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In this document, we give details of our implementation of EMBLEM and R.EMBLEM. Data types 
for each element in matrix used in EMBLEM and coefficient of polynomial used in R.EMBLEM is 
32-bit int. 

1 Modulus Operation 

For modulus q in EMBLEM, we set q as power of two (i.e, q = 2k). Therefore, reduction modulo q 
is as simple as ignoring 32 − (log2(q) − 1) most significant bits. For 24-bit q, reduction modulo q 
is computed as follows: 

x = x 0xffffff(0 ≤ x < q2) (1) 

We set q as prime in R.EMBLEM to apply NTT-based polynomial multiplication. Let q be 
prime such that q ≡ 1 mod 2n, where n is a dimension of the ring. In order to optimize reduction 
modulo q, we use modified form of Barrett reduction. Let q = 12289. Then q < 214 = 16384. Let 
x be the number to be reduced, 0 ≤ x < q2 . We first obtain the quotient of x divided by 214 . This 
can be done by simple bitwise operation: 

c = x � 14 (2) 

Then we multiply by 12289 and subtract to x to obtain the result: 

x = x − c × 12289 (3) 

Since this reduction does not give exact result, x mod q, additional reduction must be per-
formed in order to get the full result. For efficiency, such final reduction only occur at the end of 
NTT operation. After the end of NTT or INTT in optimize implementation or reference imple-
mentation, we simply divide by q and add q if the result is negative to obtain the final result. 

2 Data Generation 

Matrices in EMBLEM or polynomials in R.EMBLEM are chosen randomly from the uniform distri-
bution or in specific distributions. Detailed description is given as follows. 

2.1 Matrix Generation 

• Public key matrix. For public key matrix A ∈ Zm×n, we call randombytes() function for q 
each Ai,j , the i-th row and j-th column entry of A, then reduce to modulo q. 

• Secret key matrix. For secret key matrix X ∈ [−B, B]n×k , we first call randombytes() 
function to generate octet string rnd[ ] of length n × k and obtain the remainder of the value when 
divided by 2B + 1 and subtract B + 1 to obtain values in [−B, B]. If B = 1, then we can obtain 
the i-th row and j-th column of X, denoted by Xi,j , by Xi,j ← (rnd[i, j]%3) − 2, and the result 
will be in [-1,1]. 

• Sampling function. In EMBLEM.CPA, the sampling function takes a 256-bit string r as an 
input and outputs R ∈ [−B, B]m×v and (E1, E2) ∈ GDs

v×(n+k) . E1 and E2 are sampled from 
discrete Gaussian distribution, and we will explain this in Error matrix below. 

The matrix R is generated as follows. For the simplicity, we assume that B = 1. First, compute 
the hash function with 256-bit string r as input, where the data type of the digest is int. Let len 
be the number of int arrays of the digest. Starting at the first index of digest array digest[i], each 
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element is divided by 3 and its remainder minus 2 is stored as matrix element of R. For the i-th 
row and j-th column of R, denoted by Ri,j , 

Ri,j ← (digest[i]%3) − 2 (4) 

Then the element of digest array is updated with a quotient divided by 3. 

digest[i] ← digest[i]/3 (5) 

When digest[i] becomes zero, move to the next index and repeat the process. When all the 
elements have completed the process, we add 1 to r and compute the hash function with r + 1 as 
input, and repeat the process again. When all elements of R are set, the process is terminated. 
At the end of the process, the original r is hashed again, and 32-bit of the digest is used as a seed 
to generate the same errors in EMBLEM. Pseudocode for generating matrix R and the seed is as 
follows: 

Algorithm 1: Pseudocode for generating the matrix R and the seed 
Input : 256-bit string r 
Output: matrix R ∈ [−1, 1]m×v , seed 

1 cnt ← 0; 
2 d ← r; 
3 while cnt < m × v do 
4 digest ← H(d) 
5 for I = 0 to len do 
6 while digest[i] ! = 0 do 
7 R[cnt] ← (digest[i]%3) - 2; 
8 digest[i] ← digest[i]/3; 
9 cnt++; 

10 end 
11 end 
12 d[0]++; 
13 end 
14 digest ← H(r); 
15 return digest[0] 

• Random matrix. Elements of error matrix E are sampled from discrete Gaussian distribution. 
Let Sample CDT() be Gaussian sampler. Then for each element Ei,j , the i-th row and j-th column 
of E, 

Ei,j ← Sample CDT() (6) 

2.2 Polynomial Generation 

• Public key polynomial. For public key polynomial a ∈ Zq[x]/hxn +1i, we call randombytes() 
functions for each coefficient of a and reduce to modulo q. 

• Secret key polynomial. For secret key polynomial x, we call randombytes() function to 
generate octet string rnd[ ] of length N and obtain the remainder of the value when divided by 
2B + 1 and subtract B + 1 to obtain values in [−B, B]. If B = 1, then we can obtain the i-th 
coefficient of x, denoted by xi, by xi ← (rnd[i]%3) − 2, and the result will be in [-1,1]. 
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• Sampling function. In R.EMBLEM.CPA, the sampling function takes a 256-bit string z as an 
input and outputs the polynomials r, e1, and e2. The coefficients of e1 and e2 are sampled from 
discrete Gaussian distribution, and we will explain this in Error polynomial below. 

The polynomial r is generated as follows. For the simplicity, we assume that B = 1. First, 
compute the hash function with 256-bit string z as input, where the data type of the digest is 
int. Let len be th number of int arrays of the digest. Starting at the first index of digest array 
digest[i], each element is divided by 3 and its remainder minus 2 is stored as the coefficient of r. 
For the i-th coefficient of r, denoted by ri, 

ri ← (digest[i]%3) − 2 (7) 

Then the element of digest array is updated with a quotient divided by 3. 

digest[i] ← digest[i]/3 (8) 

When digest[i] becomes zero, move to the next index and repeat the process. When all the 
elements have completed the process, we add 1 to z and compute the hash function with z + 1 as 
input, and repeat the process again. When all coefficients of r are set, the process is terminated. 
At the end of the process, the original z is hashed again, and 32-bit of the digest is used as a seed 
to generate the same error polynomials in EMBLEM. 

• Error polynomial. Coefficients of an error polynomial e are sampled from discrete Gaus-
sian distribution. Let Sample CDT() be Gaussian sampler. Then for each coefficient ei, the i-th 
coefficient of e, 

ei ← Sample CDT() (9) 

3 Discrete Gaussian Sampler 

We use inversion sampling method for insanitation of discrete Gaussian sampler. For σ = 3, cumu-
lative density table T is created from probability density functions. We sample 9 bits uniformly at 
random, corresponding to a uniform random integer x ∈ [0, 511] and additional 1 bit to determine 
the sign of the sampled value. For σ = 25, we sample 11 bits uniformly at random, corresponding 
to a uniform random integer x ∈ [0, 2047] and additional 1 bit to determine the sign of the sampled 
value. Cumulative distribution table (CDT) of length 16 and 54 is used for σ = 3 and σ = 25, 
respectively. 

4 Matrix Multiplication 

For matrix multiplication A×B in reference implementation, we use row-wise matrix multiplication 
in order to reduce cache miss. That is, we consider B as in transposed format and execute matrix 
multiplication as row by row. For optimized implementation, matrix multiplication is done by 
removing pointers. 

5 Number Theoretic Transform 

The Number Theoretic Transform (NTT) is the specialized version of discrete Fourier transform 
in finite field F = Zp, integers modulo prime p, or ring. NTT used in R.EMBLEM is based on 
Cooly-Tukey butterfly, and inverse NTT (INTT) is based on Gentleman-Sande butterfly. Let ψ 
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512be a primitive 2n-th root of unity, ψ1024 ≡ 1 mod q such that ψ2 = w where w ≡ 1 mod q. 
We generate ψ and ψ−1 table in bit reversed order. For p = 12289, we used ψ = 1987, and for 
p = 40961 we used ψ = 1044. Since NTT and INTT table is known to public, it suffices to store 
public and private keys in NTT domain for efficiency. 
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