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1 Introduction

sparkling GeMSS spring up from the night sky
a dazzling splendor to ever beautify

sequined glories that verily eye smack
sparkling GeMSS spring up from night sky

studding the vast backdrop of black

The purpose of this document is to present GeMSS : a Great Multivariate Signature Scheme. As
suggested by its name, GeMSS is a multivariate-based [48, 62, 25, 8, 58, 55] signature scheme pro-
ducing small signatures. It has a fast verification process, and a medium/large public-key. GeMSS
is in direct lineage from QUARTZ [54] and borrows some design rationale of the Gui multivariate sig-
nature scheme [26]. The former schemes are built from the Hidden Field Equations crypotsystem
(HFE) [52, published in 1996] by using the so-called minus and vinegar modifiers, i.e. HFEv- [45]. It
is fair to say that HFE, and its variants, are the most studied schemes in multivariate cryptography.
QUARTZ produces signatures of 128 bits for a security level of 80 bits and was submitted to the Nessie
Ecrypt competition [50] for public-key signatures. In contrast to many multivariate schemes, no
practical attack has been reported against QUARTZ. This is remarkable knowing the intense activity
in the cryptanalysis of multivariate schemes, e.g. [51, 46, 32, 36, 43, 42, 27, 37, 25, 8, 12, 7, 55, 60].
The best known attack remains [36] that serves as a reference to set the parameters for GeMSS.

GeMSS is a faster variant of QUARTZ that incorporates the latest results in multivariate cryptography
to reach higher security levels than QUARTZ whilst improving efficiency.

Acknowledgement. GeMSS has been prepared with the support of the french Programme
d’Investissement d’Avenir under national project RISQ1 P141580.

2 General algorithm specification (part of 2.B.1)

2.1 Parameter space

The main parameters involved in GeMSS are:

• D, a positive integer that is the degree of a secret polynomial. D is such that D = 2i for
i ≥ 0, or D = 2i+j for i 6= j, and i, j ≥ 0.

• K, the output size in bits of the hash function,

• λ, the security level of GeMSS,

• m, number of equations in the public-key,

• nb ite > 1, number of iterations in the verification and signature processes,

• n, the degree of a field extension,

• v, the number of vinegar variables,

1https://risq.fr/?page_id=31&lang=en
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• ∆, the number of minus (the number of equations in the public-key is such that is m = n−∆).

In Section 3, we specify precisely these parameters to achieve a security level λ ∈ {128, 192, 256}.

2.2 Secret-key and public-key

The public-key in GeMSS is a set p1, . . . , pm ∈ F2[x1, . . . , xn+v] of m quadratic equations in n + v
variables. These equations are derived from a multivariate polynomial F ∈ F2n [X, v1, . . . , vv] with
a specific form – as described in (1) – such that generating a signature is essentially equivalent to
find the roots of F .

Secret-key. It is composed by a couple of invertible matrices (S,T) ∈ GLn+v (F2) × GLn (F2)
and a polynomial F ∈ F2n [X, v1, . . . , vv] with the following structure:∑

06i<j<n
2i+2j6D

Ai,j X
2i+2j +

∑
06i<n
2i6D

βi(v1, . . . , vv)X
2i + γ(v1, . . . , vv), (1)

where Ai,j , Bi, C ∈ F2n ,∀i, j, 0 6 i < j < n, each βi : Fv2 → F2n is linear and γ(v1, . . . , vv) : Fv2 →
F2n is quadratic. The variables v1, . . . , vv are called the vinegar variables. We shall say that a
polynomial F ∈ F2n [X, v1, . . . , vv] with the form of (1) has a HFEv-shape.

Remark 1. The particularity of a polynomial F (X, v1, . . . , vv) with HFEv-shape is that for any spe-
cialization of the vinegar variables the polynomial F becomes a HFE polynomial [52], i.e. univariate
polynomial of the following form:∑

06j<i<n
2i+2j6D

Ai,j X
2i+2j +

∑
06i<n
2i6D

BiX
2i + C ∈ F2n [X], (2)

with Ai,j , Bi, C ∈ F2n , ∀i, j, 0 6 i, j < n.

By abuse of notation, we will call degree of F the (max) degree of its corresponding HFE polynomials,
i.e. D.

The special structure of (1) is chosen such that its multivariate representation over the base field
F2 is composed by quadratic polynomials in F2[x1, . . . , xn+v]. This is due to the special exponents
chosen in X that have all a binary decomposition of Hamming weight at most 2.

Let (θ1, . . . , θn) ∈ (F2n)n be a basis of F2n over F2. We set ϕ : E =
∑n

k=1 ek · θk ∈ F2n −→ ϕ(E) =
(e1, . . . , en) ∈ Fn2 .

We can now define a set of multivariate polynomials f = (f1, . . . , fn) ∈ F2[x1, . . . , xn+v]
n derived

from a HFEv polynomial F ∈ F2n [X, v1, . . . , vv] by:

F

(
n∑
k=1

θkxk, v1, . . . , vv

)
=
∑n

k=1 θkfk . (3)

To ease notations, we now identify the vinegar variables (v1, . . . , vv) = (xn+1, . . . , xn+v). Also, we
shall say that the polynomials f1, . . . , fn ∈ F2[x1, . . . , xn+v] are the components of F over F2.
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Public-key. It is given by a set of m quadratic square-free non-linear polynomials in n + v
variables over F2. That is, the public key is p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]

m. It is obtained
from the secret-key by taking the first m = n−∆ polynomials of:(

f1

(
(x1, . . . , xm)S

)
, . . . , fn

(
(x1, . . . , xm)S

))
T, (4)

and reducing it modulo the field equations, i.e. modulo 〈x2
1 − x1, . . . , x

2
n+v − xn+v〉. We denote

these polynomials by p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]
m.

We summarize the public-key/secret-key generation in Algorithm (1). It takes the security param-
eter λ as input. As discussed in Section 8, the security level of GeMSS will be a function of D,n, v
and m. In Section 3 and in Section 9, we specify precisely these parameters. Section 3 presents
some parameters in order to achieve a security level λ ∈ {128, 192, 256}. In section 9, we specify
some others possible parameters.

Algorithm 1 PK/SK generation in GeMSS

1: procedure GeMSS.KeyGen(1λ)
2: Randomly sample (S,T) ∈ GLn+v (F2)×GLn (F2) . This step is further detailed in

Section 2.5.1.
3: Randomly sample F ∈ F2[X, v1, . . . , vv] with HFEv-shape of degree D . This step is further

detailed in Section 2.5.2.
4: sk← (F,S,T) ∈ F2[X, v1, . . . , vv]×GLn+v (F2)×GLn (F2)
5: Compute f = (f1, . . . , fn) ∈ F2[x1, . . . , xn+v]

n such that:

F

(
n∑
k=1

θkxk, v1, . . . , vv

)
=

n∑
k=1

θkfk

. See Section 2.5.4 for details on Step 5.
6: Compute (p1, . . . , pn) =(

f1

(
(x1, . . . , xn+v)S

)
, . . . , fn

(
(x1, . . . , xn+v)S

))
T mod 〈x2

1−x1, . . . , x
2
n+v−xn+v〉 ∈ F2[x1, . . . , xn+v]

n

7: pk← p = (p1, . . . , pm) ∈ F2[x1, . . . , xn+v]
m . Take the first m = n−∆ polynomials

computed in Step 6
8: return (sk, pk)
9: end procedure

2.3 Signing process

The main step of the signature process requires to solve:

p1(x1, . . . , xn+v)− d1 = 0, . . . , pm(x1, . . . , xn+v)− dm = 0. (5)

for d = (d1, . . . , dm) ∈ Fm2 .

To do so, we randomly sample r = (r1, . . . , rn−m) ∈ Fn−m2 and append it to d. This gives d′ =
(s, r) ∈ Fn2 . We then compute D′ = ϕ−1(d′ × T−1) ∈ F2n and try to find a root (Z, z1, . . . , zv) ∈
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F2n × Fv2 of the multivariate equation:

F (Z, z1, . . . , zv)−D′ = 0.

To solve this equation, we take advantage of the special HFEv-shape. That is, we randomly sample
v ∈ Fv2 and consider the univariate polynomial F (X,v) ∈ F2n [X]. This yields a HFE polynomial
according to Remark 1. We then find the roots of the univariate equation:

F (X,v)−D′ = 0.

If there is a root Z ∈ F2n , we return (ϕ(Z),v)× S−1 ∈ Fn+v
2 .

A core part of the signature generation is to compute the roots of FD′(X) = F (X,v)−D′. To do
so, we use the Berlekamp algorithm as described in [61, Algorithm 14.15].

Algorithm 2 Algorithm for finding the roots of an univariate polynomial

function FindRoots(FD′ ∈ F2n [X])
Xn ← X2n −X mod FD′ . This step is further detailed in Section 5.6.3
G← gcd(FD′ , Xn)
if degree(G) > 0 then

Roots ← List of all roots of G, computed by the equal-degree factorization algorithm
described in [61, Section 14.3]

return (degree(G),Roots)
end if
return (degree(G), ∅)

end function

The complexity of Algorithm 2 is given by the following general result:

Theorem 1 (Corollary 14.16 from [61]). Let Fq be a finite field, and Mq(D) be the number of
operations in Fq to multiply two polynomials of degree ≤ D. Given f ∈ Fq[x] of degree D, we can
find all the roots of f over Fq using an expected number of

O
(

Mq(D) log(D) log(Dq)
)

or Õ
(
D log(q)

)
operations in Fq.

For q = 2n, we get that finding all the roots of a polynomial of degree D can be done in (expected)
quasi-linear time, i.e.:

Õ(nD). (6)

We can now present the inversion function (Algorithm 3):

Remark 2. We sample a root at Step 12 always in the same way. First, we sort the elements of
Roots in ascending order. We then compute SHA3(D′), and take the first 64 bits H64 of this hash.
We view H64 as an integer, and finally return the (H64 mod #Roots)-th element in Roots.

Let d ∈ Fn+v
2 and s← Invp

(
d, sk = (F,S,T)

)
∈ Fn+v

2 . By construction, we have:

p(s) = d,where p in the public-key associated to sk.
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Algorithm 3 Inversion in GeMSS

1: function GeMSS.Invp(d ∈ Fm2 , sk = (F,S,T) ∈ F2[X, v1, . . . , vv]×GLn+v (F2)×GLn (F2))
2: repeat
3: r ∈R Fn−m2 . The notation ∈R stands for randomly sampling.
4: d′ ← (d, r) ∈ Fn2
5: D′ ← ϕ−1(d′ ×T−1) ∈ F2n

6: v ∈R Fv2
7: FD′(X)← F (X,v)−D′
8: (·,Roots)← FindRoots(FD′)
9: until Roots = ∅

10: Z ∈R Roots
11: return (ϕ(Z),v)× S−1 ∈ Fn+v

2

12: end function

Thus, s ∈ Fn+v
2 could be directly used as a signature for the corresponding digest d ∈ Fm2 . In the

case of GeMSS,m is small enough to make the cost of simple birthday-paradox attack against the
hash function more efficient that all possible attacks (as those listed in Section 8). This problem
was already identified in QUARTZ and Gui [54, 20, 22, 57] who proposed to handle this issue by using
the so-called Feistel-Patarin scheme.

The basic principle of the Feistel-Patarin scheme is to roughly iterate Algorithm 3 several times.
The number of iterations is a parameter nb ite that will be discussed in Section 6.1. We will see
that we can choose nb ite = 4 as in QUARTZ [54, 20, 22].

Algorithm 4 Signing process in GeMSS

1: procedure GeMSS.Sign(M ∈ {0, 1}∗, sk ∈ F2[X, v1, . . . , vv] × GLn+v (F2) ×
GLn (F2) ,GeMSS.Invp)

2: H← SHA3(M)
3: S0 ← 0 ∈ Fm2
4: for i from 1 to nb ite do
5: Di ← first m bits of H
6: (Si,Xi)← GeMSS.Invp(Di ⊕ Si−1) . Si ∈ Fm2 and Xi ∈ Fn+v−m

2 , ⊕ is the
component-wise XOR

7: H← SHA3(H)
8: end for
9: return (Snb ite,Xnb ite, . . . ,X1) . This is of size
m+ nb ite(n+ v −m) = m+ nb ite(∆ + v) bits

10: end procedure

2.4 Verification process

The verification process corresponding to Algorithm 4 is given in Algorithm 5.
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Algorithm 5 Verification process in GeMSS

1: procedure GeMSS.Verif(M ∈ {0, 1}∗,nb ite > 0, (Snb ite,Xnb ite, . . . ,X1) ∈
Fm+nb ite(n+v−m)

2 , pk = p ∈ F2[x1, . . . , xn+v]
m)

2: H← SHA3(M)
3: (Snb ite,Xnb ite, . . . ,X1)← S
4: for i from 1 to nb ite do
5: Di ← first m bits of H
6: H← SHA3(H)
7: end for
8: for i from nb ite− 1 to 0 do
9: Si ← p(Si+1,Xi+1)⊕Di+1

10: end for
11: return VALID if S0 = 0 and INVALID otherwise.
12: end procedure

2.5 Implementation

We detail here some of the choices done for implementing GeMSS.

2.5.1 Generating invertible matrices

Algorithm 1 requires, at Step 2, to generate a pair of invertible matrices (S,T) ∈ GLn+v (F2) ×
GLn (F2). This problem was already discussed for QUARTZ [54] who presented two (natural) methods
to generate invertible matrices. The first one (“Trial and error”) sample random matrices until one
is invertible. The second one, that has be chosen in QUARTZ, uses the so-called LU decomposition.
This method has the advantage to directly return an invertible matrix. It is as follows.

• Generate a square random lower triangular L and upper triangular U matrices over F2, both
with ones on the diagonal (to have a non-zero determinant).

• Return L× U .

It is known that this method is slightly biased. A small part of the invertible matrices can not
be generated with this method. For a square matrix of size n, the number of invertible triangular

matrices is 2
∑n−1

i=0 i = 2
n2−n

2 . So, the number of matrices that can be generated with the LU method

is 2n
2

2n . This don’t reduce the search space on the secret matrices sufficiently to impact the security
of GeMSS.

In the code, we have implemented both generation methods. The implementation gives the pos-
sibility to switch the method with the macro GEN_INVERTIBLE_MATRIX_LU, which is in the file
encrypt_keypairHFE.c. It is initialized to 1 by default.

The matrices (S,T) ∈ GLn+v (F2) × GLn (F2) are in fact only used during the generation of the
public-key. After, we are only using the inverse of these matrices. So, S−1 and T−1 are computed
during the generation and are stored in the secret key.
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2.5.2 Generating HFEv polynomials

Algorithm 1 requires, at Step 3, to generate a polynomial F ∈ F2n [X, v1, . . . , vv] with HFEv-shape
of degree D. The polynomial F can be seen as a polynomial in X whose coefficients are in
F2n [v1, . . . , vv]. We store and randomly generate the non-zero exponents of F .

The polynomial F is chosen monic and so the leading coefficient is not stored. This choice makes
easier the roots finding part (Algorithm 2).

2.5.3 Data structure for F2[x1, . . . , xn+v]
m

The first idea is to see m equations of F2[x1, . . . , xn+v] as one element in F2m [x1, . . . , xn+v]. The
second idea is to use quadratic forms. Let x = (x1, . . . , xn+v), C ∈ F2m and Q,Q′ ∈ Mn+v(F2m),
then a quadratic non-linear square-free polynomial in F2m [x1, . . . , xn+v] can be written as

C + xQ′xt.

The coefficient Q′i,j corresponds to the term xixj in the polynomial. Since x2
i = xi, the linear term

can be stored on the diagonal of Q′.

To minimize the size, Q′ can be transformed into a upper triangular matrix Q. By construction,
Q′i,j and Q′j,i are the coefficients of the same term xixj (i 6= j). The matrix Q is such that:

Qi,j =


Q′i,j if i = j

Q′i,j + Q′j,i if i < j

0 else.

2.5.4 Generating the components of a HFEv polynomial

We detail here how to obtain the multivariate polynomials f = (f1, . . . , fn) ∈ (F2[x1, . . . , xn+v])
n

from a HFEv polynomial F ∈ F2n [X, v1, . . . , vv] such that
∑n

k=1 θkfk. The principle is to symbol-
ically compute F (

∑n
k=1 θkxk, v1, . . . , vv) ∈ F2n [x1, . . . , xn+v]. In the implementation, the basis

(θ1, . . . , θn) ∈ (F2n)n is the canonical basis of F2n .

The polynomial F can be seen as a polynomial in X whose coefficients are in F2n [v1, . . . , vv]. We
first consider terms of the form X2i . Clearly, (

∑n
i=k θkxk)

2i = (
∑n

k=1 θ
2i

k xk). We then get linear

terms involved in the f1, . . . , fn. It is the same idea for a term of the form X2i+2j . We get the
quadratic terms in the fk’s by X2iX2j = (

∑n
k=1 θ

2i

k xk)× (
∑n

k=1 θ
2j

k xk).

2.5.5 Generation of the public-key pk = p ∈ F2[x1, . . . , xn+v]
m

According to Section 2.5.3, f is stored as C + xQxt ∈ F2m [x1, . . . , xn+v]. We first compute(
f1 ((x1, . . . , xn) S) , . . . , fn ((x1, . . . , xn) S)

)
(Step 6, Algorithm 1) with our representation. To

do so, we just replace x by x S. The linear change of variables by S can be represented as:

C + xQ′xt ∈ F2n [x1, . . . , xn+v]

11



with Q′ = SQSt.

We then symmetrize the matrix Q′ as in Section 2.5.3 to get an upper triangular matrix Q′′.

To obtain the public key, we now need to perform linear combinations with the matrix T. With
our representation, this is equivalent to apply T to each coefficient to obtain the public-key in the
form:

Cpk + (xQpkx
t),

with Cpk ∈ F2m and Qpk ∈Mn+v(F2m).

in this form, the evaluation of the public-key reduce to a matrix-vector and vector-vector products
in F2m .

3 List of parameter sets (part of 2.B.1)

Following the analysis of Section 8, we propose below a set of 3 parameters for 128, 192 and 256 bits
of classical security. In Section 8.6, we give a general method allowing to derive others parameters.
Also, Section 9 gives others parameters with different tradeoffs.

3.1 Parameter set sign/GeMSS128

We choose nb ite = 4, ∆ = 12, v = 12 and m = 162. This gives n = 174, n+ v = 186, D = 513 and
K = 128. The extension field is defined as F2n = F2[X]

Xn+X13+1
.

This gives a public-key of 352.18 KBytes, a signature of 258 bits, a time to sign of 260 ms and 41
µs to verify (Section 5.3.3).

3.2 Parameter set sign/GeMSS192

We choose nb ite = 4,∆ = 22, v = 20 and m = 243. This gives n = 265, n+ v = 285, D = 513 and
K = 192. The extension field is defined as F2n = F2[X]

Xn+X42+1
.

This gives a public-key of 1237.96 KBytes, a signature of 411 bits and a time to sign of 694 ms and
117 µs to verify (Section 5.3.3).

3.3 Parameter set sign/GeMSS256

We choose nb ite = 4,∆ = 30, v = 33 and m = 324. This gives n = 354, n+ v = 387, D = 513 and
K = 256. The extension field is defined as F2n = F2[X]

Xn+X99+1
.

This gives a public-key of 3040.69 KBytes, a signature of 576 bits, a time to sign of 1.09 s and 336
µs to verify (Section 5.3.3).

12



4 Design rationale (part of 2.B.1)

A multivariate scheme. The first design rational of GeMSS is to construct a signature scheme
producing short signatures. It is well known that multivariate cryptography [62, 8, 25] provides
the schemes with the smallest signatures among all post-quantum schemes. Multivariate-based
signature schemes are even competitive with ECC-based, pre-quantum, signature schemes (see, for
example [9, 49]). This explains the choice of a multivariate cryptosystem for GeMSS.

A HFE-based scheme. HFE [52] is probably the most popular multivariate cryptosystem. Its
security has been extensively studied since more than 20 years. The complexity of the best known
attacks against HFE are all exponential in O

(
log2(D)

)
, where D is the degree of the secret univariate

polynomial. When D is too small, then HFE can be broken, e.g. [46, 36, 7]. In contrast, solving
HFE is NP-Hard when D = O(2n) [46]. However, the complexity of the signature generation – that
requires finding the roots of a univariate polynomial – is quasi-linear in D (Theorem 1). All in all,
there is essentially one parameter, the degree D of the univariate secret polynomial, which governs
the security and efficiency of HFE. The design challenge in HFE is to find a proper trade-off between
efficiency and security.

Variants of HFE. A fundamental element in the design of secure signature schemes based on
HFE is the introduction of perturbations. These creates many variants of the scheme. Classical
perturbations include the minus modifier (HFE-,[52]) and the vinegar modifier (HFEv, [45, 54]).

Typically, QUARTZ is a HFEv- signature scheme where D = 129, q = 2, n = 103, 4 vinegar variables
and 3 equations removed. The resistance, up to know, of QUARTZ against all known attacks illustrates
that minus and vinegar variants permit to indeed strengthen the security of a HFE-based signature.
A nude HFE, i.e. without any perturbation, with D = 129 and n = 103 would be insecure whilst
no practical attack against QUARTZ has been reported in the literature. The best known attack is
[36] that serves as a reference to set the parameters for GeMSS.

QUARTZ has the reputation to be solid but with a rather slow signature generation process. The
authors of [54] reported a signature generation process taking about a minute. Today, the same
parameters will take few hundred milliseconds. This is partly due to the technological progresses on
the speed of processors. In fact, it is mostly due to a deeper understanding on algorithms finding
the roots of univariate polynomials (see, for example [61]).

A descendant of QUARTZ. A method to improve the efficiency of QUARTZ is to take very small D
but consider generalized HFE for field bigger than 2. This is the choice proposed by [57] for Gui. In
GeMSS, we decided to work on a variant of HFE over F2 but to increase the degree with respect to
QUARTZ. As we explained before, this is possible due to progresses on finding roots and our efficient
roots-finding software implementation of roots finding.
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5 Detailed performance analysis (2.B.2)

5.1 Description of platform

Computer OS Architecture Processor Frequency Version of g++

Laptop Ubuntu 16.04.3 LTS x86 64 i7-6600U 2.60 GHz 6.3

Table 1: Materials.

Computer RAM L1d L1i L2 L3

Laptop 31.3 Gio 32 Ko 32 Ko 256 Ko 4096 Ko

Table 2: Memory.

The measurements used one core of the CPU, and the code was compiled with g++ -O4.
For the optimized and additional implementations, the code was compiled with
g++ -O4 -mavx2 -mpclmul. The optimized implementation requires -mavx2 -mpclmul only
to improve the performance of third-party open source libraries.

5.2 Third-party open source library

We have use the Keccak code package2 and NTL library3. The optimized implementation uses gf2x
library4 which implements fast multiplications of binary polynomials. The additional implementa-
tion replaces gf2x library by a new implementation of multiplications of binary polynomials. In
particular, we use mm clmulepi64 si128 intrinsic to improve the multiplication of binary polyno-
mials.

5.3 Time

The following measurements are for sign. For signature, it signs/verifies a document of 32 bytes.
For the measures, it runs a number of tests such that the global used time is greater than 10
seconds, and the global time is divided by the number of tests. For the signature, the number of
tests is 25.

5.3.1 Reference implementation

GeMSS128:
GeMSS.KeyGen takes 538 ms.

2https://keccak.team/
3http://www.shoup.net/ntl/
4http://gf2x.gforge.inria.fr/
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The time to sign is 1.22 s (in average).
The verification takes 7.56 ms.

GeMSS192:
GeMSS.KeyGen takes 2.47s.
The time to sign 3.04s (in average).
Verification takes 25.19 ms.

GeMSS256:
GeMSS.KeyGen takes 6.99s.
The signature takes 4.9s (in average).
The verification takes 61.7 ms.

5.3.2 Optimized implementation

GeMSS128:
GeMSS.KeyGen takes 44 ms.
The time to sign is 323 ms (in average).
The verification takes 41 µs.

GeMSS192:
GeMSS.KeyGen takes 169 ms.
The time to sign is 793 ms (in average).
The verification takes 117 µs.

GeMSS256:
GeMSS.KeyGen takes 433 ms.
The time to sign 1.13 s (in average).
The verification takes 346 µs.

5.3.3 Additional (best) implementation

GeMSS128:
GeMSS.KeyGen takes 42 ms.
The signature takes 260 ms (in average).
The verification takes 41 µs.

GeMSS192:
GeMSS.KeyGen takes 166 ms.
The signature takes 694 ms (in average).
The verification takes 117 µs.

GeMSS256:
GeMSS.KeyGen takes 424 ms.
The signature takes 1.09 s (in average).
The verification takes 336 µs.
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5.4 Space

Here are the size of public key, secret key and signature in the implementation. The implementation
does not optimize the size, so it explains the difference with theorical sizes. In particular, the way
to store the signature is very inefficient.

GeMSS128:
Public key is 417408 bytes. Secret key is 14208 bytes. Signatures are 48 bytes.

GeMSS192:
Public key is 1304192 bytes. Secret key is 39440 bytes. Signatures are 88 bytes.

GeMSS256:
Public key is 3603792 bytes. Secret key is 82056 bytes. Signatures are 104 bytes.

5.5 How parameters affect performance

Signature generation is mainly affected by n and the degree D of the secret univariate polynomial.
According to Theorem 1, we can find the roots of F ∈ F2n [X] in Õ

(
nD

)
binary operations. So, n

and D are the main parameters which influence the efficiency. In Sec. 8, we will see how to choose
these parameters in function of the security parameter.

5.6 Optimizations

The optimized implementation modifies the order of computations to have the best possible
contiguity, and in this way avoids a maximum of miss in the cache. The implementation avoids to
store useless null coefficients (for example, for a triangular matrix), and every data are stored in
unidimensional tabular of words.

5.6.1 Improvement of the arithmetic in F2n

The multiplication in F2n is the the most expensive part of GeMSS: the generation of the public-
key/secret key requires O

(
n2 log(D)2 + nv log(D)

)
multiplications, and the signature requires

Õ
(
nD

)
multiplications.

To improve multiplication, the optimized implementation uses the gf2x library. The ad-
ditional implementation uses a new implementation that is a classical multiplication, using
mm clmulepi64 si128 for the basis case. This implementation is faster than gf2x for small sizes

of n.

The squaring in F2n is important in the signature generation. Indeed, the computation of (X2n−X)
mod F (Algorithm 2) requires O(nD) squaring. Squaring consists just to interleave a zero bit
between each bit of the input. To do this, the optimized implementation uses a precomputed table
of 256 elements: it stores the squaring of all binary polynomials of size 8 bits. The additional
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implementation uses the intrinsic mm clmulepi64 si128 to compute directly the squaring of an
element of size 64 bits.

5.6.2 Evaluation of the public-key

The public-key in represented in the form:

Cpk + xQpkx
t,

with Cpk ∈ F2m and Qpk ∈Mn+v(F2m).

The optimization is to set to zero the ith row of Qpkv
t (a column vector) if the ith component of

v is null. We avoid a dot product for each null coefficient.

5.6.3 Computation of Fröbenius map

To compute the roots of FD′ = F (X,v) − D′ (Algorithm 2) during the signature , the reference
implementation uses the FrobeniusMap function from NTL. To accelerate this function, the
optimized implementation uses a C implementation of (X2n −X) mod FD′ , as this:

Algorithm 6 Algorithm for Frobenius map

function Frobenius map(FD′ , n)
Choose a such that 2a < degree(FD′) but 2a+1 ≥ degree(FD′).
Xa ← X2a

for i from a+ 1 ton do
Xi ← (Xi−1)2 . Linearity of Fröbenius endomorphism
Xi ← Xi mod FD′ . We use the fact that FD′ is monic and sparse

end for
return Xn +X

end function

To compute squaring is equivalent to compute the square of each coefficient, and put a null
coefficient between each coefficient.
Since FD′ is monic, there is useless to multiply FD′ by the inverse of its leading coefficient to
compute modular reduction. The fact that FD′ is sparse avoids to load and read useless null
coefficients, since just the useful coefficients are stored.

6 Expected strength (2.B.4) in general

We review in this part known results on the provable security of GeMSS. This includes the required
number of iterations in the Feistel-Patarin scheme (Section 6.1) as well as the security (Section 6.2)
in the sense of the existential unforgeability against adaptive chosen-message attack (EUF-CMA).
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6.1 Number of iterations nb ite in Sign and Verif

We explain here how the number of iterations nb ite > 0 has to be chosen in Algorithms 4 and 5.
This follows from the analysis performed already in QUARTZ [54, 20].

Theorem 2 (adapted from [20]). The number of iterations nb ite hast to be chosen such that

2m
nb ite

nb ite+1 ≥ 2λ.

For GeMSS, we fix nb ite = 4 for all security parameters. This is similar to the choice for QUARTZ

[54, 20].

6.2 EUF-CMA security

EUF-CMA security of HFEv-, over which GeMSS is designed, has been mainly investigated in [59].
The authors demonstrated that a minor, but costly, modification of GeMSS.Invp (Algorithm 3)
permits to achieve EUF-CMA security for GeMSS. In fact, the result of [59] applies more precisely
to a version of GeMSS.Invp where nb ite is equal to one. In this case, the EUF-CMA security of
(modified) GeMSS follows easily from [59].

We first formalize the security of GeMSS against chosen message attacks.

Definition 1 ([59]). The GeMSS signature scheme (GeMSS.KeyGen,GeMSS.Sign,GeMSS.Verif)
is
(
ε(λ), qs(λ), qh(λ), t(λ)

)
-secure if there is no forger A who takes as input a public-key

(·, pkGeMSS) ← GeMSS.KeyGen() and with at most qh(λ) queries to the random oracle, qs(λ)
queries to the signature oracle, then outputs a valid signature after t(λ) steps with a probability at
least ε(λ).

We want to provably reduce EUF-CMA security of GeMSS to the the hardness of inverting the
public-key of GeMSS. Formally:

Definition 2 ([59]). We shall say that the GeMSS function generator GeMSS.KeyGen is(
ε(λ), t(λ)

)
secure, if there is no inverting algorithm that takes pkGeMSS = pGeMSS generated via

(·, pkGeMSS) ← GeMSS.KeyGen(1λ), a challenge d ∈R Fm2 , and finds a preimage s ∈R Fn+v
2 such

that
pGeMSS(s) = d.

after t(λ) steps with success probability at least ε(λ).

Following [59], we explain now how to modify GeMSS for proving EUF-CMA security. Recall that
D is degree of the secret polynomial with HFEv-shape in GeMSS. The main modification proposed
by [59] is roughly to repeat D times the inversion step described in Algorithm 3.

Let ` be the length of a random salt. The modified inversion process is given in Algorithm 7:

Given Algorithm 7, we can define GeMSS.Sign∗ as the signature algorithm 4 instantiated with
GeMSS.Inv∗p and with nb ite = 1. Similarly, GeMSS.Verif∗ is the verification algorithm 5 where
nb ite = 1.
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Algorithm 7 Modified inversion for GeMSS

1: procedure GeMSS.Inv∗p(d ∈ Fm2 , ` ∈ N, sk = (F,S,T) ∈ F2[X, v1, . . . , vv] × GLn+v (F2) ×
GLn (F2))

2: v ∈R Fv2
3: repeat
4: salt ∈R {0, 1}`
5: r← first n−m bits of SHA3(d‖salt)
6: d′ ← (d, r) ∈ Fn2
7: D′ ← ϕ−1(d′ ×T−1) ∈ F2n

8: FD′(X)← F (X,v)−D′
9: (·,Roots)← FindRoots(FD′)

10: u ∈R {1, . . . , D}
11: until 1 ≤ u ≤ #Roots
12: Z ∈R Roots
13: return (ϕ(Z),v)× S−1 ∈ Fn+v

2

14: end procedure

Theorem 3 ([59]). Let GeMSS∗ be the signature scheme defined by
(GeMSS.KeyGen,GeMSS.Sign∗,GeMSS.Verif∗). Thus, if the GeMSS function generator
GeMSS.KeyGen is

(
ε′, t′

)
secure, then GeMSS∗ is

(
ε, t, qH , qS

)
secure, with:

ε =
ε′(qH + qs + 1)

1− (qH + qs)qs2`
,

t =
t′ − (qH + qs + 1)

tGeMSS +O(1)

where tGeMSS is the time required to evaluate the public-key of GeMSS.

There are two differences between GeMSS and GeMSS∗. First, GeMSS.Inv∗p is more costly than
GeMSS.Inv∗p. The expected number of calls to the root-finding step (Step 9) in GeMSS.Inv∗p is

1
1−1/eD ≈ 1.58×D. In GeMSS.Invp, the average number of calls to the root-finding step (Step 8)

is 1
1−1/e ≈ 1.58.

In GeMSS, we are typically considering D ≥ 512. For efficiency reasons, we did not incorporated
this modification in our implementation.

Remark 3. The threshold D in Step 10 corresponds to a bound on the number of roots of the
univariate polynomial F at Step 9. However, F has a HFE-shape (Remark 1) and has much less
roots than a random univariate polynomial of the same degree. Indded, the roots of a HFE polynomial
correspond to the zeros of a system of n boolean equations in n variables (see (3)). In [38], the
authors studied the distribution of the number of zeroes of algebraic systems. In particular, a
random system of n equations in n variables has exactly s solutions with probability 1

e s! . Thus,
as also mentionned [59], the threshold D in Step 10 can be theoretically much decreased without
compromising the proof. The authors of [59] mentioned a value around ≈ 30 for the threshold.

The second difference between GeMSS and GeMSS∗ is on the number of iterations. The treatment
of [59] did not include the use of a Feistel-Patarin transform. It is an interesting open problem to
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formally prove EUF-CMA security when nb ite > 0. This should probably follow from the use of
Theorem 2.

All in all, the provable security results mentioned up to know only require minor modifications of
the signature process without changing the underlying trapdoor. As a consequence, the security
of GeMSS has to be mainly studied with respect to the hardness of inverting the public-key. This
question is investigated in Section 8.

6.3 Signature failure

This analysis is essentially similar to the one performed for QUARTZ [54]. A failure can occurs in
GeMSS.Invp (Algorithm 3), at Step 8, if Roots = ∅ for all (r,v) ∈ Fn−m2 × Fv2. The probability
that Roots is empty for a given (d,v) ∈ Fn−n+v

2 × Fv2 is 1/e [54, 38]. Thus, Algorithm 7 fails with

probability (1
e )2n+v−m

.

Finally, GeMSS.Invp is called GeMSS.Sign nb ite times. The probability of failure for GeMSS.Sign
is then:

1−

(
1−

(
1

e

)2n+v−m
)nb ite

.

7 Expected strength (2.B.4) for each parameter set

7.1 Parameter set sign/GeMSS128

Category 1.

7.2 Parameter set sign/GeMSS192

Category 3.

7.3 Parameter set sign/GeMSS256

Category 5.

8 Analysis of known attacks (2.B.5)

This part provides a summary of the main attacks against GeMSS. In Section 8.1, we consider
direct signature forgery attacks. This includes, in particular, the analysis of known quantum
attacks (Sections 8.1.2 and 8.3) and Gröbner basis attacks (Sections 8.1.2 and 8.3). In Section 8.4,
we consider key-recovery attacks.

In almost all cases, the attacks reduce to solving a particular system of non-linear equations derived
from the public polynomials.
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8.1 Direct signature forgery attacks

The public-key of GeMSS is given by a set of non linear-equations p = (p1, . . . , pm) ∈
F2[x1, . . . , xn+v]

m. Given a digest (d1, . . . , dm) ∈ Fm2 , the problem of forging a signature is equiva-
lent to solve the following system of non-linear equations:

p1(x1, . . . , xn+v)− d1 = 0, . . . , pm(x1, . . . , xn+v)− dm = 0, x2
1 − x1, . . . , x

2
n+v − xn+v = 0. (7)

Stated differently, the task is to invert GeMSS.Invp (Algorithm 3) without the knowledge of the
secret-key sk.

In our case, the system is under-defined, i.e. n + v > m. As a consequence, we can randomly
fix n + v −m variables r = (r1, . . . , rn+v−m) ∈ Fn+v−m

2 in (7) and try to solve for the remaining
variables. Note that this is similar to the (legitimate) signature process which requires to randomly
fix variables in GeMSS.Invp (Steps 3 and 6 of Algorithm 3).

Thus, the problem of forging a signature reduces to solve a system of m quadratic equations in m
variables over F2:

p1

(
x1, . . . , xm, r)− d1 = 0, . . . , pm

(
x1, . . . , xm, r)− dm = 0, x2

1 − x1, . . . , x
2
m − xm = 0. (8)

8.1.1 Exhaustive search

In [11], the authors describe a fast exhaustive search for solving systems of boolean quadratic
equations. They also provide a detailed cost analysis of their approach. To recover a solution of
(8), the approach from [11] requires:

4 log2(m) 2m binary operations.

For the parameters of GeMSS, we have:

m Fast exhaustive search ([11])

162 2166.87

243 2247.98

324 2329.98

8.1.2 Quantum exhaustive search

In [17], the authors proposed simple quantum algorithms for solving systems of quadratic boolean
equations. The principle of [17] is to perform a fast quantum exhaustive search by using Grover’s
algorithm. [17] demonstrated that we can solve a system of m − 1 binary quadratic equations in

n− 1 binary variables using m+ n+ 2 qubits and evaluating a circuit of 2n/2
(

2m(n2 + 2n) + 1

)
quantum gates. They also describe a variant using less qubits, i. e. 3 + n+ dlog2(m)e qubits, but

requiring to evaluate a larger circuit, i.e. with ≈ 2× 2n/2
(

2m(n2 + 2n) + 1

)
quantum gates.

We can now estimate is the cost for solving the system (8) for the parameters of GeMSS. The
quantum attacks from [17] require then:
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m #qbits #quantum gates

162 328 2104.56

162 173 ≈ 2105.56

243 490 2146.8

243 254 ≈ 2146.8

324 652 2188.54

324 336 ≈ 2189.54

8.2 Approximation algorithm

Recently, the authors of [47] proposed a new algorithm for solving systems of non linear equations
that is faster than a direct exhaustive search. The techniques from [47] allow for the approximation
of a non-linear system, as (8), by a single high-degree multivariate polynomial P with m′ < m
variables. The polynomial P is constructed such that it vanishes on the same zeroes as the original
non-linear system with high probability. We then perform an exhaustive search on P to recover,
with high probability, the zeroes of the non-linear system. This leads to an algorithm for solving
(8) whose asymptotic complexity is:

O∗
(
20.8765m

)
.

The notation O∗ omits polynomial factors. Anyway, we will estimate the cost of this attack by the
lower bound 20.8765m.

For the parameters of GeMSS, we have then:

m Lower bound on the complexity of [47]

162 2141.99

243 2212.98

324 2283.98

8.3 Gröbner bases

To date, the best methods for solving non-linear equations, including the attack system (8), utilize
Gröbner bases [15, 14]. The historical method for computing such bases – known as Buchberger’s
algorithm – has been introduced by Buchberger in his PhD thesis [15, 14]. Many improvements on
Buchberger’s algorithm have been done leading – in particular – to more efficient algorithms such
as the F4 and F5 algorithms of J.-C. Faugère [30, 31]. The F4 algorithm, for example, is the default
algorithm for computing Gröbner bases in the computer algebra software Magma [10]. The F5
algorithm, which is available through the FGb [33] software5, provides today the state-of-the-art
method for computing Gröbner bases.

Besides F4 and F5, there is a large literature of algorithms computing Gröbner bases. We
mention for instance PolyBory [13] which is a general framework to compute Gröbner basis in
F2[x1, . . . , xn]/〈x2

i − xi〉1≤i≤n. It uses a specific data structure – dedicated to the Boolean ring
– for computing Gröbner basis on top of a tweaked Buchberger’s algorithm6. Another technique

5http://www-polsys.lip6.fr/~jcf/FGb/index.html
6http://polybori.sourceforge.net
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proposed in cryptography is the XL algorithm [21]. It is now clearly established that XL is a special
case of Gröbner basis algorithm [1]. More recently, a zoo of algorithms such as G2V [40], GVW [41],
. . ., flourished building on the core ideas of F4 and F5. This literature is vast and we refer to [29]
for a recent survey of these algorithms.

Despite this important algorithmic literature, if is fair to say that Magma and FGb remain the
references softwares for polynomial system solving over finite fields. We have intensively used
both softwares to perform practical experiments and support our methodology to derive secure
parameters (Section 8.3.3).

8.3.1 Asymptotically fast algorithms

BooleanSolve [6] is the fastest asymptotic algorithm for solving system of non-linear boolean
equations. BooleanSolve is a hybrid approach that combines exhaustive search and Gröbner bases
techniques. For a system with the same number of equations and variables (m), the deterministic
variant of BooleanSolve has complexity bounded by O(20.841m), while a Las-Vegas variant has
expected complexity

O(20.792·m).

It is mentioned in [6] that BooleanSolve is better than exhaustive search when m ≥ 200. This is
due to the fact that large constants are hidden in the big-O notation. As a conservative choice,
we lower bound here the cost of this attack by 20.792·m. We mention that [56] recently considered
a hybrid approach against HFEv-. The former result also indicates that our approach is indeed
conservative.

In Table 3, we report the security level of GeMSS against BooleanSolve (probabilistic version) for
the three parameters proposed.

m Lower bound on the cost of BooleanSolve (20.792·m)

162 2128.3

243 2192.45

324 2256.6

Table 3: Security of GeMSS against BooleanSolve.

In fact, we have used BooleanSolve as the reference approach to derive the minimal number m of
equation required in GeMSS.

QuantumBooleanSolve. In a recent paper [35], the authors present a quantum version of
BooleanSolve that takes advantages of Grover’s quantum algorithm [44]. QuantumBooleanSolve

is a Las-Vegas quantum algorithm allowing to solve a system of m boolean equations in m vari-
ables. It uses O(n) qbits, requires the evaluation of, on average, O(20.462m) quantum gates. This
complexity is obtained under certain algebraic assumptions.

In Table 4, we report the security level of GeMSS against QuantumBooleanSolve (probabilistic
version) for the three parameters proposed.
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m Lower bound on the # quantum gates for QuantumBooleanSolve (20.462·m)

162 274.84

243 2112.26

324 2149.68

Table 4: Security of GeMSS against QuantumBooleanSolve.

8.3.2 Practically fast algorithms

The direct attack described in [32, 36] provides reference tools for evaluating the security of HFE
and HFEv- against a direct message-recovery attack. This attack uses the F5 algorithm [31, 4] and
has a complexity of the following general form:

O
(
poly(m,n)ω·Dreg

)
, (9)

with 2 ≤ ω < 3 being the so-called linear algebra constant [61], i.e. the smallest constant ω, 2 ≤
ω < 3 such that two matrices of size N ×N over a field F can be multiplied in O(Nω) arithmetic
operations over F. The best current bound is ω < 2.3728639 [39]. In this part, we will always use
ω = 2 to evaluate the cost of Gröbner bases attacks.

The complexity (9) is exponential in the degree of regularity Dreg [2, 5, 3]. However, this degree of
regularity Dreg can be difficult to predict in general ; as difficult than computing a Gröbner basis.
Fortunately, there is a particular class of systems for which this degree can be computed efficiently
and explicitly : semi-regular sequences [2, 5, 3]. This notion is supposed to capture the behavior of
a random system of non-linear equations. In order to set the parameters for HFE and variants as
well than for performing meaningful experiments on the degree of regularity, we can assume that
no algebraic system has a degree of regularity higher than a semi-regular sequence.

In Table 5, we provide the degree of regularity of a semi-regular system of m boolean equations in
m variables for various values of m.

m Dreg

4 ≤ m ≤ 8 3

9 ≤ m ≤ 15 4

16 ≤ m ≤ 24 5

25 ≤ m ≤ 31 6

32 ≤ m ≤ 40 7

41 ≤ m ≤ 48 8

49 ≤ m ≤ 57 9

58 ≤ m ≤ 66 10

154 ≤ m ≤ 163 20

234 ≤ m ≤ 243 28

316 ≤ m ≤ 325 36

Table 5: Degree of regularity of m semi-regular boolean equations in m variables.

In the case of HFE, the degree of regularity for solving (8) has been experimentally shown to be
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smaller than log2(D) [32, 36]. This behavior has been further demonstrated in [43, 28]. In particular,
[43] claims that the degree of regularity reached in HFE is asymptotically upper bounded by:

(2 + ε)(1−
√

3/4) ·min
(
m, log2(D)

)
, for all ε > 0. (10)

This bound is obtained by estimating the degree of regularity of a semi-regular system of 3dlog2(D)e
quadratic equations in 2dlog2(D)e variables. We emphasize that an asymptotic bound such as (10)
is not necessarily tight for specified values of the parameters. Thus, (10) can not be directly used
to derive actual parameters but still provide a meaningful asymptotic trend.

Indeed, the behavior of HFE algebraic systems is then much different from a semi-regular system
of m boolean equations in m variables where the degree of regularity increases linearly with m.
Roughly, Dreg grows as ≈ m/11.11 in the semi-regular case [2, 5, 3].

We report below the degree of regularity DExp
reg observed in practice for HFE. These bounds are are

only meaningful for a sufficiently large m which is given in the first column. Indeed, as we already
explained, we can assume that the values from Tab. 5 are upper bounds on the degree of regularity
of any algebraic system of boolean equations.

Minimal m HFE(D) DExp
reg

> 4 3 ≤ D ≤ 16 3

> 9 17 ≤ D ≤ 128 4

> 16 129 ≤ D ≤ 512 5

> 25 513 ≤ D ≤ 4091 6

> 32 D ≥ 4092 7

Table 6: Degree of regularity in the case of HFE algebraic systems.

Following [36], we lower bound the complexity of F5 against HFE, i.e. for solving the attack system
(8). The principle is to only consider the cost of performing a row-echelon computation on a full
rank sub-matrix of the biggest matrix occurring in F5. At the degree of regularity, this sub-matrix
has

(
m
Dreg

)
columns and (at least)

(
m
Dreg

)
rows. Thus, we can bound the complexity of a Gröbner

basis computation against HFE by:

O

((
m

Dreg

)2
)
. (11)

This is a conservative estimate on the cost of solving (8). This represents the minimum computation
that has to be be done in F5. We also assumed that the linear algebra constant ω is 2; the smallest
possible value.

Given a value of m, we can now deduce from (11) and Table 3, the (smallest) degree of regularity
required to achieve a certain security level. These values are given in Table 7.

From Table (6), we can see that no HFE has a degree of regularity sufficiently large to achieve a
reasonable level of security. To do so, we need to use modifiers of HFE for increasing the degree of
regularity.

In particular, the practical effect of the minus and vinegar modifiers have been considered in [32, 36].
This has been further investigated in [23, 26] who presented a theoretical upper bound on the degree
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m minimal Dreg required Lower bound on the cost of a Gröbner basis as given in (11)

162 14 2131.16

243 20 2192.52

324 27 2260.86

Table 7: Smallest degree of regularity required.

of regularity arising in HFEv-. Let R = blog2(D− 1)c+ 1, then the degree of regularity for HFEv- is
bounded from above by

R+ v + ∆− 1

2
+ 2, when R+ ∆ is odd, (12)

R+ v + ∆

2
+ 2, otherwise. (13)

We observe that degree of regularity seems to increase linearly with (n+ v −m). This is the sum
of the modifiers : number of equations removed plus vinegar variables.

Very recently, [56] derived an experimental lower bound on the degree of regularity in HFEv-. The
authors [56] obtained that the degree of regularity for HFEv- should be at least :⌈

R+ ∆ + v + 7

3

⌉
. (14)

8.3.3 Experimental results for HFEv-

The main question in the design of GeMSS is to quantify, as precisely as possible, the effect of the
modifiers on the degree of regularity. To do so, we performed experimental results on the behaviour
of a direct attack against HFEv-, i.e. computing a Gröbner basis of (8). We mention that similar
experiments were performed in [57].

We first consider v = 0, and denote by ∆ the number of equation removed, i.e. m = n − r.
According to the upper bounds (12) and (13), the degree of regularity should increase by 1 when
2 equations are removed.

We report the degree of regularity DExp
reg reached during a Gröbner basis computation of a system of

m = n−∆ equations in n−∆ variables coming from a HFE public-key generated from a univariate
polynomial in F2n [X] of degree D. We also reported the degree of regularity DTheo

reg of a semi-regular
system of the same size (as in Table (5)).

The experimental results on HFE-, no vinegar, are not completely conclusive. Whilst the degree of
regularity appears to increase, it seems difficult to predict its behavior in function of the number
of equations removed. This was also observed in [57] where the authors advised against using the
minus modifier alone. Thus, the minus modifier should not be used alone.

We now consider the opposite situation, i.e. no minus and we increase the number of vinegar
variables, i.e. HFEv.

The experimental results are more stable. In all cases, we need to add 3 vinegar variables to increase
the degree of regularity by 1.
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n ∆ n−∆ D DTheo
reg DExp

reg

32 0 32 4 7 3
33 1 32 4 7 3
34 2 32 4 7 3
35 3 32 4 7 4
36 4 32 4 7 4
37 5 32 4 7 4
38 6 32 4 7 4
39 7 32 4 7 4
40 8 32 4 7 5
41 9 32 4 7 5
42 10 32 4 7 5
43 11 32 4 7 5
44 12 32 4 7 5
45 13 32 4 7 5
46 14 32 4 7 6
47 15 32 4 7 6
48 16 32 4 7 6
49 17 32 4 7 6
49 18 32 4 7 6
50 19 32 4 7 6
51 20 32 4 7 6

n ∆ n−∆ D DTheo
reg DExp

reg

41 0 41 4 8 3
42 1 41 4 8 3
43 2 41 4 8 3

44 3 41 4 8 4
45 4 41 4 8 4
46 5 41 4 8 4
47 6 41 4 8 4
48 7 41 4 8 4

Table 8: HFE- with D = 4; 32 and 41 equations.

n ∆ n−∆ D DTheo
reg DExp

reg

32 0 32 17 7 4
33 1 32 17 7 4
34 2 32 17 7 4
35 3 32 17 7 5
36 4 32 17 7 5
37 5 32 17 7 6
38 6 32 17 7 6
39 7 32 17 7 6

n ∆ n−∆ D DTheo
reg DExp

reg

41 0 41 17 8 4
42 1 41 17 8 4
43 2 41 17 8 4

44 3 41 17 8 5
45 4 41 17 8 5

Table 9: HFE- with D = 17; 32 and 41 equations.

n v m = n− v D DTheo
reg DExp

reg

32 0 32 6 7 3

32 7 25 6 7 5
32 8 25 6 7 6
32 9 25 6 7 6
32 10 25 7 7 6

32 11 25 6 7 7
32 12 25 6 7 7

32 15 25 6 7 7

Table 10: HFEv, D = 6 and 32 variables.

We also performed experimental results with a combination of vinegar and minus. Similarly to
[57], we observed that the behaviour obtained seems similar for HFEv- with ∆ = 0 and v vinegar
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n v m = n− v D DTheo
reg DExp

reg

25 0 25 9 6 3

26 1 25 9 6 4
27 2 25 9 6 4
28 3 25 9 6 4

29 4 25 9 6 5
30 5 25 9 6 5
31 6 25 9 6 5

32 7 25 9 6 6

Table 11: HFEv, D = 9 and 25 variables.

n v m = n− v D DTheo
reg DExp

reg

25 0 25 16 6 3

26 1 25 16 6 4
27 2 25 16 6 4
28 3 25 16 6 4

29 4 25 16 6 5
30 5 25 16 6 5
31 6 25 16 6 5

32 7 25 16 6 6

n v m = n− v D DTheo
reg DExp

reg

32 0 32 16 7 3

33 1 32 16 7 4
34 2 32 16 7 4
35 3 32 16 7 4

36 4 32 16 7 5
37 5 32 16 7 5

Table 12: HFEv with D = 16; 25 and 32 equa-
tions.

variables than for a HFEv- with ∆ = v/2 and v/2 vinegar variables.

8.4 Key-recovery attacks

We conclude this part by covering key-recovery attacks. This part discusses the so-called Kipnis-
Shamir attack [46] (Section 8.4.1) and differential attacks (Section 8.4.2).

8.4.1 Kipnis-Shamir attack

In [46], A. Kipnis and A. Shamir demonstrated that key-recovery in HFE is essentially equivalent to
the problem of finding a low-rank linear combination of a set of m boolean matrices of size m×m.
This is a particular instance of the MinRank problem [16, 19].

We briefly review the principle of this attack for HFE. In the context of this attack, we can assume
w.l.o.g. that the HFE polynomial has a simpler form:∑

06i<j<n
2i+2j6D

Ai,j X
2i+2j ∈ F2n [X], with Ai,j ∈ F2n . (15)
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We can then write (15) in a matrix form, that is:

XFXT

with X = (X,X2, X22 , . . . , X2n−1
) and F ∈ M(F2n)n×n is a symmetric matrix with zeroes on the

diagonal (i.e. skew-symmetric matrix). Since the degree of F is bounded by D, it is easy to see
that F has rank at most dlog2(D)e. This implies that there exists a linear combinations of rank
dlog2(D)e of the public matrices representing the public quadratic forms [7]. The secret-key can be
then recovered easily from a solution of MinRank [46, 7].

In [7], the authors evaluated the cost of the Kipnis-Shamir key-recovery attack with the best known
tools for solving the MinRank [34] instance that occurs in HFE. Following [7], the cost of the Kipnis-
Shamir attack against HFE can be estimated to:

O
(
nω(dlog2(D)e+1)

)
, with 2 ≤ ω ≤ 3 being the linear algebra constant

and where D is the degree of the secret univariate polynomial.

Until recently, it was not clear how to apply the key-recovery attack from [46, 7] to HFE- when
n − m ≥ 2. In [60], the authors explained how to extend MinRank-based key-recovery for all
parameters of HFE-. Their results can be summarized as follows. From key-recovery point of view,
HFE- with a secret univariate polynomial of degree D and n variables is equivalent to a HFE with
m variables with secret univariate polynomial of degree D × 2∆. Combining with [7], the cost of a
MinRank-based key-recovery attack against HFE− is then:

O
(
mω(dlog2(D)e+∆+1)

)
.

For MinRank-based key-recovery, then minus modifier has then a strong impact on the security.

In the case of HFEv, one can see that the rank of the corresponding matrix (see, for exemple [57])
will be increased by the number of vinegar variables. Combining with the previous result, the cost
of solving MinRank in the case of HFEv- is then:

O
(
nω(dlog2(D)e+v+∆+1)

)
, (16)

where D is the degree of the secret univariate polynomial.

For all the parameters proposed for scheme, assuming ω = 2, the cost (16) is always much bigger
than the cost of the best direct attack (Section 8.1).

Remark 4. Recently, [24] proposed set of new attacks whose complexity remains essentially expo-
nential in the parameters. This attacks improved known attacks for some parameters. We quickly
verified the complexity of these attacks. They don’t decrease the security of GeMSS below the security
parameter.

8.4.2 Differential attack

We finally consider so-called differential attacks, introduced [27], are structural attacks that can
be used to attack multivariate cryptosystems. Differential attacks turned to be very efficient, e.g.
[27, 12] against SFLASH [53]; a popular multivariate-based signature based on the Mastsumoto and
Imai [48].
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HFE is the successor, and a generalization, of [48]. Up to know, differential attacks have not really
threatened the security of HFEv-. This is due to the fact the univariate polynomial used is much
more complex than in [48] variants such as SFLASH [53]. In [18], the authors proved that variants
of HFE, such as GeMSS, are immune against known differential attacks.

8.5 Deriving number of variables for GeMSS

At this stage, we have a methodology for fixing the minimal number of equations m (Table 3).
We now need to derive the number of vinegar variables v and minus ∆ required to achieve the
degree of regularity corresponding to a given security level (Table 7). This is the most delicate
point. According to the experiments performed in Section 8.3.3, and the insight provided by the
key-recovery attacks (Section 8.4), we make the choice to balance v and ∆.

In addition, we need to fix the degree D of the HFEv polynomial. This will give the initial degree
of regularity for a nude HFE (Table 6). For GeMSS, we consider a secret univariate polynomial
of degree D = 513. This corresponds to a degree of regularity of 6 for a nude HFE, i.e. without
any modifier. From our experiments, we consider that 3 modifiers allow to increase the degree of
regularity by one. Idenpendently of this submission, the authors [56] also derived a similar rule; as
one can see from (14).

In Table 13, we then derive the number of modifiers required as v + ∆ = 3×Gap, with Gap being
the difference with the targeted degree of regularity minus the initial degree of regularity (6 here).
We consider the number of equations m and the targeted degree of regularity as in Table 7. The
third column of Table 13 gives the number of modifiers required.

m Gap v + ∆

GeMSS128 162 14− 6 = 8 24

GeMSS192 243 20− 6 = 14 42

GeMSS256 324 27− 6 = 21 63

Table 13: Numbers of modifiers required in GeMSS.

The exact resulting parameters are given in Section 14.

8.6 A general method to derive secure parameters

We are now in position to provide a general methodology to derive secure parameters for GeMSS.
Following Section 8.3.1, the number of equations should be chosen such that:

m ≥ 1.26 · λ.

Thus, we can assume that m = α · λ with α ≥ 1.26.

From (11), the degree of regularity Dreg required for a given security level should verify:

O

((
m

Dreg

)2
)
≥ 2λ.
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Using a loose approximation of the binomial and ignoring the coefficient in the big-O, we get that:

Dreg ≥
λ

log2(m2)
=

λ

2 log2(α · λ)
.

The last step requires to compute the number of vinegar variables required to reach Dreg. We first
need to have the initial degree of regularity. We can assume that this is a function of log2(D);
as explained in Section 8.3.2. From table 6, we can interpolate an expression for the degree of
regularity DHFE

reg of a nude HFE:

DHFE
reg ≈ 2.03 + 0.36 log2(D).

The number of modifiers, using the experimental rule of Section 8.5, can be then approximated by:

∆ + v ≈ 3λ

log2(m2)
− 6.06− 1.08 log2(D) =

1.5λ

log2(α · λ)
− 1.08 log2(D)− 6.06. (17)

Below, we computed this approximation for the parameters of GeMSS.

(λ,m,D) Approximation (17) of ∆ + v

(128, 162, 512) 36.53

(196, 243, 512) 56.9

(256, 324, 512) 76.30

This has to be compared with the exact values provided in Table 13. The difference is mainly
due to the loose approximation of the binomial for deriving (17). However, we can see that (17)
captures rather well the global trend and can be used to derive others secure parameters.

We can see that there is two strategies to derive secure parameters. In GeMSS, the goal is to
minimize the size of the public-key. To do so, we are taking m = 1.26 · λ. From (17), we can see
that the number of modifiers decreases when D increases. We take the same number of vinegar
variables v and the same number of minus ∆. To minimize the total number of variables m, we have
then to increase the degree D of the univariate polynomial. However, the time to sign increases
with D.

The strategy differs if the goal is to have a faster signing process together with a shorter signature.
In this case, we have to take m bigger than 1.26 · λ. As a consequence, the number of iterations
nb ite can be decreased. We repeat then less the inversion process GeMSS.Invp in GeMSS.Invp.
The verification will be also faster. From (17), we can see that maximizing the number of modifiers
makes possible to choose smaller D. However, this will increase the number of vinegar variables v
and so the total number of variables m.

For 128 bits of security, we can take for example m = 256. In this case nb ite can be set to 1. For
D = 129, the total number of verifiers should be 21. We can take then v = 11 and ∆ = 10. The
total number of variables is then 277 and we can choose D = 129. The size of the public-key is
1.14 MB but the time to sign is ≈ 3 ms. (To verify)
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9 A larger family of GeMSS parameters

9.1 Why more parameters

In multivariate schemes, we have many parameters that can be adjusted. This is an advantage
since, for example, for a given security we can decrease the time to sign if we increase the length
of the public key, i.e. some interesting tradeoffs are possible.

However, when a new cryptanalysis idea is found, it is not always easy for a non multivariate
specialist to see how to adjust the parameters in order to maintain a given security level against
the best known attacks. For example, when RSA-512 was factored, it was natural to suggest to
use a larger modulo and to look at what value of n should be used from the best known attacks
(instead of designing another scheme). But when an attack on QUARTZ was published with a security
expected [36] to be slightly smaller than 280 it was not so easy to adjust the security parameters
since we have here many possibilities. Therefore, we see that it is sometime convenient to have a
“dimension 1 ” family instead of a single point (like QUARTZ) or a many dimension family (like the
variants of HFE). This is why in GeMSS we will:

• Suggest 2 or 3 sets of parameters for expected security in 2128, in order to have some interesting
tradeoffs with this security level. (However, we give only experimental results for the first set
of parameter given Section 3).

• Design a family of possible values that depends on only one parameter n. We call this family
FGeMSS(n). Then, when FGeMSS(n) is broken for a value n ≤ n0, we can adjust to larger
values of n where FGeMSS(n) is not broken.

9.2 Parameters for expected security in 2128

9.2.1 Set 1 of parameters (see Section 3)

This is GeMSS128.
Time to sign: 323 ms.
Size of public key: 352 Kbytes.

9.2.2 Set 2 of parameters

• nb ite = 1

• m = 256

• D = 129

• ∆ = v = 21.

• Time to sign: about 3 ms.

• Size of the public key: 1.14 Mbytes
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We call this scheme FastGeMSS128. Thus by using a public key 3.32 times larger, the time to sign
is 100 times faster. This is because in this Set 2 of parameter we use a smaller D and nb ite = 1
(instead of 4).

9.2.3 Set 3 of parameters

It is expected that FGeMSS(n) (see below) will have a security of about 2128 when n is about 187
from the best known attacks at present.

9.2.4 FGeMSS(n) family

Here we want to design a family of “dimension 1’ ’. In this family, called FGeMSS(n), we will have:

• nb ite = 1

• n is again m+ ∆

• ∆ = v = 15 + d0.1(n− 187)e

• D = d3.82n− 454e

10 Advantages and limitations (2.B.6)

Since the first scheme of Mastumoto and Imai [48] in 1988, almost 30 years ago, multivariate-based
cryptosystems have been extensively analysed in the literature. We have designed GeMSS using this
knowledge and taking conservative choices for deriving parameters. We also performed practical
experiments using the best known tools for computing Gröbned bases.

From a practical point of view, the main drawback of GeMSS is the size of the public-key. However,
we mention that the generation of a (public-key,secret-key) remains rather efficient in GeMSS. The
main advantages of GeMSS are the size of the signatures generated, about 2λ bits, and the fast
verification process.
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[1] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and Makoto Sugita. Com-
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