
Ding Key Exchange

Submit to
NIST’s call for Post-quantum Cryptography Standardization

Principle Inventor, Owner & Principle Submitter
Jintai Ding
Department of Mathematical Sciences, University of Cincinnati
4314 French Hall West, 2815 Commons Way, Cincinnati, Ohio 45221, USA
jintai.ding@gmail.com
(+1) 513-556-4024

Submitters, Developers
Tsuyoshi Takagi
Graduate School of Information Science and Technology, The University of
Tokyo; Institute of Mathematics for Industry, Kyushu University; CREST,
Japan Science and Technology Agency
takagi@mist.i.u-tokyo.ac.jp

Xinwei Gao
Department of Information Security, School of Computer and Information
Technology, Beijing Jiaotong University
xinwei.gao.7@gmail.com

Yuntao Wang
Graduate School of Mathematics, Kyushu University; Graduate School of
Information Science and Technology, The University of Tokyo; JSPS Research
Fellowship for Young Scientists
y-wang@math.kyushu-u.ac.jp

November 30, 2017

Table of Contents

1 Introduction . 1
1.1 Diffie-Hellman Key Exchange . 1
1.2 Quantum Threats . 2
1.3 Quantum-Resistant Construction from LWE/RLWE Problem 2

1.3.1 Design Rationale . 2
1.3.2 Similar Works . 4

1.4 Summary of Our Proposal . 5
2 Protocol Specification . 6

2.1 Preliminaries . 6
2.2 Core Functions . 7
2.3 RLWE-based Key Exchange Protocol . 10

2.3.1 Specification . 11
2.3.2 Correctness . 12
2.3.3 Parameter Choice . 13
2.3.4 Communication Cost . 14

3 Known Cryptanalytic Attacks . 15
3.1 Expected Security Strength . 15

3.1.1 Prerequisites . 15
3.1.2 Algorithms for Solving RLWE . 16
3.1.3 Cost of Known BKZ Estimators . 18
3.1.4 Significance of Number of Samples in Practical Attack 20
3.1.5 Our Simulator . 20

3.2 Key Reuse Attack . 22
3.2.1 Outline . 22
3.2.2 Discussion . 23
3.2.3 Our Countermeasure . 24

4 Passive Security . 26
4.1 Outline of IND-CPA for Our Protocol . 26
4.2 Security Proof . 27

5 Performance Analysis . 31
5.1 On Number Theoretic Transform and Gaussian Sampler 31
5.2 Experimental Results . 31

6 Advantages, Limitations and Applications . 32
6.1 Advantages . 32
6.2 Limitations . 33
6.3 Applications . 34

1 1. INTRODUCTION

1 Introduction

1.1 Diffie-Hellman Key Exchange

Key exchange is a very important cryptographic primitive which allows communicat-
ing parties to agree on same keys. Shared keys generated during key exchanges can
be used by other cryptographic primitives, including symmetric encryption, message
authentication code etc. In most cases, a key derived from a key exchange protocol
is used to encrypt actual communication data between parties using symmetric
encryption. Large amount of communication data is not encrypted using public key
cryptosystems since performance of symmetric encryption schemes is far better than
public key encryption schemes. Symmetric encryption is much more desirable for real
world applications, but it needs to have shared keys between the users. Therefore a
secure and efficient key exchange protocol is critical to build a secure communication
channel.

In 1976, the first key exchange primitive – Diffie-Hellman key exchange protocol
was proposed in [19]. This ground-breaking work is a key part of public key cryp-
tography and it inspires cryptographers to build new public key cryptosystems and
key exchange protocols. In a Diffie-Hellman key exchange, the multiplicative group
of integers modulo prime p and g, which is a primitive root modulo p, are public

aparameters. Party i generates private key si = a, computes public key pi = g mod p
and sends to party j. Party j generates a private key sj = b, computes a public key

b b a)bpj = g mod p and a shared key skj = p mod p = (g mod p, and sends pj toi
a b)aparty i. Party i computes the shared key ski = p mod p = (g mod p.j

With the construction above, one can see that the success of Diffie-Hellman
key exchange relies of the commutativity of power maps in a cyclic group, namely

a bthe map f(x) = x and the map h(x) = x commute, i.e. f ◦ h = h ◦ f where
◦ is composition. One critical property of such maps is nonlinearity, which is the
basis of the security of this public key scheme. There were various attempts on
building similar key exchange cryptosystems, including Braid group based schemes
etc. However, they are all broken in practice. There is a very subtle reason behind
this fact, which comes from a fundamental work of Joseph Ritt in 1923. Ritt proved
that that there are actually essentially only three non-trivial commuting nonlinear
maps: power polynomials, Chebyshev polynomials and elliptic curve [35]. This is
the reason why we can only build and deploy Diffie-Hellman key exchange and its
elliptic curve variants in real world applications. We believe philosophically this is
also why all other attempts on building Diffie-Hellman-like key exchange using other
structures failed. This fact was first pointed out in [22] by Ding, though he knew it
since 2005.

2 1. INTRODUCTION

1.2 Quantum Threats

With properly chosen parameters and implementations, Diffie-Hellman key exchange
and its variants are hard to break with current computing resources. Till now, they are
widely deployed in real world important security protocols and applications. However,
such cryptosystems are no longer secure against sufficiently large quantum computers.
In 1994, Shor proposed a quantum algorithm which can solve discrete logarithm
problem (DLP) and integer factorization problem (IFP) on a quantum computer [38]
in polynomial time. Therefore, if a sufficient large quantum computer is built, Shor’s
algorithm is expected to break cryptosystems which are constructed based on DLP,
IFP and their elliptic curve variants etc. Various well-known cryptosystems, including
Diffie-Hellman key exchange, RSA, DSA, ElGamal and elliptic curve variants etc.
are all vulnerable to large quantum computers with Shor’s algorithm.

1.3 Quantum-Resistant Construction from LWE/RLWE Problem

Since Diffie-Hellman-like key exchange protocols can be only built with commutative
nonlinear maps and the three commutative maps pointed out by Ritt are all vulnerable
to quantum computers due to its related group structure (multiplicative groups of
numbers, multiplicative groups on the unit circle and multiplicative groups on elliptic
curves). In this proposal, we focus on using a robust and truly efficient primitive
– the Ring Learning With Errors (RLWE) problem [31]. The RLWE problem is
the ring variant of Learning With Errors (LWE) problem [34], where the security
of LWE problem is reduced to hard problems in lattices. A major advantage for
RLWE compared with LWE is that it has a much reduced key size, and this is more
desirable for real world applications due to smaller communication and storage cost.
From our research, we believe RLWE is naturally the best choice for building Diffie-
Hellman-like key exchange protocol since commutativity is inherent for multiplication
in polynomial rings. Moreover, security of RLWE problem can be reduced to hard
problems in ideal lattices, and there are currently no known classic and quantum
algorithms can solve RLWE problem efficiently with properly chosen parameters.
Moreover, RLWE-based cryptosystems can be constructed and implemented truly
efficiently. With all these desirable properties, RLWE becomes an attractive candidate
to build post-quantum key exchange protocol.

1.3.1 Design Rationale

Ever since LWE and RLWE problems were introduced in 2005, people have tried to
seek solutions to construct key exchange over LWE/RLWE problem. Many attempts
were made at the beginning but there were no major real breakthroughs on building
complete LWE/RLWE-based key exchange protocol. Major technical challenge to
construct Diffie-Hellman-like key exchange protocol over LWE & RLWE is the
difficulty to reconcile errors efficiently, since LWE & RLWE samples are perturbed

3 1. INTRODUCTION

by small error terms. Despite the fact that both parties can easily compute values
that are approximately equal, they cannot derive exact same value (i.e. final shared
key) directly without an algorithm to reconcile errors between approximately equal
values.

The first complete solution appeared in the LWE & RLWE-based key exchange
protocols proposed by Ding et al. in 2012 [22]. [22] invented a novel approach called
“robust extractor” (i.e. error reconciliation mechanism) to reconcile errors between
two approximately equal values. In order to assist error reconciliations, one party
needs to send additional information (denoted as “signal”) on the intervals of certain
values to the other party. We note that the idea of sending additional values to assist
error reconciliation to derive a complete key exchange protocol construction over
LWE & RLWE was a fundamentally new method by the time [22] was published.

The reason for sending signal value is directly related to error reconciliation
mechanism, where we try to extract same least significant bit from approximately
equal values using modulo 2 computation for both parties.

In the construction, first we add a term, which is two times of error term, onto
a · s, where a a is uniformly random polynomial in the ring Rq = Zq[x]/Φm(x),
with Φm(x) = xn + 1 as the m-th cyclotomic polynomial with n = m/2, q be a
prime number and s be a private key polynomial sampled according to some error
distribution in ring Rq. Afterwards, key exchange computations for both parties can
get approximately equal number with same parity. However, even if the difference
between two approximately equal numbers is even, they may not necessarily have
the same parity. This is because each coefficient in the ring Rq is in Zq, where the
modulo to prime q operation causes such problem.

In order to solve this problem, Ding in [22] proposed the idea of sending additional
bits (i.e. signal values) to assist error reconciliation. Suppose we represent Zq as

, · · · , q−1
2 } and we divide Zq

c + 1]) and outer region (rest of Zq
44into two regions: inner region ([−b q c, b q

). If a number lies in the outer region
c] or

4

−1q{− 2
q q−b b[+ 1c ,4

and we add a small error, it is possible that the sum may jump across the boundary of
Zq even if the error is “small”, which causes additional modulo operations even if the
difference is supposed to be even. This leads to failure of generating the same key bit.
To resolve this issue, the idea of sending additional information, namely the signal
function was invented. Since such problem mainly lies for values in the outer region
(particularly, close to boundary of outer region), if a value is in the outer region, the

2signal value is set to 1 and both parties add q−1

back to the inner region. With this observation, we can see that since the difference is
small, the probability that one party gets additional modulo operation than the other

simultaneously to pull the value

2side after adding q−1

preserve same parity for ring element coefficients of both parties without causing any
additional modulo q operation, therefore error reconciliation can be made successfully
with overwhelming probability. This approach gives much smaller communication

on both sides is low. With the help of the signal value, we can

4 1. INTRODUCTION

cost compared with encryption-based approaches. Also computations of signals and
final shared keys are very efficient. We will elaborate on this in following sections.

As we stated above, signal functions and error reconciliation mechanisms allow
both parties to agree on the same key bits. With our approach, as long as the
difference between two values is even and “close”, error reconciliation mechanism
can reconcile errors and generate the same key bits with overwhelming probability.
This clears the way towards constructing Diffie-Hellman-like key exchange protocols
over LWE & RLWE problems. The RLWE-based key exchange protocol presented in
[22] is the basis of this submission.

Moreover, in this proposal, we introduce a new efficient rounding technique to
reduce communication cost. As a common disadvantage over traditional (Diffie-
Hellman-like) key exchange protocols, LWE & RLWE-based ones have larger com-
munication cost due to the construction of LWE & RLWE problems. [11] proposed
Learning With Rounding (LWR) problem, which can reduce communication cost of
LWE problem through rounding. Intuitively, rounding technique compresses public
key, therefore the cryptosystem is more efficient in terms of the communication cost.
Since rounding and recovering algorithms introduce deterministic errors, [11] suggests
that error term in LWE problem can be eliminated with properly chosen rounding
parameters, therefore both parties do not have to sample error term and computation
efficiency is improved as well. [13] and [7] present cryptanalysis on LWR problem.
However, since LWR and its ring variant RLWR have not gain enough attention
regarding to cryptanalysis, concrete security of RLWR problem is yet to be fully
analyzed. In LWR and RLWR, the secret and random error term e is no longer
generated. “Error” for the term a · s is only generated by deterministic rounding and
recovering algorithm, and this brings security concerns over LWR and RLWE prob-
lems. Moreover, LWR-based cryptosystems considered for practical applications tend
to have large parameters and therefore actually higher communication cost, which
is not friendly towards real world applications. Inspired by the notion of LWR and
our efficient RLWE-based key exchange, we introduce a different rounding technique
to reduce communication cost for our key exchange protocol. Unlike LWR-based
cryptosystems where error term is discarded, we preserve the freshly generated and
secret error term 2e in our RLWE instance a · s +2e, then we apply our new rounding
technique. We call this a LWE+R sample. By implementing rounding and recovering
techniques dedicated to our key exchange protocol, we reduce communication cost
substantially, further improving the practical efficiency of our key exchange protocol.
Moreover, it actually adds larger perturbation – “error” on a · s compared to standard
RLWE instance. The added perturbation helps to improve security of our protocol
even further.

1.3.2 Similar Works

5 1. INTRODUCTION

We note that there are several works that follow the same idea of sending additional
information – signal value other than public key to construct LWE/RLWE/MLWE-
based Diffie-Hellman-like key exchange/Key Encapsulation Mechanism (KEM) proto-
cols. Here we list a few of them: BCNS [16], NewHope [6], Frodo [14], NewHope-Simple
[5], Kyber [15] etc. These schemes all follow the same method of sending additional
bits first presented by Ding to indicate which specific region coefficient elements
lie in, though mechanisms for signal value computation and reconciliation maybe
somewhat different. With such information, both parties can then reconcile errors
using different techniques and agree on same key.

It is very clear that BCNS [16], NewHope [6], Frodo [14] are variants of [22]
and our proposal in the sense that all these constructions are LWE/RLWE-based
Diffie-Hellman-like key exchange protocols using essentially the same basic idea
of Ding. Here both parties together produce the final shared key, which is very
different from encryption-based constructions. All these constructions also send
signal value to assist error reconciliation. NewHope-Simple [5] and Kyber [15] are
KEM constructions over RLWE and MLWE problems respectively. They reduce
size of ciphertext, but they also use the idea of sending additional information on
the intervals of coefficients to reconcile errors. Despite the algorithms to compute
signal value and error reconciliation may not be exactly the same, the idea of sending
additional bits to reconcile errors remain the same.

1.4 Summary of Our Proposal

In this submission, we propose an ephemeral-only RLWE-based key exchange protocol.
Our construction is a RLWE variant of the classic Diffie-Hellman key exchange
protocol, which can be regarded as a direct drop-in replacement for current widely-
deployed Diffie-Hellman key exchange protocol (and its variants, e.g. elliptic curve
Diffie-Hellman) without significant modifications to current security protocols and
applications. We believe that our proposal is secure, efficient, simple and elegant. We
present protocol specifications, parameter choices, security analysis using state-of-
the-art lattice attacks, performance analysis and stress advantages, limitations and
applications of our proposal.

6 2. PROTOCOL SPECIFICATION

2 Protocol Specification

In this section, we introduce the specification of our RLWE-based key exchange
protocol.

2.1 Preliminaries

Let Rq = Zq[x]/f(x) be the quotient ring of integer polynomials with f(x) = xn +1, q
a prime number, and n a number as a power of 2. A polynomial a in Rq is represented
as a = a1 + a2x + · · · + anxn−1. Coefficients of a polynomial a can also denoted by a
vector a = (a1, ..., an).

Let Λ be a discrete subset of Zn. For any vector c ∈ Rn and any positive parameter
−πkx−ck2/σ2

σ > 0, let ρσ,c(x) = e be the Gaussian function on Rn with the center cP
and the parameter σ. Denote ρσ,c(Λ) = ρσ,c(x) be the discrete integral of ρσ,cx∈Λ
over Λ, and DΛ,σ,c be the discrete Gaussian distribution over Λ with the center c

ρσ,c(y)and the parameter σ. For all y ∈ Λ, we have DΛ,σ,c(y) = . In this submission, ρσ,c(Λ)
we fix Λ to be Zn and c to be zero vector. For ease of notation, we denote DZn,σ,0 as
DZn,σ. Let U [a, b] be the uniform distribution over discrete set {a, a +1, · · · , b − 1, b}

$
over integers. Let ←− χ denote a random sampling according to the distribution χ.

q−1Here we represent Zq as {− q−1 , · · · , }. However, on occasion, we treat elements 2 2
in Zq as elements in {0, · · · , q − 1} for convenience, but we will remark the switch
clearly.

Let || · ||1 be the l1-norm, || · ||2 be the l2-norm, || · ||∞ be the l∞-norm. Let bxc
be the floor function which outputs the greatest integer that is less than or equal
to x, dxe be ceiling function which outputs the least integer that is greater than or
equal to x, bxe be the rounding function which rounds x to nearest integer. Let “akb”
denotes the concatenation of a and b.

First we recall and introduce useful lemmas.

√ √ $
Lemma 1 ([40], lemma 2.5). For σ > 0, r ≥ 1/ 2π, Pr[kxk2 > rσ n; x −←√

−πr2
)nDZn,σ] < (2πer2 · e . tu

Lemma 2. For a, b ∈ Rq, ka · bk∞ ≤ kak2 · kbk2.

Proof. Denote the coefficient vector of polynomial a(x) = a1 + a2x + a3x2 + · · · +
n−2an−1x + anxn−1 ∈ Rq as (a1, a2, a3, · · · , an−1, an).

For c = a · b ∈ Rq, cn equals the inner product of (a1, a2, · · · , an−1, an) and
(bn, bn−1, · · · , b2, b1). Similar computations can be applied to coefficients cn−1, · · · , c2, c1

as well. By applying Cauchy-Schwarz inequality and property of norm (i.e. for any
vector x, kxk∞ ≤ kxk2 ≤ kxk1), we have kck∞ ≤ kak2 · kbk2. ut

7 2. PROTOCOL SPECIFICATION

2.2 Core Functions

In this section, we define several functions which are crucial to construct our RLWE-
based key exchange protocols.

Hint function. Hint functions σ0(x), σ1(x) from Zq to {0, 1} are defined as: ((
0, x ∈ [−b q c, b q c] 0, x ∈ [−b q c + 1, b q c + 1] 4 4σ0(x) = 4 , σ1(x) = 4

1, otherwise 1, otherwise

Signal function. A signal function Sig() is defined as:
$

For any y ∈ Zq, Sig(y) = σb(y), where b ← {0, 1}. If Sig(y) = 1, we say y is in
the outer region, otherwise y is in the inner region.

Signal function is defined for an integer x ∈ Zq. Signal function for a ∈ Rq is
computed by applying Sig() for each coefficient ai ∈ Zq of a ∈ Rq. In this document,
we use the same notation “Sig()” for both signal functions over Zq and Rq.

Reconciliation function. Mod2() is a deterministic function with error tolerance
δ. Mod2() is defined as: for any x in Zq and w = Sig(x), Mod2(x, w) = (x + w · q−1

2
mod q) mod 2. Here we treat elements in Zq as elements in Z before we perform the
modulo 2 operation.

We define the error tolerance δ, as the largest integer such that for any x, y ∈ Zq,
if kx − yk∞ ≤ δ, then Mod2(x, w) = Mod2(y, w), where w = Sig(y). Error tolerance
δ is q − 2, which is the key to ensure correctness of key exchange over RLWE with 4
overwhelming probability.

Reconciliation function is defined for an integer x ∈ Zq. Reconciliation function
for a ∈ Rq is computed by applying Mod2() for each coefficient ai ∈ Zq of a ∈ Rq. In
this document, we use the same notation “Mod2()” for both reconciliation functions
over Zq and Rq.

Lemma 3. Let q > 8 be an odd integer. Function Mod2() as defined above is a robust
extractor with respect to signal function Sig() with error tolerance δ = q − 2.4

Proof. For any x, y ∈ Zq such that x − y = 2ε and |2ε| ≤ q − 2. Let w ←Sig(y), due 4
q−1to definition of signal function, it is not hard to see that |y + w · mod q| ≤ q +1 2 4

for any hint function used in Sig() to generate signal w. We have

q − 1 q−1 x + w · mod q = y + w · 2 + 2ε mod q
2

= (y + w · q−2
1) mod q + 2ε

q−1Since |(y + w · 2) mod q + 2ε| ≤ 4
q + 1 + |2ε| ≤ q−2

1 . This implies

q − 1
Mod2(x, w) =(x + w · mod q) mod 2

2
q − 1

=(y + w · mod q) mod 2
2

=Mod2(y, w)

8 2. PROTOCOL SPECIFICATION

ut

Lemma 4. For any odd q > 2, if x is uniformly random in Zq, then Mod2(x, w) is
uniformly random conditioned on signal w ∈ {0, 1}.
Proof. For any w, b0 ∈ {0, 1}, we have

1

←Zq ,b←{0,1} ←Zq
$$$

[Mod2(x, w) = b0|σb(x) = w] = [Mod2(x, w) = b0|σ0(x) = w]Pr Pr
2

x x

1
[Mod2(x, w) = b0|σ1(x) = w]+ Pr

←Zq
$2

x

$

Pr [Mod2(x, w) = b0 ∧ σ0(x) = w]$ Z←x q

2 Pr
←Zq

1
= ·

[σ0(x) = w]
x

[Mod2(x, w) = b0 ∧ σ1(x) = w]Pr1 $←Zq+ ·
2 Pr

x

[σ1(x) = w]$
x←Zq

Denote I = [−b q c, b q c] be the interval such that σ0 equals 0, then I + 1 is the 4 4
interval such that σ1 equals 0. It is easy to see that |I| = |I + 1| = 2b q c + 1. 4

We separately consider two cases, when w = 0 and w = 1.
For w = 0, we have that

2b q c + 1
Pr [σ0(x) = 0] = Pr [σ1(x) = 0] = 4 .

q$←Zq

Let I0 = {x : x ∈ I ∧ x mod 2 = 0} and I1 = {x : x ∈ I ∧ x mod 2 = 1} and
similarly for (I +1)0, (I +1)1. Then we have |I0|+ |(I +1)0| = |I| and |I1|+ |(I +1)1| =
|I|.

Therefore,

Pr [Mod2(x, 0) = b0 ∧ σ0(x) = 0] = Pr [x ∈ Ib0] and

$ Z← qx x

$$
x←Zq x←Zq

Pr [Mod2(x, 0) = b0 ∧ σ1(x) = 0] = Pr [x ∈ (I + 1)b0].
$$

$$

x←Zq x←Zq

This implies that

1 q |Ib0 | + |(I + 1)b0 | 1
Pr [Mod2(x, 0) = b0|σb(x) = 0] = · · =

←Zq ,b←{0,1} 4

.
2 2b q c + 1 2q

x

$

For w = 1, we first note that the intervals Zq\I and Zq\(I +1) have even numbers,
i.e. q − (2b q c + 1). Therefore, we have: 4

Pr [Mod2(x, 1) = b0 ∧ σ0(x) = 1] + Pr [Mod2(x, 1) = b0 ∧ σ1(x) = 1]
←Zq

$
x←Zq x

q − (2b q c + 1) 4= .
q

9 2. PROTOCOL SPECIFICATION

A routine calculation shows that Pr $ $ [Mod2(x, 1) = b0|σb(x) = 1] = 12 . x←Zq ,b←{0,1}
This completes the proof. ut

Rounding function. For x ∈ Zq, q > p > 0 be integers. x is a coefficient of
polynomial in Rq, q, p are parameters of our protocol.

q−1For the convenience of notation, we change the representation of x ∈ {− q−1 , · · · , }2 2
to x ∈ {0, · · · , q − 1} before Round() runs. Function Round(x, p, q) is defined as
follows:

Algorithm 1 Round(x, p, q)
Input: x ∈ Zq , p, q
Output: Rounded value x 0 ∈ [0, p] of x
1: x 0 ← bp · x/qc
2: if ((x is odd number) AND (x 0 is even number)) then
3: x 0 ← x 0 + 1
4: else if ((x is even number) AND (x 0 is odd number)) then

05: x 0 ← x + 1
6: end if
7: Remove bias(x 0 , p, q)

Rounding function is defined for an integer x ∈ Zq. Rounding function for a ∈ Rq

is computed by applying Round() for each coefficient ai ∈ Zq of a ∈ Rq. In this
document, we use the same notation Round() for both rounding functions over Zq

and Rq.

A function in order to remove possible bias occurred in rounding is defined below.

Remove bias function. Remove bias() shares similar idea as hint functions σ0(x)
and σ1(x). Since rounding function Round() generates minor bias on some locations
(i.e. one more number is rounded to bias locations than nearby locations), it is
necessary to remove the bias.

Remove bias(x0, p, q) takes inputs x0, p, q, where x0 is derived after line 6 of
algorithm 1. Since the location of “bias” varies regarding to specific parameters p
and q, we define this function in section 2.3.3.

Recovering function. Recover() is a deterministic function. For x0 ∈ [0, p], q >
p > 0 be integers. x0 is one coefficient of rounded polynomial, q, p are parameters of
our protocol. Function Recover(x0, p, q) is defined as follows:

10 2. PROTOCOL SPECIFICATION

Algorithm 2 Recover(x0, p, q)
Input: x 0 ∈ [0, p], p, q
Output: Recovered value x 00 of x 0

1: x 00 ← bx 0 · q/pc
2: if ((x 0 is odd number) AND (x 00 is even number)) then

00 ← x 003: x + 1
4: else if ((x 0 is even number) AND (x 00 is odd number)) then

00 ← x 005: x + 1
6: end if

In order to be consistent with theoretical analysis, we change representation of
q−1 x00 ∈ {0, · · · , q − 1} to x00 ∈ {− q−1 , · · · , } after Recover() runs. 2 2

Recovering function is defined for an integer x0 ∈ [0, p]. Recovering function for
vector a is computed by applying Recover() for each coefficient ai in vector a. In this
document, we use the same notation “Recover()” for both recovering functions over
integer x0 and vector a.

Lemma 5. For parameter p and q, let t = dlog2 qe − dlog2 pe, x = (x1, x2, · · · , xn)
be a vector whose each coefficient is uniformly random sampled integer in Zq, x’ be
a vector whose each coefficient x0 = Recover(Round(xi, p, q),p, q). Let d = x-x’ be i
a vector whose each coefficient di = xi − x0 (i ∈ [1, n]). Then di is an even number i
with possible values in set {0, ±2, · · · , ±2t}, i.e. 0 ≤ |di| ≤ 2t . tu

Since probability for each possible di varies with respect to parameter choice p, q,
we will introduce it in section 2.3.3.

a derivation function. In each key exchange execution, we use a 128-bit seed
to generate fresh a. Set seed to pseudorandom number generator. Each coefficient
ai ∈ Zq (i ∈ [1, n]) of a ∈ Rq is derived as follows:

Algorithm 3 Derive a()
Output: Coefficient ai of polynomial a ∈ Rq

$
1: ai ←− U [0, q − 1]

2.3 RLWE-based Key Exchange Protocol

In this section, we present our RLWE-based key exchange protocol. Here we first
describe a few basic primitives:

– Fresh a generation: Set 128-bit seed to pseudorandom number generator. Derive
fresh a ∈ Rq using Derive a() function.

11 2. PROTOCOL SPECIFICATION

– Key generation: For public parameter a ∈ Rq, sample s, e from DZn,σ. Public
key is pk = a · s + 2e ∈ Rq and private key is s. Round pk as pk0 using function
Round().

– Key exchange material computation: For a rounded public key pk0 received from
the other party, first recover pk0 using function Recover() and denote as pk00. For
private key s ∈ Rq, compute key exchange material k = pk00 · s ∈ Rq.

– Signal computation: For key exchange material k ∈ Rq, compute signal w ∈ {0, 1}n

using function Sig().
– Error reconciliation: For key exchange material k ∈ Rq and signal w ∈ {0, 1}n ,

reconcile errors and generate the final shared key sk ∈ {0, 1}n using function
Mod2() and w.

As we stated before, one particular technical challenge to construct Diffie-Hellman-
like key exchange protocol over RLWE problem is how to reconcile errors. Therefore
signal function and error reconciliation mechanism are invented. Moreover, in order
to further reduce communication cost, we introduce the rounding technique. Apart
from reducing communication cost, additional error causes larger perturbation on
a · s than simply adding 2e, resulting in an increased cost of attack on our protocol.

As NIST’s call for proposal requested, our Diffie-Hellman-like RLWE-based key
exchange protocol is formalized as KEM consisting of three major functions:

– crypto kem keypair():
0• Generate random seed, party i’s ephemeral public key p ∈ Rq and private i

0key si ∈ Rq. Public key pk = p kseed.i

• Return pk and si.
– crypto kem enc():

0• Generate party j’s ephemeral public key p ∈ Rq, private key sjj ∈ Rq

and signal wj . Compute kj and generate final shared key skj . Ciphertext
0ct = p kwj .j

• Return ct and skj .
– crypto kem dec():

• Party i computes ki and generates final shared key ski = skj .
• Return ski.

2.3.1 Specification

We give the description of key exchange between party i and party j. In our protocol,
users share following parameters: n, σ, q, p.

Initiate. Party i instantiates key exchange by generating 128-bit random seed,
computes fresh a = Derive a() and public key pi = a · si +2ei ∈ Rq, where si and
ei are sampled from DZn,σ. Round pi as p0 = Round(pi, p, q), send pi

0 and seed toi
party j.

12 2. PROTOCOL SPECIFICATION

Response. Party j computes fresh a = Derive a(), public key pj = a · sj +2ej ∈ Rq,
0where sj and ej are sampled from DZn,σ. Round pj as p = Round(pj , p, q).j

Recover public key received from party i as p00 = Recover(pi
0 , p, q). Computes key i

00exchange material kj = p · sj ∈ Rq, signal value wj = Sig(kj) and final shared i
0key skj = Mod2(kj , wj). Send pj and wj to party i.

00 0Finish. Party i recovers public key received from party j as p = Recover(pj , p, q).j
00Compute key exchange material ki = p · si ∈ Rq and final shared key ski = j

Mod2(ki, wj).

The protocol is illustrated in Figure 1.

Party i Party j

← {0, 1}128seed
$

a = Derive a() ∈ Rq
a = Derive a() ∈ Rq Public key: pj = a · sj + 2ej ∈ Rq0 , seed iPublic key: pi = a · si + 2ei ∈ Rq p Private key: sj ∈ Rq
Private key: si ∈ Rq $

where sj , ej ←− DZn,σ$
where si, ei ←− DZn,σ 0 p = j Round(pj , p, q)0 p = i Round(pi, p, q)

00 0
i, p, q) ∈ Rq

· sj ∈ Rq

Recover(pp = i00 p = j j , p, q) ∈ Rq
00 pj , wj

0Recover(p 00
i

0 kj = p· si ∈ Rqki = pj wj = Sig(kj) ∈ {0, 1}n

Mod2(kj , wj) ∈ {0, 1}n
ski = Mod2(ki, wj) ∈ {0, 1}n

skj =

Fig. 1. The proposed RLWE key exchange protocol

2.3.2 Correctness

Note: In this subsection, we omit notation “·” for polynomial multiplication.
With above protocol, we have

00ki =pj si = (asj + 2ej + dj)si
(1)

=asj si + 2ej si + dj si

00kj =pi sj = (asi + 2ei + di)sj
(2)

=asisj + 2eisj + disj

ki − kj = 2(ej si − eisj) + (djsi − disj). In order to achieve key exchange with
overwhelming success probability, kki −kj k∞ ≤ error tolerance δ of error reconciliation
mechanism, i.e. kki − kj k∞ ≤ q − 2. We have 4

kki − kj k∞ =k2(ej si − eisj) + (dj si − disj)k∞
(3)

≤4ksek∞ + 2kd0 sk∞

13 2. PROTOCOL SPECIFICATION

$
where s, e ∈ Rq ←− DZn,σ. Definition of d0 is consistent with lemma 5. √ 2 2σ2With lemma 1 and 2, we have 4ksek∞ ≤ 4ksk2 · kek2 ≤ 4(rσ n) = 4r n,√

where r ≥ 1/ 2π is defined in lemma 1 and n is the degree of polynomial. With √
lemma 5, we have 2kd0sk∞ ≤ 2kd0k2 ·ksk2 = 2kd0k2 ·rσ n. Recall that error tolerance

q 2σ2δ = − 2. Therefore as long as q ≥ 4 · [2 + (4r n) + (2kd0k2 · rσ
√
n)], key exchange 4

failure probability is estimated to be (
√
2πer2 · e−πr2

)n .

2.3.3 Parameter Choice

Key exchange protocol is instantiated with following parameters:

– Modulus q
– Degree n of Rq

– σ of distribution DZn,σ to sample s and e
– Rounding parameter p

Parameter choices covering NIST security category I (AES-128), III (AES-192)
and V (AES-256) are given in Table 1:

Table 1. Our Parameter Choice

n σ q p
Claimed

Security Level

NIST
Security
Category

Failure
Probability

512 4.19 120833 7551 AES-128 I 2−60

1024 2.6 120833 7551
AES-192
AES-256

III
V

2−60

Note that for parameter choice (n, σ, q, p) = (1024, 2.6, 120833, 7551), it is enough
to cover security of AES-192 and AES-256 (NIST security category III and V
respectively). We will elaborate this in section 3.1.5.

Modulus q = 120833 can instantiate NTT efficiently as q ≡ 1 mod 2n. p is to
instantiate Round() and Recover() functions properly. A failed key exchange implies
that at least one bit in ski and skj mismatches.

For lemma 5 and above parameter choices, let t = dlog2 qe − dlog2 pe. We have:

– Pr[di = 0] = Pr[di = 2] = Pr[di = −2] = Pr[di = 4] = Pr[di = −4] = · · · =
1 1Pr[di = 2t − 2] = Pr[di = −(2t − 2)] = 2t , Pr[di = 2t] = Pr[di = −2t] =

2t+1√
– n = 512, t = 4, kdk2 = 32 43√
– n = 1024, t = 4, kdk2 = 32 86

14 2. PROTOCOL SPECIFICATION

With concrete parameter choices, we define bias removing function Remove bias()
as we mentioned in algorithm 1. We list a set of locations pos where bias occurs:

– q = 120833, p = 7551, pos = {0, 445, 888, 1333, 1776, 2221, 2666, 3109, 3554,
3997, 4442, 4885, 5330, 5775, 6218, 6663, 7106}

As we explained in section 2.2, one more number is rounded to values in pos than
nearby values in [0, p], therefore if the number generated after line 6 of algorithm 1
equals to one of the values in pos, then bias is removed using Remove bias().

Function Remove bias() is defined as:

Algorithm 4 Remove bias(x
Input: x 0 ∈ [0, p], p, q
Output: x 0

1: if x 0 ∈ pos then
$

0

2: rnd ←− U [0, 1]
3: if rnd = 1 then
4: x 0 ← x 0 + 2
5: end if
6: end if

, p, q)

0
2.3.4 Communication Cost

As shown in Figure 1, party i sends the rounded public key pi and seed to party j.
Party j sends the rounded public key p0 j and signal wj to party i.

pi ∈ Rq is represented as pi = (pi,1, pi,2, ..., pi,n) ∈ Zn, but the rounded element q
0 0000= Round(pi, p, q) is represented as pi = (pi,1, pi,2, ..., pp i,n). Same analysis can be

has
i

0
j as well. seed has the size of 128 bits. Signal wj ∈ {0, 1}n

the size of n bits.
Therefore, with parameter choices presented in Table 1, communication cost is

estimated as:

Table 2. Communication Cost of Our Proposed Scheme

applied to pj and p

n
Party i → j

(Byte)
Party j → i

(Byte)
Total
(Byte)

Claimed
Security Level

NIST
Security
Category

512 848 896 1744 AES-128 I

1024 1680 1792 3472
AES-192
AES-256

III
V

15 3. KNOWN CRYPTANALYTIC ATTACKS

3 Known Cryptanalytic Attacks

3.1 Expected Security Strength

In this section, we will explain how to analyze the security of our protocol.

3.1.1 Prerequisites

Lattice Theory. A lattice L is defined as an infinite space expanded by basis
B = {b1, . . . , bn}, where bi (i = 1, . . . , n) are a set of linearly independent vectors
in Rm . Here n is the dimension of L. The n-dimensional volume of L is denoted
by Vol(L), which is computed by the determinant of basis B, i.e. Vol(L) = det(B).

We denote Vn(R) = Rn · πn/2
as the volume of n-dimensional Euclidean ball of Γ (n/2+1)

radius R.

Ring LWE (RLWE) Problem. Let m ≥ 1 be a power of 2 and q ≥ 2 be an integer,
let Rq = Zq[x]/Φm(x), where Φm(x) = xn + 1 is the m-th cyclotomic polynomial with

$
n = m/2. Let χ be a β-bounded distribution. For secret polynomial s ←− χ and error

$
polynomial e ← uniformly random, output (a, b = a · s + e ∈ Rq− χ, choosing a ∈ Rq).

$
Search version of RLWE problem is: for s ←− χ, given poly(n) number of samples

of (a, b = a · s + e) ∈ (Rq, Rq), find s (and e simultaneously). Decision version of
RLWE problem is: for a ∈ Rq, distinguish b = a · s + e ∈ Rq from uniform random
sampled polynomial in Rq. We denote both search and decision versions of RLWE
problem as RLWE problem.

Proposition. Let z = Recover(Round(a · s +2e, p, q), p, q) = as +2e + d = as +2f ∈
$

Rq, where s, e − DZn,σ and 2f = 2e + d. Hence we can regard f as error term e in←
the definition of RLWE above. The attack on our protocol is given z and a, output
private key s. This problem is equivalent to:

z = a · s + 2f mod q

⇔ 2−1 z = 2−1 a · s + f mod q
00 00⇔ z = a · s + f mod q

Standard deviation of term f is denoted as σf . Note that σf is different from σ
notation in section 2.1 as f no longer follows discrete Gaussian distribution (histogram
shows similar shape as Gaussian distribution), therefore σf is computed as the square
root of variance.

Shortest Vector Problem. Given an input basis B = (b1, . . . , bn) of a lattice
L, Shortest Vector Problem (SVP) is to find a non-zero shortest vector in L. We
introduce the following two variants of the SVP to be used in this section.

16 3. KNOWN CRYPTANALYTIC ATTACKS

Short Integer Solution Problem. Given an integer q and a matrix A ∈ Zn×m ,q
Short Integer Solution problem (SIS) is to compute a short vector y ∈ B s.t. Ay ≡ 0
mod q, where B is a set of short vectors with some norm bound.

Unique Shortest Vector Problem. Unique SVP problem (uSVP) is for a given
lattice L which satisfies λ1(L) � λ2(L), find the shortest vector in L. Here λi(L)
means the length of i-th linear independent shortest vector for i = 1, 2.

(Root) Hermite Factor. To evaluate the performance of lattice algorithms for
solving SVP, we use the Hermite Factor defined in [24] as:

HF(b1, . . . , bn) = kb1k2/Vol(L)1/n.

Given an n-dimensional lattice, if the Hermite factor of output basis is smaller,
the algorithm performs better. Also we usually use root Hermite Factor (rHF) in
analysis, which is denoted as:

δ = rHF(b1, . . . , bn) = (kb1k2/Vol(L)1/n)1/n.

BKZ Algorithm. There are some lattice algorithms such as BKZ and sieving to solve
SVP and its variants. BKZ algorithm was originally proposed in [36], which computes
basis that are almost β-reduced, namely the projected lengths of each basis vectors
are the shortest ones in the relative β-sized local blocks. Original BKZ algorithm
proceeds by iterative tours consisting of n − 1 calls to a β-dimensional SVP solver
called on the projected lattice spanned by πj (bj), . . . , πj (bmin(j+β−1,n)) (1 ≤ j ≤ n),
where πj is the orthogonal projection on (b1, . . . , bj−1). BKZ algorithm runs in
exponential time, because the classical SVP oracle enumeration algorithm (ENUM)
runs in 2O(β2). There are also some efficient improvements for BKZ algorithms [18,9].

Sieving Algorithm. In 2001, Ajtai et al. proposed a sieving algorithm to solve SVP,
which requires a runtime of 20.52n+o(n) in n dimension lattice and simultaneously
requires exponential storage of 20.2n+o(n) [1]. According to recent research results, for a
n-dimensional lattice L and fixed blocksize β in BKZ, the runtime of sieving algorithm
can be estimated in 20.292β+o(β) clock cycles for a β-dimensional subroutine [4], and
totally BKZ-β costs 8n ·20.292β+16.4 operations [12]. We will use this result to evaluate
the security of our parameter choices.

3.1.2 Algorithms for Solving RLWE

There are several algorithms for solving RLWE. In Figure 2, we show several possible
attacks on RLWE problem with only one given instance.

17 3. KNOWN CRYPTANALYTIC ATTACKS

Fig. 2. Possible attacks on search RLWE problem with only one given instance. Relevant references
[HKM15], [AGVW17], [ABPW13] and [BG14] are [25], [3], [8] and [10] respectively.

We explain how we choose appropriate attacks from available options:

– Firstly, exhaustive search is not efficient.

– Secondly, BKW algorithm can solve LPN problem with 2O(n/ log n) samples and
runtime. Since LWE is a descendant of LPN, BKW algorithm can also be adapted
to solve LWE problem (both decision and search versions) with 2O(n) complexity,
when modulus q has polynomial size of dimension n. Amplifying technique is used
in BKW algorithm to solve LPN problem and LWE problem [30,25]. However, the
analysis on amplifying BKW until now are asymptotical and there is no precise
analysis on RLWE problem, i.e. amplifying BKW requires O(n log2(n)) samples
which will lead to much larger standard deviation of e.

– Thirdly, complexity analysis of “reduction+ENUM” method is not clear for large
dimensional (> 1000) basis.

– Finally, for security analysis of our protocol, we adapt a conservative primal
method: reduce RLWE problem to SIS problem, then reduce it to unique SVP
problem. Then we process the basis using BKZ reduction algorithm with sieving
algorithm as SVP oracle in BKZ subroutines.

We show the SIS attack on RLWE in Algorithm 5.

18

1

3. KNOWN CRYPTANALYTIC ATTACKS

Algorithm 5 The SIS Attack on Ring LWE Problem
Input: m 0 instances from RLWE key exchange: (a, b = a · s + e) ∈ (Rq , Rq). Here m 0 = poly(n),

Rq = Zq [x]/(x n + 1) with q as a prime, where secret polynomial s and error polynomial e are
sampled from Gaussian distribution DZn,σ with standard deviation σ.

Output: The polynomial e and s s.t. b = a · s + e ∈ Rq .
Step 1. Rewrite the RLWE instance to Short Integer Solution (SIS) instance by

$
Write the polynomials ai ∈ Rq , bi ∈ Rq , ei ← for i ∈ [1,m 0] and the only one − DZn,σ ∈ Rq

s ∈ Rq as follows:
n−1 n−1 ai = ai1 + ai2x + · · · + ainx , bi = bi1 + bi2x + · · · + binx ,

n−1 n−1 ei = ei1 + ei2x + · · · + einx and s = s1 + s2x + · · · + snx
to vector form as

, b0)T ∈ Zm n×1 ai = (ai1, ai2, · · · , ain) ∈ Zq
1×n = (b11, b12, · · · , b1n, · · · , bm01, bm02, · · · , bm0n q

0
,

0
)T $ ∈ Zm0 n×1 e = (e11, e12, · · · , e1n, · · · , em0 1, em02, · · · , em0n ← 0 ,− DZm n,σ q

$
s = (s1, s2, · · · , sn)T ← .− DZn,σ ∈ Zn

q
×1

2 n−1 ∈ RqRotate polynomials ai ⎞to get matrices
. . . ai(n−1) ain

= ai1 + ai2x + · · · + ainx
ai1 ai2

⎛ ⎜⎜⎜⎜⎜⎝

⎟⎟⎟⎟⎟⎠
.

−ain ai1 ai2 . . . ai(n−1)

−ai(n−1) −ain ai1 . . . ai(n−2)Ai =
.

−ai2 −ai3 −ai4 . . . ai1
0

Then compose A0 = [A1A2 · · · Am0]T n×n∈ Zm
q .

�

3 n×nDerive A ∈ Zm×n by sampling m-row vectors from A0 ∈ Zm 0
. Similarly, derive b ∈ Zm

q q q
n×1 n×10 ∈ Zmfrom b0 ∈ Zm

q
0

and e ∈ Zm
q from e q

0
.

, Zm

Transform the randomly sampled LWE instance (A, b ≡ As + e mod q) ∈ (Zm
q
×n

q) from
Then we get a randomly sampled normal LWE case as (A, b ≡ As + e (mod q)) ∈ (Zm

q
×n

q).
4
3

, Zm

to a SIS instance:
Given (A, b) ∈ (Zm

q
×n

q), find a short vector (s | e | 1) ∈ Zm
q

+n+1 s.t., Zm

(A |Im|−b)(s | e | 1)T = 0 mod q.
|−b) ∈ Zm×(m+n+1)

Step 2. Set A00 = (A |Im q . Compute basis B of q-ary lattice
L⊥

(A00,q) = {x ∈ Zm+n+1 | A00 x ≡ 0 (mod q)}.
Compute kernel Ker(A00) of A00 over Z(m+n+1)×(n+1) .

Ker(A00)T
�
∈ Z(m+2n+2)×(m+n+1)

qStep 3. For some matrix A ∗ , construct basis B =
qIm+n+1� �

qIm 0 ∈ Z(m+n+1)×(m+n+1)and compute the HNF of B as BHNF = .
A ∗

(n+1)×m In+1

Step 4. Apply lattice reduction algorithm (LLL or BKZ) on basis BHNF and get reduced basis
Red(BHNF). Inside of Red(BHNF), a short vector v = (s | e | 1) if it succeeded.

This algorithm is an adaptation of the primal attack mentioned in [10].

3.1.3 Cost of Known BKZ Estimators

We explain cost of two estimators for BKZ algorithm.

3.1.3.1 Progressive BKZ Runtime Simulator [9]

In 2016, Aono et al. proposed a precise simulator for estimating runtime of progressive
BKZ algorithm (pBKZ), which processes given basis by increasing block size with

3. KNOWN CRYPTANALYTIC ATTACKS 19

some strategy [9]. They optimized four critical parameters in BKZ: blocksize β, GSA
constant r, ENUM search radius coefficient α and ENUM search success probability
p.

Thus, for fixed β, one can compute the other three parameters with equation 4,
5 and 6.

2
p = . (4)

αβ

� � 4
4

β(β−1)
β + 1 β−1

r = · Vβ(1) . (5)
α · β

�
−18.2139/(β + 318.978) (β ∈ [40, 100])

log2(r) =
(−1.06889/(β − 31.0345)) · log(0.417419β − 25.4889) (β > 100)

(6)
When dimension n is large (n ≥ 100), runtime of pBKZ (second) is estimated as

TimeBKZ(n, βt)
βt]tours n−1X X h n − βalg X i

· βalg = 2.5 · 10−4 · · n 2 + 1.5 · 10−8 · ENUMCost(Bi; α, p) .
250 − βalg

βalg =10 t=1 i=1

(7)
ENUMCost(Bi; α, p) is the number of ENUM search nodes in pBKZ simulator:

Vβ/2(α · GH(Br)) Vβ/2(1) · Vβ (1)
−1/2

ENUMCost(Bi; α, p) = p · = 2α−β/2 · .Qβ β2/16kb∗ rk2i=β/2+1 i

Refer to [9] for details.

3.1.3.2 Martin Albrecht et al.’s Method [3]

In the experiments of [3], authors use BKZ 2.0 implemented in fplll
(https://github.com/fplll/fplll) and fpylll (https://github.com/fplll/fpylll).
They set the success probability of SVP oracle ENUM close to 1. Then they test the
performance of BKZ-β under inequality 8 by fixing several smaller BKZ blocksize β
and limiting number of local reduction tours. They replace SVP oracle in BKZ from
ENUM with extreme pruning (2o(n

2)−0.5n) to sieving (20.292n+o(n)) [28] for theoretical
parameter estimation. They use the assumption in [12,2] that costs 8d · 20.292β+16.4

operations running BKZ-β of d-dimensional lattice.

https://github.com/fplll/fplll
https://github.com/fplll/fpylll
http:2o(n2)�0.5n

20 3. KNOWN CRYPTANALYTIC ATTACKS

3.1.4 Significance of Number of Samples in Practical Attack

At first we claim that because of the special case of our protocol: only one RLWE
instance (a, b = a·s+e mod q) ∈ (Rq, Rq) is given, Kannan’s embedding technique [27]
and Liu-Nguyen’s decoding attack [29] cannot be adopted since solving basis of lattice
L(A,q) = {v ∈ Zmq | v ≡ Ax (mod q), x ∈ Dσ

n} is trivial when m = n. Therefore our
estimator should be different from some other key exchange schemes as NewHope
[6], BCNS [16] and Albrecht’s estimator [3] etc. which regard RLWE and normal
LWE problem as having the same difficulty. In practical attack, we can get only one
n-dimensional RLWE instance, which can be amplified to 2 · n + 1 without changing
the distribution of error vectors, see Algorithm 5. Therefore the lattice dimension in
our case of solving RLWE is d = 2n + 1.

3.1.5 Our Simulator

For security analysis of our parameter choices, we refer to the approach in bold text
in Figure 2. In Asiacrypt2017 [3], Albrecht et al. re-estimated the hardness of LWE
problem using Kannan’s embedding and Bai-Gal’s embedding respectively under
estimation in NewHope [6] (denoted as “2016 estimation”). 2016 estimation states
that if the Gaussian Heuristic and the Geometric Series Assumption (GSA) [37] hold
for BKZ-β reduced basis and p p

2β−dβ/d · k(e|1)k2 ≈ βσ ≤ δ · Vol(L(A,q))
1/d. (8)0

then error e can be found by BKZ-β with root Hermite Factor δ0. Equation 8
originates from NewHope [6] and was corrected in [3].

Using SIS → uSVP approach method to attack our protocol, we can get n samples
00 00by iterating only one given instance z = a s + f ∈ Rq, therefore we need to evaluate

the complexity of processing a d = 2n + 1 dimension basis. For BKZ reduction
runtime estimation, we will give the result of progressive BKZ and Albrecht’s BKZ
with sieving estimator.

Step 1. We compute the complexity of BKZ-β with sieving SVP oracle estimated
8d · 20.292β+16.4as double precision floating point operations [12,2]. We got the

maximal record of 400×109 Floating Point Operations per second (FLOPS) per
thread from the LINPACK benchmark test on 24-thread Intel(R) Xeon(R) CPU
E5-2697 v2 @ 2.70GHz (overclocked to 3.499GHz). We translate this to time (second)
unit by

TBKZ = 8d · 20.292β+16.4(FLOPs)/(400 × 109/24(FLOPS per thread)). (9)

Simultaneously, TBKZ can also be replaced by progressive BKZ simulator ex-
plained in section 3.1.3.1.

Then we compute security level of RLWE(n, q, σf) by:

log2(TBKZ) + log2(2.7 × 108). (10)

21 3. KNOWN CRYPTANALYTIC ATTACKS

Here 2.7 × 108 comes from the result of RC5-72 benchmark test published on
www.distributed.net, which means that above CPU can check 2.7×108 keys in second
per thread. This method of converting runtime to security level was used by Aono et
al. in [8].

Step 2. A short vector kb1k2 = δd · det(B) is assumed to be inside of the BKZ-β0
reduced basis B of dimension d [17], where the root Hermite Factor is

δ0 = (((πβ)1/β β)/(2πe))1/(2(β−1)). (11)

We pre-compute the expected δ0 for β = 10, · · · , n and rewrite equation 8 as p
2β−dβσf ≤ δ · Vol(L(A,q))

1/d. (12)0

In our case, d = 2n + 1 and Vol(L(A,q)) = qn. Therefore we can adapt inequality
12 to p

2β−2n−1 n/(2n+1)βσf ≤ δ · q . (13)0

We compute lower bound of σf in RLWE(n, q, σf) which covers security of AES-
128/192/256 using equations 10, 11 and 13. Note that f no longer follows discrete
Gaussian distribution (histogram shows similar shape as Gaussian distribution).
Therefore we take a heuristic approach to estimate σf . We generate large amount of
as + 2e samples, then apply Round() and Recover() functions, giving us

z = Recover(Round(a · s + 2e, p, q), p, q) = a · s + 2f.

With z−as = f , we compute standard deviation σf . Results are given in Table 3. 2

Table 3. Lower Bound of σf in RLWE(n, q, σf) Covering Security of AES-128/192/256

Security level
(n, q)

AES-128
(512,120833)

AES-192
(1024,120833)

AES-256

Method pBKZ 2016 estimation pBKZ 2016 estimation pBKZ 2016 estimation
Lower bound of σf 1.0061 4.9013 0.0068 0.9032 0.0186 3.9972

σ (for s and e) of
our parameter choice

4.19 2.6

σf 4.92 4.72

Given a n-dimensional basis, in order to use pBKZ simulator, we need target βt
for our parameter choice. In section 3.1.5, with equations 11, 13 and parameter sets
(n, σ, q), we can compute the root Hermite factor δ0. At this stage, we can get the final

−4d/(d−1) −4−2/n
target GSA constant rt = δ0 = δ0 , where d = 2n + 1 is the dimension
of lattice at step 2 in Algorithm 5. Hence we can compute the terminating block size

https://www.distributed.net/Main_Page

22 3. KNOWN CRYPTANALYTIC ATTACKS

βt corresponding to rt, and set parameters α, r, p. Due to the uncertainty simulation
for runtime with large dimension and large β (> 1000 and > 200 respectively), we
are now sure about the simulation results for our key exchange protocol. However,
our parameter choices can cover results from pBKZ simulator. Therefore we show
results from pBKZ simulator in Table 3 as well. We will leave it as future work.

With lower bound of σf given in Table 3, we claim that parameter choices given
in Table 1 cover security of AES-128/192/256 respectively, which satisfies NIST’s
security category I/III/V respectively.

3.2 Key Reuse Attack

In this section, we describe an efficient attack on reconciliation-based RLWE key ex-
change protocol. This attack only works for reconciliation-based RLWE key exchange
protocols with reused keys. If the protocol does not allow key reuse, then this attack
does not work. The number of queries required for the attack to find the exact value
of the secret is roughly 2q, which is extremely efficient. This is why our protocol is
an ephemeral-only RLWE key exchange protocol with no key reuse. In addition, we
show that a new construction can defeat such an attack that allows key reuse.

Fluhrer described an attack framework on error reconciliation-based Diffie-
Hellman-like RLWE key exchange protocols in [23]. In this attack, an important
setting is that key pair is reused, i.e. public and private keys of one party remain
unchanged during the attack. Adversary can recover private key within polynomial
time and queries. Ding et al. elaborated the attack on reconciliation-based RLWE
key exchange protocol in [20]. This attack is an extension of [23]. [20] introduced a
step-by-step attack with two extensions and a proof-of-concept attack implementation
on [22] with reused keys and practical parameters. They show that this attack can
successfully recover user’s private key if key pair is reused. They also present a toy
example and practical implementation of the attack. General idea of this attack
works for other similar RLWE key exchange protocols since they share the same
notion of error reconciliation and usage of signal function, despite exact approach to
reconcile error is not the same.

3.2.1 Outline

Attacks in [23] and [20] use properties of signal function. Since signal value indicates
which region a coefficient lies in, a smart approach to force signal value to reveal
more information is introduced. The attack takes advantage of the number of times
of a signal value changes to deduct the value of private key. We fix reused public key
and private key of party j to be pj = a · sj + 2ej , public key of adversary as pA and
corresponding private key and error term are sA and eA respectively. Here we briefly
recalls simplified version of the attack, where error terms ej and eA are not added to
computation of kA and kj .

23 3. KNOWN CRYPTANALYTIC ATTACKS

In this section we use the multiplication k · e for k ∈ Z and e ∈ Rq. We denote
n−1sj ∈ Rq as sj = sj [0] + sj [1]x + · · · + sj [n − 1]x .

In step 1, adversary A chooses private key sA to be 0 and eA to be the identity
element 1 in Rq. pA = keA, where k ∈ [0, q − 1]. This gives kj = ksj . Adversary loops
k from 0 to q − 1 and executes the key exchange protocol with party j. We can see
that with a looping k, adversary can make a correct guess on value of sj [i] based
on the number of times the signal value wj [i] for each coefficient i of sj . As k takes
values from 0 to q − 1, value of kj [i] changes in k multiples of sj [i] and there are
changes in the signal value when ksj [i] is near the boundary values of signal regions
defined in section 2.2. Therefore, there will be exactly 2sj [i] number of changes in
signal value for i-th coefficient of sj . After this round, adversary can guess the value
up to the ± sign, therefore in second round, more information is collected in order
to deduct sign for each coefficient of sj .

In step 2, adversary A chooses the same private key as step 1, but the public key is
(1 + x) · pA. With this construction, adversary receives signal value of pA · ((1 + x) · sj).
Similar to the first round, adversary checks number of signal changes. Adversary can
find out values of coefficients of (1 + x)sj , which are sj [0] − sj [n − 1], sj [1] + sj [2],
· · · , sj [n − 2] + sj [n − 1] up to the ± sign.

In step 3, consider pair of coefficients sj [0], sj [n − 1], then by recovering the value
of sj [0] − sj [n − 1] up to the ± sign in step 2 of the attack, and already knowing
sj [0], sj [n − 1] values up to the sign from step 1 of the attack, adversary determines
if sj [0] and sj [n − 1] have same or opposite sign.

In step 4, adversary can repeat step 3 for every pair of coefficients sj [x], sj [y], x
from 0 to n − 2, y from 1 to n − 1 with the value of sj [x] + sj [y] up to the ± sign
from step 2 of the attack to determine if they have equal or opposite signs.

Lastly, adversary only need to guess the sign of sj [0]. The rest of the coefficients
follow since adversary has determined if every pair of coefficients sj [x], sj [y] have equal
or opposite signs. Adversary computes pj − a · sj and verifies the distribution of the
result. If the guess on sign of sj [0] and other coefficients is correct, pj − a · sj should
follows the distribution of ej , which is discrete Gaussian distribution; otherwise,
adversary simply flips the sign to obtain correct signs. This completes the attack.

In two extensions of the above attack, adversary shares same idea but slightly
adjust the construction of the public key accordingly in order to recover the private
key successfully. Here we omit details. An illustrated example in section 5 of [20]
demonstrates the idea and effect of the attack intuitively. The number of queries
required for the attack to find the exact value of the secret is estimated to be 2q,
where q is the modulus for Rq. The above attack can recover private key of [22]
instantiated with practical parameters within 3.8 hours on a common PC.

3.2.2 Discussion

24 3. KNOWN CRYPTANALYTIC ATTACKS

We note that this is exactly the reason why we stress that our Diffie-Hellman-like
RLWE-based key exchange protocol does not allow key reuse. With the above attack,
adversary can recover the private key very efficiently within only 2q queries. Our
key exchange protocol is secure if public and private keys are used only once in each
session. After key exchange is completed, both parties should delete the private key
in case of potential attacks. For a new session, public key and private key should be
newly generated. This is the exact same as ephemeral Diffie-Hellman key exchange
protocol.

We also note that the attack does not directly work for our proposal since we
apply our new rounding technique. However, the notion of attack is very important
and we believe that a variant of this attack would work. In fact, this attack implies
that for reconciliation-based key exchange protocols (including [22], [33], [16], [6]
etc.), public and private keys should not be reused for such protocols.

3.2.3 Our Countermeasure

In this section, we described a work-in-progress RLWE-based key exchange protocol
which can achieve secure key reuse [21]. The idea for this construction is using zero
knowledge proof, where the secret term can be proven to be “small”. The construction
of key exchange describe in this section is based on the authentication protocol
proposed in [21], where they first design a zero knowledge-based authentication
protocol. It is a novel application of the signal function used for reconciliation in
key exchange to derive a secure authentication protocol. It is zero knowledge-based
with negligible soundness and completeness errors. For concrete security proof of
authentication mechanism and protocol description, please refer to [21].

Here we briefly introduce how to construct a reconciliation-based key reusable
RLWE key exchange protocol. We note that the following protocol does not utilize our
new rounding technique to reduce communication cost. The protocol demonstrates
the idea of constructing key reusable reconciliation-based RLWE key exchange.

Let H : {0, 1}∗ → {0, 1}τ be a hash function, where τ is the length of output
of H. H is used for the commitment between the prover and verifier. This helps to
make sure that the verifier commits to a message before receiving the value from the
prover. Samp() is a function which generates polynomial in Rq using output of H
according to distribution DZn,σ.

In order to prove zero knowledge, it is required that the commitment scheme is
computationally hiding and unconditionally binding which ensures the integrity of
the commitments.

A description of key exchange between party i and party j with reusable keys is
given as follows:

Initiate Party i instantiates key exchange by computing public key pi = a · si + 2ei,
where si and ei are sampled from DZn,σ. Send pi to party j.

25 3. KNOWN CRYPTANALYTIC ATTACKS

Response Party j computes public key pj = a ·sj +2ej , where sj and ej are sampled
0 00from DZn,σ. Sample e and e from DZn,σ. Compute Samp(H(pi)) ← DZn,σ.j j

0Compute pi = a · Samp(H(pi)) + 2ej + pi, key exchange material kj = pi · sj ,
wj = Sig(kj) and final shared key skj = Mod2(kj , wj). Send pj and wj to party i.

$
Finish Party i samples e0 ←− DZn,σ, computes H(pi) ← DZn,σ, key exchange material i

ki = pj · (si + Samp(H(pi))) and final shared key ski = Mod2(ki, wj).

$

The protocol is illustrated in Figure 3:

Party i Party j

Public key: pi = a · si + 2ei ∈ Rq Public key: pj = a · sj + 2ej ∈ Rq

Private key: si ∈ Rq Private key: sj ∈ Rq

←− DZn,σ

pi

where si, ei ← where sj , ej− DZn ,σ
$

$←− DZn,σ ,
Samp(H(pi)) ← DZn,σ

0 00Sample ej , e j

←− DZn,σ ,
Samp(H(pi)) ← DZn,σ

$0Sample ei

pj , wj
0 pi = a · Samp(H(pi)) + 2ej + pi ∈ Rq

00
i ∈ Rq

ski = Mod2(ki, wj) ∈ {0, 1}n wj = Sig(kj) ∈ {0, 1}n

skj = Mod2(kj , wj) ∈ {0, 1}n

0

Fig. 3. RLWE key exchange protocol with reusable keys

With above construction and zero knowledge proof-based authentication mecha-
nism, key reuse issue can be solved. Above construction is mainly for the purpose of
presenting such a solution. Therefore we do not apply our new rounding technique
and fresh a generation here. Correctness of the protocol can be analyzed using same
approach as we showed in section 2.3. Compared with our proposal, the above proto-
col should have slightly different parameters and performance due to the additional
H(pi) term.

ki = pj ·(si+Samp(H(pi)))+2e kj = pi · sj + 2e ∈ Rqj

26 4. PASSIVE SECURITY

4 Passive Security

4.1 Outline of IND-CPA for Our Protocol

For a probabilistic asymmetric encryption algorithm with key pairs: public key (PK)
and private key (SK), indistinguishability under chosen plaintext attack (IND-CPA)
is defined by the game between an adversary and a challenger. Let us use the notation
E(P K, M) to represent the encryption of a message M under the public key PK.

For schemes based on computational security, the adversary is modeled by a
probabilistic polynomial time Turing machine that completes the game to output a
result within a polynomial number of time steps:

1. The challenger generates a key pair: public key (PK) and private key (SK)
according to certain security parameter λ, and publishes PK to the adversary.
The challenger keeps SK private.

2. The adversary may perform a polynomial number of encryptions or other opera-
tions.

3. Eventually, the adversary submits two distinct chosen plaintexts M0,M1 to the
challenger.

4. The challenger selects a bit b ∈ {0, 1} uniformly at random, and sends the
challenge ciphertext C = E(P K, Mb) back to the adversary.

5. The adversary is free to perform any number of additional computations or
encryptions. Finally, it outputs a guess for the value of b.

An asymmetric cryptosystem is indistinguishable under chosen plaintext attack
if every probabilistic polynomial time adversary has only a negligible “advantage”
over random guessing.

An adversary is deemed to have a negligible “advantage” if it wins the above
game with probability ��

1
+ �(λ),

2

where �(λ) is a negligible function in the security parameter λ, namely, for every
(nonzero) polynomial function poly(), there exists λ0 such that

|�(λ)| <

���� 1
poly(λ)

����
for all λ > λ0.

Although the adversary knows M0,M1 and PK, the probabilistic nature of E
means that the encryption of Mb will be only one of many valid ciphertexts, and
therefore encrypting M0, M1 and comparing the resulting ciphertexts with the
challenge ciphertext does not afford any negligible advantage to the adversary.

The above definition is specific to an asymmetric key cryptosystem, it can be
adapted to the KEM case. Surely we can also impose it on a key exchange scheme,

27 4. PASSIVE SECURITY

though we think it is very unnatural due to the fact that in the key exchange
scheme, we actually make the ciphertext first and then the plaintext.

4.2 Security Proof

We now define the passive security of our Diffie-Hellman-like ephemeral-only RLWE-
based key exchange protocol defined in section 2.3. Notations are consistent with
section 2.3. We start with the security of our key exchange protocol without rounding
and recovering public key. We then discuss the hardness of our protocol defined in
section 2.3.

Intuitively, any PPT adversary should not distinguish a real shared key (sk ∈
${0, 1}n) from a random one (rand ← {0, 1}n) even if he gets the transcripts (public

key and signal value) of the protocol, which in fact satisfies IND-CPA notion. More
specifically, we define the advantage of an adversary A:

| Pr(A(a, pi, pj , wj , sk) = 1) − Pr(A(a, pi, pj , wj , rand) = 1)|.

Definition 1. We say a key exchange protocol is secure under passive adversary, if
for any PPT adversary the advantage is negligible.

We want the adversary to distinguish the final shared key sk ∈ {0, 1}n from
$

uniformly random one (rand ← {0, 1}n), i.e. we prove that

| Pr(A(a, pi, pj , sk) = 1) − Pr(A(a, pi, pj , rand) = 1)|.

is negligible. Lemma 4 guarantees that this definition is sufficient.

Theorem 1. The construction above is secure against passive PPT adversaries, if
the RLWE assumption holds.

Proof. We prove the security by a series of games. The first game Game0 is the
real game which the adversary gets the real kj , while the last game Game4 the
adversary gets a uniformly random kj . We show that the views of Game0 and
Game4 are computational indistinguishable for any PPT adversaries, under the
RLWE assumption.

Game0. This is the real game between the protocol challenger and the passive
adversary A. That is, the adversary obtains a, pi, pj , wj , kj , where pi = a · si + 2ei,
pj = a · sj + 2ej and kj = pi · sj . Then A outputs a guess b0 .

Game1. This game is identical to Game0 except that instead of setting pi = a·si+2ei
$

and kj = pi · sj , the challenger sets pi = bi and kj = bi · sj , where bi ← Rq.

28 4. PASSIVE SECURITY

In lemma 6, we show that under the RLWE assumption, the views in Game0

and Game1 are computationally indistinguishable for any PPT passive adversaries.

Game2. This game is identical to Game1 except that instead of setting pj = a·sj +2ej
$ $

and kj = bi · sj , the challenger sets pj = bj and kj = u, where bj ← Rq and u ← Rq.

We show the views for any PPT passive adversaries in Game1 and Game2 are
computationally indistinguishable, if the RLWE assumption holds. The proof is given
in lemma 7.

Game3. This game is identical to Game2 except that instead of setting pi = bi, the
challenger sets pi = a · si + 2ei.

In lemma 8, we prove the views in Game2 and Game3 are computationally
indistinguishable, if the RLWE assumption holds.

Game4. This game is identical to Game3 except that instead of setting pj = bj , the
challenger sets pj = a · sj + 2ej .

In lemma 9, we prove that the views in Game3 and Game4 are indistinguishable,
if the RLWE assumption holds. The conclusion follows from lemma 6, 7, 8, 9 directly.

ut

Lemma 6. Any PPT passive adversary cannot distinguish Game0 and Game1, if
the RLWE assumption holds.

Proof. We prove the lemma by showing that if there exists an adversary A who
can distinguish Game0 and Game1, then we can construct another adversary B
to distinguish the RLWE samples from uniform random. B works as follows. Once
obtaining challenges (a, bi) ∈ Rq × Rq from the RLWE oracle, where bi is either

$
a · s +2e or uniformly random in Rq, B samples sj ← = bi · sj and− DZn,σ and sets kj
computes pj = a · sj + 2ej . Finally B sends (a, pi = bi, pj , wj , kj) to A. B outputs
whatever A outputs. We note that B can compute wj by himself.

If bi is an RLWE sample, then what A obtains are exactly the same as in Game0,
if bi is uniformly random in Rq, then what A obtains are exactly the same as in
Game1. This implies that if A can distinguish Game0 and Game1 with noticeable
advantage, then B can distinguish RLWE samples from uniformly random with the
same advantage. This finishes the proof. ut

Lemma 7. Any PPT passive adversary cannot distinguish Game1 and Game2, if
the RLWE assumption holds.

29 4. PASSIVE SECURITY

Proof. We prove this lemma by showing that if there exists an adversary A distin-
guishes Game1 and Game2, then we can construct a PPT adversary B to distinguish
the RLWE samples from uniform. B works as follows. Once obtaining challenges
(a, bj) ∈ Rq × Rq and (bi, u) ∈ Rq × Rq, where u and bi are either a · s + 2e, pi · s or
uniformly random in Rq, B sets pi = bi, pj = bj and kj = u, and computes wj . B
sends (a, pi, pj , wj , kj) to A, and outputs whatever A outputs. It is easy to see that
if bj , u are RLWE samples, then what A gets are exactly the same as in Game1; if
bj , u are uniformly random, then what A gets are exactly the same as in Game2.
Therefore, if A can distinguish the two games with noticeable advantage, then B can
break the RLWE problem with noticeable advantage. This complete the proof. ut

Lemma 8. Any PPT passive adversary cannot distinguish Game2 and Game3, if
the RLWE assumption holds.

Proof. The proof is similar to lemma 6, except we still choose kj uniformly from
Rq. ut

Lemma 9. Any PPT passive adversary cannot distinguish Game3 and Game4, if
the RLWE assumption holds.

Proof. The proof is similar to lemma 7, except we still choose kj uniformly from
Rq. ut

Now we deal with the security regarding to rounding and recovering a · s + 2e in
the next lemma.

Lemma 10. For following two key exchange protocols:

1. pi = a · si + 2ei, pj = a · sj + 2ej , ki = pj · si, kj = pi · sj , wj = Sig(kj), ski =
Mod2(ki, wj), skj = Mod2(kj , wj)

0 00 0 02. pi = a · si + 2ei, pj = a · sj + 2ej , p = Round(pi, p, q), p = Recover(pi, p, q), p = i i j
00 0 00 00Round(pj , p, q), p = Recover(pj , p, q), ki = p · si, kj = p · sj , wj = Sig(kj), ski = j j i

Mod2(ki, wj), skj = Mod2(kj , wj)

The hardness of computing final shared key of second protocol is at least as hard as
computing final shared key of first protocol.

Proof. With publicly known algorithm Round() and Recover(), publicly known
0 0 00 00parameters and public terms pi, pj , any adversary can compute p ≈ pi and p ≈ pj .i j

00 00However, p 6 pi, p = pj , Round() and Recover() function generate additional = 6i j
errors, which makes recovering private key si or sj using transcripts from our key
exchange at least no easier than using pi, pj or ki, kj to solve RLWE problem. tu

Theorem 2. Our security proof implies that our key exchange protocol is IND-CPA
secure.

30 4. PASSIVE SECURITY

Proof. As the adapted version of IND-CPA notion for our key exchange protocol
in section 4.1 and our security proofs, we show that passive adversary cannot
distinguish transcripts of our protocol from uniform random, giving passive adversary
no additional advantage to break the protocol.

In addition, since we proved that final shared key sk generated from our protocol
is uniformly random, if we replace either M0 or M1 defined in IND-CPA notion with
a random string of n bits, adversary gains no additional advantage to break the
protocol. ut

31 5. PERFORMANCE ANALYSIS

5 Performance Analysis
In this section, we introduce our implementation and performance for the formalized
KEM-API of our key exchange scheme in section 2.3. Note that in our implementation,
a number in Zq is represented as [0, q − 1]. One can convert the regions defined for

q−1hint and signal functions from {− q−1 , · · · , } to corresponding regions in [0, q − 1].2 2

5.1 On Number Theoretic Transform and Gaussian Sampler
As a number theoretic version of Fast Fourier Transform (FFT), the Number Theoretic
Transformation (NTT) technique is a discrete Fourier transformation over Zq. Given
the coefficients of two polynomials, A(x) and B(x) of degree no larger than n, the
polynomial multiplication A(x) · B(x) costs Θ(n log n) ring operations in Zq using
NTT, which is O(n2) by a naive multiplication method. The fast NTT with adapted
butterfly operation is applied in Victor Shoup’s NTL library [39], for doing polynomial
operations as multiplication, division, GCD, factoring and so on. Hence we use NTL
library in our implementation.

We use the Discrete Gaussian Sampler (DGS) based on Cumulative Distribution
Table (CDT) in [32]. Here we briefly explain the general idea of CDT sampler. At first,
it pre-computes a table of the discrete Gaussian Cumulative Distribution Function
(CDF) values F [i] for i ∈ {0, 1, · · · , N − 3}, as 0 = F [0] < F [1] < · · · < F [N − 3] = 1,
where N = τ × σ with σ be the standard deviation and τ be the sampling precision
parameter. Then it samples a parameter r ∈ [0, 1) and find s s.t. r is located in
the interval F [s] ≤ r < F [s + 1] with probability f [s] = F [s + 1] − F [s]. Here s is
the index of the expected discrete Gaussian sample. Please find the details in [32].
DGS with CDT is an efficient Gaussian sampler at this moment according to the
experimental analysis in [26].

5.2 Experimental Results

Our implementation uses C/C++ language and NTL library. We run 100,000 times
experiments for NIST security category I, III and V, on a computer with Intel(R)
Xeon(R) CPU E5-2697 v2 @ 2.70GHz, running CentOS Linux release 7.4.1708, g++
version 6.3.0. Then we evaluate the average runtime for discrete Gaussian sampling
(TimeDGS), polynomial multiplication (TimePM), key generation (TimeKeyPair),
encapsulation (TimeEnc) and decapsulation (TimeDec) respectively. We show the
experimental results in Table 4 with two decimal precision. We also note that large
amount of time is spent on conversion between NTL library type variables and
unsigned char variables in order to abide by NIST’s API requirement since signal
computation and error reconciliation are extremely efficient.

Table 4. Runtime (millisecond) of our NIST API Implementation

Security level TimeDGS TimePM TimeKeyPair TimeEnc TimeDec

I 0.03 0.46 1.31 1.71 1.19
III/V 0.05 0.95 2.54 3.48 2.36

32 6. ADVANTAGES, LIMITATIONS AND APPLICATIONS

6 Advantages, Limitations and Applications

6.1 Advantages

Hardness from RLWE Problem. As our protocol is constructed based on the
RLWE problem and properly instantiated RLWE instance is very hard to solve for
both classic and quantum computers, this is clearly an important security advantage
over classic key exchange protocols.

One RLWE Sample and Parameter Choices. As explained in our design, we
would like to point out the fact that our parameter choices are based on the fact
that the attackers have only one RLWE sample since our design is an ephemeral key
exchange. It turns out in most literature, the practical attacks on RLWE are based
on the access to multiple samples. Our observation allow us to study deeply into
practical attacks and derive much smaller parameters. We show that our protocol and
parameter choices remain strong against state-of-the-art cryptanalysis techniques.
Our parameter choices can match security of AES-128/192/256 (NIST security
category I/III/V) respectively.

Simple Design. Our protocol enjoys elegant and simple design, which makes the
protocol practically efficient. As an error reconciliation-based key exchange protocol,
an important advantage of our protocol over KEM-based ones is much simpler design
and final shared key generation. Communication cost of ciphertext is much smaller
as well. Computations of signal value and error reconciliation are more efficient than
decapsulation (i.e. decryption) in KEM-based ones. Moreover, our parameter choices
allow us to use NTT for polynomial multiplication, which can be implemented very
efficiently in practice. Size of signal value is only 64 or 128 bytes for parameter
choice n = 512 or n = 1024 respectively. The computation of signal value and error
reconciliation is truly efficient.

Reduced Communication Cost. Our rounding technique gives smaller commu-
nication cost compared with similar RLWE/MLWE-based works including NewHope
[6], NewHope-Simple [5] and Kyber [15] etc. at the same security level. As one of the
main issues for RLWE-based constructions is larger communication cost compared
with classic public key key exchange protocols (e.g. Diffie-Hellman and elliptic curve
variants) and since communication cost is more “expensive” than computation cost
in general, our protocol with smaller communication cost is more desirable.

Larger Final Shared Key. Our protocol generates a key of size n-bit, where n is a
parameter of ring Rq. Our parameter choices suggest n = 1024 or n = 512. Therefore
a 1024-bit or 512-bit key is generated during protocol execution. From the perspective
of information theory, since key bits are uniformly random in {0, 1}n, longer keys
give much larger entropy than shorter keys (e.g. 256 bits). Therefore we believe that
our key exchange protocol with longer final shared key is more desirable. Moreover,

33 6. ADVANTAGES, LIMITATIONS AND APPLICATIONS

from Grover’s quantum algorithm’s perspective, a 256-bit key gives roughly 128-bit
security, whereas various works (e.g. Frodo [14], NewHope [6], NewHope-Simple [5]
and Kyber [15] etc.) generate only 256-bit final shared key and claim much higher
security level than 128-bit security. In this case, an adversary may choose Grover’s
algorithm to do an exhaustive key search on final shared key directly, instead of
trying to solve lattice and other hard problems to break the protocol.

Forward Secure. Our protocol generates a more secure key than a usual encryption
scheme since the shared key of previous sessions cannot be recovered simply by
knowing the user’s private key in the case of a usual public key encryption scheme.
This is known as forward secrecy. If a private key of an encryption scheme is revealed,
then adversary can recover all past communications simply by decrypting all past
session keys. This does not work for our protocol and other ephemeral Diffie-Hellman-
like ones, since each public and private pair is used only once. Adversary has to
compromise every single session in order to decrypt all past sessions.

Key Exchange vs KEM. As a Diffie-Hellman-like key exchange protocol, an
important advantage of our protocol over KEM-based ones is both parties negotiate
and decide the final shared key together. For a KEM, since it is an encryption-based
approach, one party decides the key, namely, party i encrypts a session key using
public key of party j and party j decrypts the ciphertext using his private key. For
our key exchange protocol, no single party can fully decide the final shared key.
It can be only generated using one’s private key and the other party’s public key
together. Therefore it is better than KEM-based approaches as a true key exchange.
In addition, in a KEM, one must perform additional work to generate the shared
keys.

Moreover, our protocol can be implemented efficiently and extended to various
platforms, including but not limited to desktop processors, ARM, lower-end processors
(microcontrollers etc.), Internet-of-Things (IoT) devices, hardware-based ones etc.
There are various works that have demonstrate efficient error sampling and NTT
implementation on such platforms, where these two parts take up most running time
for our protocol. Since computation of signal and error reconciliation is very efficient,
most expensive parts are sampling and polynomial multiplication.

6.2 Limitations

Compared with current classic key exchange protocols (e.g. ephemeral Diffie-Hellman
and elliptic curve variants), one disadvantage is larger key size. Since public key and
private key in RLWE-based constructions are degree n polynomials in Rq, common
choice for degree n is 1024 or 512. Therefore RLWE-based constructions have larger
communication cost. For Diffie-Hellman key exchange protocol, both parties exchange
a l-bit public key, where l is recommended to be 2048 currently. Elliptic curve Diffie-
Hellman has even smaller key size. We choose n = 512 and n = 1024, each coefficient

34 6. ADVANTAGES, LIMITATIONS AND APPLICATIONS

in public key is larger than 10 bits. This gives larger communication cost than
Diffie-Hellman key exchange and its elliptic curve variant. Even so, our protocol has
smaller communication cost than several similar works.

In addition, public and private keys cannot be reused for multiple sessions. As
we stated in section 3.2, adversary may recover private key of our protocol with
reused keys in roughly 2q queries. As we define our proposal as an “ephemeral-only
Diffie-Hellman-like” RLWE-based key exchange protocol, therefore key reuse should
be prohibited towards real world deployment of our protocol. Technique to defeat
such attack is introduced in section 3.2.3. In latest version of Transport Layer Security
protocol (TLS 1.3), RSA is removed from key exchange choices due to concerns
regarding to forward secrecy, where in current TLS 1.2, static RSA is used as KEM
for session key encapsulation. This move implies that ephemeral-only key exchange
(ephemeral Diffie-Hellman and elliptic curve variant) is more preferred than KEM
(encryption-based) ones. We believe this idea also can be applied to post-quantum
variants, where our key exchange protocol is ephemeral-only and Diffie-Hellman-like.
Therefore, for real world deployment of our protocol, key reuse should be forbidden.

6.3 Applications

Our proposal is a RLWE variant of Diffie-Hellman key exchange and its elliptic curve
variants. Therefore it is a quantum-resistant drop-in candidate for protocols and
real world applications. Currently, there are various protocols and applications have
taken advantage Diffie-Hellman key exchange protocol and its variants. We believe
our proposal is a drop-in replacement of quantum-vulnerable key exchange protocols.
A few important real world applications can adopt our post-quantum key exchange
protocol, including but not limited to:

– Transport Layer Security (TLS) and related protocols (QUIC, HTTPS, IMAPS,
SMTPS etc.)

– Secure Shell (SSH), SSH File Transfer Protocol (SFTP)
– Internet Key Exchange (IKE) in Internet Protocol Security (IPsec)
– Virtual Private Networks (VPN)
– Other applications where key exchange is integrated (e.g. Secure messaging/video

calling applications, end-to-end secure applications, client-server applications
etc.)

Above protocols and applications are widely deployed in real world currently,
including secure communication, online banking and e-commerce, secure remote
access, point-to-point secure applications etc. Note that for ephemeral Diffie-Hellman
key exchange, each party needs to only transmit public key to the other party.
Similarly for our proposal, both parties exchange public key alongside an additional
signal value, which has very low additional communication cost. We believe that
our proposal is a secure, efficient and lightweight drop-in replacement for current
Diffie-Hellman key exchange protocol.

35 6. ADVANTAGES, LIMITATIONS AND APPLICATIONS

References

1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem.
In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing. pp.
601–610. STOC ’01 (2001)

2. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter choices in
helib and SEAL. In: Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April
30 - May 4, 2017, Proceedings, Part II. pp. 103–129 (2017)

3. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost of solving
usvp and applications to lwe. ASIACRYPT (2017)

4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. Journal
of Mathematical Cryptology 9(3), 169–203 (2015)

5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Newhope without reconciliation. IACR
Cryptology ePrint Archive 2016, 1157 (2016)

6. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a new hope.
In: USENIX Security Symposium. pp. 327–343 (2016)

7. Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from lwe to lwr. IACR Cryptology
ePrint Archive 2016, 589 (2016)

8. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under LWE. In:
Progress in Cryptology - INDOCRYPT 2013 - 14th International Conference on Cryptology in
India, Mumbai, India, December 7-10, 2013. Proceedings. pp. 1–18 (2013)

9. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved Progressive BKZ Algorithms and Their
Precise Cost Estimation by Sharp Simulator, pp. 789–819. Springer Berlin Heidelberg (2016)

10. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Information Security and
Privacy - 19th Australasian Conference, ACISP July, 2014. Proceedings. pp. 322–337 (2014)

11. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. Advances in
Cryptology–EUROCRYPT 2012 pp. 719–737 (2012)

12. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching
with applications to lattice sieving. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016. pp.
10–24 (2016)

13. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of learning with
rounding over small modulus. In: Theory of Cryptography Conference. pp. 209–224. Springer
(2016)

14. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghunathan, A.,
Stebila, D.: Frodo: Take off the ring! practical, quantum-secure key exchange from lwe. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
pp. 1006–1018. ACM (2016)

15. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P., Stehlé,
D.: Crystals–kyber: a cca-secure module-lattice-based kem. Tech. rep., Cryptology ePrint Archive,
Report 2017/634, 2017. http://eprint. iacr. org/2017/634 (2017)

16. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the tls protocol
from the ring learning with errors problem. In: Security and Privacy (SP), 2015 IEEE Symposium
on. pp. 553–570. IEEE (2015)

17. Chen, Y.: Lattice reduction and concrete security of fully homomorphic encryption. Dept.
Informatique, ENS, Paris, France, PhD thesis (2013)

18. Chen, Y., Nguyen, P.Q.: Bkz 2.0: Better lattice security estimates. In: International Conference
on the Theory and Application of Cryptology and Information Security. pp. 1–20. Springer
(2011)

19. Diffie, W., Hellman, M.: New directions in cryptography. IEEE transactions on Information
Theory 22(6), 644–654 (1976)

http://eprint

36 6. ADVANTAGES, LIMITATIONS AND APPLICATIONS

20. Ding, J., Alsayigh, S., Saraswathy, R., Fluhrer, S., Lin, X.: Leakage of signal function with reused
keys in rlwe key exchange. In: Communications (ICC), 2017 IEEE International Conference on.
pp. 1–6. IEEE (2017)

21. Ding, J., Saraswathy, R.: Rlwe-based authentication using rounding signals. University of
Cincinnati preprint (2017)

22. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based on the learning
with errors problem. IACR Cryptology EPrint Archive 2012, 688 (2012)

23. Fluhrer, S.R.: Cryptanalysis of ring-lwe based key exchange with key share reuse. IACR
Cryptology ePrint Archive 2016, 85 (2016)

24. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Advances in Cryptology - EUROCRYP-
T 2008, 27th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings. pp. 31–51 (2008)

25. Herold, G., Kirshanova, E., May, A.: On the asymptotic complexity of solving LWE. IACR
Cryptology ePrint Archive 2015, 1222 (2015)

26. Howe, J., Khalid, A., Rafferty, C., Regazonni, F., O’Neill, M.: On practical discrete gaussian
samplers for lattice-based cryptography. IEEE Transactions on Computers (2016)

27. Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathematics of
operations research 12(3), 415–440 (1987)

28. Laarhoven, T., de Weger, B.: Faster sieving for shortest lattice vectors using spherical locality-
sensitive hashing. In: Progress in Cryptology - LATINCRYPT 2015 - 4th International Conference
on Cryptology and Information Security in Latin America, Guadalajara, Mexico, August 23-26,
2015, Proceedings. pp. 101–118 (2015)

29. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: An update. In: Topics in Cryptology
- CT-RSA 2013 - The Cryptographers’ Track at the RSA Conference 2013, February, 2013.
Proceedings. pp. 293–309 (2013)

30. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random linear codes, and
the subset sum problem. In: Approximation, Randomization and Combinatorial Optimization,
Algorithms and Techniques, 8th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, APPROX 2005 and 9th InternationalWorkshop on
Randomization and Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005,
Proceedings. pp. 378–389 (2005)

31. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In:
Annual International Conference on the Theory and Applications of Cryptographic Techniques.
pp. 1–23. Springer (2010)

32. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Advances in Cryptology -
CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19,
2010. Proceedings. pp. 80–97 (2010)

33. Peikert, C.: Lattice cryptography for the internet. In: International Workshop on Post-Quantum
Cryptography. pp. 197–219. Springer (2014)

34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. Journal of
the ACM (JACM) 56(6), 34 (2009)

35. Ritt, J.F.: Permutable rational functions. Transactions of the American Mathematical Society
25(3), 399–448 (1923)

36. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving
subset sum problems. Mathematical Programming 66(1), 181–199 (Aug 1994)

37. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In: STACS. vol.
2607, pp. 145–156. Springer (2003)

38. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM review 41(2), 303–332 (1999)

39. Shoup, V.: NTL, a library for doing number theory (2017), available at http://www.shoup.net/
ntl/

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

37 6. ADVANTAGES, LIMITATIONS AND APPLICATIONS

40. Stephens-Davidowitz, N.: Discrete gaussian sampling reduces to cvp and svp. In: Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 1748–1764.
Society for Industrial and Applied Mathematics (2016)

	Introduction
	Diffie-Hellman Key Exchange
	Quantum Threats
	Quantum-Resistant Construction from LWE/RLWE Problem
	Design Rationale
	Similar Works

	Summary of Our Proposal

	Protocol Specification
	Preliminaries
	Core Functions
	RLWE-based Key Exchange Protocol
	Specification
	Correctness
	Parameter Choice
	Communication Cost

	Known Cryptanalytic Attacks
	Expected Security Strength
	Prerequisites
	Algorithms for Solving RLWE
	Cost of Known BKZ Estimators
	Significance of Number of Samples in Practical Attack
	Our Simulator

	Key Reuse Attack
	Outline
	Discussion
	Our Countermeasure

	Passive Security
	Outline of IND-CPA for Our Protocol
	Security Proof

	Performance Analysis
	On Number Theoretic Transform and Gaussian Sampler
	Experimental Results

	Advantages, Limitations and Applications
	Advantages
	Limitations
	Applications

