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1 1. INTRODUCTION 

1 Introduction 

1.1 Diffie-Hellman Key Exchange 

Key exchange is a very important cryptographic primitive which allows communicat-
ing parties to agree on same keys. Shared keys generated during key exchanges can 
be used by other cryptographic primitives, including symmetric encryption, message 
authentication code etc. In most cases, a key derived from a key exchange protocol 
is used to encrypt actual communication data between parties using symmetric 
encryption. Large amount of communication data is not encrypted using public key 
cryptosystems since performance of symmetric encryption schemes is far better than 
public key encryption schemes. Symmetric encryption is much more desirable for real 
world applications, but it needs to have shared keys between the users. Therefore a 
secure and efficient key exchange protocol is critical to build a secure communication 
channel. 

In 1976, the first key exchange primitive – Diffie-Hellman key exchange protocol 
was proposed in [19]. This ground-breaking work is a key part of public key cryp-
tography and it inspires cryptographers to build new public key cryptosystems and 
key exchange protocols. In a Diffie-Hellman key exchange, the multiplicative group 
of integers modulo prime p and g, which is a primitive root modulo p, are public 

aparameters. Party i generates private key si = a, computes public key pi = g mod p 
and sends to party j. Party j generates a private key sj = b, computes a public key 

b b a)bpj = g mod p and a shared key skj = p mod p = (g mod p, and sends pj toi 
a b)aparty i. Party i computes the shared key ski = p mod p = (g mod p.j 

With the construction above, one can see that the success of Diffie-Hellman 
key exchange relies of the commutativity of power maps in a cyclic group, namely 

a bthe map f(x) = x and the map h(x) = x commute, i.e. f ◦ h = h ◦ f where 
◦ is composition. One critical property of such maps is nonlinearity, which is the 
basis of the security of this public key scheme. There were various attempts on 
building similar key exchange cryptosystems, including Braid group based schemes 
etc. However, they are all broken in practice. There is a very subtle reason behind 
this fact, which comes from a fundamental work of Joseph Ritt in 1923. Ritt proved 
that that there are actually essentially only three non-trivial commuting nonlinear 
maps: power polynomials, Chebyshev polynomials and elliptic curve [35]. This is 
the reason why we can only build and deploy Diffie-Hellman key exchange and its 
elliptic curve variants in real world applications. We believe philosophically this is 
also why all other attempts on building Diffie-Hellman-like key exchange using other 
structures failed. This fact was first pointed out in [22] by Ding, though he knew it 
since 2005. 
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1.2 Quantum Threats 

With properly chosen parameters and implementations, Diffie-Hellman key exchange 
and its variants are hard to break with current computing resources. Till now, they are 
widely deployed in real world important security protocols and applications. However, 
such cryptosystems are no longer secure against sufficiently large quantum computers. 
In 1994, Shor proposed a quantum algorithm which can solve discrete logarithm 
problem (DLP) and integer factorization problem (IFP) on a quantum computer [38] 
in polynomial time. Therefore, if a sufficient large quantum computer is built, Shor’s 
algorithm is expected to break cryptosystems which are constructed based on DLP, 
IFP and their elliptic curve variants etc. Various well-known cryptosystems, including 
Diffie-Hellman key exchange, RSA, DSA, ElGamal and elliptic curve variants etc. 
are all vulnerable to large quantum computers with Shor’s algorithm. 

1.3 Quantum-Resistant Construction from LWE/RLWE Problem 

Since Diffie-Hellman-like key exchange protocols can be only built with commutative 
nonlinear maps and the three commutative maps pointed out by Ritt are all vulnerable 
to quantum computers due to its related group structure (multiplicative groups of 
numbers, multiplicative groups on the unit circle and multiplicative groups on elliptic 
curves). In this proposal, we focus on using a robust and truly efficient primitive 
– the Ring Learning With Errors (RLWE) problem [31]. The RLWE problem is 
the ring variant of Learning With Errors (LWE) problem [34], where the security 
of LWE problem is reduced to hard problems in lattices. A major advantage for 
RLWE compared with LWE is that it has a much reduced key size, and this is more 
desirable for real world applications due to smaller communication and storage cost. 
From our research, we believe RLWE is naturally the best choice for building Diffie-
Hellman-like key exchange protocol since commutativity is inherent for multiplication 
in polynomial rings. Moreover, security of RLWE problem can be reduced to hard 
problems in ideal lattices, and there are currently no known classic and quantum 
algorithms can solve RLWE problem efficiently with properly chosen parameters. 
Moreover, RLWE-based cryptosystems can be constructed and implemented truly 
efficiently. With all these desirable properties, RLWE becomes an attractive candidate 
to build post-quantum key exchange protocol. 

1.3.1 Design Rationale 

Ever since LWE and RLWE problems were introduced in 2005, people have tried to 
seek solutions to construct key exchange over LWE/RLWE problem. Many attempts 
were made at the beginning but there were no major real breakthroughs on building 
complete LWE/RLWE-based key exchange protocol. Major technical challenge to 
construct Diffie-Hellman-like key exchange protocol over LWE & RLWE is the 
difficulty to reconcile errors efficiently, since LWE & RLWE samples are perturbed 
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by small error terms. Despite the fact that both parties can easily compute values 
that are approximately equal, they cannot derive exact same value (i.e. final shared 
key) directly without an algorithm to reconcile errors between approximately equal 
values. 

The first complete solution appeared in the LWE & RLWE-based key exchange 
protocols proposed by Ding et al. in 2012 [22]. [22] invented a novel approach called 
“robust extractor” (i.e. error reconciliation mechanism) to reconcile errors between 
two approximately equal values. In order to assist error reconciliations, one party 
needs to send additional information (denoted as “signal”) on the intervals of certain 
values to the other party. We note that the idea of sending additional values to assist 
error reconciliation to derive a complete key exchange protocol construction over 
LWE & RLWE was a fundamentally new method by the time [22] was published. 

The reason for sending signal value is directly related to error reconciliation 
mechanism, where we try to extract same least significant bit from approximately 
equal values using modulo 2 computation for both parties. 

In the construction, first we add a term, which is two times of error term, onto 
a · s, where a a is uniformly random polynomial in the ring Rq = Zq[x]/Φm(x), 
with Φm(x) = xn + 1 as the m-th cyclotomic polynomial with n = m/2, q be a 
prime number and s be a private key polynomial sampled according to some error 
distribution in ring Rq. Afterwards, key exchange computations for both parties can 
get approximately equal number with same parity. However, even if the difference 
between two approximately equal numbers is even, they may not necessarily have 
the same parity. This is because each coefficient in the ring Rq is in Zq, where the 
modulo to prime q operation causes such problem. 

In order to solve this problem, Ding in [22] proposed the idea of sending additional 
bits (i.e. signal values) to assist error reconciliation. Suppose we represent Zq as 

, · · · , q−1 
2 } and we divide Zq 

c + 1]) and outer region (rest of Zq
44into two regions: inner region ([−b q c, b q 

). If a number lies in the outer region 
c] or 

4

−1q{− 2
q q−b b[ + 1c ,4

and we add a small error, it is possible that the sum may jump across the boundary of 
Zq even if the error is “small”, which causes additional modulo operations even if the 
difference is supposed to be even. This leads to failure of generating the same key bit. 
To resolve this issue, the idea of sending additional information, namely the signal 
function was invented. Since such problem mainly lies for values in the outer region 
(particularly, close to boundary of outer region), if a value is in the outer region, the 

2signal value is set to 1 and both parties add q−1 

back to the inner region. With this observation, we can see that since the difference is 
small, the probability that one party gets additional modulo operation than the other 

simultaneously to pull the value 

2side after adding q−1 

preserve same parity for ring element coefficients of both parties without causing any 
additional modulo q operation, therefore error reconciliation can be made successfully 
with overwhelming probability. This approach gives much smaller communication 

on both sides is low. With the help of the signal value, we can 
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cost compared with encryption-based approaches. Also computations of signals and 
final shared keys are very efficient. We will elaborate on this in following sections. 

As we stated above, signal functions and error reconciliation mechanisms allow 
both parties to agree on the same key bits. With our approach, as long as the 
difference between two values is even and “close”, error reconciliation mechanism 
can reconcile errors and generate the same key bits with overwhelming probability. 
This clears the way towards constructing Diffie-Hellman-like key exchange protocols 
over LWE & RLWE problems. The RLWE-based key exchange protocol presented in 
[22] is the basis of this submission. 

Moreover, in this proposal, we introduce a new efficient rounding technique to 
reduce communication cost. As a common disadvantage over traditional (Diffie-
Hellman-like) key exchange protocols, LWE & RLWE-based ones have larger com-
munication cost due to the construction of LWE & RLWE problems. [11] proposed 
Learning With Rounding (LWR) problem, which can reduce communication cost of 
LWE problem through rounding. Intuitively, rounding technique compresses public 
key, therefore the cryptosystem is more efficient in terms of the communication cost. 
Since rounding and recovering algorithms introduce deterministic errors, [11] suggests 
that error term in LWE problem can be eliminated with properly chosen rounding 
parameters, therefore both parties do not have to sample error term and computation 
efficiency is improved as well. [13] and [7] present cryptanalysis on LWR problem. 
However, since LWR and its ring variant RLWR have not gain enough attention 
regarding to cryptanalysis, concrete security of RLWR problem is yet to be fully 
analyzed. In LWR and RLWR, the secret and random error term e is no longer 
generated. “Error” for the term a · s is only generated by deterministic rounding and 
recovering algorithm, and this brings security concerns over LWR and RLWE prob-
lems. Moreover, LWR-based cryptosystems considered for practical applications tend 
to have large parameters and therefore actually higher communication cost, which 
is not friendly towards real world applications. Inspired by the notion of LWR and 
our efficient RLWE-based key exchange, we introduce a different rounding technique 
to reduce communication cost for our key exchange protocol. Unlike LWR-based 
cryptosystems where error term is discarded, we preserve the freshly generated and 
secret error term 2e in our RLWE instance a · s +2e, then we apply our new rounding 
technique. We call this a LWE+R sample. By implementing rounding and recovering 
techniques dedicated to our key exchange protocol, we reduce communication cost 
substantially, further improving the practical efficiency of our key exchange protocol. 
Moreover, it actually adds larger perturbation – “error” on a · s compared to standard 
RLWE instance. The added perturbation helps to improve security of our protocol 
even further. 

1.3.2 Similar Works 
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We note that there are several works that follow the same idea of sending additional 
information – signal value other than public key to construct LWE/RLWE/MLWE-
based Diffie-Hellman-like key exchange/Key Encapsulation Mechanism (KEM) proto-
cols. Here we list a few of them: BCNS [16], NewHope [6], Frodo [14], NewHope-Simple 
[5], Kyber [15] etc. These schemes all follow the same method of sending additional 
bits first presented by Ding to indicate which specific region coefficient elements 
lie in, though mechanisms for signal value computation and reconciliation maybe 
somewhat different. With such information, both parties can then reconcile errors 
using different techniques and agree on same key. 

It is very clear that BCNS [16], NewHope [6], Frodo [14] are variants of [22] 
and our proposal in the sense that all these constructions are LWE/RLWE-based 
Diffie-Hellman-like key exchange protocols using essentially the same basic idea 
of Ding. Here both parties together produce the final shared key, which is very 
different from encryption-based constructions. All these constructions also send 
signal value to assist error reconciliation. NewHope-Simple [5] and Kyber [15] are 
KEM constructions over RLWE and MLWE problems respectively. They reduce 
size of ciphertext, but they also use the idea of sending additional information on 
the intervals of coefficients to reconcile errors. Despite the algorithms to compute 
signal value and error reconciliation may not be exactly the same, the idea of sending 
additional bits to reconcile errors remain the same. 

1.4 Summary of Our Proposal 

In this submission, we propose an ephemeral-only RLWE-based key exchange protocol. 
Our construction is a RLWE variant of the classic Diffie-Hellman key exchange 
protocol, which can be regarded as a direct drop-in replacement for current widely-
deployed Diffie-Hellman key exchange protocol (and its variants, e.g. elliptic curve 
Diffie-Hellman) without significant modifications to current security protocols and 
applications. We believe that our proposal is secure, efficient, simple and elegant. We 
present protocol specifications, parameter choices, security analysis using state-of-
the-art lattice attacks, performance analysis and stress advantages, limitations and 
applications of our proposal. 
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2 Protocol Specification 

In this section, we introduce the specification of our RLWE-based key exchange 
protocol. 

2.1 Preliminaries 

Let Rq = Zq[x]/f(x) be the quotient ring of integer polynomials with f(x) = xn +1, q 
a prime number, and n a number as a power of 2. A polynomial a in Rq is represented 
as a = a1 + a2x + · · · + anxn−1. Coefficients of a polynomial a can also denoted by a 
vector a = (a1, ..., an). 

Let Λ be a discrete subset of Zn. For any vector c ∈ Rn and any positive parameter 
−πkx−ck2/σ2 

σ > 0, let ρσ,c(x) = e be the Gaussian function on Rn with the center cP 
and the parameter σ. Denote ρσ,c(Λ) = ρσ,c(x) be the discrete integral of ρσ,cx∈Λ 
over Λ, and DΛ,σ,c be the discrete Gaussian distribution over Λ with the center c 

ρσ,c(y)and the parameter σ. For all y ∈ Λ, we have DΛ,σ,c(y) = . In this submission, ρσ,c(Λ) 
we fix Λ to be Zn and c to be zero vector. For ease of notation, we denote DZn,σ,0 as 
DZn,σ. Let U [a, b] be the uniform distribution over discrete set {a, a +1, · · · , b − 1, b}

$
over integers. Let ←− χ denote a random sampling according to the distribution χ. 

q−1Here we represent Zq as {− q−1 , · · · , }. However, on occasion, we treat elements 2 2 
in Zq as elements in {0, · · · , q − 1} for convenience, but we will remark the switch 
clearly. 

Let || · ||1 be the l1-norm, || · ||2 be the l2-norm, || · ||∞ be the l∞-norm. Let bxc 
be the floor function which outputs the greatest integer that is less than or equal 
to x, dxe be ceiling function which outputs the least integer that is greater than or 
equal to x, bxe be the rounding function which rounds x to nearest integer. Let “akb” 
denotes the concatenation of a and b. 

First we recall and introduce useful lemmas. 

√ √ $
Lemma 1 ([40], lemma 2.5). For σ > 0, r ≥ 1/ 2π, Pr[kxk2 > rσ n; x −←√ 

−πr2 
)nDZn,σ] < ( 2πer2 · e . tu

Lemma 2. For a, b ∈ Rq, ka · bk∞ ≤ kak2 · kbk2. 

Proof. Denote the coefficient vector of polynomial a(x) = a1 + a2x + a3x2 + · · · + 
n−2an−1x + anxn−1 ∈ Rq as (a1, a2, a3, · · · , an−1, an). 

For c = a · b ∈ Rq, cn equals the inner product of (a1, a2, · · · , an−1, an) and 
(bn, bn−1, · · · , b2, b1). Similar computations can be applied to coefficients cn−1, · · · , c2, c1 

as well. By applying Cauchy-Schwarz inequality and property of norm (i.e. for any 
vector x, kxk∞ ≤ kxk2 ≤ kxk1), we have kck∞ ≤ kak2 · kbk2. ut 
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2.2 Core Functions 

In this section, we define several functions which are crucial to construct our RLWE-
based key exchange protocols. 

Hint function. Hint functions σ0(x), σ1(x) from Zq to {0, 1} are defined as: ( (
0, x ∈ [−b q c, b q c] 0, x ∈ [−b q c + 1, b q c + 1] 4 4σ0(x) = 4 , σ1(x) = 4 

1, otherwise 1, otherwise 

Signal function. A signal function Sig() is defined as: 
$

For any y ∈ Zq, Sig(y) = σb(y), where b ← {0, 1}. If Sig(y) = 1, we say y is in 
the outer region, otherwise y is in the inner region. 

Signal function is defined for an integer x ∈ Zq. Signal function for a ∈ Rq is 
computed by applying Sig() for each coefficient ai ∈ Zq of a ∈ Rq. In this document, 
we use the same notation “Sig()” for both signal functions over Zq and Rq. 

Reconciliation function. Mod2() is a deterministic function with error tolerance 
δ. Mod2() is defined as: for any x in Zq and w = Sig(x), Mod2(x, w) = (x + w · q−1 

2 
mod q) mod 2. Here we treat elements in Zq as elements in Z before we perform the 
modulo 2 operation. 

We define the error tolerance δ, as the largest integer such that for any x, y ∈ Zq, 
if kx − yk∞ ≤ δ, then Mod2(x, w) = Mod2(y, w), where w = Sig(y). Error tolerance 
δ is q − 2, which is the key to ensure correctness of key exchange over RLWE with 4 
overwhelming probability. 

Reconciliation function is defined for an integer x ∈ Zq. Reconciliation function 
for a ∈ Rq is computed by applying Mod2() for each coefficient ai ∈ Zq of a ∈ Rq. In 
this document, we use the same notation “Mod2()” for both reconciliation functions 
over Zq and Rq. 

Lemma 3. Let q > 8 be an odd integer. Function Mod2() as defined above is a robust 
extractor with respect to signal function Sig() with error tolerance δ = q − 2.4 

Proof. For any x, y ∈ Zq such that x − y = 2ε and |2ε| ≤ q − 2. Let w ←Sig(y), due 4 
q−1to definition of signal function, it is not hard to see that |y + w · mod q| ≤ q +1 2 4 

for any hint function used in Sig() to generate signal w. We have 

q − 1 q−1 x + w · mod q = y + w · 2 + 2ε mod q
2 

= (y + w · q−2
1 ) mod q + 2ε 

q−1Since |(y + w · 2 ) mod q + 2ε| ≤ 4 
q + 1 + |2ε| ≤ q−2

1 . This implies 

q − 1 
Mod2(x, w) =(x + w · mod q) mod 2 

2 
q − 1 

=(y + w · mod q) mod 2 
2 

=Mod2(y, w) 
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ut 

Lemma 4. For any odd q > 2, if x is uniformly random in Zq, then Mod2(x, w) is 
uniformly random conditioned on signal w ∈ {0, 1}. 
Proof. For any w, b0 ∈ {0, 1}, we have 

1 

←Zq ,b←{0,1} ←Zq 
$$$

[Mod2(x, w) = b0|σb(x) = w] = [Mod2(x, w) = b0|σ0(x) = w]Pr Pr 
2 

x x 

1 
[Mod2(x, w) = b0|σ1(x) = w]+ Pr 

←Zq 
$2 

x 

$

Pr [Mod2(x, w) = b0 ∧ σ0(x) = w]$ Z←x q 

2 Pr 
←Zq 

1 
= · 

[σ0(x) = w] 
x 

[Mod2(x, w) = b0 ∧ σ1(x) = w]Pr1 $←Zq+ · 
2 Pr 

x 

[σ1(x) = w]$
x←Zq 

Denote I = [−b q c, b q c] be the interval such that σ0 equals 0, then I + 1 is the 4 4 
interval such that σ1 equals 0. It is easy to see that |I| = |I + 1| = 2b q c + 1. 4 

We separately consider two cases, when w = 0 and w = 1. 
For w = 0, we have that 

2b q c + 1 
Pr [σ0(x) = 0] = Pr [σ1(x) = 0] = 4 . 

q$←Zq 

Let I0 = {x : x ∈ I ∧ x mod 2 = 0} and I1 = {x : x ∈ I ∧ x mod 2 = 1} and 
similarly for (I +1)0, (I +1)1. Then we have |I0|+ |(I +1)0| = |I| and |I1|+ |(I +1)1| = 
|I|. 

Therefore, 

Pr [Mod2(x, 0) = b0 ∧ σ0(x) = 0] = Pr [x ∈ Ib0 ] and 

$ Z← qx x 

$$
x←Zq x←Zq 

Pr [Mod2(x, 0) = b0 ∧ σ1(x) = 0] = Pr [x ∈ (I + 1)b0 ]. 
$$

$$

x←Zq x←Zq 

This implies that 

1 q |Ib0 | + |(I + 1)b0 | 1 
Pr [Mod2(x, 0) = b0|σb(x) = 0] = · · = 

←Zq ,b←{0,1} 4 

. 
2 2b q c + 1 2q

x 

$

For w = 1, we first note that the intervals Zq\I and Zq\(I +1) have even numbers, 
i.e. q − (2b q c + 1). Therefore, we have: 4 

Pr [Mod2(x, 1) = b0 ∧ σ0(x) = 1] + Pr [Mod2(x, 1) = b0 ∧ σ1(x) = 1] 
←Zq 

$
x←Zq x 

q − (2b q c + 1) 4= . 
q 
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A routine calculation shows that Pr $ $ [Mod2(x, 1) = b0|σb(x) = 1] = 12 . x←Zq ,b←{0,1}
This completes the proof. ut 

Rounding function. For x ∈ Zq, q > p > 0 be integers. x is a coefficient of 
polynomial in Rq, q, p are parameters of our protocol. 

q−1For the convenience of notation, we change the representation of x ∈ {− q−1 , · · · , }2 2 
to x ∈ {0, · · · , q − 1} before Round() runs. Function Round(x, p, q) is defined as 
follows: 

Algorithm 1 Round(x, p, q) 
Input: x ∈ Zq , p, q 
Output: Rounded value x 0 ∈ [0, p] of x 
1: x 0 ← bp · x/qc 
2: if ((x is odd number) AND (x 0 is even number)) then 
3: x 0 ← x 0 + 1 
4: else if ((x is even number) AND (x 0 is odd number)) then 

05: x 0 ← x + 1 
6: end if 
7: Remove bias(x 0 , p, q) 

Rounding function is defined for an integer x ∈ Zq. Rounding function for a ∈ Rq 

is computed by applying Round() for each coefficient ai ∈ Zq of a ∈ Rq. In this 
document, we use the same notation Round() for both rounding functions over Zq 

and Rq. 

A function in order to remove possible bias occurred in rounding is defined below. 

Remove bias function. Remove bias() shares similar idea as hint functions σ0(x) 
and σ1(x). Since rounding function Round() generates minor bias on some locations 
(i.e. one more number is rounded to bias locations than nearby locations), it is 
necessary to remove the bias. 

Remove bias(x0, p, q) takes inputs x0, p, q, where x0 is derived after line 6 of 
algorithm 1. Since the location of “bias” varies regarding to specific parameters p 
and q, we define this function in section 2.3.3. 

Recovering function. Recover() is a deterministic function. For x0 ∈ [0, p], q > 
p > 0 be integers. x0 is one coefficient of rounded polynomial, q, p are parameters of 
our protocol. Function Recover(x0, p, q) is defined as follows: 
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Algorithm 2 Recover(x0, p, q) 
Input: x 0 ∈ [0, p], p, q 
Output: Recovered value x 00 of x 0 

1: x 00 ← bx 0 · q/pc 
2: if ((x 0 is odd number) AND (x 00 is even number)) then 

00 ← x 003: x + 1 
4: else if ((x 0 is even number) AND (x 00 is odd number)) then 

00 ← x 005: x + 1 
6: end if 

In order to be consistent with theoretical analysis, we change representation of 
q−1 x00 ∈ {0, · · · , q − 1} to x00 ∈ {− q−1 , · · · , } after Recover() runs. 2 2 

Recovering function is defined for an integer x0 ∈ [0, p]. Recovering function for 
vector a is computed by applying Recover() for each coefficient ai in vector a. In this 
document, we use the same notation “Recover()” for both recovering functions over 
integer x0 and vector a. 

Lemma 5. For parameter p and q, let t = dlog2 qe − dlog2 pe, x = (x1, x2, · · · , xn) 
be a vector whose each coefficient is uniformly random sampled integer in Zq, x’ be 
a vector whose each coefficient x0 = Recover(Round(xi, p, q),p, q). Let d = x-x’ be i 
a vector whose each coefficient di = xi − x0 (i ∈ [1, n]). Then di is an even number i 
with possible values in set {0, ±2, · · · , ±2t}, i.e. 0 ≤ |di| ≤ 2t . tu

Since probability for each possible di varies with respect to parameter choice p, q, 
we will introduce it in section 2.3.3. 

a derivation function. In each key exchange execution, we use a 128-bit seed 
to generate fresh a. Set seed to pseudorandom number generator. Each coefficient 
ai ∈ Zq (i ∈ [1, n]) of a ∈ Rq is derived as follows: 

Algorithm 3 Derive a() 
Output: Coefficient ai of polynomial a ∈ Rq 

$
1: ai ←− U [0, q − 1] 

2.3 RLWE-based Key Exchange Protocol 

In this section, we present our RLWE-based key exchange protocol. Here we first 
describe a few basic primitives: 

– Fresh a generation: Set 128-bit seed to pseudorandom number generator. Derive 
fresh a ∈ Rq using Derive a() function. 
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– Key generation: For public parameter a ∈ Rq, sample s, e from DZn,σ. Public 
key is pk = a · s + 2e ∈ Rq and private key is s. Round pk as pk0 using function 
Round(). 

– Key exchange material computation: For a rounded public key pk0 received from 
the other party, first recover pk0 using function Recover() and denote as pk00. For 
private key s ∈ Rq, compute key exchange material k = pk00 · s ∈ Rq. 

– Signal computation: For key exchange material k ∈ Rq, compute signal w ∈ {0, 1}n 

using function Sig(). 
– Error reconciliation: For key exchange material k ∈ Rq and signal w ∈ {0, 1}n , 

reconcile errors and generate the final shared key sk ∈ {0, 1}n using function 
Mod2() and w. 

As we stated before, one particular technical challenge to construct Diffie-Hellman-
like key exchange protocol over RLWE problem is how to reconcile errors. Therefore 
signal function and error reconciliation mechanism are invented. Moreover, in order 
to further reduce communication cost, we introduce the rounding technique. Apart 
from reducing communication cost, additional error causes larger perturbation on 
a · s than simply adding 2e, resulting in an increased cost of attack on our protocol. 

As NIST’s call for proposal requested, our Diffie-Hellman-like RLWE-based key 
exchange protocol is formalized as KEM consisting of three major functions: 

– crypto kem keypair(): 
0• Generate random seed, party i’s ephemeral public key p ∈ Rq and private i 

0key si ∈ Rq. Public key pk = p kseed.i

• Return pk and si. 
– crypto kem enc(): 

0• Generate party j’s ephemeral public key p ∈ Rq, private key sjj ∈ Rq 

and signal wj . Compute kj and generate final shared key skj . Ciphertext 
0ct = p kwj .j 

• Return ct and skj . 
– crypto kem dec(): 

• Party i computes ki and generates final shared key ski = skj . 
• Return ski. 

2.3.1 Specification 

We give the description of key exchange between party i and party j. In our protocol, 
users share following parameters: n, σ, q, p. 

Initiate. Party i instantiates key exchange by generating 128-bit random seed, 
computes fresh a = Derive a() and public key pi = a · si +2ei ∈ Rq, where si and 
ei are sampled from DZn,σ. Round pi as p0 = Round(pi, p, q), send pi 

0 and seed toi 
party j. 
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Response. Party j computes fresh a = Derive a(), public key pj = a · sj +2ej ∈ Rq, 
0where sj and ej are sampled from DZn,σ. Round pj as p = Round(pj , p, q).j 

Recover public key received from party i as p00 = Recover(pi
0 , p, q). Computes key i 

00exchange material kj = p · sj ∈ Rq, signal value wj = Sig(kj ) and final shared i 
0key skj = Mod2(kj , wj ). Send pj and wj to party i. 

00 0Finish. Party i recovers public key received from party j as p = Recover(pj , p, q).j
00Compute key exchange material ki = p · si ∈ Rq and final shared key ski = j 

Mod2(ki, wj ). 

The protocol is illustrated in Figure 1. 

Party i Party j 

← {0, 1}128seed 
$

a = Derive a() ∈ Rq 
a = Derive a() ∈ Rq Public key: pj = a · sj + 2ej ∈ Rq0 , seed iPublic key: pi = a · si + 2ei ∈ Rq p Private key: sj ∈ Rq 
Private key: si ∈ Rq $

where sj , ej ←− DZn,σ$
where si, ei ←− DZn,σ 0 p = j Round(pj , p, q)0 p = i Round(pi, p, q) 

00 0 
i, p, q) ∈ Rq 

· sj ∈ Rq 

Recover(pp = i00 p = j j , p, q) ∈ Rq 
00 pj , wj 

0Recover(p 00 
i 

0 kj = p· si ∈ Rqki = pj wj = Sig(kj ) ∈ {0, 1}n 

Mod2(kj , wj ) ∈ {0, 1}n
ski = Mod2(ki, wj ) ∈ {0, 1}n 

skj = 

Fig. 1. The proposed RLWE key exchange protocol 

2.3.2 Correctness 

Note: In this subsection, we omit notation “·” for polynomial multiplication. 
With above protocol, we have 

00ki =pj si = (asj + 2ej + dj )si 
(1) 

=asj si + 2ej si + dj si 

00kj =pi sj = (asi + 2ei + di)sj 
(2) 

=asisj + 2eisj + disj 

ki − kj = 2(ej si − eisj ) + (djsi − disj ). In order to achieve key exchange with 
overwhelming success probability, kki −kj k∞ ≤ error tolerance δ of error reconciliation 
mechanism, i.e. kki − kj k∞ ≤ q − 2. We have 4 

kki − kj k∞ =k2(ej si − eisj) + (dj si − disj )k∞ 
(3)

≤4ksek∞ + 2kd0 sk∞ 



13 2. PROTOCOL SPECIFICATION 

$
where s, e ∈ Rq ←− DZn,σ. Definition of d0 is consistent with lemma 5. √ 2 2σ2With lemma 1 and 2, we have 4ksek∞ ≤ 4ksk2 · kek2 ≤ 4(rσ n) = 4r n,√ 

where r ≥ 1/ 2π is defined in lemma 1 and n is the degree of polynomial. With √ 
lemma 5, we have 2kd0sk∞ ≤ 2kd0k2 ·ksk2 = 2kd0k2 ·rσ n. Recall that error tolerance 

q 2σ2δ = − 2. Therefore as long as q ≥ 4 · [2 + (4r n) + (2kd0k2 · rσ 
√ 
n)], key exchange 4 

failure probability is estimated to be ( 
√ 
2πer2 · e−πr2 

)n . 

2.3.3 Parameter Choice 

Key exchange protocol is instantiated with following parameters: 

– Modulus q 
– Degree n of Rq 

– σ of distribution DZn,σ to sample s and e 
– Rounding parameter p 

Parameter choices covering NIST security category I (AES-128), III (AES-192) 
and V (AES-256) are given in Table 1: 

Table 1. Our Parameter Choice 

n σ q p 
Claimed 

Security Level 

NIST 
Security 
Category 

Failure 
Probability 

512 4.19 120833 7551 AES-128 I 2−60 

1024 2.6 120833 7551 
AES-192 
AES-256 

III 
V 

2−60 

Note that for parameter choice (n, σ, q, p) = (1024, 2.6, 120833, 7551), it is enough 
to cover security of AES-192 and AES-256 (NIST security category III and V 
respectively). We will elaborate this in section 3.1.5. 

Modulus q = 120833 can instantiate NTT efficiently as q ≡ 1 mod 2n. p is to 
instantiate Round() and Recover() functions properly. A failed key exchange implies 
that at least one bit in ski and skj mismatches. 

For lemma 5 and above parameter choices, let t = dlog2 qe − dlog2 pe. We have: 

– Pr[di = 0] = Pr[di = 2] = Pr[di = −2] = Pr[di = 4] = Pr[di = −4] = · · · = 
1 1Pr[di = 2t − 2] = Pr[di = −(2t − 2)] = 2t , Pr[di = 2t] = Pr[di = −2t] = 

2t+1√ 
– n = 512, t = 4, kdk2 = 32 43√ 
– n = 1024, t = 4, kdk2 = 32 86 
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With concrete parameter choices, we define bias removing function Remove bias() 
as we mentioned in algorithm 1. We list a set of locations pos where bias occurs: 

– q = 120833, p = 7551, pos = {0, 445, 888, 1333, 1776, 2221, 2666, 3109, 3554, 
3997, 4442, 4885, 5330, 5775, 6218, 6663, 7106} 

As we explained in section 2.2, one more number is rounded to values in pos than 
nearby values in [0, p], therefore if the number generated after line 6 of algorithm 1 
equals to one of the values in pos, then bias is removed using Remove bias(). 

Function Remove bias() is defined as: 

Algorithm 4 Remove bias(x
Input: x 0 ∈ [0, p], p, q 
Output: x 0 

1: if x 0 ∈ pos then 
$

0

2: rnd ←− U [0, 1] 
3: if rnd = 1 then 
4: x 0 ← x 0 + 2 
5: end if 
6: end if 

, p, q) 

0 
2.3.4 Communication Cost 

As shown in Figure 1, party i sends the rounded public key pi and seed to party j. 
Party j sends the rounded public key p0 j and signal wj to party i. 

pi ∈ Rq is represented as pi = (pi,1, pi,2, ..., pi,n) ∈ Zn, but the rounded element q 
0 0000= Round(pi, p, q) is represented as pi = (pi,1, pi,2, ..., pp i,n). Same analysis can be 

has 
i 

0 
j as well. seed has the size of 128 bits. Signal wj ∈ {0, 1}n 

the size of n bits. 
Therefore, with parameter choices presented in Table 1, communication cost is 

estimated as: 

Table 2. Communication Cost of Our Proposed Scheme 

applied to pj and p

n 
Party i → j 

(Byte) 
Party j → i 

(Byte) 
Total 
(Byte) 

Claimed 
Security Level 

NIST 
Security 
Category 

512 848 896 1744 AES-128 I 

1024 1680 1792 3472 
AES-192 
AES-256 

III 
V 
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3 Known Cryptanalytic Attacks 

3.1 Expected Security Strength 

In this section, we will explain how to analyze the security of our protocol. 

3.1.1 Prerequisites 

Lattice Theory. A lattice L is defined as an infinite space expanded by basis 
B = {b1, . . . , bn}, where bi (i = 1, . . . , n) are a set of linearly independent vectors 
in Rm . Here n is the dimension of L. The n-dimensional volume of L is denoted 
by Vol(L), which is computed by the determinant of basis B, i.e. Vol(L) = det(B). 

We denote Vn(R) = Rn · πn/2 
as the volume of n-dimensional Euclidean ball of Γ (n/2+1) 

radius R. 

Ring LWE (RLWE) Problem. Let m ≥ 1 be a power of 2 and q ≥ 2 be an integer, 
let Rq = Zq[x]/Φm(x), where Φm(x) = xn + 1 is the m-th cyclotomic polynomial with 

$
n = m/2. Let χ be a β-bounded distribution. For secret polynomial s ←− χ and error 

$
polynomial e ← uniformly random, output (a, b = a · s + e ∈ Rq− χ, choosing a ∈ Rq ). 

$
Search version of RLWE problem is: for s ←− χ, given poly(n) number of samples 

of (a, b = a · s + e) ∈ (Rq, Rq), find s (and e simultaneously). Decision version of 
RLWE problem is: for a ∈ Rq, distinguish b = a · s + e ∈ Rq from uniform random 
sampled polynomial in Rq. We denote both search and decision versions of RLWE 
problem as RLWE problem. 

Proposition. Let z = Recover(Round(a · s +2e, p, q), p, q) = as +2e + d = as +2f ∈ 
$

Rq, where s, e − DZn,σ and 2f = 2e + d. Hence we can regard f as error term e in←
the definition of RLWE above. The attack on our protocol is given z and a, output 
private key s. This problem is equivalent to: 

z = a · s + 2f mod q 

⇔ 2−1 z = 2−1 a · s + f mod q 
00 00⇔ z = a · s + f mod q 

Standard deviation of term f is denoted as σf . Note that σf is different from σ 
notation in section 2.1 as f no longer follows discrete Gaussian distribution (histogram 
shows similar shape as Gaussian distribution), therefore σf is computed as the square 
root of variance. 

Shortest Vector Problem. Given an input basis B = (b1, . . . , bn) of a lattice 
L, Shortest Vector Problem (SVP) is to find a non-zero shortest vector in L. We 
introduce the following two variants of the SVP to be used in this section. 
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Short Integer Solution Problem. Given an integer q and a matrix A ∈ Zn×m ,q 
Short Integer Solution problem (SIS) is to compute a short vector y ∈ B s.t. Ay ≡ 0 
mod q, where B is a set of short vectors with some norm bound. 

Unique Shortest Vector Problem. Unique SVP problem (uSVP) is for a given 
lattice L which satisfies λ1(L) � λ2(L), find the shortest vector in L. Here λi(L) 
means the length of i-th linear independent shortest vector for i = 1, 2. 

(Root) Hermite Factor. To evaluate the performance of lattice algorithms for 
solving SVP, we use the Hermite Factor defined in [24] as: 

HF(b1, . . . , bn) = kb1k2/Vol(L)1/n. 

Given an n-dimensional lattice, if the Hermite factor of output basis is smaller, 
the algorithm performs better. Also we usually use root Hermite Factor (rHF) in 
analysis, which is denoted as: 

δ = rHF(b1, . . . , bn) = (kb1k2/Vol(L)1/n)1/n. 

BKZ Algorithm. There are some lattice algorithms such as BKZ and sieving to solve 
SVP and its variants. BKZ algorithm was originally proposed in [36], which computes 
basis that are almost β-reduced, namely the projected lengths of each basis vectors 
are the shortest ones in the relative β-sized local blocks. Original BKZ algorithm 
proceeds by iterative tours consisting of n − 1 calls to a β-dimensional SVP solver 
called on the projected lattice spanned by πj (bj ), . . . , πj (bmin(j+β−1,n)) (1 ≤ j ≤ n), 
where πj is the orthogonal projection on (b1, . . . , bj−1). BKZ algorithm runs in 
exponential time, because the classical SVP oracle enumeration algorithm (ENUM) 
runs in 2O(β2). There are also some efficient improvements for BKZ algorithms [18,9]. 

Sieving Algorithm. In 2001, Ajtai et al. proposed a sieving algorithm to solve SVP, 
which requires a runtime of 20.52n+o(n) in n dimension lattice and simultaneously 
requires exponential storage of 20.2n+o(n) [1]. According to recent research results, for a 
n-dimensional lattice L and fixed blocksize β in BKZ, the runtime of sieving algorithm 
can be estimated in 20.292β+o(β) clock cycles for a β-dimensional subroutine [4], and 
totally BKZ-β costs 8n ·20.292β+16.4 operations [12]. We will use this result to evaluate 
the security of our parameter choices. 

3.1.2 Algorithms for Solving RLWE 

There are several algorithms for solving RLWE. In Figure 2, we show several possible 
attacks on RLWE problem with only one given instance. 
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Fig. 2. Possible attacks on search RLWE problem with only one given instance. Relevant references 
[HKM15], [AGVW17], [ABPW13] and [BG14] are [25], [3], [8] and [10] respectively. 

We explain how we choose appropriate attacks from available options: 

– Firstly, exhaustive search is not efficient. 

– Secondly, BKW algorithm can solve LPN problem with 2O(n/ log n) samples and 
runtime. Since LWE is a descendant of LPN, BKW algorithm can also be adapted 
to solve LWE problem (both decision and search versions) with 2O(n) complexity, 
when modulus q has polynomial size of dimension n. Amplifying technique is used 
in BKW algorithm to solve LPN problem and LWE problem [30,25]. However, the 
analysis on amplifying BKW until now are asymptotical and there is no precise 
analysis on RLWE problem, i.e. amplifying BKW requires O(n log2(n)) samples 
which will lead to much larger standard deviation of e. 

– Thirdly, complexity analysis of “reduction+ENUM” method is not clear for large 
dimensional (> 1000) basis. 

– Finally, for security analysis of our protocol, we adapt a conservative primal 
method: reduce RLWE problem to SIS problem, then reduce it to unique SVP 
problem. Then we process the basis using BKZ reduction algorithm with sieving 
algorithm as SVP oracle in BKZ subroutines. 

We show the SIS attack on RLWE in Algorithm 5. 
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Algorithm 5 The SIS Attack on Ring LWE Problem 
Input: m 0 instances from RLWE key exchange: (a, b = a · s + e) ∈ (Rq , Rq ). Here m 0 = poly(n), 

Rq = Zq [x]/(x n + 1) with q as a prime, where secret polynomial s and error polynomial e are 
sampled from Gaussian distribution DZn,σ with standard deviation σ. 

Output: The polynomial e and s s.t. b = a · s + e ∈ Rq . 
Step 1. Rewrite the RLWE instance to Short Integer Solution (SIS) instance by 

$
Write the polynomials ai ∈ Rq , bi ∈ Rq , ei ← for i ∈ [1,m 0] and the only one − DZn,σ ∈ Rq 

s ∈ Rq as follows: 
n−1 n−1 ai = ai1 + ai2x + · · · + ainx , bi = bi1 + bi2x + · · · + binx , 

n−1 n−1 ei = ei1 + ei2x + · · · + einx and s = s1 + s2x + · · · + snx 
to vector form as 

, b0 )T ∈ Zm n×1 ai = (ai1, ai2, · · · , ain) ∈ Zq 
1×n = (b11, b12, · · · , b1n, · · · , bm01, bm02, · · · , bm0n q 

0 
, 

0 
)T $ ∈ Zm0 n×1 e = (e11, e12, · · · , e1n, · · · , em0 1, em02, · · · , em0n ← 0 ,− DZm n,σ q 

$
s = (s1, s2, · · · , sn)T ← .− DZn,σ ∈ Zn

q 
×1 

2 n−1 ∈ RqRotate polynomials ai ⎞to get matrices 
. . . ai(n−1) ain 

= ai1 + ai2x + · · · + ainx 
ai1 ai2 

⎛ ⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎠ 
. 

−ain ai1 ai2 . . . ai(n−1) 

−ai(n−1) −ain ai1 . . . ai(n−2)Ai = 
. . . . . . . . . . . . . . . 

−ai2 −ai3 −ai4 . . . ai1 
0 

Then compose A0 = [A1A2 · · · Am0 ]T n×n∈ Zm
q . 

� 

3 n×nDerive A ∈ Zm×n by sampling m-row vectors from A0 ∈ Zm 0 
. Similarly, derive b ∈ Zm 

q q q 
n×1 n×10 ∈ Zmfrom b0 ∈ Zm

q 
0 

and e ∈ Zm
q from e q 

0 
. 

, Zm 

Transform the randomly sampled LWE instance (A, b ≡ As + e mod q) ∈ (Zm
q 
×n

q ) from 
Then we get a randomly sampled normal LWE case as (A, b ≡ As + e (mod q)) ∈ (Zm

q 
×n

q ). 
4 
3 

, Zm 

to a SIS instance: 
Given (A, b) ∈ (Zm

q 
×n

q ), find a short vector (s | e | 1) ∈ Zm
q 

+n+1 s.t., Zm 

(A |Im|−b)(s | e | 1)T = 0 mod q. 
|−b) ∈ Zm×(m+n+1)

Step 2. Set A00 = (A |Im q . Compute basis B of q-ary lattice 
L⊥ 

(A00,q) = {x ∈ Zm+n+1 | A00 x ≡ 0 (mod q)}. 
Compute kernel Ker(A00) of A00 over Z(m+n+1)×(n+1) . 

Ker(A00)T 
� 
∈ Z(m+2n+2)×(m+n+1) 

qStep 3. For some matrix A ∗ , construct basis B = 
qIm+n+1� � 

qIm 0 ∈ Z(m+n+1)×(m+n+1)and compute the HNF of B as BHNF = . 
A ∗ 

(n+1)×m In+1 

Step 4. Apply lattice reduction algorithm (LLL or BKZ) on basis BHNF and get reduced basis 
Red(BHNF). Inside of Red(BHNF), a short vector v = (s | e | 1) if it succeeded. 

This algorithm is an adaptation of the primal attack mentioned in [10]. 

3.1.3 Cost of Known BKZ Estimators 

We explain cost of two estimators for BKZ algorithm. 

3.1.3.1 Progressive BKZ Runtime Simulator [9] 

In 2016, Aono et al. proposed a precise simulator for estimating runtime of progressive 
BKZ algorithm (pBKZ), which processes given basis by increasing block size with 
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some strategy [9]. They optimized four critical parameters in BKZ: blocksize β, GSA 
constant r, ENUM search radius coefficient α and ENUM search success probability 
p. 

Thus, for fixed β, one can compute the other three parameters with equation 4, 
5 and 6. 

2 
p = . (4)

αβ 

� � 4 
4 

β(β−1) 
β + 1 β−1 

r = · Vβ(1) . (5)
α · β 

� 
−18.2139/(β + 318.978) (β ∈ [40, 100])

log2(r) = 
(−1.06889/(β − 31.0345)) · log(0.417419β − 25.4889) (β > 100) 

(6) 
When dimension n is large (n ≥ 100), runtime of pBKZ (second) is estimated as 

TimeBKZ(n, βt) 
βt ]tours n−1X X h n − βalg X i 

· βalg = 2.5 · 10−4 · · n 2 + 1.5 · 10−8 · ENUMCost(Bi; α, p) . 
250 − βalg 

βalg =10 t=1 i=1 

(7) 
ENUMCost(Bi; α, p) is the number of ENUM search nodes in pBKZ simulator: 

Vβ/2(α · GH(Br)) Vβ/2(1) · Vβ (1)
−1/2 

ENUMCost(Bi; α, p) = p · = 2α−β/2 · .Qβ β2/16kb∗ rk2i=β/2+1 i 

Refer to [9] for details. 

3.1.3.2 Martin Albrecht et al.’s Method [3] 

In the experiments of [3], authors use BKZ 2.0 implemented in fplll 
(https://github.com/fplll/fplll) and fpylll (https://github.com/fplll/fpylll). 
They set the success probability of SVP oracle ENUM close to 1. Then they test the 
performance of BKZ-β under inequality 8 by fixing several smaller BKZ blocksize β 
and limiting number of local reduction tours. They replace SVP oracle in BKZ from 
ENUM with extreme pruning (2o(n

2)−0.5n) to sieving (20.292n+o(n)) [28] for theoretical 
parameter estimation. They use the assumption in [12,2] that costs 8d · 20.292β+16.4 

operations running BKZ-β of d-dimensional lattice. 

https://github.com/fplll/fplll
https://github.com/fplll/fpylll
http:2o(n2)�0.5n


20 3. KNOWN CRYPTANALYTIC ATTACKS 

3.1.4 Significance of Number of Samples in Practical Attack 

At first we claim that because of the special case of our protocol: only one RLWE 
instance (a, b = a·s+e mod q) ∈ (Rq, Rq) is given, Kannan’s embedding technique [27] 
and Liu-Nguyen’s decoding attack [29] cannot be adopted since solving basis of lattice 
L(A,q) = {v ∈ Zmq | v ≡ Ax (mod q), x ∈ Dσ

n} is trivial when m = n. Therefore our 
estimator should be different from some other key exchange schemes as NewHope 
[6], BCNS [16] and Albrecht’s estimator [3] etc. which regard RLWE and normal 
LWE problem as having the same difficulty. In practical attack, we can get only one 
n-dimensional RLWE instance, which can be amplified to 2 · n + 1 without changing 
the distribution of error vectors, see Algorithm 5. Therefore the lattice dimension in 
our case of solving RLWE is d = 2n + 1. 

3.1.5 Our Simulator 

For security analysis of our parameter choices, we refer to the approach in bold text 
in Figure 2. In Asiacrypt2017 [3], Albrecht et al. re-estimated the hardness of LWE 
problem using Kannan’s embedding and Bai-Gal’s embedding respectively under 
estimation in NewHope [6] (denoted as “2016 estimation”). 2016 estimation states 
that if the Gaussian Heuristic and the Geometric Series Assumption (GSA) [37] hold 
for BKZ-β reduced basis and p p

2β−dβ/d · k(e|1)k2 ≈ βσ ≤ δ · Vol(L(A,q))
1/d. (8)0 

then error e can be found by BKZ-β with root Hermite Factor δ0. Equation 8 
originates from NewHope [6] and was corrected in [3]. 

Using SIS → uSVP approach method to attack our protocol, we can get n samples 
00 00by iterating only one given instance z = a s + f ∈ Rq, therefore we need to evaluate 

the complexity of processing a d = 2n + 1 dimension basis. For BKZ reduction 
runtime estimation, we will give the result of progressive BKZ and Albrecht’s BKZ 
with sieving estimator. 

Step 1. We compute the complexity of BKZ-β with sieving SVP oracle estimated 
8d · 20.292β+16.4as double precision floating point operations [12,2]. We got the 

maximal record of 400×109 Floating Point Operations per second (FLOPS) per 
thread from the LINPACK benchmark test on 24-thread Intel(R) Xeon(R) CPU 
E5-2697 v2 @ 2.70GHz (overclocked to 3.499GHz). We translate this to time (second) 
unit by 

TBKZ = 8d · 20.292β+16.4(FLOPs)/(400 × 109/24(FLOPS per thread)). (9) 

Simultaneously, TBKZ can also be replaced by progressive BKZ simulator ex-
plained in section 3.1.3.1. 

Then we compute security level of RLWE(n, q, σf ) by: 

log2(TBKZ ) + log2(2.7 × 108). (10) 
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Here 2.7 × 108 comes from the result of RC5-72 benchmark test published on 
www.distributed.net, which means that above CPU can check 2.7×108 keys in second 
per thread. This method of converting runtime to security level was used by Aono et 
al. in [8]. 

Step 2. A short vector kb1k2 = δd · det(B) is assumed to be inside of the BKZ-β0 
reduced basis B of dimension d [17], where the root Hermite Factor is 

δ0 = (((πβ)1/β β)/(2πe))1/(2(β−1)). (11) 

We pre-compute the expected δ0 for β = 10, · · · , n and rewrite equation 8 as p
2β−dβσf ≤ δ · Vol(L(A,q))

1/d. (12)0 

In our case, d = 2n + 1 and Vol(L(A,q)) = qn. Therefore we can adapt inequality 
12 to p

2β−2n−1 n/(2n+1)βσf ≤ δ · q . (13)0 

We compute lower bound of σf in RLWE(n, q, σf ) which covers security of AES-
128/192/256 using equations 10, 11 and 13. Note that f no longer follows discrete 
Gaussian distribution (histogram shows similar shape as Gaussian distribution). 
Therefore we take a heuristic approach to estimate σf . We generate large amount of 
as + 2e samples, then apply Round() and Recover() functions, giving us 

z = Recover(Round(a · s + 2e, p, q), p, q) = a · s + 2f. 

With z−as = f , we compute standard deviation σf . Results are given in Table 3. 2 

Table 3. Lower Bound of σf in RLWE(n, q, σf ) Covering Security of AES-128/192/256 

Security level 
(n, q) 

AES-128 
(512,120833) 

AES-192 
(1024,120833) 

AES-256 

Method pBKZ 2016 estimation pBKZ 2016 estimation pBKZ 2016 estimation 
Lower bound of σf 1.0061 4.9013 0.0068 0.9032 0.0186 3.9972 

σ (for s and e) of 
our parameter choice 

4.19 2.6 

σf 4.92 4.72 

Given a n-dimensional basis, in order to use pBKZ simulator, we need target βt 
for our parameter choice. In section 3.1.5, with equations 11, 13 and parameter sets 
(n, σ, q), we can compute the root Hermite factor δ0. At this stage, we can get the final 

−4d/(d−1) −4−2/n
target GSA constant rt = δ0 = δ0 , where d = 2n + 1 is the dimension 
of lattice at step 2 in Algorithm 5. Hence we can compute the terminating block size 

https://www.distributed.net/Main_Page
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βt corresponding to rt, and set parameters α, r, p. Due to the uncertainty simulation 
for runtime with large dimension and large β (> 1000 and > 200 respectively), we 
are now sure about the simulation results for our key exchange protocol. However, 
our parameter choices can cover results from pBKZ simulator. Therefore we show 
results from pBKZ simulator in Table 3 as well. We will leave it as future work. 

With lower bound of σf given in Table 3, we claim that parameter choices given 
in Table 1 cover security of AES-128/192/256 respectively, which satisfies NIST’s 
security category I/III/V respectively. 

3.2 Key Reuse Attack 

In this section, we describe an efficient attack on reconciliation-based RLWE key ex-
change protocol. This attack only works for reconciliation-based RLWE key exchange 
protocols with reused keys. If the protocol does not allow key reuse, then this attack 
does not work. The number of queries required for the attack to find the exact value 
of the secret is roughly 2q, which is extremely efficient. This is why our protocol is 
an ephemeral-only RLWE key exchange protocol with no key reuse. In addition, we 
show that a new construction can defeat such an attack that allows key reuse. 

Fluhrer described an attack framework on error reconciliation-based Diffie-
Hellman-like RLWE key exchange protocols in [23]. In this attack, an important 
setting is that key pair is reused, i.e. public and private keys of one party remain 
unchanged during the attack. Adversary can recover private key within polynomial 
time and queries. Ding et al. elaborated the attack on reconciliation-based RLWE 
key exchange protocol in [20]. This attack is an extension of [23]. [20] introduced a 
step-by-step attack with two extensions and a proof-of-concept attack implementation 
on [22] with reused keys and practical parameters. They show that this attack can 
successfully recover user’s private key if key pair is reused. They also present a toy 
example and practical implementation of the attack. General idea of this attack 
works for other similar RLWE key exchange protocols since they share the same 
notion of error reconciliation and usage of signal function, despite exact approach to 
reconcile error is not the same. 

3.2.1 Outline 

Attacks in [23] and [20] use properties of signal function. Since signal value indicates 
which region a coefficient lies in, a smart approach to force signal value to reveal 
more information is introduced. The attack takes advantage of the number of times 
of a signal value changes to deduct the value of private key. We fix reused public key 
and private key of party j to be pj = a · sj + 2ej , public key of adversary as pA and 
corresponding private key and error term are sA and eA respectively. Here we briefly 
recalls simplified version of the attack, where error terms ej and eA are not added to 
computation of kA and kj . 
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In this section we use the multiplication k · e for k ∈ Z and e ∈ Rq. We denote 
n−1sj ∈ Rq as sj = sj [0] + sj [1]x + · · · + sj [n − 1]x . 

In step 1, adversary A chooses private key sA to be 0 and eA to be the identity 
element 1 in Rq. pA = keA, where k ∈ [0, q − 1]. This gives kj = ksj . Adversary loops 
k from 0 to q − 1 and executes the key exchange protocol with party j. We can see 
that with a looping k, adversary can make a correct guess on value of sj [i] based 
on the number of times the signal value wj [i] for each coefficient i of sj . As k takes 
values from 0 to q − 1, value of kj [i] changes in k multiples of sj [i] and there are 
changes in the signal value when ksj [i] is near the boundary values of signal regions 
defined in section 2.2. Therefore, there will be exactly 2sj [i] number of changes in 
signal value for i-th coefficient of sj . After this round, adversary can guess the value 
up to the ± sign, therefore in second round, more information is collected in order 
to deduct sign for each coefficient of sj . 

In step 2, adversary A chooses the same private key as step 1, but the public key is 
(1 + x) · pA. With this construction, adversary receives signal value of pA · ((1 + x) · sj ). 
Similar to the first round, adversary checks number of signal changes. Adversary can 
find out values of coefficients of (1 + x)sj , which are sj [0] − sj [n − 1], sj [1] + sj [2], 
· · · , sj [n − 2] + sj [n − 1] up to the ± sign. 

In step 3, consider pair of coefficients sj [0], sj [n − 1], then by recovering the value 
of sj [0] − sj [n − 1] up to the ± sign in step 2 of the attack, and already knowing 
sj [0], sj [n − 1] values up to the sign from step 1 of the attack, adversary determines 
if sj [0] and sj [n − 1] have same or opposite sign. 

In step 4, adversary can repeat step 3 for every pair of coefficients sj [x], sj [y], x 
from 0 to n − 2, y from 1 to n − 1 with the value of sj [x] + sj [y] up to the ± sign 
from step 2 of the attack to determine if they have equal or opposite signs. 

Lastly, adversary only need to guess the sign of sj [0]. The rest of the coefficients 
follow since adversary has determined if every pair of coefficients sj [x], sj [y] have equal 
or opposite signs. Adversary computes pj − a · sj and verifies the distribution of the 
result. If the guess on sign of sj [0] and other coefficients is correct, pj − a · sj should 
follows the distribution of ej , which is discrete Gaussian distribution; otherwise, 
adversary simply flips the sign to obtain correct signs. This completes the attack. 

In two extensions of the above attack, adversary shares same idea but slightly 
adjust the construction of the public key accordingly in order to recover the private 
key successfully. Here we omit details. An illustrated example in section 5 of [20] 
demonstrates the idea and effect of the attack intuitively. The number of queries 
required for the attack to find the exact value of the secret is estimated to be 2q, 
where q is the modulus for Rq. The above attack can recover private key of [22] 
instantiated with practical parameters within 3.8 hours on a common PC. 

3.2.2 Discussion 
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We note that this is exactly the reason why we stress that our Diffie-Hellman-like 
RLWE-based key exchange protocol does not allow key reuse. With the above attack, 
adversary can recover the private key very efficiently within only 2q queries. Our 
key exchange protocol is secure if public and private keys are used only once in each 
session. After key exchange is completed, both parties should delete the private key 
in case of potential attacks. For a new session, public key and private key should be 
newly generated. This is the exact same as ephemeral Diffie-Hellman key exchange 
protocol. 

We also note that the attack does not directly work for our proposal since we 
apply our new rounding technique. However, the notion of attack is very important 
and we believe that a variant of this attack would work. In fact, this attack implies 
that for reconciliation-based key exchange protocols (including [22], [33], [16], [6] 
etc.), public and private keys should not be reused for such protocols. 

3.2.3 Our Countermeasure 

In this section, we described a work-in-progress RLWE-based key exchange protocol 
which can achieve secure key reuse [21]. The idea for this construction is using zero 
knowledge proof, where the secret term can be proven to be “small”. The construction 
of key exchange describe in this section is based on the authentication protocol 
proposed in [21], where they first design a zero knowledge-based authentication 
protocol. It is a novel application of the signal function used for reconciliation in 
key exchange to derive a secure authentication protocol. It is zero knowledge-based 
with negligible soundness and completeness errors. For concrete security proof of 
authentication mechanism and protocol description, please refer to [21]. 

Here we briefly introduce how to construct a reconciliation-based key reusable 
RLWE key exchange protocol. We note that the following protocol does not utilize our 
new rounding technique to reduce communication cost. The protocol demonstrates 
the idea of constructing key reusable reconciliation-based RLWE key exchange. 

Let H : {0, 1}∗ → {0, 1}τ be a hash function, where τ is the length of output 
of H. H is used for the commitment between the prover and verifier. This helps to 
make sure that the verifier commits to a message before receiving the value from the 
prover. Samp() is a function which generates polynomial in Rq using output of H 
according to distribution DZn,σ. 

In order to prove zero knowledge, it is required that the commitment scheme is 
computationally hiding and unconditionally binding which ensures the integrity of 
the commitments. 

A description of key exchange between party i and party j with reusable keys is 
given as follows: 

Initiate Party i instantiates key exchange by computing public key pi = a · si + 2ei, 
where si and ei are sampled from DZn,σ. Send pi to party j. 
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Response Party j computes public key pj = a ·sj +2ej , where sj and ej are sampled 
0 00from DZn,σ. Sample e and e from DZn,σ. Compute Samp(H(pi)) ← DZn,σ.j j 

0Compute pi = a · Samp(H(pi)) + 2ej + pi, key exchange material kj = pi · sj , 
wj = Sig(kj ) and final shared key skj = Mod2(kj , wj ). Send pj and wj to party i. 

$
Finish Party i samples e0 ←− DZn,σ, computes H(pi) ← DZn,σ, key exchange material i 

ki = pj · (si + Samp(H(pi))) and final shared key ski = Mod2(ki, wj ). 

$

The protocol is illustrated in Figure 3: 

Party i Party j 

Public key: pi = a · si + 2ei ∈ Rq Public key: pj = a · sj + 2ej ∈ Rq 

Private key: si ∈ Rq Private key: sj ∈ Rq 

←− DZn,σ 

pi 

where si, ei ← where sj , ej− DZn ,σ 
$

$←− DZn,σ , 
Samp(H(pi)) ← DZn,σ 

0 00Sample ej , e j 

←− DZn,σ , 
Samp(H(pi)) ← DZn,σ 

$0Sample ei 

pj , wj 
0 pi = a · Samp(H(pi)) + 2ej + pi ∈ Rq 

00 
i ∈ Rq 

ski = Mod2(ki, wj ) ∈ {0, 1}n wj = Sig(kj ) ∈ {0, 1}n 

skj = Mod2(kj , wj ) ∈ {0, 1}n 

0 

Fig. 3. RLWE key exchange protocol with reusable keys 

With above construction and zero knowledge proof-based authentication mecha-
nism, key reuse issue can be solved. Above construction is mainly for the purpose of 
presenting such a solution. Therefore we do not apply our new rounding technique 
and fresh a generation here. Correctness of the protocol can be analyzed using same 
approach as we showed in section 2.3. Compared with our proposal, the above proto-
col should have slightly different parameters and performance due to the additional 
H(pi) term. 

ki = pj ·(si+Samp(H(pi)))+2e kj = pi · sj + 2e ∈ Rqj 
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4 Passive Security 

4.1 Outline of IND-CPA for Our Protocol 

For a probabilistic asymmetric encryption algorithm with key pairs: public key (PK) 
and private key (SK), indistinguishability under chosen plaintext attack (IND-CPA) 
is defined by the game between an adversary and a challenger. Let us use the notation 
E(P K, M) to represent the encryption of a message M under the public key PK. 

For schemes based on computational security, the adversary is modeled by a 
probabilistic polynomial time Turing machine that completes the game to output a 
result within a polynomial number of time steps: 

1. The challenger generates a key pair: public key (PK) and private key (SK) 
according to certain security parameter λ, and publishes PK to the adversary. 
The challenger keeps SK private. 

2. The adversary may perform a polynomial number of encryptions or other opera-
tions. 

3. Eventually, the adversary submits two distinct chosen plaintexts M0,M1 to the 
challenger. 

4. The challenger selects a bit b ∈ {0, 1} uniformly at random, and sends the 
challenge ciphertext C = E(P K, Mb) back to the adversary. 

5. The adversary is free to perform any number of additional computations or 
encryptions. Finally, it outputs a guess for the value of b. 

An asymmetric cryptosystem is indistinguishable under chosen plaintext attack 
if every probabilistic polynomial time adversary has only a negligible “advantage” 
over random guessing. 

An adversary is deemed to have a negligible “advantage” if it wins the above 
game with probability �� 

1 
+ �(λ),

2 

where �(λ) is a negligible function in the security parameter λ, namely, for every 
(nonzero) polynomial function poly(), there exists λ0 such that 

|�(λ)| < 

���� 1 
poly(λ) 

���� 
for all λ > λ0. 

Although the adversary knows M0,M1 and PK, the probabilistic nature of E 
means that the encryption of Mb will be only one of many valid ciphertexts, and 
therefore encrypting M0, M1 and comparing the resulting ciphertexts with the 
challenge ciphertext does not afford any negligible advantage to the adversary. 

The above definition is specific to an asymmetric key cryptosystem, it can be 
adapted to the KEM case. Surely we can also impose it on a key exchange scheme, 
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though we think it is very unnatural due to the fact that in the key exchange 
scheme, we actually make the ciphertext first and then the plaintext. 

4.2 Security Proof 

We now define the passive security of our Diffie-Hellman-like ephemeral-only RLWE-
based key exchange protocol defined in section 2.3. Notations are consistent with 
section 2.3. We start with the security of our key exchange protocol without rounding 
and recovering public key. We then discuss the hardness of our protocol defined in 
section 2.3. 

Intuitively, any PPT adversary should not distinguish a real shared key (sk ∈ 
${0, 1}n) from a random one (rand ← {0, 1}n) even if he gets the transcripts (public 

key and signal value) of the protocol, which in fact satisfies IND-CPA notion. More 
specifically, we define the advantage of an adversary A: 

| Pr(A(a, pi, pj , wj , sk) = 1) − Pr(A(a, pi, pj , wj , rand) = 1)|. 

Definition 1. We say a key exchange protocol is secure under passive adversary, if 
for any PPT adversary the advantage is negligible. 

We want the adversary to distinguish the final shared key sk ∈ {0, 1}n from 
$

uniformly random one (rand ← {0, 1}n), i.e. we prove that 

| Pr(A(a, pi, pj , sk) = 1) − Pr(A(a, pi, pj , rand) = 1)|. 

is negligible. Lemma 4 guarantees that this definition is sufficient. 

Theorem 1. The construction above is secure against passive PPT adversaries, if 
the RLWE assumption holds. 

Proof. We prove the security by a series of games. The first game Game0 is the 
real game which the adversary gets the real kj , while the last game Game4 the 
adversary gets a uniformly random kj . We show that the views of Game0 and 
Game4 are computational indistinguishable for any PPT adversaries, under the 
RLWE assumption. 

Game0. This is the real game between the protocol challenger and the passive 
adversary A. That is, the adversary obtains a, pi, pj , wj , kj , where pi = a · si + 2ei, 
pj = a · sj + 2ej and kj = pi · sj . Then A outputs a guess b0 . 

Game1. This game is identical to Game0 except that instead of setting pi = a·si+2ei 
$

and kj = pi · sj , the challenger sets pi = bi and kj = bi · sj , where bi ← Rq. 



28 4. PASSIVE SECURITY 

In lemma 6, we show that under the RLWE assumption, the views in Game0 

and Game1 are computationally indistinguishable for any PPT passive adversaries. 

Game2. This game is identical to Game1 except that instead of setting pj = a·sj +2ej 
$ $

and kj = bi · sj , the challenger sets pj = bj and kj = u, where bj ← Rq and u ← Rq. 

We show the views for any PPT passive adversaries in Game1 and Game2 are 
computationally indistinguishable, if the RLWE assumption holds. The proof is given 
in lemma 7. 

Game3. This game is identical to Game2 except that instead of setting pi = bi, the 
challenger sets pi = a · si + 2ei. 

In lemma 8, we prove the views in Game2 and Game3 are computationally 
indistinguishable, if the RLWE assumption holds. 

Game4. This game is identical to Game3 except that instead of setting pj = bj , the 
challenger sets pj = a · sj + 2ej . 

In lemma 9, we prove that the views in Game3 and Game4 are indistinguishable, 
if the RLWE assumption holds. The conclusion follows from lemma 6, 7, 8, 9 directly. 

ut 

Lemma 6. Any PPT passive adversary cannot distinguish Game0 and Game1, if 
the RLWE assumption holds. 

Proof. We prove the lemma by showing that if there exists an adversary A who 
can distinguish Game0 and Game1, then we can construct another adversary B 
to distinguish the RLWE samples from uniform random. B works as follows. Once 
obtaining challenges (a, bi) ∈ Rq × Rq from the RLWE oracle, where bi is either 

$
a · s +2e or uniformly random in Rq, B samples sj ← = bi · sj and− DZn,σ and sets kj 
computes pj = a · sj + 2ej . Finally B sends (a, pi = bi, pj , wj , kj ) to A. B outputs 
whatever A outputs. We note that B can compute wj by himself. 

If bi is an RLWE sample, then what A obtains are exactly the same as in Game0, 
if bi is uniformly random in Rq, then what A obtains are exactly the same as in 
Game1. This implies that if A can distinguish Game0 and Game1 with noticeable 
advantage, then B can distinguish RLWE samples from uniformly random with the 
same advantage. This finishes the proof. ut 

Lemma 7. Any PPT passive adversary cannot distinguish Game1 and Game2, if 
the RLWE assumption holds. 
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Proof. We prove this lemma by showing that if there exists an adversary A distin-
guishes Game1 and Game2, then we can construct a PPT adversary B to distinguish 
the RLWE samples from uniform. B works as follows. Once obtaining challenges 
(a, bj ) ∈ Rq × Rq and (bi, u) ∈ Rq × Rq, where u and bi are either a · s + 2e, pi · s or 
uniformly random in Rq, B sets pi = bi, pj = bj and kj = u, and computes wj . B 
sends (a, pi, pj , wj , kj ) to A, and outputs whatever A outputs. It is easy to see that 
if bj , u are RLWE samples, then what A gets are exactly the same as in Game1; if 
bj , u are uniformly random, then what A gets are exactly the same as in Game2. 
Therefore, if A can distinguish the two games with noticeable advantage, then B can 
break the RLWE problem with noticeable advantage. This complete the proof. ut 

Lemma 8. Any PPT passive adversary cannot distinguish Game2 and Game3, if 
the RLWE assumption holds. 

Proof. The proof is similar to lemma 6, except we still choose kj uniformly from 
Rq. ut 

Lemma 9. Any PPT passive adversary cannot distinguish Game3 and Game4, if 
the RLWE assumption holds. 

Proof. The proof is similar to lemma 7, except we still choose kj uniformly from 
Rq. ut 

Now we deal with the security regarding to rounding and recovering a · s + 2e in 
the next lemma. 

Lemma 10. For following two key exchange protocols: 

1. pi = a · si + 2ei, pj = a · sj + 2ej , ki = pj · si, kj = pi · sj , wj = Sig(kj), ski = 
Mod2(ki, wj ), skj = Mod2(kj , wj) 

0 00 0 02. pi = a · si + 2ei, pj = a · sj + 2ej , p = Round(pi, p, q), p = Recover(pi, p, q), p = i i j
00 0 00 00Round(pj , p, q), p = Recover(pj , p, q), ki = p · si, kj = p · sj , wj = Sig(kj ), ski = j j i 

Mod2(ki, wj ), skj = Mod2(kj , wj) 

The hardness of computing final shared key of second protocol is at least as hard as 
computing final shared key of first protocol. 

Proof. With publicly known algorithm Round() and Recover(), publicly known 
0 0 00 00parameters and public terms pi, pj , any adversary can compute p ≈ pi and p ≈ pj .i j

00 00However, p 6 pi, p = pj , Round() and Recover() function generate additional = 6i j 
errors, which makes recovering private key si or sj using transcripts from our key 
exchange at least no easier than using pi, pj or ki, kj to solve RLWE problem. tu

Theorem 2. Our security proof implies that our key exchange protocol is IND-CPA 
secure. 
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Proof. As the adapted version of IND-CPA notion for our key exchange protocol 
in section 4.1 and our security proofs, we show that passive adversary cannot 
distinguish transcripts of our protocol from uniform random, giving passive adversary 
no additional advantage to break the protocol. 

In addition, since we proved that final shared key sk generated from our protocol 
is uniformly random, if we replace either M0 or M1 defined in IND-CPA notion with 
a random string of n bits, adversary gains no additional advantage to break the 
protocol. ut 
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5 Performance Analysis 
In this section, we introduce our implementation and performance for the formalized 
KEM-API of our key exchange scheme in section 2.3. Note that in our implementation, 
a number in Zq is represented as [0, q − 1]. One can convert the regions defined for 

q−1hint and signal functions from {− q−1 , · · · , } to corresponding regions in [0, q − 1].2 2 

5.1 On Number Theoretic Transform and Gaussian Sampler 
As a number theoretic version of Fast Fourier Transform (FFT), the Number Theoretic 
Transformation (NTT) technique is a discrete Fourier transformation over Zq. Given 
the coefficients of two polynomials, A(x) and B(x) of degree no larger than n, the 
polynomial multiplication A(x) · B(x) costs Θ(n log n) ring operations in Zq using 
NTT, which is O(n2) by a naive multiplication method. The fast NTT with adapted 
butterfly operation is applied in Victor Shoup’s NTL library [39], for doing polynomial 
operations as multiplication, division, GCD, factoring and so on. Hence we use NTL 
library in our implementation. 

We use the Discrete Gaussian Sampler (DGS) based on Cumulative Distribution 
Table (CDT) in [32]. Here we briefly explain the general idea of CDT sampler. At first, 
it pre-computes a table of the discrete Gaussian Cumulative Distribution Function 
(CDF) values F [i] for i ∈ {0, 1, · · · , N − 3}, as 0 = F [0] < F [1] < · · · < F [N − 3] = 1, 
where N = τ × σ with σ be the standard deviation and τ be the sampling precision 
parameter. Then it samples a parameter r ∈ [0, 1) and find s s.t. r is located in 
the interval F [s] ≤ r < F [s + 1] with probability f [s] = F [s + 1] − F [s]. Here s is 
the index of the expected discrete Gaussian sample. Please find the details in [32]. 
DGS with CDT is an efficient Gaussian sampler at this moment according to the 
experimental analysis in [26]. 

5.2 Experimental Results 

Our implementation uses C/C++ language and NTL library. We run 100,000 times 
experiments for NIST security category I, III and V, on a computer with Intel(R) 
Xeon(R) CPU E5-2697 v2 @ 2.70GHz, running CentOS Linux release 7.4.1708, g++ 
version 6.3.0. Then we evaluate the average runtime for discrete Gaussian sampling 
(TimeDGS), polynomial multiplication (TimePM), key generation (TimeKeyPair), 
encapsulation (TimeEnc) and decapsulation (TimeDec) respectively. We show the 
experimental results in Table 4 with two decimal precision. We also note that large 
amount of time is spent on conversion between NTL library type variables and 
unsigned char variables in order to abide by NIST’s API requirement since signal 
computation and error reconciliation are extremely efficient. 

Table 4. Runtime (millisecond) of our NIST API Implementation 

Security level TimeDGS TimePM TimeKeyPair TimeEnc TimeDec 

I 0.03 0.46 1.31 1.71 1.19 
III/V 0.05 0.95 2.54 3.48 2.36 
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6 Advantages, Limitations and Applications 

6.1 Advantages 

Hardness from RLWE Problem. As our protocol is constructed based on the 
RLWE problem and properly instantiated RLWE instance is very hard to solve for 
both classic and quantum computers, this is clearly an important security advantage 
over classic key exchange protocols. 

One RLWE Sample and Parameter Choices. As explained in our design, we 
would like to point out the fact that our parameter choices are based on the fact 
that the attackers have only one RLWE sample since our design is an ephemeral key 
exchange. It turns out in most literature, the practical attacks on RLWE are based 
on the access to multiple samples. Our observation allow us to study deeply into 
practical attacks and derive much smaller parameters. We show that our protocol and 
parameter choices remain strong against state-of-the-art cryptanalysis techniques. 
Our parameter choices can match security of AES-128/192/256 (NIST security 
category I/III/V) respectively. 

Simple Design. Our protocol enjoys elegant and simple design, which makes the 
protocol practically efficient. As an error reconciliation-based key exchange protocol, 
an important advantage of our protocol over KEM-based ones is much simpler design 
and final shared key generation. Communication cost of ciphertext is much smaller 
as well. Computations of signal value and error reconciliation are more efficient than 
decapsulation (i.e. decryption) in KEM-based ones. Moreover, our parameter choices 
allow us to use NTT for polynomial multiplication, which can be implemented very 
efficiently in practice. Size of signal value is only 64 or 128 bytes for parameter 
choice n = 512 or n = 1024 respectively. The computation of signal value and error 
reconciliation is truly efficient. 

Reduced Communication Cost. Our rounding technique gives smaller commu-
nication cost compared with similar RLWE/MLWE-based works including NewHope 
[6], NewHope-Simple [5] and Kyber [15] etc. at the same security level. As one of the 
main issues for RLWE-based constructions is larger communication cost compared 
with classic public key key exchange protocols (e.g. Diffie-Hellman and elliptic curve 
variants) and since communication cost is more “expensive” than computation cost 
in general, our protocol with smaller communication cost is more desirable. 

Larger Final Shared Key. Our protocol generates a key of size n-bit, where n is a 
parameter of ring Rq. Our parameter choices suggest n = 1024 or n = 512. Therefore 
a 1024-bit or 512-bit key is generated during protocol execution. From the perspective 
of information theory, since key bits are uniformly random in {0, 1}n, longer keys 
give much larger entropy than shorter keys (e.g. 256 bits). Therefore we believe that 
our key exchange protocol with longer final shared key is more desirable. Moreover, 
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from Grover’s quantum algorithm’s perspective, a 256-bit key gives roughly 128-bit 
security, whereas various works (e.g. Frodo [14], NewHope [6], NewHope-Simple [5] 
and Kyber [15] etc.) generate only 256-bit final shared key and claim much higher 
security level than 128-bit security. In this case, an adversary may choose Grover’s 
algorithm to do an exhaustive key search on final shared key directly, instead of 
trying to solve lattice and other hard problems to break the protocol. 

Forward Secure. Our protocol generates a more secure key than a usual encryption 
scheme since the shared key of previous sessions cannot be recovered simply by 
knowing the user’s private key in the case of a usual public key encryption scheme. 
This is known as forward secrecy. If a private key of an encryption scheme is revealed, 
then adversary can recover all past communications simply by decrypting all past 
session keys. This does not work for our protocol and other ephemeral Diffie-Hellman-
like ones, since each public and private pair is used only once. Adversary has to 
compromise every single session in order to decrypt all past sessions. 

Key Exchange vs KEM. As a Diffie-Hellman-like key exchange protocol, an 
important advantage of our protocol over KEM-based ones is both parties negotiate 
and decide the final shared key together. For a KEM, since it is an encryption-based 
approach, one party decides the key, namely, party i encrypts a session key using 
public key of party j and party j decrypts the ciphertext using his private key. For 
our key exchange protocol, no single party can fully decide the final shared key. 
It can be only generated using one’s private key and the other party’s public key 
together. Therefore it is better than KEM-based approaches as a true key exchange. 
In addition, in a KEM, one must perform additional work to generate the shared 
keys. 

Moreover, our protocol can be implemented efficiently and extended to various 
platforms, including but not limited to desktop processors, ARM, lower-end processors 
(microcontrollers etc.), Internet-of-Things (IoT) devices, hardware-based ones etc. 
There are various works that have demonstrate efficient error sampling and NTT 
implementation on such platforms, where these two parts take up most running time 
for our protocol. Since computation of signal and error reconciliation is very efficient, 
most expensive parts are sampling and polynomial multiplication. 

6.2 Limitations 

Compared with current classic key exchange protocols (e.g. ephemeral Diffie-Hellman 
and elliptic curve variants), one disadvantage is larger key size. Since public key and 
private key in RLWE-based constructions are degree n polynomials in Rq, common 
choice for degree n is 1024 or 512. Therefore RLWE-based constructions have larger 
communication cost. For Diffie-Hellman key exchange protocol, both parties exchange 
a l-bit public key, where l is recommended to be 2048 currently. Elliptic curve Diffie-
Hellman has even smaller key size. We choose n = 512 and n = 1024, each coefficient 
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in public key is larger than 10 bits. This gives larger communication cost than 
Diffie-Hellman key exchange and its elliptic curve variant. Even so, our protocol has 
smaller communication cost than several similar works. 

In addition, public and private keys cannot be reused for multiple sessions. As 
we stated in section 3.2, adversary may recover private key of our protocol with 
reused keys in roughly 2q queries. As we define our proposal as an “ephemeral-only 
Diffie-Hellman-like” RLWE-based key exchange protocol, therefore key reuse should 
be prohibited towards real world deployment of our protocol. Technique to defeat 
such attack is introduced in section 3.2.3. In latest version of Transport Layer Security 
protocol (TLS 1.3), RSA is removed from key exchange choices due to concerns 
regarding to forward secrecy, where in current TLS 1.2, static RSA is used as KEM 
for session key encapsulation. This move implies that ephemeral-only key exchange 
(ephemeral Diffie-Hellman and elliptic curve variant) is more preferred than KEM 
(encryption-based) ones. We believe this idea also can be applied to post-quantum 
variants, where our key exchange protocol is ephemeral-only and Diffie-Hellman-like. 
Therefore, for real world deployment of our protocol, key reuse should be forbidden. 

6.3 Applications 

Our proposal is a RLWE variant of Diffie-Hellman key exchange and its elliptic curve 
variants. Therefore it is a quantum-resistant drop-in candidate for protocols and 
real world applications. Currently, there are various protocols and applications have 
taken advantage Diffie-Hellman key exchange protocol and its variants. We believe 
our proposal is a drop-in replacement of quantum-vulnerable key exchange protocols. 
A few important real world applications can adopt our post-quantum key exchange 
protocol, including but not limited to: 

– Transport Layer Security (TLS) and related protocols (QUIC, HTTPS, IMAPS, 
SMTPS etc.) 

– Secure Shell (SSH), SSH File Transfer Protocol (SFTP) 
– Internet Key Exchange (IKE) in Internet Protocol Security (IPsec) 
– Virtual Private Networks (VPN) 
– Other applications where key exchange is integrated (e.g. Secure messaging/video 

calling applications, end-to-end secure applications, client-server applications 
etc.) 

Above protocols and applications are widely deployed in real world currently, 
including secure communication, online banking and e-commerce, secure remote 
access, point-to-point secure applications etc. Note that for ephemeral Diffie-Hellman 
key exchange, each party needs to only transmit public key to the other party. 
Similarly for our proposal, both parties exchange public key alongside an additional 
signal value, which has very low additional communication cost. We believe that 
our proposal is a secure, efficient and lightweight drop-in replacement for current 
Diffie-Hellman key exchange protocol. 
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