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1 BACKGROUND 

1.1 Notation 

We denote the set of natural numbers by N and the set of integers by Z. For q ∈ N, we define the 
qset Zq as Z ∩ (− q 

2 , ]. For a finite set S, we write a ←R S to describe that a is chosen uniformly at 2 
random from S and for a distribution X , we write a ← X to denote that a is sampled according 
to the distribution X . For a matrix M , MT denotes the transpose of M . For a vector a of length 
n, we define ai to be the i-th component of a, and for a matrix M , we define M [i, j] to be the p

2i-th row and j-th column entry of M . The Euclidean norm ||a|| is defined as Σn We define i=1ai . 
the function [a]d which drops d least significant bits of a. We expand this function to matrices by 
applying it to each component of the matrix. For positive integers q and n, we define U(Zn) by q 
the uniform distribution over Zn

q . 

1.2 Discrete Gaussian Distribution 

For a given s > 0, the discrete Gaussian distribution over a lattice L is defined as 

ρs(x)GDL,s(x) = (1)
Σy∈Lρs(y) 

−πkxk2/s2 
for any x ∈ L, where ρ denote the Gaussian function ρs(x)= e . √ 
Note that the standard deviation of GDL,s is σ= s/ 2π. The Gaussian parameter s is used 

to describe a discrete Gaussian distribution throughout this paper. We write GDs to denote the 
discrete Gaussian distribution GDZ,s. Moreover, it holds that GDZn,s = GDn .s 

1.3 Learning with Errors 

We define a standard lattice-based problem on which the security of our proposal is based. 

Definition 1.1 (Decision LWE problem). Let m, n, k, q ∈ N and Ds, De be distributions over Zq. 
One is given m samples (Ai, Bi) ∈ Zn ×Zk and asked to distinguish whether there exists S ← Dn×k 

q q s 

such that the samples are of the form (A, AS + E mod q) with A ←R Zm×n , E ← Dm×k or the q e 

samples are chosen uniformly at random from Zm×n ×Zm×k . We denote the decision LWE problem q q 
by LWEn,m,q,De . 

The binary-LWE problem (where secret vector s is from {−1, 0, 1}n) has been considered in 
work by Micciancio and Peikert [MP13]. In [BG14], Bai and Galbraith proved that binary-LWE 
problem is as hard as the LWE problem as long as increasing the parameter n by a factor of 
log(log(n)). Note that the errors are still discrete Gaussians. We apply Bai and Galbraith’s 
embedding method to the case where s is sampled from [−B, B]n for any B < σ. The matrix 
version of a (decisional) small secret LWE problem, denoted by smaLWEn,m,q,De , is defined as 
follows. 

Definition 1.2 (Decision LWE Problem with small secrets). Let m, n, k, q ∈ N and De be a 
distribution over Zq. One is given m samples (Ai, Bi) ∈ Zn × Zk and asked to distinguish whether q q 

there exists S ← [−B, B]n×k such that the samples are of the form (A, AS + A mod q) with 
A ←R Zm×n , A ← Dm×k or the samples are chosen uniformly at random from Zm×n × Zm×k .q e q q 

Lemma 1.3 (The Number of Binary LWE samples [BG14]). Let q, n, σ and δ be fixed. Let 
0m ≈ m + n be the dimension of the embedded lattice in the new attack described in Section 6 

of [BG14]. For a given Hermite factor δ, the optimal value for m0 is approximately 
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s 
n(log q − log σ) 

. (2)
log δ 

Albrecht et al. applied the embedding technique of Bai and Galbraih [BG14] to generalized 
cases, that is, elements of the secret key are randomly sampled from [a, b]. As a result, they 
proposed the following lemma. 

Lemma 1.4 (Log root Hermite factor of LWE instances of small secret [APS15]). Let a small 
secret LWE instance be characterised by n, α, q, let s(i) ←R {a, . . . , b}, let ξ = 2/(b − a) and let 

αqσ = √ . Any lattice reduction algorithm achieving log root-Hermite factor : 
2π � √ �2 

log(q/σ) − log(2τ πe) · log(q/σ)
log δ = � (3)�2 

n 2 log(q/σ) − log ξ 

solves LWE by reducing BDD to uSVP for some fixed τ ≤ 1 if we have that (qm(ξσ)n)1/(m+n) · q q
m+n n(log q−log σ)≤ q where m = m0 − n = − n.2πe log δ 

Lyubashevsky et al. proposed the ring-LWE problem in [LPR10, LPR13], namely, the LWE 
problem over rings. We define a ← X n as meaning that n coefficients of a polynomial a are chosen 
independently from X . 

Definition 1.5 (Decision Ring-LWE problem). Let n, q ∈ N and Ds, De be distributions over Zq. 
For an irreducible polynomial f(x) ∈ Z[x] of degree n, let Rq = Zq[x]/f(x) be the ring modulo q. 
One is given (a, b) ∈ R2 and asked to distinguish whether there exists a polynomial s ← Dn such q s 
that (a, b) is of the form (a, a ·s+e) with a ←R Rq , e ← Dn or (a, b) is chosen uniformly at random e 
from R2 . We denote the decision Ring-LWE problem by RLWEn,q,De .q 

The Ring-LWE problem with small secrets (where coefficients of secret polynomial s←[−B, B]n) 
can be defined similar to smaLWE. In [GKPV10], it is shown that for the standard LWE, the secret 
s can be sampled from any distribution, as long as its entropy is sufficiently large. Assuming that 
the analysis results in the standard LWE setting equally hold in the ring-LWE setting, we can set 
the coefficients of the secret polynomial to be small in the ring-LWE problem. A (decisional) small 
secret Ring-LWE problem, denoted by smaRLWEn,q,De , is defined as follows. 

Definition 1.6 (Decision Ring-LWE Problem with small secrets). Let n, q ∈ N and De be a 
distribution over Zq. For an irreducible polynomial f(x) ∈ Z[x] of degree n, let Rq = Zq[x]/f(x) 
be the ring modulo q. One is given (a, b) ∈ R2 and asked to distinguish whether there exists a q 
polynomial s ← [−B, B]n such that (a, b) is of the form (a, a · s + e) with a ←R Rq, e ← Dn ore 
(a, b) is chosen uniformly at random from R2 .q 

1.4 Definitions 

Definition 1.7 (Public Key Encryption scheme). A public-key encryption (PKE) scheme consists 
of the following three PPT algorithms: KeyGen, Encrypt, and Decrypt. � � 
- KeyGen 1λ : The key generation algorithm takes as input the security parameter 1λ and outputs 

a public/secret key pair (pk, sk). � � 
- Encrypt pk, m : The encryption algorithm takes as input a public key pk and a message m ∈M. 

Then it outputs a corresponding ciphertext C. � � 
- Decrypt sk, C : The decryption algorithm takes as input a secret key sk and a ciphertext C. It 

outputs a message m or ⊥ (which indicates decryption failure). 
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Correctness. We guarantee the correctness of a PKE scheme if the following condition holds: 
For all m ∈M, �� 

Pr (pk, sk) ←R KeyGen(1
λ); C ←R Encrypt(pk, m) : Decrypt(sk, C) = m > 1 − �(λ) 

where � is a negligible function. 

Definition 1.8 (Key Encapsulation Mechanism). A key encapsulation mechanism (KEM) consists 
of the following three PPT algorithms: KeyGen, Encap, and Decap. 

- KeyGen(1λ): The key generation algorithm takes as input the security parameter 1λ and outputs 
a public/secret key pair (pk, sk). 

- Encap(pk): The encapsulation algorithm takes as input a public key pk. Then it outputs a 
ciphertext C and a key K ∈ K. 

- Decap(sk, C): The decapsulation algorithm takes as input a secret key sk and a ciphertext C. 
It outputs a key K. 

Correctness. We guarantee the correctness of KEM if the following condition holds: �� 
Pr (pk, sk) ←R KeyGen(1

λ); (C, K) ←R Encap(pk) : Decap(sk, C) = K > 1 − �(λ) 

where � is a negligible function. 

Definition 1.9 (IND-CPA Security of PKE). Let PKE = (KeyGen, Encrypt, Decrypt) be a public-
key encryption scheme. Let us define the following experiment (parameterized by a bit b) between 
an adversary A and a challenger: 

Experiment IND-CPAb (k) : PKE,A

1. The challenger runs (pk, sk) ← KeyGen(params) and gives pk to A; 
2. A outputs two message (m0,m1) of the same length; 

3. The challenger computes Encrypt(pk, mb) and gives it to A; 
4. A outputs a bit b0 . The challenger returns b0 as the output of the game. 

The advantage of A for breaking the IND-CPA security of a PKE is defined as 

AdvIND-CPA 
PKE,A = 

���Pr � IND-CPA1 
PKE,A(k) = 1 

����� �
− Pr IND-CPA0 

PKE,A(k) = 1 . 

We say that PKE is IND-CPA secure if for any polynomial time adversary A and any k, we 
have AdvIND-CPA ≤ �(k) where � is a negligible function. PKE,A 

Definition 1.10 (IND-CCA Security of KEM). Let KEM = (KeyGen, Encap, Decap) be a key 
encapsulation mechanism. Let us define the following experiment (parameterized by a bit b) 
between an adversary A and a challenger: 

Experiment IND-CCAb (k) : KEM,A

1. The challenger runs (pk, sk) ← KeyGen(1λ) and gives pk to A; 
2. A queries to the decapsulation oracle Decap(sk, ·); 
3. The challenger computes (C∗,K0 

∗) ← Encap(pk) and K∗ ←R K. Then the challenger 1 
gives (C∗,K∗) to A. ;b 

4. A continues to query the decapsulation oracle, but may not query the ciphertext C∗ . 
Finally, A outputs a bit b0 . The challenger returns b0 as the output of the game. 

In the (quantum) random oracle model, the challenger additionally runs the random oracles. The 
quantum accessible random oracles are described in [TU16]. The advantage of A for breaking the 
IND-CCA security of KEM is defined as 
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AdvIND-CCA 
KEM,A = 

���Pr � IND-CCA1 
KEM,A(k) = 1 

����� �
IND-CCA0 

KEM,A(k) = 1 − Pr . 

We say that KEM is IND-CCA secure if for any polynomial time adversary A and any k, we 
have AdvIND-CCA ≤ �(k) where � is a negligible function. KEM,A 

2 ALGORITHM SPECIFICATIONS AND SUPPORTING 
DOCUMENT 

In this section, we introduce EMBLEM and R.EMBLEM as standard candidates. The schemes secure 
against chosen-plaintext attacks, EMBLEM.CPA and R.EMBLEM.CPA, are presented together for 
the sake of understanding. 

2.1 Algorithm Specifications 

2.1.1 EMBLEM.CPA (CPA-Secure Public-Key Encryption) 

Encoding and decoding function. Let M = {0, 1}l be the message space. We first define the 
encoding function encode, which takes a bit string as an input and outputs it in a matrix form. 
The decoding function decode is an inverse of encode. For inputs an l-bit message m, a block size 
t, and a modulus q, encode operates in the following manner: 

. encode(m, t, q) 

1. Split the message by t-bit (we assume that t divides l) and generate l/t message blocks; 

2. Transform l/t blocks into a v × k matrix M = {m(i,j)}. Denote m(i,j) be the message block 
assigned to the i-th row and j-th column entry of M ; � −→ 

3. Output a v × k matrix M = M [i, j] where M [i, j] ← m(i,j)||1|| 0 for i ∈ [1, v], j ∈ [1, k]. 

𝑴𝑴
(𝑣𝑣 × 𝑘𝑘)

𝑴𝑴[𝒊𝒊, 𝒋𝒋] 𝑚𝑚(𝑖𝑖,𝑗𝑗) 1 0 0 … 0

(log2 𝑞𝑞)-bit

𝑡𝑡-bit 1-bit 𝑑𝑑-bit

𝑀𝑀[1,1] 𝑀𝑀[1,2] ⋯ ⋯ ⋯ 𝑀𝑀[1, 𝑘𝑘]

𝑀𝑀[2,1] 𝑀𝑀[2,2] ⋯ 𝑀𝑀[𝑖𝑖, 𝑗𝑗] ⋯ 𝑀𝑀[2, 𝑘𝑘]

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑀𝑀[𝑣𝑣, 1] 𝑀𝑀[𝑣𝑣, 2] ⋯ ⋯ ⋯ 𝑀𝑀[𝑣𝑣, 𝑘𝑘]

𝑀𝑀[𝑖𝑖, 𝑗𝑗]

Figure 1: The encoding function encode 

. decode(M, t, q) 

1. Transform a v × k matrix into l/t message blocks mi for i ∈ [1, l/t]; 
02. Compute mi = [mi]log2(q)−t for i ∈ [1, l/t]; 

0 03. Output l-bit string m = m1|| · · · ||ml/t. 
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Sampling function. We define the sampling function Sam which takes input a random coin r 
and outputs ephemeral values (R, E1, E2) where R is a random string and E1, E2 are sampled 
from Gaussian distribution. The sizes of R, E1, and E2 can be extended as desired, and always 
output the same value for the same input. Since R is a random string, we can generate it directly 
using the pseudorandom function (PRF) with the random coin r as seed. We can also generate 
random seeds s1 and s2 to generate E1 and E2, respectively, as follows: s1 ← PRF(r||1) and s2 ← 
PRF(r||2). In practice, when implementing Gaussian sampling, a random seed is chosen internally 
and used to generate a sampling result. We use s1 and s2 generated by using PRF, instead of an 
internally extracted seed, and thus it is reasonable to assume that the distribution of E1 and E2 

is statistically close to the Gaussian distribution. 

When the system is set up, the system parameter params is generated as follows: Choose √ 
positive integers m, n, k, t, v and the modulus q. Choose a standard deviation σ= s/ 2π for 
discrete Gaussian distribution GDs and a positive integer B < σ. The parameters are given by 
params = (m, n, k, q, t, v, B, GDs). Note that l/t = v × k. The LWE-based multi-bit encryption 
scheme EMBLEM.CPA is described as below. 

Zm×nKeyGen(1λ). Choose a random matrix A ← . Choose a secret random matrix X ←q 

[−B, B]n×k and an error matrix E ← GDm×k . Compute B = AX + E. The key pair s 
(pk, sk) is given by pk = (A, B) and sk = (X). 1 

Encrypt(pk, msg ∈M). To generate the ciphertext, proceed with the following steps: 

1. M ← encode(msg, t, q); 

2. Choose a random coin r ∈ {0, 1}256; 

3. (R, E1, E2) ←Sam(r) where R ∈ [−B, B]m×v and (E1, E2) ∈ GDv×(n+k);s 

4. Compute (C1, C2) = (R
T A + E1, R

T B + E2 + M); 

5. Return the ciphertext C = (C1, C2) ∈ Zv×n × Zv×k .q q 

Decrypt(sk, C). Parse the ciphertext C as (C1, C2). 

1. Compute M = C2 − C1X; 

2. Output msg ← Decode(M, t, q). 

Correctness. We show the correctness of the encryption scheme described in Section 2.1.1. 

Theorem 2.1 (Correctness). Let E = {E(i)} where E(i) is an i-th column of E ∈ Zm×k ,q 
(i) (i)

E2 = {E } where E is an i-th entry of column E2 ∈ Zk , and X = {X(i)} where X(i) is2 2 qh n o i 
(i)

an i-th column of X ∈ Zn×k . Let � = Pr max |hr, E(i)i| + |E | + |hE1, X
(i)i| ≥ 2d where q 2 

i∈[1,k] 
d = log2(q) − (t + 1). Then EMBLEM.CPA is (1−�)-correct. 

Proof. The decryption phase proceeds as follows: 

C2 − C1X = (�RT B + E2 + M) − (RT A� + E1)X 
= RT (AX + E) + E2 + M − (RT AX + E1X) 
= (RT E + E2 − E1X) + M 

1Note that the secret matrix X can be generated using pseudorandom functions, i.e., X ← P RF (seedX), 
since we choose the elements of X from [−B, B], not from the Gaussian distribution. In other words, the 
user only needs to store a bit string seedX instead of the entire matrix of X. Similarly, the matrix A in 
the public key can also be derived from the seed by using PRF. In [BCD+16], AES128-ECB was used as a 
PRF with a 256-bit seed. 
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𝑚𝑚 1 0 0 … 0

𝑑𝑑-bit

𝜀𝜀 = 𝑅𝑅𝑇𝑇𝐸𝐸 + 𝐸𝐸2 − 𝐸𝐸1𝑋𝑋+

𝑚𝑚 0 𝑅𝑅𝑅If 𝜀𝜀 < 0

* |𝜀𝜀| = 𝑅𝑅𝑇𝑇𝐸𝐸 + 𝐸𝐸2 − 𝐸𝐸1𝑋𝑋 < 2𝑑𝑑

Figure 2: Error propagation in the decryption phase 

M is a v × k matrix and for i ∈ [1, v], j ∈ [1, k], M[i, j] (i.e., the i-th row and j-th column 
−→ −→ 

entry of M) is in the form of m(i,j)||1|| 0 where 0 is of length d. Therefore, if |ε(i,j)|, the absolute 
value of (i, j)-th entry in RTE + E2 − E1X, is less than 2d, then it does not affect the message 
part m(i,j) at all. If |ε(i,j)| is positive, it is trivial to see that the error is not propagated beyond d 
least significant bits. Even if |ε(i,j)| is negative and thus propagated beyond the d-bit, the message 
part can not be affected by the negative ε(i,j) because of error-blocking bit 1. Fig. 2 illustrates 
the error propagation in the decryption phase when the error is negative. As a result, when the 
inequality |ε(i,j)| < 2d holds for any i ∈ [1, v], j ∈ [1, k], our scheme satisfies correctness. � 

In Section 2.1.5, we will set parameters to make the decryption error negligible, i.e., � = 2−140 . 

Security. We show that the proposed scheme is IND-CPA secure under the hardness assumption 
of the LWE problem with small secrets. 

Theorem 2.2 (Security). The LWE-based multi-bit encryption EMBLEM.CPA is IND-CPA se-
cure if the decision-smaLWEn,m,q assumption holds. 

Proof. The proof proceeds by the sequence of games. Note that in Game 0 (1st hybrid game), 
the public key is the small secret LWE instance and the ciphertext is an encryption of m0. In 
Game 5 (6th hybrid game), the public key is the small secret LWE instance and the ciphertext is 
an encryption of m1 where |m0| = |m1|. We show that distributions of Game 0 and Game 5 are 
computationally indistinguishable for the adversary. 

. Game 0. This is the original game, where the public key and the ciphertext are generated 
honestly as in Section 2.1.1. In this game, the ciphertext is an encryption of m0. Note that 
M0 ←encode(m0, t, q). The distribution of Game 0, denoted by D0 is given as follows: 
D0 = {pk ← (A, B = AX + E), C ← (C1 = RTA + E1, C2 = RTB + E2 + M0)} 

. Game 1. In this game, the public key B is generated uniformly at random, rather than computed 
with a secret key X. The rest is the same as in Game 0. The distribution of Game 1, denoted by 
D1, is given as follows: 

D1 = {pk ← (A, B ← U(Zm×k) ), C ← (C1 = RTA + E1, C2 = RTB + E2 + M0)}q 

. Game 2. In Game 2, the small secret LWE instances contained in the ciphertext change to 
random matrices. In other words, the ciphertext C = (C1, C2)= (U1, U2 + M0), where (U1, U2) 
is generated uniformly at random in Zn × Zk .q q 
The rest is the same as in Game 1. In this game, there are no small secret LWE instances. The 

distribution of Game 2, denoted by D2, is given as follows: 
D2 = {pk ← (A, B ← U(Zm×k)), C ← ( C1 = U1, C2 = U2 + M0 )}q 

. Game 3. In Game 3, the message m0 contained in the ciphertext changes to another message 
m1. Note that M1 ←encode(m1, t, q). The rest is the same as in Game 2. The distribution of 
Game 3, denoted by D3, is given as follows: 
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D3 = {pk ← (A, B ← U(Zm×k)), C ← ( C1 = U1, C2 = U2 + M1 )}q 

. Game 4. In this game, the ciphertext is restored to the small secret LWE instance, and the rest 
is the same as in Game 3. Note that the ciphertext is an encryption of M1. The distribution of 
Game 4, denoted by D4, is given as follows: 

D4 = {pk ← (A, B ← U(Zm×k)), C ← ( )}C1 = RTA + E1, C2 = RTB + E2 + M1q 

. Game 5. In this game, the public key is restored to the small secret LWE instance, and the 
rest is the same as in Game 4. Game 5 is the same as Game 0, except that the ciphertext is an 
encryption of M1. The distribution of Game 5, denoted by D5, is given as follows: 
D5 = {pk ← (A, B = AX + E ), C ← (C1 = RTA + E1, C2 = RTB + E2 + M1)} 

The distributions D0 and D1 are computationally indistinguishable under the decision-smaLWEn,m,q 

assumption. The distributions D1 and D2 are also computationally indistinguishable under the 
decision-smaLWEm,n+k,q assumption, since the ciphertext in Game 1 forms the small secret LWE 
instances with (n + k) samples in dimension n for a given public key (A||B). Note that, even if 
m > n + k, one can reduce smaLWEn,m,q to smaLWEm,n+k,q by adjusting the size of the matrix 
during the simulation. In Game 2 and 3, the ciphertexts are computed in a one-time pad manner 
by adding the message to a random matrix, thus the distributions D2 and D3 are statistically 
indistinguishable. The hybrid game from Game 3 to Game 5 proceeds in the reverse manner from 
Game 0 to Game 2. If we set the parameters n, m and q of smaLWE to be as hard as LWE, then 
the security of EMBLEM.CPA can be reduced to the standard LWE problem. � 

2.1.2 EMBLEM (CCA-Secure Key Encapsulation Mechanism) 

In this section, we propose an IND-CCA secure key encapsulation mechanism (KEM) EMBLEM = 
(KeyGen, Encap, Decap) in the quantum random oracle model. To construct a CCA secure KEM, 
we apply the KEM variant of Fujisaki-Okamoto (FO) transformation to our IND-CPA secure 
encryption scheme EMBLEM.CPA described in Section 2.1.1 [HHK17]. 

{0, 1}256Let M = be the message space of EMBLEM.CPA scheme. The system parameters 
params are given the same as in the EMBLEM.CPA scheme. In the FO transformation, the 
following three hash functions are used: 

• The hash function G : {0, 1}∗ → {0, 1}256 

• The hash function H : {0, 1}∗ → {0, 1}256 

• The hash function Ĥ : {0, 1}∗ → {0, 1}256 

These hash functions will be modeled as random oracles in the security proof. The CCA-secure 
KEM EMBLEM is constructed as follows: 

KeyGen(1λ). Same as EMBLEM.CPA.KeyGen. 

Encap(pk). To generate the key K and ciphertext C, proceed with the following steps: 

1. Select δ ←R {0, 1}256 and compute r = G(δ); 
ˆ2. Compute C1← EMBLEM.CPA.Encrypt(pk, δ; r) and C2 = H(δ); 

3. Compute K = H(δ, C1, C2); 

4. Return the ciphertext C = (C1, C2) ∈ Zv
q 
×(n+k) ×{0, 1}256 and the key K∈ {0, 1}256 . 

Decap(sk, C). Parse the ciphertext C as (C1, C2), and proceed with the following steps: 

1. Compute δ ← EMBLEM.CPA.Decrypt(sk, C1); 
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2. Compute r = G(δ); 
ˆ3. Compute e ← EMBLEM.CPA.Encrypt(pk, δ; r) and d = H(δ); 

• If e 6 or d = C2, output ⊥;= C1 6
4. Otherwise, output K = H(δ, C1, C2). 

Note that all the ephemeral values selected in EMBLEM.CPA.Encrypt algorithm are determined 
by the random coin r. The correctness of this scheme is derived from that of the underlying 
CPA-secure public-key encryption scheme [HHK17]. 

Theorem 2.3 (Correctness). If EMBLEM.CPA is (1-�)-correct, then EMBLEM is (1-�)-correct 
in the quantum random oracle model. 

EMBLEM is tightly IND-CCA secure in the (classical) random oracle model (by Theorem 2.4), 
and is non-tightly IND-CCA secure in the quantum random oracle model (by Theorem 2.5). Note 

ˆthat, the hash function H is not required to prove IND-CCA security in the (classical) random 
oracle model. 

Theorem 2.4 (Theorem 3.1 and 3.2 in [HHK17]). Assume EMBLEM.CPA to be δ-correct. 
For any IND-CCA adversary B issuing at most qD decryption queries, at most qG queries to 
random oracle G, and at most qH queries to random oracle H, there exists an IND-CPA adversary 
A such that 

AdvIND-CCA qH +2qG+1 + 3 · AdvIND-CPA · δ +EMBLEM(B) ≤ qH 2256 EMBLEM.CPA(A) 

and the running time of A is about that of B. 

Theorem 2.5 (Theorem 4.4 and 4.6 in [HHK17]). Assume EMBLEM.CPA to be δ-correct. 
For any IND-CCA quantum adversary B issuing at most qD (classical) decryption queries, at most 
qG queries to the quantum random oracle G, at most qH queries to the quantum random oracle 

ˆH, and at most q ̂ queries to the quantum random oracle H, there exists an IND-CPA quantum H 
adversary A such that r q

AdvIND-CCA AdvIND-CPA + qH ) · 8 · δ(qG + 1)2 + (1 + 2qG)EMBLEM(B) ≤ (2qĤ EMBLEM.CPA(A) 

and the running time of A is about that of B. 

Note that, by Theorem 4.4 and 4.6 in [HHK17], we can transform a One-Way against Cho-
sen Plaintext Attacks (OW-CPA) secure encryption scheme into an Indistinguishability against 
Chosen-Ciphertext Attacks (IND-CCA) secure KEM. Since IND-CPA security of encryption scheme 
with sufficiently large message space implies its OW-CPA security (Lemma 2.3 in [HHK17]), we 
can say that Theorem 2.4 and 2.5 imply the conversion from IND-CPA secure encryption scheme 
to IND-CCA secure KEM. 

2.1.3 R.EMBLEM.CPA (CPA-Secure Public-Key Encryption over Rings) 

In this section, we provide a CPA-secure public-key encryption (PKE) scheme over rings. 

Encoding and decoding function over rings. Let M = {0, 1}l be the message space. We 
define the encoding function R.encode, which takes a bit string as an input and outputs it in a 
polynomial form, and its inverse function R.decode. It operates similarly to the encode function 
in Section 2.1.1, except that the output is in polynomial form. 

. R.encode(m, t, q) 
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1. Split l-bit message m by t-bit and generate l/t message blocks {mi}; 
−→ 

2. Generate m̂i = mi||1|| 0 , of length log2(q), for i ∈ [1, l/t]; 

3. Output a polynomial m̂ where the coefficient vector is set to ( ˆ m̂l/t, 0, . . . , 0).m1, . . . , 

�𝒎𝒎𝒊𝒊 𝑚𝑚𝑖𝑖 1 0 0 … 0

(log2 𝑞𝑞)-bit

𝑡𝑡-bit 1-bit 𝑑𝑑-bit

�𝒎𝒎𝒊𝒊�𝒎𝒎 �𝑚𝑚1 𝑋𝑋+ �𝑚𝑚2

+ 𝑋𝑋𝑙𝑙/𝑡𝑡0

+ ⋯+ 𝑋𝑋𝑖𝑖−1+ ⋯+ 𝑋𝑋𝑙𝑙/𝑡𝑡−1�𝑚𝑚𝑙𝑙/𝑡𝑡

+ ⋯+ 𝑋𝑋𝑛𝑛−10

Figure 3: The encoding function R.encode 

. R.decode(m̂, t, q) 

1. Parse the first l/t coefficients of m̂ as m̂i for i ∈ [1, l/t]; 

2. Compute mi = [ ˆ for i ∈ [1, l/t];mi]log2(q)−t 

3. Output l-bit string m = m1|| · · · ||ml/t. 

For the cyclotomic polynomial f(x) = xn + 1 ∈ Z[x], let R= Z[x]/hf(x)i be the ring of integer 
polynomials modulo f(x), and Rq = Zq[x]/hf(x)i be the ring of integer polynomials modulo both 
f(x) and q. Elements of Rq can be represented by polynomials of degree less than n whose 
coefficients are from the set {0, . . . , q − 1}. 

Truncate function. To increase the efficiency of transmission, we use a function Trunc that 
truncates the ciphertext [AOP+17]. Let a ∈ Rq be a polynomial of degree n, represented by 
a =a0 + a1X + · · · + an−1X

n−1 . For 1 ≤ l ≤ n, we define Trunc as follows: 

Trunc(a, l) = a0 + a1X + · · · + al−1X
l−1 . 

When the system is set up, the system parameter params is generated as follows: Choose √ 
positive integers n, t and a modulus q. Choose a standard deviation σ= s/ 2π for discrete Gaussian 
distribution GDs and a positive integer B < σ. Let Rq denote the reduction of a ring R modulo 
q, i.e., Rq = Zq[X]/hf(x)i. The parameters are given by params = (n, t, q, B, Rq , GDs). Our 
ring-based PKE, R.EMBLEM = (KeyGen, Encrypt, Decrypt), is described as below. 

KeyGen(1λ). Choose a polynomial a ← Rq . Choose a secret polynomial x ∈ Rq where the 
2coefficient vector is sampled randomly from [−B, B]n . Choose an error polynomial e ∈ Rq 

where the coefficient vector is sampled randomly from GDn . Compute b = a · x + e ∈ Rq. As 
key pair (pk, sk) are given by pk = (a, b)∈ R2 and sk = (x)∈ Rq.q 

Encrypt(pk, m ∈M). Assume that l = 256 < n. To generate the ciphertext, proceed with the 
following steps: 

2As in EMBLEM.CPA scheme in Section 2.1.1, the coefficients of the secret polynomial x can be generated 
using PRF, and thus it is required to store only the seed, the input of the PRF, rather than the entire 
polynomial (i.e., all the coefficients). 
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1. m̂← R.encode(m, t, q); 

2. Choose a random coin z ∈ {0, 1}256; 
3. (r, e1, e2) ←Sam(z) where r ∈ [−B, B]n and (e1, e2) ∈ GDn+n;s 

4. Compute c1 = r · a + e1 and c2 ← Trunc(r · b + e2, l/t) + m̂; 

5. Return the ciphertext c = (c1, c2) ∈ R2 .q 

Decrypt(sk, c). Parse the ciphertext c as (c1, c2)∈ R2 .q 

1. Compute d ← Trunc(c1 · x, l/t) and m̂ = c2 − d; 

2. Output m ←R.decode(m̂, t, q). 

(i) (i)(i) (i) (i)Theorem 2.6 (Correctness). Let r , e , e , e , and x be the i-th coefficients of the 1 h2 i� (i) (i)
polynomials r, e, e1, e2, and x, respectively. Let � = Pr max |r(i) ·e(i)|+|e |+|e ·x(i)| ≥ 2d 

2 1 
i∈[1,l/t] 

where d = log2(q) − (t + 1). Then R.EMBLEM.CPA is (1 − �)-correct. 

Proof. Parse (c1, c2) of the ciphertext c as c1 = r · a + e1, c2 ← Trunc(r · b + e2, l/t) + m̂. In the 
decryption phase, � � � � 

c2 − d = Trunc r · (a · x + e) + e2, l/t + m̂ −Trunc (r · a + e1) · x, l/t � � 
= Trunc r · e + e2 − e1 · x, l/t + m̂ 

where polynomials c2 and d are of degree l/t. 
−→ −→ 

Each coefficient of the polynomial m̂, denoted by m̂i∈ Zq, is encoded as mi||1|| 0 where 0 is 
a vector of length d. If |êi| < 2d, when adding êi to m̂i, êi does not affect mi. Note that mi is the 
most significant t bits of m̂i where t = log2(q) − (d + 1). Even if êi is negative, the error does not 
affect mi by virtue of the error-blocking bit 1, as in EMBLEM.CPA. In other words, êi + m̂i ∈ Zq is 
in the form of mi||R where R is the bit string of length log2(q) − t. As a result, R.EMBLEM.CPA 
successfully decrypts with the probability of 1 − �. � 

Theorem 2.7 (Security). R.EMBLEM.CPA is IND-CPA secure if the decision-smaRLWEn,q as-
sumption holds. 

Proof. The proof proceeds with a sequence of games, as in Theorem 2.2. In Game 0 (the first hybrid 
game), the public key is a small secret ring-LWE instance and the ciphertext is an encryption of 
m0. In Game 7 (the last hybrid game), the public key is still a small secret ring-LWE instance, 
and only the ciphertext changes to the encryption of m1 such that |m0| = |m1|. Let denote Di as 
the distribution of Game i. We show that D0 and D7 are computationally indistinguishable for 
the adversary. 

. Game 0. In this game, the public key and the ciphertext are generated honestly as in Section 
2.1.3 where the ciphertext is an encryption of m0. Note that m̂0 ←R.encode(m0, t, q). D0 is given 
as follows: 
D0 = {pk ← (a, b = a · x + e), C ← (c1 = r · a + e1, c2 = Trunc(r · b + e2, l/t) + m̂0)} 

. Game 1. In this game, the public key b is generated uniformly at random, rather than computed 
with a secret key x. The rest is the same as in Game 0. D1 is given as follows: 
D1 = {pk ← (a, b ← U(Rq ) ), C ← (c1 = r · a + e1, c2 = Trunc(r · b + e2, l/t) + m̂0)} 

. Game 2. In Game 2, the small secret ring-LWE instance c1 contained in the ciphertext change to 
a random polynomial. In other words, the ciphertext c = (c1, c2)= (u1, Trunc(r · b + e2, l/t)+ m̂0), 
where u1 is generated uniformly at random in Rq. The rest is the same as in Game 1. D2 is given 
as follows: 
D2 = {pk ← (a, b ← U(Rq)), C ← ( c1 = u1 , c2 = Trunc(r · b + e2, l/t) + m̂0)} 
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. Game 3. In Game 3, the small secret ring-LWE instance c2 contained in the ciphertext change 
to a random polynomial. In other words, the ciphertext c = (c1, c2)= (u1, Trunc(u2, l/t) + m̂0), 
where u2 is generated uniformly at random in Rq. The rest is the same as in Game 2. In this 
game, there are no small secret ring-LWE instances. D3 is given as follows: 
D3 = {pk ← (a, b ← U(Rq)), C ← (c1 = u1, c2 = Trunc(u2, l/t) + m̂0)} 

. Game 4. In Game 4, the message m0 contained in the ciphertext changes to m1. Note that 
m̂1 ←R.encode(m1, t, q). The rest is the same as in Game 2. D4 is given as follows: 

D4 = {pk ← (a, b ← U(Rq)), C ← (c1 = u1, c2 = Trunc(u2, l/t) + m̂1 )} 

. Game 5. In Game 5, c2 in ciphertext is restored to the small secret ring-LWE instance, and the 
rest is the same as in Game 4. D5 is given as follows: 
D5 = {pk ← (a, b ← U(Rq)), C ← (c1 = u1, c2 = Trunc(r · b + e2, l/t) + m̂1)} 

. Game 6. In this game, c1 in ciphertext is restored to the small secret ring-LWE instance, and 
the rest is the same as in Game 5. Note that the ciphertext is an encryption of m1. D6 is given as 
follows: 
D6 = {pk ← (a, b ← U(Rq)), C ← ( c1 = r · a + e1 , c2 = Trunc(r · b + e2, l/t) + m̂1)} 

. Game 7. In this game, the public key is restored to the small secret ring-LWE instance, and 
the rest is the same as in Game 6. Game 7 is the same as Game 0, except that the ciphertext is 
an encryption of m1. D7 is given as follows: 
D7 = {pk ← (a, b = a · x + e ), C ← (c1 = r · a + e1, c2 = Trunc(r · b + e2, l/t) + m̂1)} 

D0 and D1 are computationally indistinguishable under the decision-smaRLWEn,q assumption. 
D1 and D2 are also computationally indistinguishable under the decision-smaRLWEn,q assumption. 
D2 and D3 are computationally indistinguishable under the decision-smaRLWEl/t,q assumption. 
Since l/t ≤ n, smaRLWEl/t,q can be reduced to smaRLWEn,q. In Game 3 and 4, the ciphertexts are 
computed in a one-time pad manner by adding the message to a random polynomial, thus D3 and 
D4 are statistically indistinguishable. The hybrid games from Game 4 to Game 7 proceeds in the 
reverse manner from Game 0 to Game 3. If we set the parameters n and q of smaRLWE to be as 
hard as RLWE, then the security of R.EMBLEM.CPA can be reduced to the standard Ring LWE 
problem. � 

2.1.4 R.EMBLEM (CCA-Secure Key Encapsulation Mechanism over Rings) 

In this section, we propose a CCA-secure key encapsulation mechanism (KEM) R.EMBLEM in the 
quantum random oracle model, by applying the KEM variant of Fujisaki-Okamoto (FO) transfor-

{0, 1}256mation [HHK17] to R.EMBLEM.CPA. Let M = be the message space and the system 
parameter params are given the same as in R.EMBLEM.CPA, except that the hash functions 
G, H, Ĥ described in Section 2.1.2 are additionally included. Our ring-based KEM R.EMBLEM = 
(KeyGen, Encap, Decap) is described as below. 

KeyGen(1λ). Same as R.EMBLEM.CPA. 

Encap(pk). Assume that n > 256. To generate the key K and the ciphertext c, proceed with the 
following steps: 

1. Select δ ←R {0, 1}256 and compute z = G(δ); 
ˆ2. Compute (c1, c2) ←R.EMBLEM.CPA.Encrypt(pk, δ; z), c3 = H(δ); 

3. Return the ciphertext c = (c1, c2, c3) ∈ R2 × {0, 1}256 and the key K = H(δ, c) ∈q 
{0, 1}256 . 
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Decap(sk, c). Parse the ciphertext c as (c1, c2, c3)∈ R2 ×{0, 1}256, and proceed with the following q 
steps: 

1. Compute δ ←R.EMBLEM.CPA.Decrypt(sk, (c1, c2)); 

2. Compute z = G(δ); 
ˆ3. Compute (d1, d2) ←R.EMBLEM.CPA.Encrypt(pk, δ; z) and d3 = H(δ); 

• If (d1, d2) 6 6= (c1, c2) or d3 = c3, output ⊥; 
4. Otherwise, output K = H(δ, c). 

As in EMBLEM, R.EMBLEM.CPA.Encrypt algorithm outputs the same ephemeral values accord-
ing to the same random coin z. The correctness of R.EMBLEM is derived from R.EMBLEM.CPA 
[HHK17]. 

Theorem 2.8 (Correctness). If R.EMBLEM.CPA is (1 − �)-correct, then R.EMBLEM is (1 − �)-
correct in the quantum random oracle model. 

R.EMBLEM is constructed by applying the KEM variant of Fujisaki-Okamoto transforma-
tion [HHK17]. Therefore, in common with EMBLEM, R.EMBLEM is IND-CCA secure in both 
the classical random oracle model (by Theorem 2.9) and the quantum random oracle model (by 
Theorem 2.10). 

Theorem 2.9 (Theorem 3.1 and 3.2 in [HHK17]). Assume R.EMBLEM.CPA to be δ-correct. 
For any IND-CCA adversary B issuing at most qD decryption queries, at most qG queries to 
random oracle G, and at most qH queries to random oracle H, there exists an IND-CPA adversary 
A such that 

AdvIND-CCA qH +2qG+1 + 3 · AdvIND-CPA · δ +R.EMBLEM(B) ≤ qH 2256 R.EMBLEM.CPA(A) 

and the running time of A is about that of B. 

Theorem 2.10 (Theorem 4.4 and 4.6 in [HHK17]). Assume R.EMBLEM.CPA to be δ-correct. 
For any IND-CCA quantum adversary B issuing at most qD (classical) decryption queries, at most 
qG queries to the quantum random oracle G, at most qH queries to the quantum random oracle 

ˆH, and at most q ̂ queries to the quantum random oracle H, there exists an IND-CPA quantum H 
adversary A such that r q

AdvIND-CCA AdvIND-CPA 8 · δ(qG + 1)2 + (1 + 2qG)R.EMBLEM(B) ≤ (2qĤ + qH ) · R.EMBLEM.CPA(A) 

and the running time of A is about that of B. 

As mentioned in Section 2.1.2, since IND-CPA security with sufficiently large message space 
implies its One-Way against Chosen Plaintext Attacks (OW-CPA) security, by Lemma 2.3 in 
[HHK17], we can insist that if R.EMBLEM.CPA is an IND-CPA secure PKE, then R.EMBLEM is 
an IND-CCA secure KEM by Theorem 2.9 and 2.10. � 

2.1.5 Parameter Selection 

• Secret distribution Ds. The distribution Ds is to sample a value from [−B, B] for B < σ 
uniformly at random. If S ← Dn×k, then (n × k) entries of the matrix S are chosen uniformly s 
at random from [−B, B]n×k . Using a small B, the size of the error generated in the decryption 
phase can be reduced. When decrypting, the inner product of two vectors, an error vector sampled 
from the Gaussian distribution and the secret vector, is computed. Since the secret key is made 
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up of small values chosen from [−B, B], it gives a much smaller result than the inner product of 
Gaussian vectors. In addition, since the secret key is sampled from [−B, B] uniformly at random, 
it can be generated using a pseudorandom function (PRF). Therefore, we only need to store the 
seed, used as input to the PRF, as a secret key instead of the entire matrix, which causes the secret 
key size to decrease remarkably. 

• Error distribution De. The distribution De is the discrete Gaussian distribution with the 
Gaussian parameter s, i.e., GDs. If E ← Dm×k, then (m × k) entries of the matrix E are chosen e √ 
from GDm

√ 
×k . The standard deviation of GDs is set to σ= s/ 2π. In Section 2.1.5, we set σ tos 

be s > 2 n. For efficiency reasons, most LWE-based public-key encryption schemes have used √ 
Gaussian parameters much smaller than 2 n, which fails to achieve worst-case to average-case p
reduction [Reg09]. We choose σ > 2n/π so that our constructions have worst-case to average-
case security reduction. 

• Message Space. In our scheme, we set the message space to {0, 1}256, i.e., l = 256. To encrypt 
a 256-bit plaintext, the parameter should be set to satisfy the following: 

k × t × v ≥ 256 for integers k, t, v ≥ 1. 

For simplicity, we assume that k × t × v = 256. k is associated with the size of the public key 
and ciphertext, and v is associated with the size of the ciphertext. t implies the number of bits 
encrypted per entry of the matrix of ciphertext, which in turn affects the size of q. If one intends 
to reduce the size of the ciphertext, v should be set to be small, and if one intends to reduce the 
size of the public key, k and t should be set to be small. 

• Probability of Decryption Failure. For simplicity, let r be a m × 1 vector (i.e., v = 1). Let 
(i) (i)

E = {E(i)} where E(i) is an i-th column of E ∈ Zm×k , E2 = {E } where E is an i-th entry q 2 2 

of column E2 ∈ Zk, and X = {X(i)} where X(i) is an i-th column of X ∈ Zn×k . To ensure the q q 
correctness of EMBLEM.CPA and EMBLEM, we must set d to satisfy the following equations: h n o i 

(i)
Pr max |hr, E(i)i| + |E | + |hE1, X

(i)i| < 2d = 1 − �. (4)2 
i∈[1,k] 

Once d is determined, for a given t, we can determine the size of q such that log2(q) = t+(1+d). 
2−140We will set d to make the decryption error negligible, namely, � = . To obtain d satisfying 

the equation (4), we use the following Lemmas: 

Lemma 2.11 (Lemma 2.4 of [Ban95]). For any real s > 0 and Q > 0, and any x ∈ Rn, we have � � −π·Q2 

Pr |hx, GDZn,si| ≥ Q · s||x|| < 2e . (5) 
√ 

where the standard deviation σ of GDZn,s is set to σ = s/ 2π. 

Lemma 2.12 (Lemma 3.3 of [Lyu16]). For any r > 0 and z ← GDs where the standard deviation √ 
σ = s/ 2π, we have � � −T 2/2Pr |z| > Tσ < 2e . (6) 

√ √ 
|hr, E(i)i| and |hE1, X

(i)i| have approximate values of Q · σ 2π · ||r|| and Q · σ 2π · ||X(i)||, 
−π·Q2 

respectively, with the probability of 2e . Q is set to about 5.5776 so that the probability 
(i)

that |hx, GDsi| ≥ Q · s||x|| is at most 2−140 (i.e., 2e−π·5.57762 ≈ 2−140). In addition, |E | has2 
−T 2/2approximate value of Tσ with the probability of 2e . T is set to about 13.98 so that the 

(i) −13.982probability that |E | > Tσ is at most 2−140 (i.e., 2e /2 ≈ 2−140). Therefore, for i ∈ [1, k],h 2 i√ √(i)
Pr |hr, E(i)i| + |E | + |hE1, X

(i)i| < Q · σ 2π · ||r|| + Tσ + Q · σ 2π · ||X(i)|| = 1 − 2−140 . So2 √ √ 
we should find d such that Q · σ 2π · ||r|| + Tσ + Q · σ 2π · ||X(i)|| < 2d where Q = 5.5776 and 
T = 13.98. The selected parameter set is given in Table 1. 
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Case 1. If r and X(i) are sampled from {−1, 0, 1}m and {−1, 0, 1}n uniformly at random (i.e., q q
2 2B = 1), the expected values of ||r|| and ||X(i)|| are m and n, respectively. In case of I in3 3 

Table 1, (m, n, σ) = (1003, 770, 25), and thus we can calculate as follows: q√ √ 
2. Q · σ 2π · ||r|| = 5.5776 × 25 2π × · 1003 ≈ 213.14 
3 

. Tσ = 13.98 × 25 ≈ 28.45 q√ √ 
2. Q · σ 2π · ||X(i)|| = 5.5776 × 25 2π × · 770 ≈ 212.95 
3 

(i)
Following this, |hr, E(i)i| + |E | + |hE1, X

(i)i| < 213.14 +28.45 +212.95 ≈ 214.08 < 2d . Therefore,2 
d = 15 is sufficient in this setting. 

Case 2. If r and X(i) are sampled from {−2, −1, 0, 1, 2}m and {−2, −1, 0, 1, 2}n uniformly at √ √ 
random (i.e., B = 2), the expected values of ||r|| and ||X(i)|| are 2m and 2n, respectively. In 
case of II in Table 1, (m, n, σ) = (832, 611, 25), and thus we can calculate as follows: 

√ √ √ 
. Q · σ 2π · ||r|| = 5.5776 × 25 2π × 2 · 832 ≈ 213.8 

. Tσ = 13.98 × 25 ≈ 28.45 

√ √ √ 
. Q · σ 2π · ||X(i)|| = 5.5776 × 25 2π × 2 · 611 ≈ 213.58 

(i)
Following this, |hr, E(i)i| + |E | + |hE1, X

(i)i| < 213.8 +28.45 +213.58 ≈ 214.71 < 2d . Therefore,2 
d = 15 is sufficient in this setting. 

The same analysis of the probability of decryption failure can be applied to R.EMBLEM.CPA and 
R.EMBLEM as well. 

• Proposed parameter sets. The parameters of EMBLEM in Section 2.1.2, aiming at 128-bit 
security, are given in Table 1. The columns I and II correspond to cases where each element of the 
secret key is sampled from [-1,1] and [-2,2], respectively. In each case, n and the root Hermite factor 
δ are derived from the equation (3), and then, m is calculated using the equation (2). Note that 
d, the maximum size of the error, should be selected to satisfy the equation (4). In addition, we p
set the standard deviation σ of the Gaussian distribution to be larger than 2n/π, which is much 
higher than other LWE-based schemes [GPV08, LP11, CKLS16, BDK+17], to support worst-case 
to average-case reduction of the underlying LWE problem. 

I II 
[-1,1] [-2,2] 

m 1003 832 
n 770 611 

log2(q) 
σ 

24 
25 

24 
25 

t 8 8 
δ 1.003292 1.003945 

Table 1: Parameter sets for 128-bit security 

In the LWE instance with small secret, the secret key can be sampled from [−B, B] for any 
B < σ. We consider only B = 1 and B = 2 (column I and II in Table 1, respectively), because 
there is no large difference in parameter size when B ≥ 3. Figure 4 illustrates the tradeoff between 
security and performance in case of B = 1 (L.H.S) and B = 2 (R.H.S). In this figure, uSVP implies 
the security level against the primal attack via standard embedding, dual embedding, and Bai-
Galbraith embedding [AFG13,BG14]. The parameter n represents the dimension and m represents 
the number of samples. The larger the root Hermit factor δ is, the smaller the size of the parameter 
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n and m is, and thus the lower the security level against the primal attack via uSVP is. Note that 
we fix the other parameters log2(q) = 24, σ = 25, and t = 8. The performance of the algorithm is 
improved by reducing the size of parameters m and n. As a result, the security and performance 
of the algorithm are inversely proportional. 
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Figure 4: Security/Performance tradeoffs of LWE instances 

• Proposed parameter sets over rings. The parameters of R.EMBLEM in Section 2.1.4, aiming 
at 128-bit security, are given in Table 2. The columns (i,iii) and (ii,iv) correspond to cases where 
each element of the secret key is sampled from [-1,1] and [-2,2], respectively. In columns i and ii,p
the standard deviation σ is set to 25, which is larger than 2n/π, whereas, in columns iii and iv,p
σ is set to 3, which is much smaller than 2n/π. Since σ is small, the size of the error is small, 
and consequently the size of q is small. To provide the same 128-bit security despite σ being small, 
the size of n should be large. As shown in Table 2, n in column iii is larger than in column i, and 
n in column iv is also larger than in column ii. 

i ii iii iv 
[-1,1] [-2,2] [-1,1] [-2,2] 

n 463 320 504 437 
log2(q) 

σ 
16 
25 

16 
25 

14 
3 

14 
3 

t 1 1 1 1 
δ 1.00256 1.00349 1.0027 1.002878 

Table 2: Parameter sets for 128-bit security (over Rings) 

Figure 5 illustrates the tradeoff between security and performance in case of σ = 25 (L.H.S) 
and σ = 3 (R.H.S). That is, L.H.S of Figure 5 represents the columns i and ii in Table 2, and 
R.H.S represents the columns iii and iv. In this figure, uSVP implies the security level against the 
primal attack [AFG13,BG14], and uSVP[B=1] and uSVP[B=2] represent the security levels against 
the primal attack in case of B = 1 and B = 2, respectively. As in Figure 4, the larger the root 
Hermit factor δ is, the smaller the size of the parameter n is, and thus the lower the security level 
against the primal attack via uSVP is. As the size of n decreases, the computational complexity 
is also reduced, thus improving the performance of the algorithm. For the same σ, n in case of 
B = 1, denoted by n[B=1], should be larger than in case of B = 2, denoted by n[B=2], to provide 
the same security level. And even for the same δ in either L.H.S or R.H.S, n[B=1] is larger than 
n[B=2], but the security level of n[B=1] is lower than that of n[B=2]. Finally, the smaller σ is, the 
larger n is to provide the same security level. 
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Figure 5: Security/Performance tradeoffs of Ring LWE instances 

2.2 Performance Analysis 

• A description of the platform. Our software implementation was performed on an Intel core 
i7-6700 (Skylake) running at 3.40GHz, and ran on Linux OS. For hardware implementation, we 
used a Zynq 7 FPGA platform and Xilinx EDA tool with default option. 

• Speed estimate and memory requirements. We set the message length to 256-bit. Table 
3 and Table 4 represent various parameter sets based on the parameters in column I and column 
II of Table 1, respectively. Table 5 presents the number of milliseconds and the size of inputs and 
outputs (e.g., public key, secret key, and ciphertext) of each algorithm based on the parameters in 
Table 2. 

In Table 3, we have described several parameter sets for EMBLEM in case of B = 1. The 
probability of decryption failure is set to 2−140 and k, t, and v are set to satisfy k × t × v = 256 so 
that we can encapsulate the key of length 256-bit. From I.A to I.F, the public key size decreases 
and the ciphertext size increases. In I.C, the sum of the sizes of both public key and ciphertext is 
the smallest. EMBLEM generates a secret matrix from a 256-bit seed, thus providing a very small 
secret key size compared to other LWE-based schemes [BCD+16, CKLS16]. Since a secret key is 
generated from the seed (by using PRF), the secret key size remains the same even if k increases. 
We also measured the execution time of each algorithm through software implementation. For 

more information on software implementation, see Digital and Optical Media in our submission 
package. As k increases from I.A to I.F, more computation is required to generate the secret key 
from the seed, which increases the execution time of the Key Generation algorithm. Also, as v 
decreases from I.A to I.F, the computation required to generate the ciphertext becomes small. 
Since we applied the KEM variant of Fujisaki-Okamoto transformation to construct EMBLEM, the 
Encapsulation algorithm operates as a subroutine in Decapsulation algorithm, so the execution 
time of Encapsulation and Decapsulation algorithms is similar. 
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(B=1) I.A I.B I.C I.D I.E I.F 

m 1003 1003 1003 1003 1003 1003 
n 770 770 770 770 770 770 
k 1 2 4 8 16 32 

log2(q) 24 24 24 24 24 24 
σ 25 25 25 25 25 25 
t 8 8 8 8 8 8 
v 32 16 8 4 2 1 

Public key size (bytes) 3,041 6,050 12,068 24,104 48,176 96,320 
Secret key size (bytes) 32 32 32 32 32 32 
Ciphertext size (bytes) 74,048 37,088 18,608 9,368 4,748 2,438 

KeyGen (ms) 10.608 10.602 12.452 14.523 16.056 20.337 
Encap (ms) 30.407 15.101 7.714 4.055 2.157 1.184 
Decap (ms) 30.603 15.16 7.637 3.969 2.051 1.158 

Table 3: Performance analysis of LWE instance in column I of Table 1 

In Table 4, we have described several parameter sets for EMBLEM in case of B = 2. As in 
Table 3, the probability of decryption failure is set to 2−140 and k, t, and v are set to satisfy 
k × t × v = 256 so that we can encapsulate the key of length 256-bit. From II.A to II.F, the public 
key size decreases and the ciphertext size increases. In II.C, the sum of the sizes of both public 
key and ciphertext is the smallest. Since the 256-bit seed is stored as a secret key and expanded 
into an n × k matrix using PRF, the secret key size is constant at 256-bit, independent of n and k. 
We also measured the execution time of each algorithm in case of B = 2. Since the parameters 

m and n are smaller than in the case of B = 1, the execution time of each algorithm is relatively 
reduced. From II.A to II.F, the execution time of the Key Generation algorithm increases and 
that of the Encapsulation and Decapsulation algorithms decreases. 

(B=2) II.A II.B II.C II.D II.E II.F 

m 832 832 832 832 832 832 
n 611 611 611 611 611 611 
k 1 2 4 8 16 32 

log2(q) 24 24 24 24 24 24 
σ 25 25 25 25 25 25 
t 8 8 8 8 8 8 
v 32 16 8 4 2 1 

Public key size (bytes) 2,528 5,024 10,016 20,000 39,968 79,904 
Secret key size (bytes) 32 32 32 32 32 32 
Ciphertext size (bytes) 58,784 29,456 14,792 7,460 3,794 1,961 

KeyGen (ms) 6.851 7 8.223 9.698 10.517 12.839 
Encap (ms) 23.659 11.924 6.019 3.185 1.633 0.884 
Decap (ms) 23.548 11.894 5.997 3.111 1.705 0.849 

Table 4: Performance analysis of LWE instance in column II of Table 1 

In Table 5, we have described the performance of the parameters for R.EMBLEM in Table 2. 
Basically, the parameters in Table 5 have the probability of decryption failure of 2−140, and the 
secret key is a 256-bit seed. In columns iii and iv, σ is set very small to reduce the size of q. 
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The size of the public key, secret key, and the ciphertext are calculated corresponding to n of each 
column in Table 5. 

i ii iii iv 

n 463 320 504 437 
log2(q) 16 16 14 14 

σ 25 25 3 3 
t 1 1 1 1 

Public key size (bytes) 958 672 914 797 
Secret key size (bytes) 32 32 32 32 
Ciphertext size (bytes) 1,470 1,184 1,362 1,245 

Table 5: Performance analysis of Ring LWE instances in Table 2 

However, in practice, in order to apply the Number Theoretic Transform (NTT) operation, 
n is set to 512, which is a power of two. Even if n becomes larger, applying NTT operation 
is more efficient in terms of computational complexity. Therefore, the parameters of columns i 
and ii become equal, and the same goes for the parameters of columns iii and iv. In Table 6, 
NTT.KeyGen, NTT.Encap, and NTT.Decap represent the algorithm execution time when NTT 
operation is applied. In column iii, iv, since q is smaller, the execution time of KeyGen algorithm 
is reduced to almost half of that in column i, ii, and Encap and Decap algorithms are slightly 
faster than in column i, ii. 

i, ii iii, iv 

n 512 512 
log2(q) 16 14 

σ 25 3 
t 1 1 

Public key size (bytes) 1,056 928 
Secret key size (bytes) 32 32 
Ciphertext size (bytes) 1,568 1,376 

NTT.KeyGen (ms) 0.138 0.052 
NTT.Encap (ms) 1.137 1.001 
NTT.Decap (ms) 1.205 1.03 

Table 6: Performance analysis of Ring LWE instances applying NTT operation 

2.3 Known Answer Test values 

Known Answer Test (KAT) values that can be used to determine the correctness of an implemen-
tation of the submitted algorithms are provided in a zip file of digital and optical media. 

2.4 Security Strength 

2.4.1 Security Strength Categories 

• Security strength In [LP11], for the parameter set (n, q, s) = (256, 4093, 8.35), the esti-
mated runtime/advantage ratio is about 2120 seconds, which is compared to the security 

21 



of AES 128. Since we provide quite larger parameter sets, in Table 1 and Table 2, than 
(n, q, s) = (256, 4093, 8.35), it is reasonable to assume that, at a minimum, the proposed 
parameters provide higher security than that of AES 128. 

2.4.2 Additional Security Properties 

• Perfect forward secrecy. Basically, since EMBLEM and R.EMBLEM are key encapsulation 
mechanisms (KEMs), they do not consider perfect forward secrecy. 

• Resistance to side-channel attacks. We can make the process of sampling Gaussian er-
rors using cumulative distribution tables (CDT) resilient to memory and timing side-channel 
attacks, by always scanning all elements and performing comparisons with branchless arith-
metic operations [BCD+16]. In addition, by implementing various countermeasure against 
side-channel analysis [DSVC+15,VG15,Pes16,PPM17], we can make the proposed construc-
tions resistant to side-channel attacks. 

• Resistance to multi-key attacks. The multi-key setting can be seen as a generalization of 
the multi-user setting. In [BBM00], Bellare et al. addressed that, if a public-key encryption 
scheme is polynomially-secure against chosen-plaintext (resp. chosen-ciphertext) attack in 
the single-user setting, then it is also polynomially-secure against chosen-plaintext (resp. 
chosen-ciphertext) attack in the multi-user setting. Since EMBLEM and R.EMBLEM are 
proven to be IND-CCA secure in the single-user setting, we can say that they are IND-CCA 
secure in the multi-user setting as well. 

• Resistance to misuse. If coding errors occur or primitives, such as the random number 
generator, used in the implementation are malfunctioning, vulnerabilities may naturally arise. 
Assume that two identical random values are generated by the malfunctioned random number 
generator and two different messages are encrypted with the same random value. If an 
attacker obtains a message for one ciphertext, the rest can be easily recovered from the other 
ciphertext. 

2.5 Analysis with respect to Known Attacks 

• Estimating the security of LWE instances to known attacks. Recently, a sage mod-
ule for estimating the concrete hardness of LWE instances has been studied [APS15, AGL+17]. 
This module covers the following algorithms: meet-in-the-middle exhaustive search, coded-BKW 
[GJS15], dual-lattice attack and small/sparse secret variant [Alb17], lattice-reduction + enumer-
ation [LP11], primal attack via uSVP [AFG13, BG14], Arora-Ge algorithm [AG11] using Gröbner 
bases [ACFP14]. Using this result, we analyze the security of our proposed parameters with 
reduction cost model = BKZ.sieve, which refers to BKZ 2.0 estimates. The hardness of the 
LWE instances (with small secrets) in Table 1 with respect to uSVP, dec, and dual attacks are 
estimated as follows: 

I II 
[-1,1] [-2,2] 

uSVP 2128.3 2128.3 

dec 2191.4 2147.0 

dual 2137.4 2142.5 

Table 7: Estimated hardness of LWE instances 
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The abbreviation “SVP” refers to the minimum of standard (primal) embedding, dual embed-
ding, and Bai-Galbraith embedding, “dec” refers to the decoding attack, and “dual” refers to the 
distinguishing attack. 

In column I of Table 1, when m = 1003 and n = 770, the security levels against uSVP, dec, 
and dual attacks are 128.3, 191.4, and 137.4, respectively. Reducing m and n to 826 and 634 
lowers the computational complexity of the algorithm and improves efficiency, but the security 
levels it provides are reduced to 105.0, 154.0, and 112.9 as well. That is, when q and σ are fixed, 
using m and n that are smaller than the values in column I of Table 1 will not meet the 128-bit 
security level. The column II in Table 1 also provides security of at least 2128.3 . As with column 
I, the smaller the parameter (m, n) is, the lower the security level is. Figure 6 shows the sizes of 
the parameters n and m according to the root Hermite factor δ and illustrates the corresponding 
security levels against uSVP, dec, and dual attacks. L.H.S of Figure 6 describes the case where 
the secret key is sampled from [-1,1], and R.H.S describes the case where the secret key is sampled 
from [-2,2]. To provide the same security level, R.H.S requires smaller n and m than L.H.S. 
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Figure 6: Security of LWE instances against known attacks 

• Estimating the security of Ring LWE instances to known attacks. The hardness of the 
Ring LWE instance (with small secrets) in Table 2 with respect to uSVP, dec, and dual attacks are 
given in Table 8. Note that, in i and ii of Table 2, the standard deviation σ = 25 and log2(q) = 16, 
whereas in iii and iv, σ = 3 and log2(q) = 14. 

i ii iii iv 
[-1,1] [-2,2] [-1,1] [-2,2] 

uSVP 2128.1 2128.1 2128.3 2128.3 

dec 2231.7 2153.9 2179.1 2152.9 

dual 2144.1 2148.0 2142.5 2147.7 

Table 8: Estimated hardness of Ring LWE instances 

The four graphs in Figure 7 illustrate the columns i, ii, iii, and iv in Table 2 in order from 
the left. In column i of Table 2, when n = 463, the security levels against uSVP, dec, and dual 
attacks are 128.1, 231.7, and 144.1, respectively. Reducing n to 395 lowers the computational 
complexity of the algorithm and improves efficiency, but the security levels it provides are reduced 
to 109.6, 194.5, and 124.3 as well. However, when applying the Number Theoretic Transform 
(NTT) operation, since n should be a power of 2, we set n = 512 in both cases. As a result, 
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reducing n from 463 to 395 is meaningless in practice. If n is further reduced to 237, the efficiency 
can be improved significantly by setting n = 256 in NTT operation. However, the security level at 
this time is as low as 68.5. 
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Figure 7: Security of Ring LWE instances against known attacks 

2.6 Advantages and Limitations 

2.6.1 Advantages 

• Standard (R)LWE assumption. EMBLEM is a key encapsulation mechanism (KEM) 
secure against adaptive chosen ciphertext attacks (namely, IND-CCA2 secure), and its con-
struction is based on the small secret LWE problem. R.EMBLEM is a ring version of EM-
BLEM, also IND-CCA2 secure, and its construction is based on the Ring LWE problem with 
small secret. Based on the previous results, we set the parameters so that the small secret 
(Ring) LWE problem becomes as hard as the standard (Ring) LWE problem. Therefore, by 
rescaling the parameter set, we can be confident that EMBLEM (resp. R.EMBLEM) is secure 
based on the hardness of standard LWE (resp. Ring LWE) problem. 

• Small secret key. In the LWE instance with small secrets, the secret key is chosen uniformly 
from [−B, B] for a positive integer B < σ, rather than from the Gaussian distribution. 
Because of this nature, it is only necessary to store a 256-bit seed to generate the secret key, 
without having to store the entire matrix. The secret key can be derived from the seed by 
using pseudorandom functions. As a result, the size of the secret key in our constructions 
can be greatly reduced. 

• Worst-case to average-case reduction. In addition, in the parameter sets presented 
in Table 1 and the columns i, ii of Table 2, the standard deviation σ is set to be larger p √ 
than 2n/π. That is, the Gaussian parameter is larger than 2 n, so our constructions 
have worst-case to average-case security reduction. Also, all of the parameter sets presented 
provide 128-bit quantum security. 

• New multi-bit encoding method. Furthermore, we present a new approach to error 
handling in the decryption phase. The existing LWE-based public key encryption schemes 
or KEMs eliminate errors generated in the decryption phase through a rounding function. 
Rounding involves comparison operations, and if multiple bits are encapsulated in each entry 
of ciphertext, more comparison operations are required. In our approach, we can restore mul-
tiple bits simply by parsing the most significant t bits of each entry of a ciphertext, without 
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rounding. By separating the message from the error and inserting the error-blocking bit 1 
between them, we prevent errors generated in the decryption phase from being propagated 
to the message. Using the parameters given in Table 1, an 8-bit message per entry of a 
ciphertext is encapsulated (i.e., t = 8), and the message can be restored by parsing the most 
significant 8 bits per entry in the decryption phase. 

• Negligible probability of decryption failure. Finally, we guarantee a very small prob-
ability of the decryption failure (≈ 2−140). This allows CCA transformation from EM-
BLEM.CPA (resp. R.EMBLEM.CPA) to EMBLEM (resp. R.EMBLEM). In the announcement 
by the NIST, the proposed KEM should be semantically secure under adaptive chosen ci-
phertext attack, namely IND-CCA2 security, and it may be assumed that the attacker has 
access to the decryption oracle approximately 264 times. Therefore, it is important to reduce 
the correctness error of the proposed scheme so that it can meet the security requirement 
suggested by NIST. 

2.6.2 Limitations 

• Larger size of parameters. EMBLEM and R.EMBLEM are basically constructed based on 
the (Ring) LWE problem with small secret. Therefore, the parameter size should be larger 
than the (Ring) LWE instance in order to provide the same security level. As a result, the 
size of the public key and the ciphertext becomes somewhat larger. In our new error-blocking 
approach, we need to set q somewhat larger, because we need to ensure that errors occurring 
in the decryption phase do not affect the message part. That is, the size of q is equal to 
the sum of the followings: size of the error in the decryption phase, one bit to prevent error 
propagation, and the number of bits to be encapsulated in each entry of a ciphertext. As q 
increases, the size of the public key, secret key, and the ciphertext grows proportionally, and 
computational complexity also increases. 
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3 

4 

DIGITAL AND OPTICAL MEDIA 

All electronic data is provided in the zip file in the submitted package. For more details, refer to 
the corresponding files. This media has the following structure: 

• README : This file includes the list of all files in a zip file of Digital and Optical Media. 

• Reference Implementation : This file includes the reference implementation code, which helps 
to understand how the submitted algorithm is implemented. 

• Optimized Implementation : This file includes the optimized implementation code, which is 
used to demonstrate the performance of the submitted algorithm. 

• KAT : This file includes all of the required test values to determine the correctness of an 
implementation of the submitted algorithms. 

• Supporting Documentation : This file describes how subroutines of the submitted algorithms 
are implemented, for public review. 

INTELLECTUAL PROPERTY STATEMENTS 

The following statements will be given to NIST at the first PQC Standardization Conference, if 
our submission package is ”complete and proper” and will be posted for public review. 

1. statement by the submitter 

2. statement by patent (and patent application) owner(s) (if applicable) 

3. statement by reference/optimized implementations’ owner(s) 
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A Hardware Architecture of EMBLEM 

A.1 Hardware Architecture of EMBLEM.CPA 

In this section, we describes the hardware architecture design of EMBLEM.CPA. Our design is 
based on the EMBLEM.CPA scheme and it is implemented to the Zynq-7 FPGA. Also we omit 
control-path because we want to show a simple arithmetic logic circuit in our scheme. 
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Figure 8: EMBLEM.CPA Data Path 

Figure 8 illustrates the high-level architecture of EMBLEM.CPA. An initialization state is re-
quired to read Matrices A, B, RT , and X as well as 24-bit Gaussian sampling error and a matrix 
M for key generation, encryption, and decryption. We design the core architecture which can be 
used as key generation, encryption and decryption. The core architecture consists of two main 
parts: Arithmetic parts for three algorithms and data memory parts. The arithmetic parts process 
addition and substraction only for matrix calculations. The data memory parts consist of two 
detail parts. One is a read/write storage for A, B, R, result value, C1 and the other is read only 
memory for M or C2. 
The details of design are as follows. In Figure 8, the sel 1 wire of MUX1 and MUX2 is used 

to select data of E w, ACC w, D1 w, D2 w, D3 w. The Data memory DM2 can store C2 or M 
depending on each algorithm. The parallelized adder and substractor are performed at the same 
time. Since then, two calculated results and bypass signal can be selected with MUX2 according 
to 2 bits D1 w whose data will be RT or X which can be decided by each three algorithm. Finally, 
data output by MUX2 is stored at ACCU register which can be used as the next operand. Once 
a matrix calculation is completed, ACCU value is selected by MUX1 and forwarded to DM1 data 
memory. As a result, it is working on pipelining register. 

30 



A.2 Hardware Architecture of EMBLEM 

EMBLEM hardware architecture only includes hash functions and 256-bit output random number 
generator, so we will not illustrate the detail of EMBLEM hardware architecture diagram. 

A.3 Finite State Machine of EMBLEM 

A.3.1 Key Generation 

Figure 9 shows our simple finite state machine (FSM) for key generation. The details of FSM 
are as follows. The first state initializes the core, and is required for ACCU register reset. The 
Matrices A, X as well as 24-bit Gaussian sampling error for key generation should be loaded onto 
the data memory and register separately at this state. The second state reads data A and X from 
the data memory. The next step is a matrix calculation state. In this state, each column of matrix 
A is calculated with X and E. If C Count = 770, the memory write state (MEM Write) is entered, 
and then the R Count=1003 cycles are rotated. 

MEM
READ

(Start = 1)
Calc

MUX1 = 00
MUX2 = 00

MEM
Write

MUX1 = 00
MUX2 = 01A_RESET = 1 A_RESET = 1

(C_Count = 770)

(R_Count = 1003)

Initial
State

Figure 9: Key Generation Finite State Machine Diagram 

A.3.2 Encryption 

Figure 10 shows our simple finite state machine for encryption. When the encryption mode started, 
the first state initializes the core, and it is required for ACCU register reset. The Matrices A, B, 
and RT as well as 24-bit Gaussian sampling error and matrix M for key generation should be 
loaded onto data memory and register at this time. The second state reads data RT , A or B 
from the data memory. The next step is matrix calculation state. In this state, each column of 
matrix A or B is calculated with RT and E. If (C Count = 1003 & C1 flag = 1) | (C2 flag = 1 
& C Count = 1003) | (M flag = 1 & C Count = 1), the memory write state is entered, and then 
the C Count = 32 cycles are rotated. 

MEM
READ

(Start = 1)
Calc

MUX1 = 00
MUX2 = 00

MEM
Write

MUX1 = 00
MUX2 = 01A_RESET = 1

(C1_falg = 1 & C_Count = 1003)

A_RESET = 1

(C2_falg = 1 & C_Count = 1003)

(M_falg = 1 & C_Count = 1)

(M_falg = 1 and C_Count = 32)

Initial
State

Figure 10: Encryption Finite State Machine Diagram 

31 



A.3.3 Decryption 

Figure 11 shows our simple finite state machine for decryption. The details of FSM are as follows. 
The first state initializes the core, and it is required for ACCU register reset. The matrices C1, X 
as well as C2 should be loaded onto the data memory at this state. The second state reads data 
C1 and X from the data memory. The next step is matrix calculation state. In this state, each 
column of the ciphertext C1 is calculated with X and C2. If C Count = 770, the memory write 
state is entered, and then the R Count = 32 cycles are rotated. 

MEM
READ

(Start = 1)
Calc

MUX1 = 00
MUX2 = 00

MEM
Write

MUX1 = 00
MUX2 = 01A_RESET = 1

(C_Count = 770)

(R_Count = 32)

Initial
State

A_RESET = 1

Figure 11: Decryption Finite State Machine Diagram 

A.4 Performance 

A.4.1 Latency 

To evaluate the performance of EMBLEM, we implemented it on an FPGA using Xilinx EDA tool 
with default option. We use a commercially available 28 nm Zynq-7000 device for those three 
algorithms. As a result, our design was successfully tested by post implement simultation. Table 
9 provides the actual runtime latency of three algorithms. The throughput of the EMBLEM core 
is measured on the experimental setup and the measured maximum frequency is about 200 MHz. 
Our EMBLEM design is not optimized for improving its throughput, thus it seems that there is 
much opportunity to speed-up its performance. 

Algorithm Operation Device Cycles Latency 

KeyGen 

Encrypt 

Decrypt 

2 + km(n + 2) 

2 + vn(m + 2) + v(m + 2) + v(k + 2) 

2 + v(n + 2) 

xc7z020 

776.3k 

24.7M 

24.7k 

3.8ms 

123ms 

0.1ms 

Table 9: Latency of EMBLEM 

A.4.2 Memory 

To estimate the memory size of our implementation of EMBLEM, we provide memory footprint 
estimation (d.g., Block-Memory, DRAM) for three algorithms, which are the key generation, en-
cryption and decryption, respectively. As aforementioned, Matrix A, B, X, RT , and C1 are stored 
in the memory DM1 on each algorithm, so the stored matrix data are defined as Read Data Size 
in the table below. The ciphertext C2 and plaintext M were implemented using the read only 
memory DM2. The Write Data Size means that the result would be stored back to data memory. 
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The memory for Gaussian sampling error matrix is not considered in these tables because only 
24-bit register is needed in our core design. 

Memory Read Data Size Write Data Size Total kB Total KiB 

DM1 
log2(q)(m × n) 

+ log2({−1, 0, 1})(n × k) 
log2(q)(m × k) 

2,317.12 2,262.81 
DM2 - -

Table 10: Memory size of Key Generation in EMBLEM 

Memory Type Read Data Size Write Data Size Total kB Total KiB 

DM1 
C1 

C2 

log2(q)(m × n) 

+ log2({−1, 0, 1})(n × k) 

log2({−1, 0, 1})(m × k) 

+ log2(q)(v × k)$ 

log2(q)(v × n) 

log2(q)(v × k) 363.82 355.3 

DM2 M log2(q)(32 × 1) -

Table 11: Memory size of Encryption in EMBLEM 

Memory Read Data Size Write Data Size Total kB Total KiB 

DM1 
log2(q)(v × n) 

+ log2({−1, 0, 1})(n × k) 
log2(q)(v × k) 

74.3 72.56 
DM2 log2(q)(v × k) -

Table 12: Memory size of Decryption in EMBLEM 

A.4.3 Utilization 

The summary of resource utilization is presented in Table 13. The EMBLEM core data path is 
implemented using an LUT level instantiations mostly with Xilinx primitive libraries. To evaluate 
the gate count, we use the gate count estimation in [Sta]. 

Device BRAM/DSP48E/FFs/LUTs Gate Count 

xc7z020 0/0/24/48 576 

Table 13: EMBLEM Core Estimated Utilization (Data Path only) 
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	1 BACKGROUND 
	1 BACKGROUND 
	1.1 Notation 
	1.1 Notation 
	We denote the set of natural numbers by N and the set of integers by Z. For q ∈ N, we deﬁne the 
	q
	q

	set Zq as Z ∩ (− , ]. For a ﬁnite set S, we write a ←R S to describe that a is chosen uniformly at 
	q 
	2 

	2 
	random from S and for a distribution X , we write a ←X to denote that a is sampled according to the distribution X . For a matrix M, Mdenotes the transpose of M. For a vector a of length n, we deﬁne ai to be the i-th component of a, and for a matrix M, we deﬁne M[i, j] to be the 
	T 

	p
	2
	2

	i-th row and j-th column entry of M. The Euclidean norm ||a|| is deﬁned as We deﬁne 
	Σ
	n 

	i=1i the function [a]d which drops d least signiﬁcant bits of a. We expand this function to matrices by applying it to each component of the matrix. For positive integers q and n, we deﬁne U(Z) by 
	a
	. 
	n

	q the uniform distribution over Z. 
	n
	q 


	1.2 Discrete Gaussian Distribution 
	1.2 Discrete Gaussian Distribution 
	For a given s> 0, the discrete Gaussian distribution over a lattice L is deﬁned as 
	ρs(x)
	ρs(x)

	GDL,s(x) = (1)
	Σy∈Lρs(y) 
	−πkxk/s
	2
	2 

	for any x ∈ L, where ρ denote the Gaussian function ρs(x)= e. 
	√ 
	Note that the standard deviation of GDL,s is σ= s/ . The Gaussian parameter s is used to describe a discrete Gaussian distribution throughout this paper. We write GDs to denote the discrete Gaussian distribution GDZ,s. Moreover, it holds that GDZn,s = GD.
	2π
	n 

	s 

	1.3 Learning with Errors 
	1.3 Learning with Errors 
	We deﬁne a standard lattice-based problem on which the security of our proposal is based. 
	Deﬁnition 1.1 (Decision LWE problem). Let m, n, k, q ∈ N and Ds, De be distributions over Zq. One is given m samples (Ai,Bi) ∈ Z×Zand asked to distinguish whether there exists S ←D
	n 
	k 
	n×k 

	qq s such that the samples are of the form (A, AS + E mod q) with A ←R Z, E ←Dor the 
	m×n 
	m×k 

	qe samples are chosen uniformly at random from Z×Z. We denote the decision LWE problem 
	m×n 
	m×k 

	qq by LWEn,m,q,D. 
	e 

	The binary-LWE problem (where secret vector s is from {−1, 0, 1}) has been considered in work by Micciancio and Peikert [MP13]. In [BG14], Bai and Galbraith proved that binary-LWE problem is as hard as the LWE problem as long as increasing the parameter n by a factor of log(log(n)). Note that the errors are still discrete Gaussians. We apply Bai and Galbraith’s embedding method to the case where s is sampled from [−B, B]for any B<σ. The matrix version of a (decisional) small secret LWE problem, denoted by s
	n
	n 
	e 

	Deﬁnition 1.2 (Decision LWE Problem with small secrets). Let m, n, k, q ∈ N and De be a distribution over Zq. One is given m samples (Ai,Bi) ∈ Z× Zand asked to distinguish whether 
	n 
	k 

	qq 
	there exists S ← [−B, B]such that the samples are of the form (A, AS + A mod q) with A ←R Z, A ←Dor the samples are chosen uniformly at random from Z× Z.
	n×k 
	m×n 
	m×k 
	m×n 
	m×k 

	qe qq 
	Lemma 1.3 (The Number of Binary LWE samples [BG14]). Let q, n, σ and δ be ﬁxed. Let 
	0
	m≈ m + n be the dimension of the embedded lattice in the new attack described in Section 6 of [BG14]. For a given Hermite factor δ, the optimal value for mis approximately 
	0 

	s 
	n(log q − log σ) 
	n(log q − log σ) 

	. (2)
	log δ 
	Albrecht et al. applied the embedding technique of Bai and Galbraih [BG14] to generalized cases, that is, elements of the secret key are randomly sampled from [a, b]. As a result, they proposed the following lemma. 
	Lemma 1.4 (Log root Hermite factor of LWE instances of small secret [APS15]). Let a small secret LWE instance be characterised by n, α, q, let s(i) ←R {a, . . . , b}, let ξ =2/(b − a) and let 
	αq
	αq

	σ = . Any lattice reduction algorithm achieving log root-Hermite factor: 
	√ 

	2π 
	2π 

	� √ .2 
	log(q/σ) − log(2τ ) · log(q/σ)
	πe

	log δ = � (3)
	.2 
	n 2 log(q/σ) − log ξ 
	soLWE by reducing BDD to uSVP for some ﬁxed τ ≤ 1 if we have that (q(ξσ))· 
	lves 
	m
	n
	1/(m+n) 

	qq
	m+nn(log q−log σ)
	m+nn(log q−log σ)

	≤ q where m = m− n = − n.
	0 

	2πe log δ 
	Lyubashevsky et al. proposed the ring-LWE problem in [LPR10, LPR13], namely, the LWE problem over rings. We deﬁne a ←X as meaning that n coeﬃcients of a polynomial a are chosen independently from X . 
	n 

	Deﬁnition 1.5 (Decision Ring-LWE problem). Let n, q ∈ N and Ds, De be distributions over Zq. For an irreducible polynomial f(x) ∈ Z[x] of degree n, let Rq = Zq[x]/f(x) be the ring modulo q. One is given (a, b) ∈ Rand asked to distinguish whether there exists a polynomial s ←Dsuch 
	2 
	n 

	qs 
	that (a, b) is of the form (a, a·s+e) with a ←R Rq , e ←Dor (a, b) is chosen uniformly at random 
	n 

	e from R. We denote the decision Ring-LWE problem by RLWEn,q,D.
	2 
	e 

	q 
	The Ring-LWE problem with small secrets (where coeﬃcients of secret polynomial s←[−B, B]) can be deﬁned similar to smaLWE. In [GKPV10], it is shown that for the standard LWE, the secret s can be sampled from any distribution, as long as its entropy is suﬃciently large. Assuming that the analysis results in the standard LWE setting equally hold in the ring-LWE setting, we can set the coeﬃcients of the secret polynomial to be small in the ring-LWE problem. A (decisional) small secret Ring-LWE problem, denoted
	n
	e 

	Deﬁnition 1.6 (Decision Ring-LWE Problem with small secrets). Let n, q ∈ N and De be a distribution over Zq. For an irreducible polynomial f(x) ∈ Z[x] of degree n, let Rq = Zq[x]/f(x) be the ring modulo q. One is given (a, b) ∈ Rand asked to distinguish whether there exists a 
	2 

	q 
	polynomial s ← [−B, B]such that (a, b) is of the form (a, a · s + e) with a ←R Rq, e ←Dor
	n 
	n 

	e 
	(a, b) is chosen uniformly at random from R.
	2 

	q 

	1.4 Deﬁnitions 
	1.4 Deﬁnitions 
	Deﬁnition 1.7 (Public Key Encryption scheme). A public-key encryption (PKE) scheme consists of the following three PPT algorithms: KeyGen, Encrypt, and Decrypt. 
	Ł. 
	-KeyGen 1: The key generation algorithm takes as input the security parameter 1and outputs a public/secret key pair (pk, sk). 
	λ 
	λ 

	Ł. 
	-Encrypt pk, m : The encryption algorithm takes as input a public key pk and a message m ∈M. Then it outputs a corresponding ciphertext C. 
	Ł. 
	-Decrypt sk, C : The decryption algorithm takes as input a secret key sk and a ciphertext C. It outputs a message m or ⊥ (which indicates decryption failure). 
	Correctness. We guarantee the correctness of a PKE scheme if the following condition holds: For all m ∈M, 
	.
	. 
	Pr (pk, sk) ←R KeyGen(1); C ←R Encrypt(pk, m): Decrypt(sk, C)= m> 1 − .(λ) 
	λ

	where . is a negligible function. 
	Deﬁnition 1.8 (Key Encapsulation Mechanism). A key encapsulation mechanism (KEM) consists of the following three PPT algorithms: KeyGen, Encap, and Decap. 
	-KeyGen(1): The key generation algorithm takes as input the security parameter 1and outputs a public/secret key pair (pk, sk). 
	λ
	λ 

	-Encap(pk): The encapsulation algorithm takes as input a public key pk. Then it outputs a ciphertext C and a key K ∈K. 
	-Decap(sk, C): The decapsulation algorithm takes as input a secret key sk and a ciphertext C. It outputs a key K. 
	Correctness. We guarantee the correctness of KEM if the following condition holds: 
	.
	. 
	Pr (pk, sk) ←R KeyGen(1); (C, K) ←R Encap(pk): Decap(sk, C)= K> 1 − .(λ) 
	λ

	where . is a negligible function. 
	Deﬁnition 1.9 (IND-CPA Security of PKE). Let PKE =(KeyGen, Encrypt, Decrypt) be a public-key encryption scheme. Let us deﬁne the following experiment (parameterized by a bit b) between an adversary A and a challenger: 
	Experiment IND-CPA(k): 
	b 

	PKE,A
	1. 
	1. 
	1. 
	The challenger runs (pk, sk) ← KeyGen(params) and gives pk to A; 

	2. 
	2. 
	A outputs two message (m0,m1) of the same length; 

	3. 
	3. 
	The challenger computes Encrypt(pk, mb) and gives it to A; 

	4. 
	4. 
	A outputs a bit b. The challenger returns bas the output of the game. 
	0 
	0 



	The advantage of A for breaking the IND-CPA security of a PKE is deﬁned as 
	IND-CPA 
	Adv

	PKE,A 
	= 
	...
	Pr 
	. 
	IND-CPA
	1 

	(k)=1 
	PKE,A

	...
	..
	.
	− Pr 
	IND-CPA
	0 

	(k)=1 
	PKE,A

	. 
	We say that PKE is IND-CPA secure if for any polynomial time adversary A and any k, we 
	IND-CPA 
	have Adv

	≤ .(k) where . is a negligible function. 
	PKE,A 
	Deﬁnition 1.10 (IND-CCA Security of KEM). Let KEM =(KeyGen, Encap, Decap) be a key encapsulation mechanism. Let us deﬁne the following experiment (parameterized by a bit b) between an adversary A and a challenger: 
	Experiment IND-CCA(k): 
	b 

	KEM,A
	1. 
	1. 
	1. 
	The challenger runs (pk, sk) ← KeyGen(1) and gives pk to A; 
	λ


	2. 
	2. 
	A queries to the decapsulation oracle Decap(sk, ·); 

	3. 
	3. 
	The challenger computes (C,K) ← Encap(pk) and K←R K. Then the challenger 
	∗
	0 
	∗
	∗ 



	1 
	gives (C,K) to A.;
	∗
	∗

	b 
	4. A continues to query the decapsulation oracle, but may not query the ciphertext C. Finally, A outputs a bit b. The challenger returns bas the output of the game. 
	∗ 
	0 
	0 

	In the (quantum) random oracle model, the challenger additionally runs the random oracles. The quantum accessible random oracles are described in [TU16]. The advantage of A for breaking the IND-CCA security of KEM is deﬁned as 
	IND-CCA 
	Adv

	KEM,A 
	= 
	...
	Pr 
	. 
	IND-CCA
	1 

	(k)=1 
	KEM,A

	...
	..
	.
	IND-CCA
	0 

	(k)=1 
	KEM,A

	− Pr 
	− Pr 
	. 

	We say that KEM is IND-CCA secure if for any polynomial time adversary A and any k, we 
	IND-CCA 
	have Adv

	≤ .(k) where . is a negligible function. 
	KEM,A 


	2 ALGORITHM SPECIFICATIONS AND SUPPORTING DOCUMENT 
	2 ALGORITHM SPECIFICATIONS AND SUPPORTING DOCUMENT 
	In this section, we introduce EMBLEM and R.EMBLEM as standard candidates. The schemes secure against chosen-plaintext attacks, EMBLEM.CPA and R.EMBLEM.CPA, are presented together for the sake of understanding. 
	2.1 Algorithm Speciﬁcations 
	2.1 Algorithm Speciﬁcations 
	2.1.1 EMBLEM.CPA (CPA-Secure Public-Key Encryption) 
	2.1.1 EMBLEM.CPA (CPA-Secure Public-Key Encryption) 
	Encoding and decoding function. Let M = {0, 1}be the message space. We ﬁrst deﬁne the encoding function encode, which takes a bit string as an input and outputs it in a matrix form. The decoding function decode is an inverse of encode. For inputs an l-bit message m, a block size t, and a modulus q, encode operates in the following manner: 
	l 

	. encode(m, t, q) 
	1. 
	1. 
	1. 
	Split the message by t-bit (we assume that t divides l) and generate l/t message blocks; 

	2. 
	2. 
	Transform l/t blocks into a v × k matrix M = {m(i,j)}. Denote m(i,j) be the message block assigned to the i-th row and j-th column entry of M; 


	.
	−
	→ 
	3. Output a v × k matrix M = M[i, j] where M[i, j] ← m(i,j)||1|| 0 for i ∈ [1,v], j ∈ [1,k]. 
	Figure
	Figure 1: The encoding function encode . decode(M, t, q) 
	1. 
	1. 
	1. 
	Transform a v × k matrix into l/t message blocks mi for i ∈ [1, l/t]; 

	𝑀𝑀[1,1]
	𝑀𝑀[1,1]
	Compute m=[mi]log(q)−t for i ∈ [1, l/t]; 
	i 
	2



	0
	0

	𝑀𝑀[1,2]
	3. Output l-bit string m = m|| · · · ||m
	1

	l/t
	⋯

	Sampling function. We deﬁne the sampling function Sam which takes input a random coin r and outputs ephemeral values (R, E1,E2) where R is a random string and E1,E2 are sampled from Gaussian distribution. The sizes of R, E1, and E2 can be extended as desired, and always output the same value for the same input. Since R is a random string, we can generate it directly using the pseudorandom function (PRF) with the random coin r as seed. We can also generate random seeds s1 and s2 to generate E1 and E2, respec
	When the system is set up, the system parameter params is generated as follows: Choose 
	√ 
	positive integers m, n, k, t, v and the modulus q. Choose a standard deviation σ= s/ for discrete Gaussian distribution GDs and a positive integer B<σ. The parameters are given by params =(m, n, k, q, t, v, B, GDs). Note that l/t = v × k. The LWE-based multi-bit encryption scheme EMBLEM.CPA is described as below. 
	2π 

	m×n
	Z

	KeyGen(1). Choose a random matrix A ← . Choose a secret random matrix X ←
	λ

	q 
	[−B, B]and an error matrix E ← GD. Compute B = AX + E. The key pair 
	n×k 
	m×k 

	s 
	(pk, sk) is given by pk =(A, B) and sk =(X). 
	1 

	Encrypt(pk, msg ∈M). To generate the ciphertext, proceed with the following steps: 
	1. 
	1. 
	1. 
	M ← encode(msg, t, q); 

	2. 
	2. 
	Choose a random coin r ∈{0, 1}; 
	256



	3. (R, E1, E2) ←Sam(r) where R ∈ [−B, B]and (E1, E2) ∈ GD;
	m×v 
	v×(n+k)

	s 
	4. 
	4. 
	4. 
	Compute (C1, C2)=(RA + E1, RB + E2 + M); 
	T 
	T 


	5. 
	5. 
	Return the ciphertext C =(C1, C2) ∈ Z× Z.
	v×n 
	v×k 



	qq 
	Decrypt(sk, C). Parse the ciphertext C as (C1, C2). 
	1. 
	1. 
	1. 
	Compute M = C2 − C1X; 

	2. 
	2. 
	Output msg ← Decode(M, t, q). 


	Correctness. We show the correctness of the encryption scheme described in Section 2.1.1. Theorem 2.1 (Correctness). Let E = {E} where Eis an i-th column of E ∈ Z,
	(i)
	(i) 
	m×k 

	q 
	(i)(i)
	E2 = {E} where Eis an i-th entry of column E2 ∈ Z, and X = {X} where Xis
	k 
	(i)
	(i) 

	22 q
	hn oi 
	(i)
	an i-th column of X ∈ Z. Let . = Pr max |hr, Ei| + |E| + |hE1,Xi| ≥ 2where 
	n×k 
	(i)
	(i)
	d 

	q 2 
	i∈[1,k] 
	d = log(q) − (t + 1). Then EMBLEM.CPA is (1−.)-correct. 
	2

	Proof. The decryption phase proceeds as follows: C2 − C1X =(RB + E2 + M) − (RA+ E1)X 
	Ł
	T 
	T 
	. 

	= R(AX + E)+ E2 + M − (RAX + E1X) 
	T 
	T 

	=(RE + E2 − E1X)+ M 
	T 

	Note that the secret matrix X can be generated using pseudorandom functions, i.e., X ← P RF (seedX), since we choose the elements of X from [−B, B], not from the Gaussian distribution. In other words, the user only needs to store a bit string seedX instead of the entire matrix of X. Similarly, the matrix A in the public key can also be derived from the seed by using PRF. In [BCD16], AES128-ECB was used as a PRF with a 256-bit seed. 
	1
	+

	Figure
	Figure 2: Error propagation in the decryption phase 
	M is a v × k matrix and for i ∈ [1,v], j ∈ [1,k], M[i, j] (i.e., the i-th row and j-th column 
	−→ −
	𝑚𝑚
	entry of M) is in the form of m(i,j)||1|| 0 where 0 is of length d. Therefore, if |ε(i,j)|, the absolute 
	value of (i, j)-th entry in RE + E2 − E1X, is less than 21
	T
	d

	part can not be aﬀected by the negative ε(i,j) because of error-blocking bit 1. Fig. 2 illustrates the error propagation in the decryption phase when the error is negative. As a result, when the inequality |ε(i,j)| < 2holds for any i ∈ [1,v],j ∈ [1,k], our scheme satisﬁes correctness. . 
	d 

	In Section 2.1.5, we will set parameters to make the decryption error negligible, i.e., . =200 … 0
	−140 

	Security. We show that the proposed scheme is IND-CPA secure under the hardness assumption of the LWE problem with small secrets. 
	Theorem 2.2 (Security). The LWE-based multi-bit encryption EMBLEM.CPA is IND-CPA se
	-

	Proof. The proof proceeds by the sequence of games. Note that in Game 0 (1hybrid game), the public key is the small secret LWE instance and the ciphertext is an encryption of m0. In Game 5 (6hybrid game), the public key is the small secret LWE instance and the ciphertext is an encryption of m1 where |m0| = |m1|. We show that distributions of Game 0 and Game 5 are computationally indistinguishable for the adversary. 
	𝑑𝑑-bit
	th 

	. Game 0. This is the original game, where the public key and the ciphertext are generated honestly as in Section 2.1.1. In this game, the ciphertext is an encryption of m0. Note that M0 ←encode(m0, t, q). The distribution of Game 0, denoted by D0 is given as follows: 
	𝜀𝜀A + E1, C2 = RB + E2 + M0)} 
	=𝑅𝑅𝑇𝑇𝐸𝐸+𝐸𝐸2−𝐸𝐸1𝑋𝑋
	T

	. Game 1. In this game, the public key B is generated uniformly at random, rather than computed with a secret key X. The rest is the same as in Game 0. The distribution of Game 1, denoted by D1, is given as follows: 
	P
	B ←U(Z)),C ← (C1 = RA + E1, C2 = R𝑚𝑚
	+
	T
	T

	q 
	. Game 2. In Game 2, the small secret LWE instances contained in the ciphertext change to random matrices. In other words, the ciphertext C =(C1, C2)= (U1, U2 + M0), where (U1, U2) is generated uniformly at random in Z× Z0
	n 
	k 

	qq 
	The rest is the same as in Game 1. In this game, there are no small secret LWE instances. The distribution of Game 2, denoted by D2, is given as follows: 
	D2 = {pk ← (A, B ←U(Z)),C ← ( 
	m×k

	𝑅𝑅𝑅
	q 
	. Game 3. In Game 3, the message m0 contained in the ciphertext changes to another message m1. Note that M1 ←encode(m1, t, q). The rest is the same as in Game 2. The distribution of Game 3, denoted by D3, is given as follows: 
	D3 = {pk ← (A, B ←U(Z)),C ← ( 
	m×k

	C1 = U1, C2 = U2 + M1 )}
	q 
	. Game 4. In this game, the ciphertext is restored to the small secret LWE instance, and the rest is the same as in Game 3. Note that the ciphertext is an encryption of M1. The distribution of Game 4, denoted by D4, is given as follows: 
	D4 = {pk ← (A, B ←U(Z)),C ← ( 
	m×k

	)}
	C1 = RA + E1, C2 = RB + E2 + 
	C1 = RA + E1, C2 = RB + E2 + 
	T
	T

	M1

	q 
	. Game 5. In this game, the public key is restored to the small secret LWE instance, and the rest is the same as in Game 4. Game 5 is the same as Game 0, except that the ciphertext is an encryption of M1. The distribution of Game 5, denoted by D5, is given as follows: 
	D5 = {pk ← (A, 
	B = AX + E ),C ← (C1 = RA + E1, C2 = RB + E2 + M1)} 
	T
	T

	The distributions D0 and D1 are computationally indistinguishable under the decision-smaLWEn,m,q assumption. The distributions D1 and D2 are also computationally indistinguishable under the decision-smaLWEm,n+k,q assumption, since the ciphertext in Game 1 forms the small secret LWE instances with (n + k) samples in dimension n for a given public key (A||B). Note that, even if m>n + k, one can reduce smaLWEn,m,q to smaLWEm,n+k,q by adjusting the size of the matrix during the simulation. In Game 2 and 3, the 

	2.1.2 EMBLEM (CCA-Secure Key Encapsulation Mechanism) 
	2.1.2 EMBLEM (CCA-Secure Key Encapsulation Mechanism) 
	In this section, we propose an IND-CCA secure key encapsulation mechanism (KEM) EMBLEM = (KeyGen, Encap, Decap) in the quantum random oracle model. To construct a CCA secure KEM, we apply the KEM variant of Fujisaki-Okamoto (FO) transformation to our IND-CPA secure encryption scheme EMBLEM.CPA described in Section 2.1.1 [HHK17]. 
	256
	{0, 1}

	Let M = be the message space of EMBLEM.CPA scheme. The system parameters params are given the same as in the EMBLEM.CPA scheme. In the FO transformation, the following three hash functions are used: 
	• 
	• 
	• 
	The hash function G : {0, 1}→{0, 1}
	∗ 
	256 


	• 
	• 
	The hash function H : {0, 1}→{0, 1}
	∗ 
	256 


	• 
	• 
	The hash function H: {0, 1}→{0, 1}
	ˆ
	∗ 
	256 



	These hash functions will be modeled as random oracles in the security proof. The CCA-secure KEM EMBLEM is constructed as follows: 
	KeyGen(1). Same as EMBLEM.CPA.KeyGen. 
	λ

	Encap(pk). To generate the key K and ciphertext C, proceed with the following steps: 
	1. 
	1. 
	1. 
	Select δ ←R {0, 1}and compute r = G(δ); ˆ
	256 


	2. 
	2. 
	Compute C1← EMBLEM.CPA.Encrypt(pk, δ; r) and C2 = H(δ); 

	3. 
	3. 
	Compute K = H(δ, C1,C2); 

	4. 
	4. 
	Return the ciphertext C =(C1,C2) ∈ Zq ×{0, 1}and the key K∈{0, 1}. 
	v
	×(n+k) 
	256 
	256 



	Decap(sk, C). Parse the ciphertext C as (C1, C2), and proceed with the following steps: 
	1. Compute δ ← EMBLEM.CPA.Decrypt(sk, C1); 
	2. 
	2. 
	2. 
	Compute r = G(δ); ˆ

	3. 
	3. 
	Compute e ← EMBLEM.CPA.Encrypt(pk, δ; r) and d = H(δ); 


	• If e 6or d = C2, output ⊥;
	= C1 6
	4. Otherwise, output K = H(δ, C1,C2). 
	Note that all the ephemeral values selected in EMBLEM.CPA.Encrypt algorithm are determined by the random coin r. The correctness of this scheme is derived from that of the underlying CPA-secure public-key encryption scheme [HHK17]. 
	Theorem 2.3 (Correctness). If EMBLEM.CPA is (1-.)-correct, then EMBLEM is (1-.)-correct in the quantum random oracle model. 
	EMBLEM is tightly IND-CCA secure in the (classical) random oracle model (by Theorem 2.4), and is non-tightly IND-CCA secure in the quantum random oracle model (by Theorem 2.5). Note ˆ
	that, the hash function H is not required to prove IND-CCA security in the (classical) random oracle model. 
	Theorem 2.4 (Theorem 3.1 and 3.2 in [HHK17]). Assume EMBLEM.CPA to be δ-correct. For any IND-CCA adversary B issuing at most qD decryption queries, at most qG queries to random oracle G, and at most qH queries to random oracle H, there exists an IND-CPA adversary A such that 
	IND-CCA IND-CPA 
	Adv
	qH +2qG+1 
	+3 · Adv

	· δ +
	EMBLEMH 2256 EMBLEM.CPA
	(B) ≤ q
	(A) 

	and the running time of A is about that of B. 
	Theorem 2.5 (Theorem 4.4 and 4.6 in [HHK17]). Assume EMBLEM.CPA to be δ-correct. For any IND-CCA quantum adversary B issuing at most qD (classical) decryption queries, at most qG queries to the quantum random oracle G, at most qH queries to the quantum random oracle 
	ˆ
	H, and at most q ˆqueries to the quantum random oracle H, there exists an IND-CPA quantum 
	H 
	adversary A such that 
	r 
	r 
	q

	IND-CCA IND-CPA 
	Adv
	Adv

	+ qH ) · 8 · δ(qG + 1)+ (1 + 2qG)
	2 

	EMBLEMHˆEMBLEM.CPA
	(B) ≤ (2q
	(A) 

	and the running time of A is about that of B. 
	Note that, by Theorem 4.4 and 4.6 in [HHK17], we can transform a One-Way against Chosen Plaintext Attacks (OW-CPA) secure encryption scheme into an Indistinguishability against Chosen-Ciphertext Attacks (IND-CCA) secure KEM. Since IND-CPA security of encryption scheme with suﬃciently large message space implies its OW-CPA security (Lemma 2.3 in [HHK17]), we can say that Theorem 2.4 and 2.5 imply the conversion from IND-CPA secure encryption scheme to IND-CCA secure KEM. 
	-


	2.1.3 R.EMBLEM.CPA (CPA-Secure Public-Key Encryption over Rings) 
	2.1.3 R.EMBLEM.CPA (CPA-Secure Public-Key Encryption over Rings) 
	In this section, we provide a CPA-secure public-key encryption (PKE) scheme over rings. 
	Encoding and decoding function over rings. Let M = {0, 1}be the message space. We deﬁne the encoding function R.encode, which takes a bit string as an input and outputs it in a polynomial form, and its inverse function R.decode. It operates similarly to the encode function in Section 2.1.1, except that the output is in polynomial form. 
	l 

	. R.encode(m, t, q) 
	1. Split l-bit message m by t-bit and generate l/t message blocks {mi}; −
	→ 
	2. 
	2. 
	2. 
	Generate mˆi = mi||1|| 0 , of length log(q), for i ∈ [1, l/t]; 
	2


	3. 
	3. 
	Output a polynomial ˆm where the coeﬃcient vector is set to ( ˆmˆl/t, 0,..., 0).


	m1,..., 
	Figure
	Figure 3: The encoding function R.encode 
	. R.decode(ˆm, t, q) 
	1. 
	1. 
	1. 
	1 

	2. 
	2. 
	Compute mi =[ˆfor i ∈ [1, l/t];


	mi]log2(q)−t 
	3. Output l-bit string m = m1|| · · · ||ml/t. 
	0 0 … 0+1 ∈ Z[x], let R= Z[x]/hf(x)i be the ring of integer polynomials modulo f(x), and Rq = Zq[x]/hf(x)i be the ring of integer polynomials modulo both f(x) and q. Elements of Rq can be represented by polynomials of degree less than n whose coeﬃcients are from the set {0,...,q − 1}. 
	n 

	Truncate function. To increase the eﬃciency of transmission, we use a function Trunc that truncates the ciphertext [AOP17]. Let a ∈ Rq be a polynomial of degree n, represented by a =a0 + a1X + ··· + an−1X. For 1 ≤ l ≤ n, we deﬁne Trunc as follows: 
	StyleSpan
	(log2𝑞𝑞)-bit

	𝑡𝑡-bit
	l−1 

	When the system is set up, the system parameter params is generad as follows: Choose 
	StyleSpan

	1-bit
	positive integers n, t and a modulus q. Choose a standard deviation σ= s/ 2π for discrete Gaussian distribution GDs and a positive integer B<σ. Let Rq denote the reduction of a ring R modulo q, i.e., Rq = Zq[X]/hf(x)i. The parameters are given by params =(n, t, q, B, Rq , GDs). Our ring-based PKE, R.EMBLEM =(KeyGen, Encrypt, Decrypt), is described as below. 
	𝑑𝑑-bit
	λ

	�𝒎𝒎
	key pair (pk, sk) are given by pk =(a, b)∈ R�𝑚𝑚1
	2 

	q 
	Encrypt(pk, m ∈M). Assume that l = 256 <n. To generate the ciphertext, proceed with the following steps: 
	As in EMBLEM.CPA scheme in Section 2.1.1, the coeﬃcients of the secret polynomial x can be generated using PRF, and thus it is required to store only the seed, the input of the PRF, rather than the entire polynomial (i.e., all the coeﬃcients). 
	𝑋𝑋

	1. 
	1. 
	1. 
	mˆ← R.encode(m, t, q); 

	2. 
	2. 
	Choose a random coin z ∈{0, 1}; 
	256


	3. 
	3. 
	(r, e1,e2) ←Sam(z) where r ∈ [−B, B]and (e1,e2) ∈ GD;
	n 
	n+n



	s 
	4. 
	4. 
	4. 
	Compute c1 = r · a + e1 and c2 ← Trunc(r · b + e2, l/t)+ ˆm; 

	5. 
	5. 
	Return the ciphertext c =(c1,c2) ∈ R.
	2 



	q 
	Decrypt(sk, c). Parse the ciphertext c as (c1,c2)∈ R.
	2 

	q 
	1. 
	1. 
	1. 
	Compute d ← Trunc(c1 · x, l/t) and ˆm = c2 − d; 

	2. 
	2. 
	Output m ←R.decode(ˆm, t, q). 


	(i)(i)
	(i)(i)(i)
	Theorem 2.6 (Correctness). Let r, e, e, e, and xbe the i-th coeﬃcients of the 
	1 h2 i
	. 
	(i)(i)
	polynomials r, e, e1,e2, and x, respectively. Let . = Pr max |r·e|+|e|+|e·x|≥ 2
	(i) 
	(i)
	(i)
	d 

	21 
	i∈[1,l/t] 
	where d = log(q) − (t + 1). Then R.EMBLEM.CPA is (1 − .)-correct. 
	2

	Proof. Parse (c1,c2) of the ciphertext c as c1 = r · a + e1, c2 ← Trunc(r · b + e2, l/t)+ ˆm. In the decryption phase, 
	Ł .Ł. 
	c2 − d = Trunc r · (a · x + e)+ e2, l/t +ˆm −Trunc (r · a + e1) · x, l/t 
	Ł. 
	= Trunc r · e + e2 − e1 · x, l/t +ˆm where polynomials c2 and d are of degree l/t. 
	−→ −
	→ 
	Each coeﬃcient of the polynomial ˆm, denoted by mˆi∈ Zq, is encoded as mi||1|| 0 where 0 is a vector of length d. If |eˆi| < 2, when adding ˆei to mˆi, eˆi does not aﬀect mi. Note that mi is the most signiﬁcant t bits of mˆi where t = log(q) − (d + 1). Even if ˆei is negative, the error does not aﬀect mi by virtue of the error-blocking bit 1, as in EMBLEM.CPA. In other words, ˆei + mˆi ∈ Zq is in the form of mi||R where R is the bit string of length log(q) − t. As a result, R.EMBLEM.CPA successfully decrypt
	d
	2
	2

	Theorem 2.7 (Security). R.EMBLEM.CPA is IND-CPA secure if the decision-smaRLWEn,q assumption holds. 
	-

	Proof. The proof proceeds with a sequence of games, as in Theorem 2.2. In Game 0 (the ﬁrst hybrid game), the public key is a small secret ring-LWE instance and the ciphertext is an encryption of m0. In Game 7 (the last hybrid game), the public key is still a small secret ring-LWE instance, and only the ciphertext changes to the encryption of m1 such that |m0| = |m1|. Let denote Di as the distribution of Game i. We show that D0 and D7 are computationally indistinguishable for the adversary. 
	. Game 0. In this game, the public key and the ciphertext are generated honestly as in Section 
	2.1.3 where the ciphertext is an encryption of m0. Note that mˆ0 ←R.encode(m0, t, q). D0 is given 
	as follows: D0 = {pk ← (a, b = a · x + e),C ← (c1 = r · a + e1,c2 = Trunc(r · b + e2, l/t)+ mˆ0)} 
	. Game 1. In this game, the public key b is generated uniformly at random, rather than computed with a secret key x. The rest is the same as in Game 0. D1 is given as follows: D1 = {pk ← (a, 
	b ←U(Rq )),C ← (c1 = r · a + e1,c2 = Trunc(r · b + e2, l/t)+ mˆ0)} 
	. Game 2. In Game 2, the small secret ring-LWE instance c1 contained in the ciphertext change to a random polynomial. In other words, the ciphertext c =(c1,c2)= (u1, Trunc(r · b + e2, l/t)+ mˆ0), where u1 is generated uniformly at random in Rq. The rest is the same as in Game 1. D2 is given as follows: 
	D2 = {pk ← (a, b ←U(Rq)),C ← ( 
	D2 = {pk ← (a, b ←U(Rq)),C ← ( 
	c1 = u1 ,c2 = Trunc(r · b + e2, l/t)+ mˆ0)} 

	. Game 3. In Game 3, the small secret ring-LWE instance c2 contained in the ciphertext change to a random polynomial. In other words, the ciphertext c =(c1,c2)= (u1, Trunc(u2, l/t)+ mˆ0), where u2 is generated uniformly at random in Rq. The rest is the same as in Game 2. In this game, there are no small secret ring-LWE instances. D3 is given as follows: 
	D3 = {pk ← (a, b ←U(Rq)),C ← (c1 = u1, 
	D3 = {pk ← (a, b ←U(Rq)),C ← (c1 = u1, 
	c2 = Trunc(u2, l/t) 

	+ mˆ0)} 
	. Game 4. In Game 4, the message m0 contained in the ciphertext changes to m1. Note that mˆ1 ←R.encode(m1, t, q). The rest is the same as in Game 2. D4 is given as follows: 
	D4 = {pk ← (a, b ←U(Rq)),C ← (c1 = u1, 
	D4 = {pk ← (a, b ←U(Rq)),C ← (c1 = u1, 
	D4 = {pk ← (a, b ←U(Rq)),C ← (c1 = u1, 
	c2 = Trunc(u2, l/t)+ 

	mˆ1 

	)} 
	. Game 5. In Game 5, c2 in ciphertext is restored to the small secret ring-LWE instance, and the rest is the same as in Game 4. D5 is given as follows: 
	D5 = {pk ← (a, b ←U(Rq)),C ← (c1 = u1, 
	D5 = {pk ← (a, b ←U(Rq)),C ← (c1 = u1, 
	c2 = Trunc(r · b + e2, l/t) 

	+ mˆ1)} 
	. Game 6. In this game, c1 in ciphertext is restored to the small secret ring-LWE instance, and the rest is the same as in Game 5. Note that the ciphertext is an encryption of m1. D6 is given as follows: 
	D6 = {pk ← (a, b ←U(Rq)),C ← ( 
	D6 = {pk ← (a, b ←U(Rq)),C ← ( 
	c1 = r · a + e1 ,c2 = Trunc(r · b + e2, l/t)+ mˆ1)} 

	. Game 7. In this game, the public key is restored to the small secret ring-LWE instance, and the rest is the same as in Game 6. Game 7 is the same as Game 0, except that the ciphertext is an encryption of m1. D7 is given as follows: 
	D7 = {pk ← (a, 
	D7 = {pk ← (a, 
	b = a · x + e ),C ← (c1 = r · a + e1,c2 = Trunc(r · b + e2, l/t)+ mˆ1)} 

	D0 and D1 are computationally indistinguishable under the decision-smaRLWEn,q assumption. D1 and D2 are also computationally indistinguishable under the decision-smaRLWEn,q assumption. D2 and D3 are computationally indistinguishable under the decision-smaRLWEl/t,q assumption. Since l/t ≤ n, smaRLWEl/t,q can be reduced to smaRLWEn,q. In Game 3 and 4, the ciphertexts are computed in a one-time pad manner by adding the message to a random polynomial, thus D3 and D4 are statistically indistinguishable. The hybr
	2
	2

	coeﬃcient vector is sampled randomly from [−B, B]. Choose an error polynomial e ∈ Rq where the coeﬃcient vector is sampled randomly from GD. Compute b = a · x + e ∈ Rq.A
	�𝒎𝒎𝒊𝒊
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	2.1.4 R.EMBLEM (CCA-Secure Key Encapsulation Mechanism over Rings) 
	2.1.4 R.EMBLEM (CCA-Secure Key Encapsulation Mechanism over Rings) 
	In this section, we propose a CCA-secure key encapsulation mechanism (KEM) R.EMBLEM in the quantum random oracle model, by applying the KEM variant of Fujisaki-Okamoto (FO) transfor
	-

	256
	{0, 1}

	mation [HHK17] to R.EMBLEM.CPA. Let M = be the message space and the system parameter params are given the same as in R.EMBLEM.CPA, except that the hash functions G, H, Hdescribed in Section 2.1.2 are additionally included. Our ring-based KEM R.EMBLEM = (KeyGen, Encap, Decap) is described as below. 
	ˆ

	KeyGen(1). Same as R.EMBLEM.CPA. 
	λ

	Encap(pk). Assume that n> 256. To generate the key K and the ciphertext c, proceed with the following steps: 
	1. 
	1. 
	1. 
	Select δ ←R {0, 1}and compute z = G(δ); ˆ
	256 


	2. 
	2. 
	Compute (c1,c2) ←R.EMBLEM.CPA.Encrypt(pk, δ; z), c3 = H(δ); 

	3. 
	3. 
	Return the ciphertext c =(c1,c2,c3) ∈ R×{0, 1}and the key K = H(δ, c) ∈
	2 
	256 



	q 
	256 
	{0, 1}

	. 
	. 
	Decap(sk, c). Parse the ciphertext c as (c1,c2,c3)∈ R×{0, 1}, and proceed with the following 
	2 
	256


	q 
	steps: 
	1. 
	1. 
	1. 
	Compute δ ←R.EMBLEM.CPA.Decrypt(sk, (c1,c2)); 

	2. 
	2. 
	Compute z = G(δ); ˆ


	3. Compute (d1,d2) ←R.EMBLEM.CPA.Encrypt(pk, δ; z) and d3 = H(δ); 
	• If (d1,d2) 66
	=(c1,c2) or d3 = c3, output ⊥; 
	4. Otherwise, output K = H(δ, c). 
	As in EMBLEM, R.EMBLEM.CPA.Encrypt algorithm outputs the same ephemeral values according to the same random coin z. The correctness of R.EMBLEM is derived from R.EMBLEM.CPA [HHK17]. 
	-

	Theorem 2.8 (Correctness). If R.EMBLEM.CPA is (1 − .)-correct, then R.EMBLEM is (1 − .)correct in the quantum random oracle model. 
	-

	R.EMBLEM is constructed by applying the KEM variant of Fujisaki-Okamoto transformation [HHK17]. Therefore, in common with EMBLEM, R.EMBLEM is IND-CCA secure in both the classical random oracle model (by Theorem 2.9) and the quantum random oracle model (by Theorem 2.10). 
	-

	Theorem 2.9 (Theorem 3.1 and 3.2 in [HHK17]). Assume R.EMBLEM.CPA to be δ-correct. For any IND-CCA adversary B issuing at most qD decryption queries, at most qG queries to random oracle G, and at most qH queries to random oracle H, there exists an IND-CPA adversary A such that 
	IND-CCA IND-CPA 
	Adv
	qH +2qG+1 
	+3 · Adv

	· δ +
	R.EMBLEMH 2256 R.EMBLEM.CPA
	(B) ≤ q
	(A) 

	and the running time of A is about that of B. 
	Theorem 2.10 (Theorem 4.4 and 4.6 in [HHK17]). Assume R.EMBLEM.CPA to be δ-correct. For any IND-CCA quantum adversary B issuing at most qD (classical) decryption queries, at most qG queries to the quantum random oracle G, at most qH queries to the quantum random oracle 
	ˆ
	H, and at most q ˆqueries to the quantum random oracle H, there exists an IND-CPA quantum 
	H 
	adversary A such that 
	r 
	r 
	q

	IND-CCA IND-CPA 
	Adv
	Adv

	8 · δ(qG + 1)+ (1 + 2qG)
	2 

	R.EMBLEMHˆH R.EMBLEM.CPA
	(B) ≤ (2q
	+ q
	) · 
	(A) 

	and the running time of A is about that of B. 
	As mentioned in Section 2.1.2, since IND-CPA security with suﬃciently large message space implies its One-Way against Chosen Plaintext Attacks (OW-CPA) security, by Lemma 2.3 in [HHK17], we can insist that if R.EMBLEM.CPA is an IND-CPA secure PKE, then R.EMBLEM is an IND-CCA secure KEM by Theorem 2.9 and 2.10. . 

	2.1.5 Parameter Selection 
	2.1.5 Parameter Selection 
	• Secret distribution Ds. The distribution Ds is to sample a value from [−B, B] for B<σ uniformly at random. If S ←D, then (n × k) entries of the matrix S are chosen uniformly 
	n×k

	s at random from [−B, B]. Using a small B, the size of the error generated in the decryption phase can be reduced. When decrypting, the inner product of two vectors, an error vector sampled from the Gaussian distribution and the secret vector, is computed. Since the secret key is made 
	n×k 

	up of small values chosen from [−B, B], it gives a much smaller result than the inner product of Gaussian vectors. In addition, since the secret key is sampled from [−B, B] uniformly at random, it can be generated using a pseudorandom function (PRF). Therefore, we only need to store the seed, used as input to the PRF, as a secret key instead of the entire matrix, which causes the secret key size to decrease remarkably. 
	• Error distribution De. The distribution De is the discrete Gaussian distribution with the Gaussian parameter s, i.e., GDs. If E ←D, then (m × k) eies of the matrix E are chosen 
	m×k
	ntr

	e √ from GD. The standard deviation of GDs is set to σ= s/ 2π. In Section 2.1.5, we set σ to
	m
	√ 
	×k 

	s 
	be s> 2 n. For eﬃciency reasons, most LWE-based public-key encryption schemes have used 
	√ 
	Gaussian parameters much smaller t, which fails to achieve worst-case to average-case 
	han 2 
	n

	p
	reduction [Reg09]. We choose σ> 2n/π so that our constructions have worst-case to average-case security reduction. 
	• Message Space. In our scheme, we set the message space to {0, 1}, i.e., l = 256. To encrypt a 256-bit plaintext, the parameter should be set to satisfy the following: 
	256

	k × t × v ≥ 256 for integers k, t, v ≥ 1. 
	For simplicity, we assume that k × t × v = 256. k is associated with the size of the public key and ciphertext, and v is associated with the size of the ciphertext. t implies the number of bits encrypted per entry of the matrix of ciphertext, which in turn aﬀects the size of q. If one intends to reduce the size of the ciphertext, v should be set to be small, and if one intends to reduce the size of the public key, k and t should be set to be small. 
	• Probability of Decryption Failure. For simplicity, let r be a m × 1 vector (i.e., v = 1). Let 
	(i)(i)
	E = {E} where Eis an i-th column of E ∈ Z, E2 = {E} where Eis an i-th entry 
	(i)
	(i) 
	m×k 

	q 22 of column E2 ∈ Z, and X = {X} where Xis an i-th column of X ∈ Z. To ensure the 
	k
	(i)
	(i) 
	n×k 

	qq 
	correctness of EMBLEM.CPA and EMBLEM, we must set d to satisfy the following equations: 
	hn oi 
	(i)
	Pr max |hr, Ei| + |E| + |hE1,Xi| < 2=1 − .. (4)
	(i)
	(i)
	d 

	2 
	i∈[1,k] 
	Once d is determined, for a given t, we can determine the size of q such that log(q)= t+(1+d). 
	2

	−140
	2

	We will set d to make the decryption error negligible, namely, . = . To obtain d satisfying the equation (4), we use the following Lemmas: 
	Lemma 2.11 (Lemma 2.4 of [Ban95]). For any real s> 0 and Q> 0, and any x ∈ R, we have 
	n

	.. 
	−π·Q
	2 

	Pr |hx, GDZn,si| ≥ Q · s||x|| < 2e. (5) √ 
	where the standard deviation σ of GDZn,s is set to σ = s/ . 
	2π

	Lemma 12 (Lemma 3.3 of [Lyu16]). For any r> 0 and z ← GDs where the standard deviation 
	2.

	√ 
	σ = s/ 2π, we have 
	.. 
	−T /2
	2

	Pr |z| >Tσ < 2e. (6) 
	√√ 
	|hr, Ei| and |hE1,Xi| have approximate values of Q · σ · ||r|| and Q · σ · ||X||, 
	(i)
	(i)
	2π 
	2π 
	(i)

	−π·Q
	2 

	respectively, with the probability of 2e. Q is set to about 5.5776 so that the probability 
	(i)
	that |hx, GDsi| ≥ Q · s||x|| is at most 2(i.e., 2e≈ 2). In addition, |E| has
	−140 
	−π·5.5776
	2 
	−140

	2 
	−T /2
	2

	approximate value of Tσ with the probability of 2e. T is set to about 13.98 so that the 
	(i) 
	(i) 
	−13.98
	2


	probability that |E| > Tσ is at most 2(i.e., 2e≈ 2). Therefore, for i ∈ [1,k],
	−140 
	/2 
	−140

	h 2 i
	√√
	(i)
	Pr |hr, Ei| + |E| + |hE1,Xi| <Q · σ 2π · ||r|| + Tσ + Q · σ · ||X|| =1 − 2. So
	(i)
	(i)
	2π 
	(i)
	−140 

	2 
	√√ 
	we should ﬁnd d such that Q · σ 2π · ||r|| + Tσ + Q · σ 2π · ||X|| < 2where Q =5.5776 and T = 13.98. The selected parameter set is given in Table 1. 
	(i)
	d 

	If r and Xare sampled from {−1, 0, 1}and {−1, 0, 1}uniformly at random (i.e., 
	Case 1. 
	(i) 
	m 
	n 

	qq
	22
	22

	B = 1), the expected values of ||r|| and ||X|| are m and n, respectively. In case of I in
	(i)

	33 
	Table 1, (m, n, σ) = (1003, 770, 25), and thus we can calculate as follows: 
	q
	√√ 
	2
	2

	.Q · σ · ||r|| =5.5776 × 25 ×· 1003 ≈ 2
	2π 
	2π 
	13.14 

	3 . Tσ = 13.98 × 25 ≈ 2
	8.45 

	q
	√√ 
	2
	2

	.Q · σ · ||X|| =5.5776 × 25 ×· 770 ≈ 2
	2π 
	(i)
	2π 
	12.95 

	3 
	(i)
	Following this, |hr, Ei| + |E| + |hE1,Xi| < 2+2+2≈ 2< 2. Therefore,
	(i)
	(i)
	13.14 
	8.45 
	12.95 
	14.08 
	d 

	2 
	d = 15 is suﬃcient in this setting. 
	If r and Xare sampled from {−2, −1, 0, 1, 2}and {−2, −1, 0, 2}uniformly at 
	Case 2. 
	(i) 
	m 
	1, 
	n 

	√√ random (i.e., B = 2), the expected values of ||r|| and ||X|| are 2m and 2n, respectively. In 
	(i)

	case of II in Table 1, (m, n, σ) = (832, 611, 25), and thus we can calculate as follows: 
	√ √√ 
	.Q · σ · ||r|| =5.5776 × 25 × ≈ 2
	2π 
	2π 
	2 · 832 
	13.8 

	. Tσ = 13.98 × 25 ≈ 2
	8.45 

	√ √√ .Q · σ · ||X|| =5.5776 × 25 × ≈ 2
	2π 
	(i)
	2π 
	2 · 611 
	13.58 

	(i)
	Following this, |hr, Ei| + |E| + |hE1,Xi| < 2+2+2≈ 2< 2. Therefore,
	(i)
	(i)
	13.8 
	8.45 
	13.58 
	14.71 
	d 

	2 
	d = 15 is suﬃcient in this setting. The same analysis of the probability of decryption failure can be applied to R.EMBLEM.CPA and R.EMBLEM as well. 
	• Proposed parameter sets. The parameters of EMBLEM in Section 2.1.2, aiming at 128-bit security, are given in Table 1. The columns I and II correspond to cases where each element of the secret key is sampled from [-1,1] and [-2,2], respectively. In each case, n and the root Hermite factor δ are derived from the equation (3), and then, m is calculated using the equation (2). Note that d, the maximum size of the error, should be selected to satisfy the equation In addition, we 
	(4). 

	p
	set the standard deviation σ of the Gaussian distribution to be larger than 2n/π, which is much higher than other LWE-based schemes [GPV08, LP11, CKLS16, BDK17], to support worst-case to average-case reduction of the underlying LWE problem. 
	+

	I 
	I 
	I 
	II 

	[-1,1] 
	[-1,1] 
	[-2,2] 

	m 
	m 
	1003 
	832 

	n 
	n 
	770 
	611 

	log2(q) σ 
	log2(q) σ 
	24 25 
	24 25 

	t 
	t 
	8 
	8 

	δ 
	δ 
	1.003292 
	1.003945 


	Table 1: Parameter sets for 128-bit security 
	In the LWE instance with small secret, the secret key can be sampled from [−B, B] for any B<σ. We consider only B = 1 and B = 2 (column I and II in Table 1, respectively), because there is no large diﬀerence in parameter size when B ≥ 3. Figure 4 illustrates the tradeoﬀ between security and performance in case of B = 1 (L.H.S) and B = 2 (R.H.S). In this ﬁgure, uSVP implies the security level against the primal attack via standard embedding, dual embedding, and Bai-Galbraith embedding [AFG13,BG14]. The param
	In the LWE instance with small secret, the secret key can be sampled from [−B, B] for any B<σ. We consider only B = 1 and B = 2 (column I and II in Table 1, respectively), because there is no large diﬀerence in parameter size when B ≥ 3. Figure 4 illustrates the tradeoﬀ between security and performance in case of B = 1 (L.H.S) and B = 2 (R.H.S). In this ﬁgure, uSVP implies the security level against the primal attack via standard embedding, dual embedding, and Bai-Galbraith embedding [AFG13,BG14]. The param
	n and m is, and thus the lower the security level against the primal attack via uSVP is. Note that we ﬁx the other parameters log(q) = 24, σ = 25, and t = 8. The performance of the algorithm is improved by reducing the size of parameters m and n. As a result, the security and performance of the algorithm are inversely proportional. 
	2


	Figure
	Figure 4: Security/Performance tradeoﬀs of LWE instances 
	• Proposed parameter sets over rings. The parameters of R.EMBLEM in Section 2.1.4, aiming at 128-bit security, are given in Table 2. The columns (i,iii) and (ii,iv) correspond to cases where each element of the secret key is sampled from [-1,1] and [-2espectively. In columns i and ii,
	1100

	p
	the standard deviation σ is set to 25, which is larger than 2n/π, whereas, in columns iii and iv,
	826
	σ is set to 3, which is much smaller than 2n/π. Since σ is small, the size of the error is small, and consequently the size of q is small. To provide the same 128-bit security despite σ being small, the size of n should be large. As shown in Table 2, n in column iii is larger than in column i, and n in column iv is also larger than in column ii. 
	i 
	i 
	i 
	ii 
	661
	iv 

	[-1,1] 
	[-1,1] 
	[-2,2] 
	1266
	[-2,2] 

	n 
	n 
	463 
	844
	504 
	437 

	log2(q) σ 
	log2(q) σ 
	634
	16 25 
	14 3 
	14 3 

	507
	507
	1 
	1 
	1 
	217.2

	δ 
	δ 
	1.00256 
	1.00349 
	141.0
	1.002878 


	Table 2: Parameter sets for 128-bit security (over Rings) 
	Figure 5 illustrates the tradeoﬀ between security and performance in case of σ = 25 (L.H.S) and σ = 3 (R.H.S). That is, L.H.S of Figure 5 represents the columns i and ii in Table 2, and 
	105.0represents the columns iii and iv. In this ﬁgure, uSVP implies the security level against the primal attack [AFG13,BG14], and uSVP[B=1] and uSVP[B=2] represent the security levels against the primal attack in case of B = 1 and B = 2, respectively. As in Figure 4, the larger the root Hermit factor δ is, the smaller the size of the parameter n is, and thus the lower the security level against the primal attack via uSVP is. As the size of n decreases, the computational complexity is also reduced, thus imp
	Figure
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	2.2 593
	2.2 593
	• 
	• 
	• 
	A description of the platform. Our software implementation was performed on an Intel core i7-6700 (Skylake) running at 3.40GHz, and ran on Linux OS. For hardware implementation, we used a Zynq 7 FPGA platform and Xilinx EDA tool with default option. 

	• 
	• 
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	In Table 3, we have described several parameter sets for EMBLEM in case of B = 1. The probability of decryption failure is set to 2and k, t, and v are set to satisfy k × t × v = 256 so that we can encapsulate the key of length 256-bit. From I.A to I.F, the public key size decreases and the ciphertext size increases. In I.C, the sum of the sizes of both public key and ciphertext is the smallest. EMBLEM generates a secret matrix from a 256-bit seed, thus providing a very small secret key size compared to othe
	−140 
	297

	We also measured the execution time of each algorithm through software implementation. For more information on software implementation, see Digital and Optical Media in our submission package. As k increases from I.A to I.F, more computation is required to generate the secret key from the seed, which increases the execution time of the Key Generation algorithm. Also, as v decreases from I.A to I.F, the computation required to generate the ciphertext becomes small. Since we applied the KEM variant of Fujisak
	(B=1) 
	(B=1) 
	(B=1) 
	I.A 
	I.B 
	I.C 
	I.D 
	I.E 
	I.F 

	m 
	m 
	1003 
	1003 
	1003 
	1003 
	1003 
	1003 

	n 
	n 
	770 
	770 
	770 
	770 
	770 
	770 

	k 
	k 
	1 
	2 
	4 
	8 
	16 
	32 

	log2(q) 
	log2(q) 
	24 
	24 
	24 
	24 
	24 
	24 

	σ 
	σ 
	25 
	25 
	25 
	25 
	25 
	25 

	t 
	t 
	8 
	8 
	8 
	8 
	8 
	8 

	v 
	v 
	32 
	16 
	8 
	4 
	2 
	1 

	Public key size (bytes) 
	Public key size (bytes) 
	3,041 
	6,050 
	12,068 
	24,104 
	48,176 
	96,320 

	Secret key size (bytes) 
	Secret key size (bytes) 
	32 
	32 
	32 
	32 
	32 
	32 

	Ciphertext size (bytes) 
	Ciphertext size (bytes) 
	74,048 
	37,088 
	18,608 
	9,368 
	4,748 
	2,438 

	KeyGen (ms) 
	KeyGen (ms) 
	10.608 
	10.602 
	12.452 
	14.523 
	16.056 
	20.337 

	Encap (ms) 
	Encap (ms) 
	30.407 
	15.101 
	7.714 
	4.055 
	2.157 
	1.184 

	Decap (ms) 
	Decap (ms) 
	30.603 
	15.16 
	7.637 
	3.969 
	2.051 
	1.158 


	Table 3: Performance analysis of LWE instance in column I of Table 1 
	In Table 4, we have described several parameter sets for EMBLEM in case of B = 2. As in Table 3, the probability of decryption failure is set to 2and k, t, and v are set to satisfy k × t × v = 256 so that we can encapsulate the key of length 256-bit. From II.A to II.F, the public key size decreases and the ciphertext size increases. In II.C, the sum of the sizes of both public key and ciphertext is the smallest. Since the 256-bit seed is stored as a secret key and expanded into an n × k matrix using PRF, th
	−140 

	We also measured the execution time of each algorithm in case of B = 2. Since the parameters m and n are smaller than in the case of B = 1, the execution time of each algorithm is relatively reduced. From II.A to II.F, the execution time of the Key Generation algorithm increases and that of the Encapsulation and Decapsulation algorithms decreases. 
	(B=2) 
	(B=2) 
	(B=2) 
	II.A 
	II.B 
	II.C 
	II.D 
	II.E 
	II.F 

	m 
	m 
	832 
	832 
	832 
	832 
	832 
	832 

	n 
	n 
	611 
	611 
	611 
	611 
	611 
	611 

	k 
	k 
	1 
	2 
	4 
	8 
	16 
	32 

	log2(q) 
	log2(q) 
	24 
	24 
	24 
	24 
	24 
	24 

	σ 
	σ 
	25 
	25 
	25 
	25 
	25 
	25 

	t 
	t 
	8 
	8 
	8 
	8 
	8 
	8 

	v 
	v 
	32 
	16 
	8 
	4 
	2 
	1 

	Public key size (bytes) 
	Public key size (bytes) 
	2,528 
	5,024 
	10,016 
	20,000 
	39,968 
	79,904 

	Secret key size (bytes) 
	Secret key size (bytes) 
	32 
	32 
	32 
	32 
	32 
	32 

	Ciphertext size (bytes) 
	Ciphertext size (bytes) 
	58,784 
	29,456 
	14,792 
	7,460 
	3,794 
	1,961 

	KeyGen (ms) 
	KeyGen (ms) 
	6.851 
	7 
	8.223 
	9.698 
	10.517 
	12.839 

	Encap (ms) 
	Encap (ms) 
	23.659 
	11.924 
	6.019 
	3.185 
	1.633 
	0.884 

	Decap (ms) 
	Decap (ms) 
	23.548 
	11.894 
	5.997 
	3.111 
	1.705 
	0.849 


	Table 4: Performance analysis of LWE instance in column II of Table 1 
	In Table 5, we have described the performance of the parameters for R.EMBLEM in Table 2. Basically, the parameters in Table 5 have the probability of decryption failure of 2, and the secret key is a 256-bit seed. In columns iii and iv, σ is set very small to reduce the size of q. 
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	The size of the public key, secret key, and the ciphertext are calculated corresponding to n of each column in Table 5. 
	i 
	i 
	i 
	ii 
	iii 
	iv 

	n 
	n 
	463 
	320 
	504 
	437 

	log2(q) 
	log2(q) 
	16 
	16 
	14 
	14 

	σ 
	σ 
	25 
	25 
	3 
	3 

	t 
	t 
	1 
	1 
	1 
	1 

	Public key size (bytes) 
	Public key size (bytes) 
	958 
	672 
	914 
	797 

	Secret key size (bytes) 
	Secret key size (bytes) 
	32 
	32 
	32 
	32 

	Ciphertext size (bytes) 
	Ciphertext size (bytes) 
	1,470 
	1,184 
	1,362 
	1,245 


	Table 5: Performance analysis of Ring LWE instances in Table 2 
	However, in practice, in order to apply the Number Theoretic Transform (NTT) operation, n is set to 512, which is a power of two. Even if n becomes larger, applying NTT operation is more eﬃcient in terms of computational complexity. Therefore, the parameters of columns i and ii become equal, and the same goes for the parameters of columns iii and iv. In Table 6, NTT.KeyGen, NTT.Encap, and NTT.Decap represent the algorithm execution time when NTT operation is applied. In column iii, iv, since q is smaller, t
	i, ii iii, iv 
	n 
	n 
	n 
	512 
	512 

	log2(q) 
	log2(q) 
	16 
	14 

	σ 
	σ 
	25 
	3 

	t 
	t 
	1 
	1 

	Public key size (bytes) 
	Public key size (bytes) 
	1,056 
	928 

	Secret key size (bytes) 
	Secret key size (bytes) 
	32 
	32 

	Ciphertext size (bytes) 
	Ciphertext size (bytes) 
	1,568 
	1,376 

	NTT.KeyGen (ms) 
	NTT.KeyGen (ms) 
	0.138 
	0.052 

	NTT.Encap (ms) 
	NTT.Encap (ms) 
	1.137 
	1.001 

	NTT.Decap (ms) 
	NTT.Decap (ms) 
	1.205 
	1.03 


	Table 6: Performance analysis of Ring LWE instances applying NTT operation 

	2.3 Known Answer Test values 
	2.3 Known Answer Test values 
	Known Answer Test (KAT) values that can be used to determine the correctness of an implementation of the submitted algorithms are provided in a zip ﬁle of digital and optical media. 
	-


	2.4 Security Strength 
	2.4 Security Strength 
	2.4.1 Security Strength Categories 
	2.4.1 Security Strength Categories 
	• Security strength In [LP11], for the parameter set (n, q, s) = (256, 4093, 8.35), the estimated runtime/advantage ratio is about 2seconds, which is compared to the security 
	• Security strength In [LP11], for the parameter set (n, q, s) = (256, 4093, 8.35), the estimated runtime/advantage ratio is about 2seconds, which is compared to the security 
	-
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	of AES 128. Since we provide quite larger parameter sets, in Table 1 and Table 2, than (n, q, s) = (256, 4093, 8.35), it is reasonable to assume that, at a minimum, the proposed parameters provide higher security than that of AES 128. 


	2.4.2 Additional Security Properties 
	2.4.2 Additional Security Properties 
	• 
	• 
	• 
	Perfect forward secrecy. Basically, since EMBLEM and R.EMBLEM are key encapsulation mechanisms (KEMs), they do not consider perfect forward secrecy. 

	• 
	• 
	Resistance to side-channel attacks. We can make the process of sampling Gaussian errors using cumulative distribution tables (CDT) resilient to memory and timing side-channel attacks, by always scanning all elements and performing comparisons with branchless arithmetic operations [BCD16]. In addition, by implementing various countermeasure against side-channel analysis [DSVC15,VG15,Pes16,PPM17], we can make the proposed constructions resistant to side-channel attacks. 
	-
	-
	+
	+
	-


	• 
	• 
	Resistance to multi-key attacks. The multi-key setting can be seen as a generalization of the multi-user setting. In [BBM00], Bellare et al. addressed that, if a public-key encryption scheme is polynomially-secure against chosen-plaintext (resp. chosen-ciphertext) attack in the single-user setting, then it is also polynomially-secure against chosen-plaintext (resp. chosen-ciphertext) attack in the multi-user setting. Since EMBLEM and R.EMBLEM are proven to be IND-CCA secure in the single-user setting, we ca

	• 
	• 
	Resistance to misuse. If coding errors occur or primitives, such as the random number generator, used in the implementation are malfunctioning, vulnerabilities may naturally arise. Assume that two identical random values are generated by the malfunctioned random number generator and two diﬀerent messages are encrypted with the same random value. If an attacker obtains a message for one ciphertext, the rest can be easily recovered from the other ciphertext. 




	2.5 Analysis with respect to Known Attacks 
	2.5 Analysis with respect to Known Attacks 
	• Estimating the security of LWE instances to known attacks. Recently, a sage module for estimating the concrete hardness of LWE instances has been studied [APS15, AGL17]. This module covers the following algorithms: meet-in-the-middle exhaustive search, coded-BKW [GJS15], dual-lattice attack and small/sparse secret variant [Alb17], lattice-reduction + enumeration [LP11], primal attack via uSVP [AFG13, BG14], Arora-Ge algorithm [AG11] using Gr¨obner bases [ACFP14]. Using this result, we analyze the security
	-
	+
	-

	I 
	I 
	I 
	II 

	[-1,1] 
	[-1,1] 
	[-2,2] 

	uSVP 
	uSVP 
	2128.3 
	2128.3 

	dec 
	dec 
	2191.4 
	2147.0 

	dual 
	dual 
	2137.4 
	2142.5 


	Table 7: Estimated hardness of LWE instances 
	22 
	The abbreviation “SVP” refers to the minimum of standard (primal) embedding, dual embedding, and Bai-Galbraith embedding, “dec” refers to the decoding attack, and “dual” refers to the distinguishing attack. 
	-

	In column I of Table 1, when m = 1003 and n = 770, the security levels against uSVP, dec, and dual attacks are 128.3, 191.4, and 137.4, respectively. Reducing m and n to 826 and 634 lowers the computational complexity of the algorithm and improves eﬃciency, but the security levels it provides are reduced to 105.0, 154.0, and 112.9 as well. That is, when q and σ are ﬁxed, using m and n that are smaller than the values in column I of Table 1 will not meet the 128-bit security level. The column II in Table 1 a
	128.3 

	Figure
	141.0
	• Estimating the security of Ring LWE instances to known attacks. The hardness of the Ring LWE instance (with small secrets) in Table 2 with respect to uSVP, dec, and dual attacks are given in Table 8. Note that, in i and ii of Table 2, the standard deviation σ = 25 and log105.0(q) = 14. 
	2
	2

	i 
	i 
	i 
	84.0
	iii 
	iv 

	[-1,1] 
	[-1,1] 
	338.1
	[-1,1] 
	[-2,2] 

	uSVP 
	uSVP 
	212.1
	2128.1 
	2128.3 
	2128.3 

	154.0
	154.0
	2231.7 
	2153.9 
	2179.1 
	120.6

	dual 
	dual 
	2144.1 
	2148.0 
	231.9
	2147.7 


	Table 8: Estimated hardness of Ring LWE instances 
	The four graphs in Figure 7 illustrate the columns i, ii, iii, and iv in Table 2 in order from the left. In column i of Table 2, when n = 463, the security levels against uSVP, dec, and dual attacks are 128.1, 231.7, and 144.1, respectively. Reducing n to 395 lowers the computational complexity of the algorithm and improves eﬃciency, but the security levels it provides are reduced to 109.6, 194.5, and 124.3 as well. However, when applying the Number Theoretic Transform (NTT) operation, since n should be a p
	The four graphs in Figure 7 illustrate the columns i, ii, iii, and iv in Table 2 in order from the left. In column i of Table 2, when n = 463, the security levels against uSVP, dec, and dual attacks are 128.1, 231.7, and 144.1, respectively. Reducing n to 395 lowers the computational complexity of the algorithm and improves eﬃciency, but the security levels it provides are reduced to 109.6, 194.5, and 124.3 as well. However, when applying the Number Theoretic Transform (NTT) operation, since n should be a p
	reducing n from 463 to 395 is meaningless in practice. If n is further reduced to 237, the eﬃciency can be improved signiﬁcantly by setting n = 256 in NTT operation. However, the security level at this time is as low as 68.5. 

	Figure
	Figure 7: Security of Ring LWE instances against known attacks 

	2.6 n
	2.6 n
	2.6.1 Advantages 
	2.6.1 Advantages 
	• 
	• 
	• 
	Standard (R)LWE assumption. EMBLEM is a key encapsulation mechanism (KEM) secure against adaptive chosen ciphertext attacks (namely, IND-CCA2 secure), and its con593BLEM, also IND-CCA2 secure, and its construction is based on the Ring LWE problem with small secret. Based on the previous results, we set the parameters so that the small secret (Ring) LWE problem becomes as hard as the standard (Ring) LWE problem. Therefore, by rescaling the parameter set, we can be conﬁdent that EMBLEM (resp. R.EMBLEM) is sec
	-
	-


	• 
	• 
	Small secret key. In the LWE instance with small secrets, the secret key is chosen uniformly from [−B, B] for a positive integer B<σ, rather than from the Gaussian distribution. Because of this nature, it is only necessary to store a 256-bit seed to generate the secret key, without having to store the entire matrix. The secret key can be derived from the seed by using pseudorandom functions. As a result, the size of the secret key in our constructions can be greatly reduced. 

	• 
	• 
	395nd the columns i, ii of Table 2, the standard deviation σ is set to be larger 
	e 1 a



	p√ 
	than 2n/π. That is, the Gaussian parameter is larger than 2 n, so our constructions have worst-case to average-case security reduction. Also, all of the parameter sets presented provide 128-bit quantum security. 
	• 
	• 
	• 
	• 
	297tiple bits simply by parsing the most signiﬁcant t bits of each entry of a ciphertext, without 
	-


	rounding. By separating the message from the error and inserting the error-blocking bit 1 between them, we prevent errors generated in the decryption phase from being propagated to the message. Using the parameters given in Table 1, an 8-bit message per entry of a ciphertext is encapsulated (i.e., t = 8), and the message can be restored by parsing the most signiﬁcant 8 bits per entry in the decryption phase. 

	• 
	• 
	Negligible probability of decryption failure. Finally, we guarantee a very small probability of the decryption failure (≈ 2). This allows CCA transformation from EMBLEM.CPA (resp. R.EMBLEM.CPA) to EMBLEM (resp. R.EMBLEM). In the announcement by the NIST, the proposed KEM should be semantically secure under adaptive chosen ciphertext attack, namely IND-CCA2 security, and it may be assumed that the attacker has access to the decryption oracle approximately 2times. Therefore, it is important to reduce the corr
	-
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	2.6.2 Limitations 
	2.6.2 Limitations 
	• Larger size of parameters. EMBLEM and R.EMBLEM are basically constructed based on the (Ring) LWE problem with small secret. Therefore, the parameter size should be larger than the (Ring) LWE instance in order to provide the same security level. As a result, the size of the public key and the ciphertext becomes somewhat larger. In our new error-blocking approach, we need to set q somewhat larger, because we need to ensure that errors occurring in the decryption phase do not aﬀect the message part. That is,



	DIGITAL AND OPTICAL MEDIA 
	DIGITAL AND OPTICAL MEDIA 
	All electronic data is provided in the zip ﬁle in the submitted package. For more details, refer to the corresponding ﬁles. This media has the following structure: 
	• 
	• 
	• 
	README : This ﬁle includes the list of all ﬁles in a zip ﬁle of Digital and Optical Media. 

	• 
	• 
	Reference Implementation : This ﬁle includes the reference implementation code, which helps to understand how the submitted algorithm is implemented. 

	• 
	• 
	Optimized Implementation : This ﬁle includes the optimized implementation code, which is used to demonstrate the performance of the submitted algorithm. 

	• 
	• 
	KAT : This ﬁle includes all of the required test values to determine the correctness of an implementation of the submitted algorithms. 

	• 
	• 
	Supporting Documentation : This ﬁle describes how subroutines of the submitted algorithms are implemented, for public review. 



	INTELLECTUAL PROPERTY STATEMENTS 
	INTELLECTUAL PROPERTY STATEMENTS 
	The following statements will be given to NIST at the ﬁrst PQC Standardization Conference, if our submission package is ”complete and proper” and will be posted for public review. 
	1. 
	1. 
	1. 
	statement by the submitter 

	2. 
	2. 
	statement by patent (and patent application) owner(s) (if applicable) 

	3. 
	3. 
	statement by reference/optimized implementations’ owner(s) 
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	A Hardware Architecture of EMBLEM 
	A Hardware Architecture of EMBLEM 
	A.1 Hardware Architecture of EMBLEM.CPA 
	A.1 Hardware Architecture of EMBLEM.CPA 
	In this section, we describes the hardware architecture design of EMBLEM.CPA. Our design is based on the EMBLEM.CPA scheme and it is implemented to the Zynq-7 FPGA. Also we omit control-path because we want to show a simple arithmetic logic circuit in our scheme. 
	Figure
	Figure 8: EMBLEM.CPA Data Path 
	Figure 8 illustrates the high-level architecture of EMBLEM.CPA. An initialization state is required to read Matrices A, B, R, and X as well as 24-bit Gaussian sampling error and a matrix M for key generation, encryption, and decryption. We design the core architecture which can be used as key generation, encryption and decryption. The core architecture consists of two main parts: Arithmetic parts for three algorithms and data memory parts. The arithmetic parts process addition and substraction only for matr
	-
	T 

	The details of design are as follows. In Figure 8, the sel 1 wire of MUX1 and MUX2 is used to select data of E w, ACC w, D1 w, D2 w, D3 w. The Data memory DM2 can store C2 or M depending on each algorithm. The parallelized adder and substractor are performed at the same time. Since then, two calculated results and bypass signal can be selected with MUX2 according to 2 bits D1 w whose data will be Ror X which can be decided by each three algorithm. Finally, data output by MUX2 is stored at ACCU register whic
	T 


	A.2 Hardware Architecture of EMBLEM 
	A.2 Hardware Architecture of EMBLEM 
	EMBLEM hardware architecture only includes hash functions and 256-bit output random number generator, so we will not illustrate the detail of EMBLEM hardware architecture diagram. 

	A.3 Finite State Machine of EMBLEM 
	A.3 Finite State Machine of EMBLEM 
	A.3.1 Key Generation 
	A.3.1 Key Generation 
	Figure 9 shows our simple ﬁnite state machine (FSM) for key generation. The details of FSM are as follows. The ﬁrst state initializes the core, and is required for ACCU register reset. The Matrices A, X as well as 24-bit Gaussian sampling error for key generation should be loaded onto the data memory and register separately at this state. The second state reads data A and X from the data memory. The next step is a matrix calculation state. In this state, each column of matrix A is calculated with X and E. I
	Figure
	Figure 9: Key Generation Finite State Machine Diagram 

	A.3.2 Encryption 
	A.3.2 Encryption 
	Figure 10 shows our simple ﬁnite state machine for encryption. When the encryption mode started, the ﬁrst state initializes the core, and it is required for ACCU register reset. The Matrices A, B, and Ras well as 24-bit Gaussian sampling error and matrix M for key generation should be loaded onto data memory and register at this time. The second state reads data R, A or B from the data memory. The next step is matrix calculation state. In this state, each column of matrix A or B is calculated with Rand E. I
	T 
	T 
	T 

	Figure
	Figure 10: Encryption Finite State Machine Diagram 
	Figure 10: Encryption Finite State Machine Diagram 



	A.3.3 Decryption 
	A.3.3 Decryption 
	Figure 11 shows our simple ﬁnite state machine for decryption. The details of FSM are as follows. The ﬁrst state initializes the core, and it is required for ACCU register reset. The matrices C1, X as well as C2 should be loaded onto the data memory at this state. The second state reads data C1 and X from the data memory. The next step is matrix calculation state. In this state, each column of the ciphertext C1 is calculated with X and C2. If C Count = 770, the memory write state is entered, and then the R 
	Figure
	Figure 11: Decryption Finite State Machine Diagram 
	Figure 11: Decryption Finite State Machine Diagram 




	A.4 Performance 
	A.4 Performance 
	A.4.1 Latency 
	A.4.1 Latency 
	To evaluate the performance of EMBLEM, we implemented it on an FPGA using Xilinx EDA tool with default option. We use a commercially available 28 nm Zynq-7000 device for those three algorithms. As a result, our design was successfully tested by post implement simultation. Table 9 provides the actual runtime latency of three algorithms. The throughput of the EMBLEM core is measured on the experimental setup and the measured maximum frequency is about 200 MHz. Our EMBLEM design is not optimized for improving 
	Algorithm 
	Algorithm 
	Algorithm 
	Operation 
	Device 
	Cycles 
	Latency 

	KeyGen Encrypt Decrypt 
	KeyGen Encrypt Decrypt 
	2 + km(n + 2) 2 + vn(m + 2) + v(m + 2) + v(k + 2) 2 + v(n + 2) 
	xc7z020 
	776.3k 24.7M 24.7k 
	3.8ms 123ms 0.1ms 


	Table 9: Latency of EMBLEM 

	A.4.2 Memory 
	A.4.2 Memory 
	To estimate the memory size of our implementation of EMBLEM, we provide memory footprint estimation (d.g., Block-Memory, DRAM) for three algorithms, which are the key generation, encryption and decryption, respectively. As aforementioned, Matrix A, B, X, R, and C1 are stored in the memory DM1 on each algorithm, so the stored matrix data are deﬁned as Read Data Size in the table below. The ciphertext C2 and plaintext M were implemented using the read only memory DM2. The Write Data Size means that the result
	-
	T 

	The memory for Gaussian sampling error matrix is not considered in these tables because only 24-bit register is needed in our core design. 
	Memory 
	Memory 
	Memory 
	Read Data Size 
	Write Data Size 
	Total kB 
	Total KiB 

	DM1 
	DM1 
	log2(q)(m × n) + log2({−1, 0, 1})(n × k) 
	log2(q)(m × k) 
	2,317.12 
	2,262.81 

	DM2 
	DM2 
	-
	-


	Table 10: Memory size of Key Generation in EMBLEM 
	Memory 
	Memory 
	Memory 
	Type 
	Read Data Size 
	Write Data Size 
	Total kB 
	Total KiB 

	DM1 
	DM1 
	C1 C2 
	log2(q)(m × n) + log2({−1, 0, 1})(n × k) log2({−1, 0, 1})(m × k) + log2(q)(v × k)$ 
	log2(q)(v × n) log2(q)(v × k) 
	363.82 
	355.3 

	DM2 
	DM2 
	M 
	log2(q)(32 × 1) 
	-

	Table 11: Memory size of Encryption in EMBLEM 
	Table 11: Memory size of Encryption in EMBLEM 


	Memory 
	Memory 
	Memory 
	Read Data Size 
	Write Data Size 
	Total kB 
	Total KiB 

	DM1 
	DM1 
	log2(q)(v × n) + log2({−1, 0, 1})(n × k) 
	log2(q)(v × k) 
	74.3 
	72.56 

	DM2 
	DM2 
	log2(q)(v × k) 
	-


	Table 12: Memory size of Decryption in EMBLEM 

	A.4.3 Utilization 
	A.4.3 Utilization 
	The summary of resource utilization is presented in Table 13. The EMBLEM core data path is implemented using an LUT level instantiations mostly with Xilinx primitive libraries. To evaluate the gate count, we use the gate count estimation in [Sta]. 
	Device BRAM/DSP48E/FFs/LUTs Gate Count 
	xc7z020 0/0/24/48 576 
	Table 13: EMBLEM Core Estimated Utilization (Data Path only) 







