
Compact-LWE: a Public Key Encryption Scheme 

Dongxi Liu, Nan Li, Jongkil Kim, and Surya Nepal 

1 Introduction 

In this proposal, we describe Compact-LWE, a new public key encryption scheme. 
Compact-LWE is also used to refer to the hardness problem on which the encryption 
scheme is constructed. We introduce Compact-LWE by comparing it with LWE [8]. 

Let s and ai be n-dimensional vectors drawn uniformly from Zn, and let the error q 
terms ei ∈ Zq be sampled from a discrete Gaussian distribution. The LWE problem 
involves a set of samples 

(ai, hai, si + ei mod q), 

where hai, si denotes the inner product of ai and s. The search version of LWE problem 
is to recover s from such samples. 

The Compact-LWE problem also involves a set of samples, but defned differently 
as 

0 0(ai, hai, si + k ∗ (ri + p ∗ ei) mod q, hai, s 0i + k0 ∗ (ri + p ∗ ei) mod q), 

0 0 0where s, s , k, k0 and p are secret values, and errors ei, ei, ri, and r are uniformly i 
0 0sampled at random. For ri and r , they satisfy ck ∗ ri + ck0 ∗ r = 0 mod p, where cki i 

and ck0 are another two secret values. In addition, Compact-LWE takes short vector ai, 
0 0consisting of entries that can be much less than an error value ei, ei, ri, or ri. 

The security features of Compact-LWE are briefy discussed here, with more de-
tails given later. The well-known lattice-based attacks to LWE [5, 6, 4] are based on 
effciently solving the hard Closest Vector Problem (CVP) in lattice. Even if k and k0 

are correctly guessed, Compact-LWE is resistant to such attacks, because the errors in 
0 0a sample (ri + p ∗ ei or ri + p ∗ e ) can be much bigger than the entries of ai and thus i

CVP does not apply. 
Another hard problem in lattices is the Short Integer Solution (SIS) problem. If SIS 

can be effciently solved, the solution may help the attacker guess k, k0 , p, ck, and 
0ck0. With the correct guess of these secret values, the attack can remove ri and r andi 

0generate a new sample that includes the error value ck ∗ ei + ck0 ∗ e (i.e., errors are i 
0always two-dimensional in Compact-LWE). Since the error value ck ∗ ei + ck0 ∗ e isi 

still big, the lattice-based attacks cannot apply even if SIS problem is effciently solved 
for Compact-LWE. 

Hence, even if the hard problems in lattice, such as CVP and SIS, can be effciently 
solved, the secret values or private key in Compact-LWE still cannot be effciently re-
covered. This allows Compact-LWE to choose very small dimension parameters, such 
as n = 8 in our experiment. 

http:constructed.We


2 Specifcation of the Compact-LWE Public Key Encryption 
Scheme 

The specifcation describes the public parameters of the scheme and its three algorithms 
for key generation, encryption, and decryption. 

2.1 Public Parameters 

The scheme is specifed by nine public parameters: q, t, n, m, w, w0, b, b0, l, which are 
all positive integers, with q being the largest one. Let pp denote the public parame-
ters. The meaning of the parameters will be introduced when they are used. The public 
parameters should satisfy the following basic conditions, with other conditions to be 
introduced later with the corresponding algorithms. 

– m > n + 2 
– w > w0 

– (w − w0) ∗ b0 > t 
– l ≥ 3 
– t is a power of two integer. 

In the following algorithms, all random numbers are uniformly sampled. 

2.2 Key Generation 

Given the public parameters, the key generation algorithm generates a random key pair 
(SK, PK), where SK is the private key and PK is the public key. Let gen(pp) = 
(SK, PK) denote the key generation algorithm. 

The key generation algorithm depends on four private parameters: sk max, p size, 
e min, and e max. The conditions e max > e min and e min∗w > w0 ∗(e max+1) 
apply to e min and e max. 

02.2.1 Private Key A private key is a tuple (s, k , sk , ck , s , k 0 , sk 0 , ck 0, p), generated 
in the following steps. 

– s and s0 each is a n-dimensional vector, randomly sampled from Zn .q 

– k and k 0 are uniformly sampled from Zq and must be coprime with q. 
– p is randomly sampled from the set {(w + w0) ∗ b0 , ..., (w + w0) ∗ b0 + p size}, 

satisfying 
• coprime with q, and 
• sk max ∗ b0 + p + e max ∗ p < q/(w + w0). 

– ck and ck0 are uniformly sampled from Zp and one of them must be coprime with 
p. In this specifcation, we assume ck0 is coprime with p. 

– sk and sk0 are uniformly sampled from Zsk max, with sk ∗ ck + sk0 ∗ ck0 coprime 
with p. 

2 



2.2.2 Public Key After the private key SK is generated, the algorithm gen(pp) then 
generates the corresponding public key PK. The public key PK consists of m random 
Compact-LWE samples, as defned below. 

Let ai ∈ Zn be a vector uniformly sampled for the ith public key sample, and b 
0ui ∈ Zb0 , ei ∈ [e min, e max], and e ∈ [e min, e max] be three random integers. i 

0Another two randomly sampled integers ri ∈ Zp, and r ∈ Zp satisfesi 

0ck ∗ ri + ck0 ∗ ri = 0 mod p. 

Since ck0 is coprime with p, the above condition can always be satisfed. Let kq ∗k−1 = q 

1 mod q, and k0 q ∗ k0−1 
= 1 mod q. Then, the ith public key sample is the tuple q 

(ai, ui, pki, pk0), where i

– pki = hai, si + k−1 ∗ (sk ∗ ui + ri + ei ∗ p) mod q, and q 
0i + k0−1 0 0– pki 0 = hai, s q ∗ (sk0 ∗ ui + ri + ei ∗ p) mod q. 

2.3 Encryption 

The encryption algorithm consists of two parts: basic encryption and general encryp-
tion. Basic encryption is only able to encrypt messages in Zt, while general encryption 
can encrypt messages of any length and encodes them before calling the basic encryp-
tion algorithm. 

2.3.1 Basic Encryption A plaintext value v for basic encryption comes from Zt. It is 
encrypted into a ciphertext c with the public key PK, denoted c = enc(PK, v). The 
ciphertext c is a (n + 3)-dimensional vector. The basic encryption algorithm needs to 
generate an m-dimensional vector l. Let l[i] indicate its ith element and its frst element 
is l[1]. The XOR operation is denoted by ⊕ and the opertation rol(u, d) circuar shifts 
a value u by d bits to the left. The basic encryption algorithm works by the following 
steps. 

– Generate the m-dimensional random vector l, such that 
• w ≤ Σm l[i] ≤ w + w0 for all l[i] > 0 (i.e., the sum of all positive entries of li=1

is a random value in between w and w + w0), 
• −w0 ≤ Σm l[i] ≤ 0 for all l[i] < 0 (i.e., the sum of all negative entries of l isi=1

a random value in between −w0 and 0), and 
• Σm 

i=1l[i] ∗ ui > 0. 
– Generate the ciphertext 

c = (Σi
m 
=1l[i]∗ai, f(v, Σi

m 
=1l[i] ∗ ui), Σi

m 
=1l[i] ∗ pki mod q, Σi

m 
=1l[i] ∗ pki 0 mod q), 

where 
0f(v, Σi

m 
=1l[i] ∗ ui) = (v ⊕ rol(u, log2(t)/2)) ∗ u mod t, 

u = (Σi
m 
=1l[i] ∗ ui) mod t, and 

u 0 ≥ (Σi
m 
=1l[i] ∗ ui)/t is the smallest integer coprime with t. 

3 



2.3.2 General Encryption General encryption encodes and then encrypts messages. 
OAEP or other padding schemes can be used. However, we use a way that is easier to 
implement. 

Suppose I is an array of 256 random bytes. Let I[i] denote the ith entry of I . Simi-
0larly, given a message m, m[i] denotes its ith byte. The algorithm encode(I,m) = m

encodes m into m0. Suppose the length of m is len(m) bytes. Then, the padding has 

pl = log2(t) ∗ d8 ∗ (len(m) + l)/ log2(t)e/8 − len(m) 

bytes. The following is the pseudocode of encode. 

– Append 0xFF to m, followed by pl − 3 bytes each having the value pl. 
0– Generate two random bytes r and r . 

– x = I[r] and r ori = r 
– for i=1 to len(m) + pl − 2 do 
– m0[i] = x ⊕ m[i] 
– x = x ⊕ I[(m0[i] + r ori) mod 256] 
– r = r ⊕ ((m0[i] ∗ r0) mod 256) 

0– x = I[r0] and r ori = r
– for i = len(m) + pl − 2 to 1 do 
– m0[i] = x ⊕ m0[i] 
– x = I[(m0[i] + r ori) mod 256] 

0– r = r0 ⊕ ((m0[i] ∗ r) mod 256) 
– m0[len(m) + pl − 1] = r 

0– m0[len(m) + pl] = r

After encoding, the general encryption algorithm divides a long message into blocks, 
each of which has log2(t) bytes, and encrypts each block with the basic encryption al-
gorithm. 

2.4 Decryption 
The decryption algorithm also consists of basic decryption and general decryption. Ba-
sic decryption only decrypts cipher blocks generated from basic encryption, while gen-
eral decryption can decrypt ciphertexts of any length. 

02.4.1 Basic Decryption Let SK = (s, k , sk , ck , s , k 0 , sk 0 , ck 0, p) be the private key. 
Given the ciphertext c = (a, d, pk, pk0), the basic decryption algorithm dec(SK, c) = 
v recovers the plaintext value v with the following steps. 

– Calculate d1 = (pk − ha, si) ∗ k mod q, and d0 1 = (pk0 − ha, s0i) ∗ k0 mod q. 
– Let d2 = ck ∗ d1 + ck0 ∗ d1 

0 mod p. 
– Calculate d3 = sckInv ∗ d2 mod p, where sckInv is determined by sckInv ∗ (sk ∗ 
ck + sk0 ∗ ck0) = 1 mod p. 

– Obtain v = f−1(d, d3), where 

f−1(d, d3) = (u 0−1 ∗ d mod t) ⊕ rol(u, log2(t)/2),p 

u = d3 mod t, 

u 0 ≥ d3/t is the smallest integer coprime with t, and 
0−1 
u p ∗ u 0 = 1 mod t. 

4 



2.4.2 General Decryption Given a byte array of ciphertext, general decryption di-
vides it into blocks, decrypts each block by using the basic decryption algorithm, and 
after all blocks are decrypted, decodes the messages. If the padding does not match the 
byte 0xFF followed by pl − 3 bytes each having the value pl, then general decryption 
returns a failure. 

General decryption uses the algorithm decode(I,m0) = m to decode m0 into the 
plaintext m. The decoding algorithm is defned with the following pseudocode. 

0– Let l = len(m0), r = m0[l], r = m0[l − 1] 
– for i = 1 to l − 2 do 

0– r0 = ((m0[i] ∗ r) mod 256) ⊕ r
– x = I[r0] 
– for i = l − 2 to 1 do 
– m[i] = x ⊕ m0[i] 
– x = I[(m0[i] + r0) mod 256] 
– for i = 1 to l − 2 do 
– r = ((m[i] ∗ r0) mod 256) ⊕ r 
– x = I[r] 
– for i=1 to l − 2 do 
– y = m[i] 
– m[i] = x ⊕ m[i] 
– x = I[(y + r) mod 256] 
– Check padding as described above. 

Any changes to m0 leads to the change to x in each loop and the random numbers r 
and r0. Then, the changes are propagated to every byte of m. 

2.5 Correctness 

We discuss the correctness of basic encryption and basic decryption algorithms. Our 
basic decryption algorithm is deterministically correct, as analyzed below. At the frst 
step of decryption, we have 

d1 = sk ∗ Σm
i=1l[i] ∗ ri + Σi

m 
=1l[i] ∗ ei ∗ p mod qi=1l[i] ∗ ui + Σm 

and 
0 0d0 1 = sk0 ∗ Σi

m 
=1l[i] ∗ ui + Σi

m 
=1l[i] ∗ ri + Σi

m 
=1l[i] ∗ ei ∗ p mod q. 

Due to the condition on l and sk max ∗ b0 + p + e max ∗ p < q/(w + w0), we know 

0 < sk ∗ Σm
i=1l[i] ∗ ei ∗ p < q, i=1l[i] ∗ ui + Σi

m 
=1l[i] ∗ ri + Σm 

implying that 

d1 = sk ∗ Σm
i=1l[i] ∗ ei ∗ p.i=1l[i] ∗ ui + Σi

m 
=1l[i] ∗ ri + Σm 

Similarly, we have 

0 0d0 = sk0 ∗ Σm
i + Σm

i ∗ p.1 i=1l[i] ∗ ui + Σi
m 
=1l[i] ∗ r i=1l[i] ∗ e 

5 



0Then, at the second step of decryption, since ck ∗ ri + ck0 ∗ r = 0 mod p, we obtain i 

d2 = (ck ∗ sk + ck0 ∗ sk0) ∗ Σi
m 
=1l[i] ∗ ui mod p. 

Due to the condition (w + w0) ∗ b0 < p, we know l[i] ∗ ui < p and l[i] ∗ ui is then 
recovered at the third step, leading to the same u and u0 as used in basic encryption. 

3 Security and Attacks 

3.1 Hardness and IND-CCA2 Security 

As introduced in Section 1, compared with LWE, a Compact-LWE sample includes 
0 0 0extra secret values (s , k, k0 , p, ck, and ck0) and extra errors (ri, r , and e ), and extra i i

public parameters. Informally, given a LWE sample, by choosing k = 1, p = 1, and 
any values for other secrets and errors, the adversary can convert a LWE sample into 
a Compact-LWE sample, in which the extra public parameter b takes the same value 
as q. Hence, if the adversary can fnd s from Compact-LWE samples, then the same 
algorithm can be used to fnd s from LWE samples. Since it is hard to solve the search 
LWE problem [8], it is also hard to recover secret value s from Compact-LWE samples. 
Similarly, s0 is also hard from Compact-LWE samples. Without knowing s and s0, the 

0 0adversary cannot determine the values of k∗(ri+p∗ei) mod q and k0∗(ri+p∗e ) mod qi

in each Compact-LWE sample, making the recovery of secret values (k, k0 , p, ck, and 
ck0) hard. In the next section, with concrete attacks, we will show when the extra public 
parameter b takes a value smaller enough than q, the search of the original secrets in 
both LWE and Compact-LWE is even harder. 

Our scheme can achieve IND-CCA2 security. Informally, when a ciphertext is changed 
(or adaptively chosen) by the adversary, the basic decryption algorithm adds a random 
error of at least u0−1 to the encoded message. The error is then propagated to every byte p 
of the decoded message by the decoding algorithm. When an padding, which is at least 
l bytes, does not match, the general decryption algorithm just returns failure, indicated 
by -1 in implementation. 

3.2 Attacks to Public Keys 

This type of attacks aims to recover private keys from the corresponding public keys. 
These attacks have been developed to attack LWE, including algebraic attacks [2], com-
binatorial attacks [1, 3], and lattice-based attacks [5, 6, 4]. 

Since the number of samples in our public keys is limited, algebraic attacks and 
combinatorial attacks are not effective [7]. We discuss more on lattice-based attacks. 
We frst introduce lattice-based attacks to LWE. 

Suppose there are m LWE samples. Let A be a n ∗ m matrix constructed by taking 
each of the m vectors ai as a column of A, and let e be a m-dimensional error vector 
obtained by collecting ei as its entries. Then, the lattice-based attacks to LWE try to 
fnd s from the m samples by solving CVP in lattices [5, 6, 4]. That is, in the lattice 
generated from the row vectors of A, the problem is to fnd a lattice point that is closest 
to the target AT s + e. In LWE, the vector e has a small Euclidean norm kek, and thus 

6 



the lattice point closest to AT s + e is AT s, which can then be used to recover s by 
solving a system of noiseless linear equations. 

0 0In Compact-LWE, the errors k ∗ (ri + p ∗ ei) (or k0 ∗ (ri + p ∗ e )) can be as big i

as q, apparently making CVP not applicable to Compact-LWE. If k and k0 have been 
0 0correctly guessed, the errors become ri + p ∗ ei (or ri + p ∗ e ), which are much bigger i

than elements in ai, making AT s+e and AT s not closest to each other. Thus, even if k 
and k0 have been correctly guessed, lattice-based attacks [5, 6, 4] are still not applicable 
to Compact-LWE, even not applicable to LWE with short ai. With the tool provided in 
[4], Figure 1 shows that lattice-based attacks fail to fnd s from LWE samples when b 
becomes small enough (i.e., short ai). In the experiment, for each b, 50 sets of LWE 
samples are generated and attacked, with n = 9, m = 24, q = 248, and ei is uniformly 
sampled from Z3200 or Z1600. 

Fig. 1. Resistance to Lattice-based Attacks 

For example, if the frst element of s is increased by 1, the changed secret still can 
satisfy each LWE sample by changing the original ei into ei − ai[1], where ai[1] is the 
frst element of ai. When ei has a bigger range than ai[1], ei − ai[1] can still be a valid 
error. Similarly, for Compact-LWE, when k is correctly guessed, if the frst element of s 
is increased by k, ri can be changed into ri − ai[1] to counteract the change to s. Thus, 
when ai is short enough and the dimension n is very small, the lattice-based tool can 
quickly return a secret, which however is not the original secret s. For Compact-LWE 
encryption scheme, when ri is changed, the condition ck ∗ ri + ck ∗ ri = 0 mod p is no 
longer valid and the decryption will fail. 

SIS is another hard lattice problem [7]. If SIS can be easily solved, the attacker can 
reduce Compact-LWE samples to the samples like k−1 ∗ (rsis + p ∗ esis) mod q (andq 

k0
−1 0 0∗ (r ) mod q), from which the attacker can determine k−1 by correctly q sis + p ∗ esis q 

guessing p, rsis, and esis. Note that in k−1 ∗ (rsis + p ∗ esis) mod q, rsis can be bigger q 
than p and much bigger than esis. Hence, p and rsis cannot be uniquely guessed. For 
example, p − 1 and rsis + esis are also a valid guess. 

7 



0If both rsis and r happen to be correctly guessed, a pair of valid ck and ck0 cansis 
0be determined, since ck ∗ rsis + ck0 ∗ r = 0 mod p. Note that the attacker can choose sis 

0ck = 1 and determine the value ck0 according to ck ∗ rsis + ck0 ∗ r = 0 mod p (orsis 
the other way). 

After kq 
−1 , k0−1 , p, and a valid pair of ck and ck0 are correctly guessed, the at-q 

0tacker can remove r and r in the public sample by rewriting a public key sample 
(ai, ui, pki, pk0) into the following one: i

(ai ∗ kq ∗ ck, ai ∗ k0 q ∗ ck0 , ui, pki 00), 
where 

– pki 00 = pki ∗ kq ∗ ck + pki 
0 ∗ kq 

0 ∗ ck0 mod q 
= (sk ∗ ck + sk0 ∗ ck0) ∗ ui + hai ∗ kq ∗ ck, si + hai ∗ k0 ∗ ck0 , s0i + (ck ∗ ei +q 

0ck0 ∗ ei + yi) ∗ p mod q, 
0– yi ∈ Zp is determined by yi = (ck ∗ ri + ck0 ∗ r )/p.i

0The new sample above includes the error ck ∗ ei + ck0 ∗ ei + yi, which is still big. 
If the attacker insists on applying lattice-based attacks to the rewritten public key, the 
original secrets s, s0 and ck ∗ sk + ck0sk0 cannot be recovered as illustrated in Figure 

01. Since ck ∗ ei + ck0 ∗ ei + yi can be much bigger than 2 ∗ e max, the wrong secrets 
obtained in such attacks will generate too much error in the result of the frst step of 
basic decryption (i.e., d1 and d0 1). Too much error violates the correctness condition 
(sk max ∗ b0 + p + e max ∗ p < q/(w + w0)), hence failing to generate correct results. 

0Let ck = 1. The attacker thus has to exhaustively search correct e for at least 2n+1 i 
new samples and then deals with the smaller remaining error ei +yi by applying lattice-

0based attacks to recover s, s , ck ∗ sk + ck0 ∗ sk0 from a public key. Note that ei + yi 
0is still bigger than elements in ai or even ui; hence, a correct guess of ei still cannot 

0guarantee the recovery of valid s, s , ck ∗ sk + ck0 ∗ sk0 . 

3.3 Attacks to Ciphertexts 

Without knowing the private key, an attacker may try to recover a message from the 
ciphertext and the public key. Since a long message is divided into blocks to encrypt, 
the attacker needs to correctly guess l for each message block. Due to padding, there 
are at least d8 ∗ l/ log2(t)e blocks for a message and the decoding algorithm ensures 
that even one bit change can be propagated to every byte of the decoded message and 
returns -1 if padding is not correct. Hence, the guess to l must be correct for all blocks 
at the same time. 

For a single ciphertext block, since m > n + 2, there can be a large number of 
0solutions for l by choosing big enough m for the public key and big enough w and w

for basic encryption. Note that the size of a public key increases with m, but not the 
size of ciphertexts. 

Each solution for l can lead to a decrypted message block. When the number of the 
solutions of l is as big as t, this type of attacks does not make sense for the attacker. 
For example, if t = 2 and the solutions of l allows both 0 and 1 to be decrypted from 
a ciphertext block, then the attacker cannot determine which is the correct plaintext by 
attacking ciphertexts. 

8 



4 Performance Analysis and Evaluation 

The performance of key generation algorithm and basic encryption/decryption algo-
rithms is analyzed below. The analysis relies on the parameters q, t, n, m, w, w0, b, b0 . 

4.1 Performance of Key Generation 
0A private key is defned as (s, k , sk , ck , s , k 0 , sk 0 , ck 0, p), which includes 2∗(n+3)+1 

random numbers that need to be randomly sampled and checked for the corresponding 
conditions. In particular, sk, sk0, and ck0 might need to be generated a few more times to 
ensure ck0 is coprime with p and sk ∗ ck + sk0 ∗ ck0 is also coprime with p. In addition, 
our implementation chooses to compute the multiplicative inverses of k, k0 , ck0, and 
sk ∗ ck + sk0 ∗ ck0, and stores these multiplicative inverses as part of the private key. 
Hence, they will not be computed during the generation of public keys and decryption, 

A public key consists of m samples. For each sample, the inner product of two 
0n-dimensional vectors needs to be calculated twice, three random numbers (ri, ei, e )i

need to be sampled, plus a small constant number of additions and multiplications. 
Asymptotically, the time complexity of key generation algorithm is O(n) for generating 
private keys and O(m ∗ n) for generating public keys. 

Recall that encoding and decoding algorithms rely on the byte array I , which is 
hard-coded in our implementation. To reduce the size of public keys, the vector ai ∈ Zn 

b 
is extracted from I deterministically. To avoiding storing ui, the frst public sample uses 
the frst element of I as u1, and lets ui = pki−1 ⊕ pki

0
−1 mod b0 for 1 < i ≤ m. Hence, 

in addition to seven public parameters (i.e., q, t, n, m, w, w0), a public key consists of 
m pairs of pki and pk0, each of which has log2(q) bits.i

4.2 Performance of Basic Encryption 

The encryption algorithm frst generates an m-dimensional vector l. The sum of its 
0positive entries is at most w + w0 and the sum of its negative entries is at least −w . 

Hence, at most w +2 ∗ w0 random number needs to be sampled to generate l. Moreover, 
if the sum of the negative entries is too big (refected by the third condition on l), another 
at most w0 operations are need to reduce some negative entries until the third condition 
on l holds. Hence, the time complexity of generating l is O(w + 3 ∗ w0). 

After l is generated, the algorithm multiplies each of m vectors in the public key 
with the corresponding entry l, and then all m resulting vectors are added. The com-
plexity of this step in encryption is O(m ∗ (n + 3)). Hence, the complexity of basic 
encryption is O(w + 3 ∗ w0) + O(m ∗ (n + 3)). 

A ciphertext from basic encryption is an (n +3)-dimensional vector. The size of the 
frst n elements is at most log2((w + w0) ∗ b) bits, the following one has log2(t) bits, 
and the last two both have log2(q) bits. Hence, the total size of a ciphertext block from 
basic encryption is 

n ∗ log2((w + w 0) ∗ b) + log2(t) + 2 ∗ log2(q) 

bits. In our implementation, a ciphertext block is a little bit longer since each of the 
frst n elements is byte-aligned. The padding in general encryption adds at most d8 ∗ 
l/ log2(t)e message blocks to encrypt. 

9 



4.3 Performance of Basic Decryption 

The decryption algorithm needs to calculate the inner product of two n-dimensional 
vectors twice, plus a constant number of extra multiplications and additions. Hence, the 
time complexity is O(2n). 

5 Advantages and Limitations 

Compact-LWE has the following advantages: 

– Compact-LWE is constructed on simple mathematical objects (only integers and 
modular arithmetic over integers), which thus is easy to be understood and thor-
oughly analyzed by the cryptographic community. 

– Even if the hardness problems in lattices (such as CVP and SIS) can be solved ef-
fciently, the security of Compact-LWE are not affected as illustrated and analyzed 
in Section 3.2. Hence, the dimension parameter n in Compact-LWE can be very 
small and Compact-LWE can generate short ciphertexts. 

– The selection of parameters is straightforward. All secret values and errors are sam-
pled uniformly at random. For parameters satisfying the conditions specifed in the 
scheme, the scheme does not have any decryption failures, as proved in Section 2.5. 

– The simplicity of Compact-LWE makes it easy to implement. In addition, it can 
be used as a lightweight public encryption scheme. It has an implementation for 
Contiki Operating System, with evaluation over Tmote Sky wireless sensor nodes. 

– Key generation in Compact-LWE is effcient. When used in key-establishment pro-
tocols, Compact-LWE can support forward secrecy by generating fresh key pairs 
for each new session. 

Compared with RSA and ECC, a limitation of Compact-LWE is that the size of its 
public keys is bigger. For example, in the experiment described below, the public key is 
about 2K bytes. 

6 Performance Evaluation 

6.1 Platform Description 

The performance is evaluated on 64-bit Ubuntu 17.04 running on Window 7 with 
VMware Workstation 12 Player. The computer is Dell Latitude E7470, with Intel Core 
i5 CPU and 8GB RAM. 

6.2 Parameter Selection 

Table 1 and Table 2 list the parameters to be used in the evaluation and to be used to 
defne the security strength category. 

10 

http:scheme.It


q t n m w w 0 b b0 l 
264 232 8 128 224 32 16 68719476736 8 

Table 1. Public Parameters 

sk max p size e min e max 
229119 16777216 457 3200 

Table 2. Private Parameters 

6.3 Security Strength Category 

As discussed in Section 3.2, even if k−1 , k0−1 , p, ck, and ck0 can be correctly guessed, q q 
0the attacker still has to exhaustively search correct ei (or e ) for at least 2n +1 samplesi

0to recover secrets s, s , ck ∗ sk + ck0 ∗ sk0 from a public key. Recall that e min ≤ 
0ei, ei ≤ e max. Given the above parameter confguration, the search space is at least 

log2(e max − e min) ∗ (2n + 1) = log2(3200 − 457) ∗ (2 ∗ 8 + 1) = 194 

bits, which is comparable to the search space of AES192. Hence, any attacks that re-
cover a security key from a public key of Compact-LWE must require computational 
resources comparable to those required for key search on AES192. 

6.4 Sizes of Keys and Ciphertexts 

For the above confguration, the private key and the public key are 232 bytes and 2064 
bytes, respectively. We use 2 bytes to store each of the frst 8 elements; hence, the basic 
encryption generates ciphertexts of 36 bytes for a 4-byte message block. For messages 
of different lengths, the sizes of corresponding ciphertexts are given in Table 3. As an 
example, for a 32-byte message and 8-byte padding, it is divided into 10 blocks and the 
general encryption returns a ciphertext of 360 bytes. 

Message (bytes) 32 64 128 256 512 1024 
Ciphertext (bytes) 360 648 1224 2376 4680 9288 

Table 3. Ciphertext Size 

6.5 Effciency 

The performance is based on the optimised implmentation of the scheme, which is 
compiled with -O2 option of gcc. 

The time of generating 10000 key pairs is about 1.55 seconds. The performance of 
encryption and decryption depends on the length of messages, as shown in Table 4. 

11 



Message (bytes) 32 64 128 256 512 1024 
Encryption (seconds) 1.29 2.15 4.36 7.56 14.81 28.78 
Decryption (seconds) 0.18 0.27 0.43 0.88 1.78 3.50 

Table 4. Performance of 10000 Encryptions and Decryptions 

References 

1. Albrecht, M.R., Cid, C., Faugère, J.C., Fitzpatrick, R., Perret, L.: On the complexity of the 
bkw algorithm on lwe. Des. Codes Cryptography 74(2), 325–354 (Feb 2015) 

2. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Proceedings 
of the 38th International Colloquim Conference on Automata, Languages and Program-
ming - Volume Part I. pp. 403–415. ICALP’11, Springer-Verlag, Berlin, Heidelberg (2011), 
http://dl.acm.org/citation.cfm?id=2027127.2027170 

3. Kirchner, P., Fouque, P.: An improved BKW algorithm for LWE with applications to cryptog-
raphy and lattices. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology 
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I. pp. 43–62 
(2015) 

4. Kirshanova, E., May, A., Wiemer, F.: Parallel implementation of BDD enumeration for LWE. 
In: Applied Cryptography and Network Security - 14th International Conference, ACNS 2016, 
Guildford, UK, June 19-22, 2016. Proceedings. pp. 580–591 (2016) 

5. Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryption. In: Kiayias, 
A. (ed.) Topics in Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the RSA Con-
ference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings. Lecture Notes in 
Computer Science, vol. 6558, pp. 319–339. Springer (2011) 

6. Liu, M., Nguyen, P.Q.: Solving bdd by enumeration: An update. In: Proceedings of the 13th 
International Conference on Topics in Cryptology. pp. 293–309. CT-RSA’13 (2013) 

7. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Advances 
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, 
USA, August 18-22, 2013. Proceedings, Part I. pp. 21–39 (2013) 

8. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: 
Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory 
of Computing, Baltimore, MD, USA, May 22-24, 2005. pp. 84–93. ACM (2005) 

12 

http:Proceedings,PartI.pp
http:Cryptology.pp
http:update.In
http://dl.acm.org/citation.cfm?id=2027127.2027170



