m ·Dreg

((

n +Dreg

Dreg

)ω))

where Dreg is the degree of regularity over the system of m equations of degree d = 2s + 2
and n equations of degree s+1 in n variables (Refer to Eq 10 for how to determine the Dreg

in Section 8.1).

In Table 3 , we observe that Exhaustive search over the secret or the error is a faster and
much efficient attack on our scheme. This is because our search space for both secret as well
as the error is much smaller than the finite field related to the polynomial ring in which the
polynomials have been defined.

8.3 Hybrid attack

Another possible way is to use an hybrid approach.In the previous section, we do a Grober
basis attack on the whole system. With the system of equations that we have, suppose out
of them only certain equations are non-noisy. So if we select only such non-noisy equations
and then solve the Grobner basis just over these non noisy equations gives us a solution to
the system of equations.

Suppose we are given a system of m equations in n variables. Now the errors can
be achieved by doing an exhaustive search. So now assuming that the error distribution is
uniform over the range [0, s], we can say that t = m/(s + 1) number of equations may be
the exact solutions. That t equations are such that

f1 = · · · = ft = 0

So now the Grobner Basis attack on this sub-system takes

(

tDreg

(

n +Dreg

Dreg

)ω
)

number of operations. So, the total complexity of this attack turns out to be

(

m

t

)

·
(

tDreg

(

n +Dreg

Dreg

)ω
)

Though comparing the performance of this attack with exhaustive search, we see that for
n = 20, we are gettting a security of 130 bits. But on the other hand, with n = 30 and the
secret vector being chose from a small range s, the exhaustive search performs much better.
It is also important to mention that in case of this attack, the minimum number of equations
m will not suffice with n+1. It has to be much larger than this, big enough such that t > n
for the Grobner basis attak to work. Hence we just report the performace of this attack in
table 3.
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9 Advantages and limitations (2.B.6)

CFPKM, is dependent on small secret and errors, which is one limitation of the proposed
scheme. It has been left a future work for futher improving the performance of the scheme.
But on the other hand, CFPKM has a lot of advantages.

The key encapsulation mechanism has been built in such a way that, it uses input
from both the users to get a shared key, rather than the trivial way a Key encapsulation
works. So this KEM can easily be modified to a key-exchange and agreement protocol as
well. One of the major advantages that CFPKM has, is the cheap communication costs and
key sizes. In comparision to similar KEM’s based on Learning with Errors, this protocol is
able to achieve similar levels of security with much lower values of comparable parameters.
This is because of the use of a relatively newer hard problem of PoSSo with Noise. Solving
a system of equations with noise is NP-Hard in itself.
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