
Gravity-SPHINCS
v1, November 29, 2017

Inventor, submitter, main contact:

Jean-Philippe Aumasson, Kudelski Security

Route de Genève 22, 1033 Cheseaux-sur-Lausanne, Switzerland

jeanphilippe.aumasson@gmail.com, +41 79 726 05 08

Inventor, submitter, backup contact:

Guillaume Endignoux

guillaume.endignoux@m4x.org

mailto:guillaume.endignoux@m4x.org
mailto:jeanphilippe.aumasson@gmail.com

Contents

1 Introduction 3

1.1 Advantages and Limitations . 3

1.2 High-Level View . 4

2 Specifcation 6

2.1 Parameters . 6

2.2 Primitives . 7

2.3 Internal Algorithms . 7

2.3.1 Operations on Addresses . 7

2.3.2 L-Tree . 8

2.3.3 Winternitz Checksum . 8

2.3.4 Winternitz Public Key Generation . 8

2.3.5 Winternitz Signature . 9

2.3.6 Winternitz Public Key Extraction . 9

2.3.7 Merkle Tree Root . 9

2.3.8 Merkle Tree Authentication . 9

2.3.9 Merkle Tree Root Extraction . 10

2.3.10 Octopus Authentication . 10

2.3.11 Octopus Root Extraction . 11

2.3.12 PRNG to Obtain a Random Subset . 11

2.3.13 PORST Signature . 12

2.3.14 PORST Public Key Extraction . 12

1

2.4 Signature Scheme . 13

2.4.1 Key Generation . 13

2.4.2 Signature . 13

2.4.3 Verifcation . 14

2.4.4 Batch Signature . 14

2.4.5 Batch Verifcation . 15

2.5 Proposed Instances . 15

2.5.1 Parameters . 15

2.5.2 Primitives . 16

3 Security 18

4 Performance 19

4.1 Primitives . 19

4.1.1 Caching of AES Round Keys . 19

4.1.2 Haraka Pipelining . 19

4.1.3 AES-NI . 20

4.2 Secret Cache . 20

4.3 Multithreading . 20

4.4 Cost Estimation . 21

4.5 Benchmarks . 22

Bibliography 25

2

1 Introduction

Gravity-SPHINCS is a hash-based signature scheme that is a variant of SPHINCS [3]. Like
SPHINCS, Gravity-SPHINCS is stateless, as required by NIST.

Gravity-SPHINCS brings a number of optimizations and new features to SPHINCS:

• PORS, a more secure variant of the HORS few-time signature scheme used in SPHINCS.

• Secret key caching, to speed-up signing and reduce signature size.

• Batch signing, to amortize signature time and reduce signature size when signing multiple
messages at once.

• Mask-less hashing to reduce the key size and simplify the scheme.

• Octopus authentication, a technique to eliminate redundancies from authentication paths
in Merkle trees, and thus reduce signature size.

Detailed analyses related to Gravity-SPHINCS are available in [1, 2, 4].

1.1 Advantages and Limitations

Advantages:

• High-assurance: Security essentially depends on the collision resistance of hash functions,
an assumption unlikely to fail for the proposed functions.

• Speed/size trade-o˙s: Gravity-SPHINCS parameters and secret key caching allow for a
range of trade-o˙s between 1) the key generation and signing time and 2) the size of keys
and of signatures.

• Batch signing allows to reduce the per-message signing time and signature size.

Limitations:

• Complexity: Gravity-SPHINCS isn’t the simplest signature scheme ever.

• Signature size: Signatures aren’t small (around 20–30 KiB), but this size remains man-
ageable for many applications.

3

1.2 High-Level View

Like the original SPHINCS, Gravity-SPHINCS can be seen as an extension of Goldreich’s [5,
§6.4.2] constuction of a stateless hash-base signature scheme that is a binary authentication
tree of one-time signatures (OTS). SPHINCS is essentially Goldreich’s construction with the
following modifcations.

1. Inner nodes of the tree are not OTSs but Merkle trees whose leaves are OTSs, namely
Winternitz OTS (WOTS) [8, 6] instances. Thanks to Merkle trees, each node can sign
up to 2x children nodes, where x is the height of the Merkle tree. SPHINCS thus uses a
tree of trees, or hyper-tree. This change increases signing time compared to Goldreich’s
scheme, because each Merkle tree on the path to a leave needs to be generated for every
signature, but reduces the signature size because fewer OTS instances are included in the
signature.

2. Leaves of the hyper-tree are not OTSs but few-time signature (FTS) schemes. The FTS
in SPHINCS is Reyzin—Reyzin’s [9] hash-to-obtain-a-random-subset (HORS) construction
where public keys are “compressed” thanks to a Merkle tree. This variant is called HORST,
for HORS with trees. Leaves can sign more than one message, which increases the resilience
to path collisions, hence reducing the height needed for the hyper-tree.

Like SPHINCS, Gravity-SPHINCS can be described as the combination of four types of trees
(see Figure 1.1)

• Type 1: The hyper-tree, whose root is part of the public key. The nodes of this tree are
type-2 trees, and its leaves are type-4 trees.

• Type 2: The subtrees, which are Merkle trees whose leaves are roots of type-3 trees; said
roots connect a type-2 tree to another type-2 tree at a lower layer.

• Type 3: The WOTS public key compression trees, which are L-trees (and not necessarily
complete binary trees). The leaves of this tree are components of a WOTS public key.
The associated WOTS instance signs a type-2 tree’s root.

• Type 4: The PORST public key compression trees, at the bottom of the hyper-tree,
which are Merkle trees whose root is a compressed representation of the actual PORS
public key (that is, the Type-4 tree’s leaves).

4

Merkle

. . .
WOTS

. . .
Hyper-treeMerkle

. . .

. . .

PORST

Figure 1.1: Sketch of the Gravity-SPHINCS construction.

5

2 Specifcation

This chapter includes a formal specifcation of Gravity-SPHINCS. For more context and an
introduction to hash-based signature schemes, we refer to [4, 2].

2.1 Parameters

An instance of Gravity-SPHINCS requires the following parameters:

• Hash output bit length n, a positive integer

• Winternitz depth w , a power of two such that w ≥ 2 and log2 w divides n

• PORS set size t, a positive power of two

• PORS subset size k , a positive integer such that k ≤ t

• Internal Merkle tree height h, a positive integer

• Number of layers of internal Merkle trees d , a non-negative integer

• Cache height c , a non-negative integer

• Batching height b, a non-negative integer

• Message space M, usually a subset of bit strings {0, 1} ∗

From these parameters are derived the following values, where Bn = {0, 1}n denotes the set of
n-bit strings:

• Winternitz width ̀ = µ + blog2 (µ(w − 1))/ log2 w c + 1 where µ = n/ log2 w

• PORS set T = {0, . . . , t − 1}

• Address space A = {0, . . . , d} × {0, . . . , 2c+dh − 1} × {0, . . . , max(`, t) − 1}

• Public key space PK = Bn

• Secret key space SK = B2 n

≤k(log2 t−blog2 kc) d• Signature space SG = Bn × Bk × Bn × (B ` × Bh) × Bc n n n n

• Batched signature space SGB = Bb × {0, . . . , 2b − 1} × SG n

6

• Public key size, of n bits

• Secret key size, of 2n bits

• Maximal signature size, of

sigsz = (1 + k + k(log2 t − blog2 kc) + d(` + h) + c)n bits

• Maximal batched signature size, of sigsz+ bn + b bits

2.2 Primitives

An instance of Gravity-SPHINCS needs four primitives, which depend on the parameters n and
M:

• A length-preserving hash function F : Bn → Bn

• A length-halving hash function H : B2 → Bnn

• A pseudorandom function G : Bn ×A → Bn (takes as input a seed and an address)

• A general-purpose hash function H∗ : M→ Bn

2.3 Internal Algorithms

We frst defne algorithms that are building blocks of Gravity-SPHINCS.

2.3.1 Operations on Addresses

Within the hyper-tree, each WOTS and PORST instance is assigned a unique address in order
to generate its secret values on demand. Each address contains:

• A layer index 0 ≤ i ≤ d in the hyper-tree, where 0 is the root layer, d − 1 is the last WOTS
layer and d is the PORST layer;

• An instance index j in the layer, with 0 ≤ j < 2c+(i+1)h if i < d and 0 ≤ j < 2c+dh if i = d ;

• A counter λ within the instance, with 0 ≤ λ < ` if i < d and 0 ≤ λ < t if i = d .

We defne the following functions to manipulate addresses.

7

• make-addr : {0, . . . , d} × N → A, which takes as input a layer i ∈ {0, . . . , d} and an index
j ∈ N and returns the address a = (i , j mod 2c+dh , 0) ∈ A.

• incr-addr : A× N → A, which takes as input an address a = (i , j, λ) and an integer x and
returns the address a0 = (i , j, λ + x) ∈ A with the counter incremented by x .

2.3.2 L-Tree

The function L-tree : B+ → Bn takes as input a sequence of hashes xi ∈ Bn and returns the n
associated L-tree root r ∈ Bn, defned by recurrence as follows. 8 >< >:

L-tree(x1) = x1
L-tree(x1, . . . , x2i+2) = L-tree(H(x1, x2), . . . , H(x2i+1, x2i+2))

L-tree(x1, . . . , x2i+3) = L-tree(H(x1, x2), . . . , H(x2i+1, x2i+2), x2i+3)

P

2.3.3 Winternitz Checksum

The function checksummed : Bn → {0, . . . , w − 1} ` takes as input a hash x ∈ Bn and returns ̀
integers xi , computed as follows.

• For i ∈ {1, . . . , µ} compute zi ← substr(x, (i − 1) log2 w, log2 w), where substr(x, j, m)
denotes the substring of x of length m bits starting at bit index 0 ≤ j < |x |.

• For i ∈ {1, . . . , µ} interpret zi as the big-endian encoding of a number 0 ≤ xi < w .

µ• Compute the checksum C = i=1 w − 1 − xi .

• For i ∈ {µ + 1, . . . , `} compute xi = bC/w i−µ−1c mod w . In other words, (xµ+1, . . . , x`)
is the base-w little-endian encoding of the checksum C.

2.3.4 Winternitz Public Key Generation

The function WOTS-genpk : Bn ×A → Bn takes as input a secret seed ∈ Bn and a base address
a ∈ A, and outputs the associated Winternitz public key p ∈ Bn, computed as follows.

• For i ∈ {1, . . . , `} compute the secret value si ← G(seed, incr-addr(a, i − 1)).

• For i ∈ {1, . . . , `} compute the public value pi ← F w−1(si) where the F w −1 denotes the
function F iterated w − 1 times.

• Compute p ← L-tree(p1, . . . , p`).

8

2.3.5 Winternitz Signature

The function WOTS-sign : Bn ×A× Bn → B ` takes as input a secret seed ∈ Bn, a base address n
a ∈ A and a hash x ∈ Bn, and outputs the associated Winternitz signature σ ∈ B ` , computed n

as follows.

• For i ∈ {1, . . . , `} compute the secret value si ← G(seed, incr-addr(a, i − 1)).

• Compute (x1, . . . , x`) ← checksummed(x).

• For i ∈ {1, . . . , `} compute the signature value σi ← F xi (si).

2.3.6 Winternitz Public Key Extraction

The function WOTS-extractpk : Bn × B ` → Bn takes as input a hash x ∈ Bn and a signature n
σ ∈ B ` , and outputs the associated Winternitz public key p ∈ Bn, computed as follows. n

• Compute (x1, . . . , x`) ← checksummed(x).

• For i ∈ {1, . . . , `} compute the public value pi ← F w −1−xi (σi).

• Compute p ← L-tree(p1, . . . , p`).

2.3.7 Merkle Tree Root

B2
h

The function Merkle-rooth : → Bn takes as input 2h leaf hashes xi , and outputs then
associated Merkle tree root r ∈ Bn. It is defned by recurrence on h as:

• Merkle-root0(x0) = x0,

• Merkle-rooth+1(x0, x1, . . . , x2i , x2i+1) = Merkle-rooth(H(x0, x1), . . . , H(x2i , x2i+1)).

2.3.8 Merkle Tree Authentication

The function Merkle-authh : B2
h ×{0, . . . , 2h −1} → Bh takes as input 2h leaf hashes xi and a leaf n n

index 0 ≤ j < 2h, and outputs the associated Merkle tree authentication path (a1, . . . , ah) ∈ Bh .n
It is defned by recurrence on h as:

• Merkle-auth1(x0, x1, j) = a1 ← xj⊕1 where ⊕ denotes the bitwise XOR operation on
non-negative integers,

9

• Merkle-authh+1(x0, x1, . . . , x2i , x2i+1, j) is

a1 ← xj⊕1
a2, . . . , ah+1 ← Merkle-authh(H(x0, x1), . . . , H(x2i , x2i+1), bj/2c)

(

2.3.9 Merkle Tree Root Extraction

The function Merkle-extracth : Bn × {0, . . . , 2h − 1} × Bh → Bn takes as input a leaf hashn
x ∈ Bn, a leaf index 0 ≤ j < 2h and an authentication path (a1, . . . , ah) ∈ Bh , and outputs then
associated Merkle tree root r ∈ Bn. It is defned by recurrence on h as:

• Merkle-extract0(x, j) = x ,

0• Merkle-extracth+1(x, j, a1, . . . , ah+1) = Merkle-extracth(x , bj/2c, a2, . . . , ah+1) where

0 x =

(
H(x, a1) if j mod 2 = 0

H(a1, x) if j mod 2 = 1

2.3.10 Octopus Authentication

kThe function Octopus-authh : B2
h × {0, . . . , 2h − 1} → B∗ × Bn takes as input 2h leaf hashesn n

xi and 1 ≤ k ≤ 2h distinct leaf indices 0 ≤ ji < 2h sorted in increasing order, and outputs the
associated octopus authentication nodes oct ∈ B∗ and the octopus root r ∈ Bn. It is defned byn
recurrence on h as:

• Octopus-auth0(x0, j1) = (∅, x0),

• Octopus-authh+1(x0, x1, . . . , x2i , x2i+1, j1, . . . , jk) is computed as 8 >>>>>>< >>>>>>:

j1
0 , . . . , jκ

0 ← unique(bj1/2c, . . . , bjk /2c)
oct 0, r ← Octopus-authh(H(x0, x1), . . . , H(x2i , x2i+1), j1

0 , . . . , jκ
0)

z1, . . . , z2κ−k ← (j1 ⊕ 1, . . . , jk ⊕ 1) \ (j1, . . . , jk)
a1, . . . , a2κ−k ← (xz1 , . . . , xz2κ−k)

oct ← (a1, . . . , a2κ−k , oct 0)

where unique() removes duplicates in a sequence, and A \ B denotes the set di˙erence.

In other words, Octopus-authh is a collective Merkle tree authentication for multiple leaves, that
takes care to remove redundant authentication nodes.

10

2.3.11 Octopus Root Extraction

k × B∗The function Octopus-extracth,k : Bk × {0, . . . , 2h − 1} → Bn ∪ {⊥} (with 1 ≤ k ≤ 2h)n n
takes as input k leaf hashes xi ∈ Bn, k leaf indices 0 ≤ ji < 2h and an authentication octopus
oct ∈ B∗ , and outputs the associated Merkle tree root r ∈ Bn, or ⊥ if the number of hashes inn

the authentication octopus is invalid. It is defned by recurrence on h as:

• Octopus-extract0,1(x1, j1, oct) =

(
x1 if oct = ∅

,
⊥ otherwise

• Octopus-extracth+1,k (x1, . . . , xk , j1, . . . , jk , oct) is computed as 8 >>>>< >>>>:

j1
0 , . . . , jκ

0 ← unique(bj1/2c, . . . , bjk /2c)
L ← Octopus-layer((x1, j1), . . . , (xk , jk), oct)

⊥ if L = ⊥
0 0 0 0Octopus-extracth,κ(x1, . . . , xκ, j1

0 , . . . , jκ
0 , oct 0) if L = (x1, . . . , xκ, oct

0)

where Octopus-layer() is defned by recurrence as:

• Octopus-layer(x1, j1, oct) =

8 >< >:

⊥ if oct = ∅
H(x1, a), oct

0 if oct = (a, oct 0) ∧ j1 mod 2 = 0

H(a, x1), oct 0 if oct = (a, oct 0) ∧ j1 mod 2 = 1

• Octopus-layer(x1, j1, x2, j2, . . . , xk , jk , oct) is 8 >>>>< >>>>:

H(x1, x2), Octopus-layer(x3, j3, . . . , xk , jk , oct) if j1 ⊕ 1 = j2
⊥ if j1 ⊕ 1 6= j2 ∧ oct = ∅
H(x1, a), Octopus-layer(x2, j2, . . . , xk , jk , oct 0) if oct = (a, oct 0) ∧ j1 mod 2 = 0

H(a, x1), Octopus-layer(x2, j2, . . . , xk , jk , oct 0) if oct = (a, oct 0) ∧ j1 mod 2 = 1

In other words, Octopus-layer() consumes authentication values from the octopus oct along
with nodes xi and their indices ji to obtain nodes at the upper layer.

2.3.12 PRNG to Obtain a Random Subset

The function PORS : Bn × Bn → N × T k takes as input a salt s ∈ Bn and a hash x ∈ Bn, and
outputs a hyper-tree index λ ∈ N and k distinct indices xi , computed as follows.

• Compute g ← H(s, x).

• Let a ← make-addr(0, 0).

11

• Compute b ← G(g, a) and interpret it as the big-endian encoding of an integer β ∈
{0, . . . , 2n − 1}.

• Compute λ ← β mod 2c+dh . In other words, λ is the big-endian interpretation of the
c + dh last bits of the block b.

• Initialize X ← ∅ and j ← 0.

• While |X| < k do the following:

– increment j ← j + 1,

– compute b ← G(g, incr-addr(a, j)),

– split b into ν = bn/32c blocks of 32 bits, as bi = substr(b, 32(i − 1), 32),

– for i ∈ {1, . . . , ν} interpret bi as the big-endian encoding of an integer bi ∈ T (as
bi = bi mod t),

– for i ∈ {1, . . . , ν}, if |X| < k compute X ← unique(X, bi).

• Compute (x1, . . . , xk) ← sorted(X).

2.3.13 PORST Signature

The function PORST-sign : Bn ×A× T k → Bk × B∗ × Bn takes as input a secret seed ∈ Bn, a n n
base address a ∈ A and k sorted indices xi ∈ T , and outputs the associated PORST signature
(σ, oct) ∈ Bk × B∗ and PORST public key p ∈ Bn, computed as follows. n n

• For i ∈ {1, . . . , t} compute the secret value si ← G(seed, incr-addr(a, i − 1)).

• For j ∈ {1, . . . , k} set the signature value σj = sxj .

• Compute the authentication octopus and root as

oct, p ← Octopus-authlog2 t (s1, . . . , st , x1, . . . , xk)

2.3.14 PORST Public Key Extraction

The function PORST-extractpk : T k × Bn
k × B∗ → Bn ∪ {⊥} takes as input k indices xi ∈ Tn

and a PORST signature (σ, oct) ∈ Bk × B∗, and outputs the associated PORST public key n n

p ∈ Bn, or ⊥ if the authentication octopus is invalid, computed as follows.

• Compute the octopus root p ← Octopus-extractlog2 t,k (σ, x1, . . . , xk , oct).

12

2.4 Signature Scheme

We now specify the (KG, S, V) algorithms for Gravity-SPHINCS, as well as batched variants
(KG, SB, VB). To simplify, we specify them without secret key caching by the signer. Indeed,
this caching optimization is internal to the signer – to increase signing speed – and does not
change the public results (public key, signature). We discuss this optimization in §4.2.

2.4.1 Key Generation

KG takes as input 2n bits of randomness and outputs the secret key sk ∈ B2 and the public key n
pk ∈ Bn.

$• Generate the secret key from 2n bits of randomness sk = (seed, salt) ← B2 .n

• For 0 ≤ i < 2c+h generate a Winternitz public key

xi ← WOTS-genpk(seed, make-addr(0, i))

• Generate the public key pk ← Merkle-rootc+h(x0, . . . , x2c+h−1).

2.4.2 Signature

S takes as input a hash m ∈ Bn and a secret key sk = (seed, salt), and outputs a signature
computed as follows.

• Compute the public salt s ← H(salt, m).

• Compute the hyper-tree index and random subset as j, (x1, . . . , xk) ← PORS(s,m).

• Compute the PORST signature and public key

(σd , oct, p) ← PORST-sign(seed, make-addr(d, j), x1, . . . , xk)

• For i ∈ {d − 1, . . . , 0} do the following:

– compute the WOTS signature σi ← WOTS-sign(seed, make-addr(i , j), p),

– compute p ← WOTS-extractpk(p, σi),

– set j 0 ← bj/2hc,
– for u ∈ {0, . . . , 2h − 1} compute the WOTS public key

pu ← WOTS-genpk(seed, make-addr(i , 2hj 0 + u))

– compute the Merkle authentication Ai ← Merkle-authh(p0, . . . , p2h−1, j − 2hj 0),

13

http:signature).We

– set j ← j 0 .

• For 0 ≤ u < 2c+h compute the WOTS public key

pu ← WOTS-genpk(seed, make-addr(0, u))

• Compute the Merkle authentication

(a1, . . . , ah+c) ← Merkle-authh+c (p0, . . . , p2h+c −1, 2
hj)

• Set Ac ← (ah+1, . . . , ah+c).

• The signature is (s, σd , oct, σd−1, Ad−1, . . . , σ0, A0, Ac).

2.4.3 Verifcation

V takes as input a hash m ∈ Bn, a public key pk ∈ Bn and a signature

(s, σd , oct, σd−1, Ad−1, . . . , σ0, A0, Ac)

and verifes it as follows.

• Compute the hyper-tree index and random subset as j, (x1, . . . , xk) ← PORS(s,m).

• Compute the PORST public key p ← PORST-extractpk(x1, . . . , xk , σd , oct).

• If p = ⊥, then abort and return 0.

• For i ∈ {d − 1, . . . , 0} do the following:

– compute the WOTS public key p ← WOTS-extractpk(p, σi),

– set j 0 ← bj/2hc,
– compute the Merkle root p ← Merkle-extracth(p, j − 2hj 0, Ai),

– set j ← j 0 .

• Compute the Merkle root p ← Merkle-extractc (p, j, Ac).

• The result is 1 if p = pk , and 0 otherwise.

2.4.4 Batch Signature

SB takes as input a sequence of messages (M1, . . . ,Mi) ∈Mi with 0 < i ≤ 2b and a secret key
sk = (seed, salt) along with its secret cache, and outputs i signatures σj , computed as follows.

• For j ∈ {1, . . . , i} compute the message digest mj ← H∗(Mj).

14

• For j ∈ {i + 1, . . . , 2b} set mj ← m1.

• Compute m ← Merkle-rootb(m1, . . . , m2b).

• Compute σ ← S(sk,m).

• For j ∈ {1, . . . , i} the j-th signature is σj ← (j, Merkle-authb(m1, . . . , m2b , j), σ).

For b = 0, we simplify SB(sk,M) to S(sk,H∗(M)).

2.4.5 Batch Verifcation

VB takes as input a public key pk , a message M ∈M and a signature (j, A, σ), and verifes it as
follows.

• Compute the message digest m ← H∗(M).

• Compute the Merkle root m ← Merkle-extractb(m, j, A).

• The result is V(pk, m, σ).

For b = 0, we simplify VB(pk, M, σ) to V(pk, H∗(M), σ).

2.5 Proposed Instances

We now propose concrete instances of parameters and primitives for Gravity-SPHINCS.

2.5.1 Parameters

We propose the following parameters, common to all our proposed instances.

• Hash output n = 256 bits, to aim for 128 bits of security for collision-resistance, both
classical and quantum.

• Winternitz depth w = 16, a good trade-o˙ between size and speed often chosen in similar
constructions (XMSS, SPHINCS).

• A PORS set size t = 216, here again a good trade-o˙ between size and speed chosen in
SPHINCS.

Given these, Table 2.1 gives the parameters of our three proposed instances:

15

name log2 t k h d c sig sk capacity

S 16 24 5 1 10 12 640 64 KiB 210

M 16 32 5 7 15 28 929 2 MiB 250

L 16 28 5 10 14 35 168 1 MiB 264

Table 2.1: Proposed parameters for Gravity-SPHINCS, suitable for 128 bits of post-quantum
security. The capacity is the number of messages (or batches of messages) that can be signed
per key pair. The value under “sig” is the maximal signature byte size. The value under “sk”
includes the 64-byte secret key plus the cached data. Public keys are always 32-byte.

• Instance S produces signatures of at most 12 640 bytes and provides 128-bit security if no
more than 210 messages are signed. This version is for use cases where a limited number
of signatures is issued (frmware signatures, certifcate authorities, and so on).

• Instance M produces signatures of at most 28 929 bytes and provides 128-bit security if
no more than 250 messages are signed. This version is suitable for most use cases.

• Instance L produces signatures of at most 35 168 bytes and provides 128-bit security if no
more than 264 messages are signed. This version is for use cases where a single secret key
may issue more than 250 signatures.

If more than the authorized number of messages are signed, then the security level slowly
degrades, and may eventually allow attackers to forge signatures eÿciently. Said forgeries would
not be based on the real secret key, however, and could be distinguished from legitimately issued
signatures.

2.5.2 Primitives

2.5.2.1 Hash Functions

For the hash functions, we propose to use a 6-round version of Haraka-v2-256 as F , and a
6-round version of Haraka-v2-512 as H. We extend the original Haraka-v2 construction with an
additional round, whose constants are the following, computed with the same formula defned

16

in [7]:

RC40 = 2ff372380de7d31e367e4778848f2ad2

RC41 = 08d95c6acf74be8bee36b135b73bd58f

RC42 = 5880f434c9d6ee9866ae1838a3743e4a

RC43 = 593023f0aefabd99d0fdf4c79a9369bd

RC44 = 329ae3d1eb606e6fa5cc637b6f1ecb2a

RC45 = e00207eb49e01594a4dc93d6cb7594ab

RC46 = 1caa0c4ff751c880942366a665208ef8

RC47 = 02f7f57fdb2dc1ddbd03239fe3e67e4a

For the general-purpose hash function H∗, we propose to use SHA-256, which is a NIST standard
and widely available.

2.5.2.2 Pseudorandom Function

We propose a construction based on AES-256 for G, valid as long as the parameters verify the
constraints c + dh ≤ 64 and max(`, t) ≤ 231. More precisely, given a seed s ∈ Bn and an address
a = (i , j, λ) ∈ A, we compute G(s, a) as follows.

• Compute P0 ← djc64||dic32||d2λc32 and P1 ← djc64||dic32||d2λ + 1c32, where dxc de-m
notes the (bytewise) big-endian encoding of x as an m-bit number.

• The result is AES-256(s, P0)||AES-256(s, P1), i.e. the encryption of P0 and P1 with key s.

We recall that due to the constraints on (c, d, h), the in-layer index j satisfes 0 ≤ j < 2c+dh ≤ 264 ,
and the counter λ satisfes 2λ + 1 < 232 .

This construction is essentially AES-256 in counter mode, except that we need two AES blocks
for a 256-bit result. Note that the seed s is the same throughout the hyper-tree, which allows a
signer to cache the AES round keys.

17

3 Security

The security of Gravity-SPHINCS relies on the collision resistance of F , H, H∗, on the unde-
tectability and one-wayness of F , and on the pseudo-randomness of G. Security reductions in [4,
Ch.6] give lower bounds on the complexity of attacks. We now describe some concrete attack
strategies and Gravity-SPHINCS’s expected strength against them:

• Find two messages that collide for H∗, because their signatures would be identical. A
generic birthday attack has a complexity of 128 bits for n = 256.

• Break the non-adaptive subset-resilience of G. Here again, our choices of parameters
guarantee a complexity of at least 128 bits for known generic attacks, see [1] or [4, Ch.4].

• Exploit a collision in WOTS or PORST instances: if two secret values (in any of the
WOTS and PORST instances) are identical, knowing one allows to forge another. With
n = 256, this gives 128 bits of security if the secret values are chosen independently and
uniformly. However, our construction with AES-256 guarantees that all secret values are
distinct throughout the construction, because G is in fact a permutation.

These security estimates hold both against classical and quantum attacks.

This security level corresponds to NIST’s category 2 (fnd a collision for a 256-bit hash).

18

4 Performance

We now describe optimization techniques to implement Gravity-SPHINCS eÿciently.

4.1 Primitives

We can frst apply optimizations specifc to the chosen primitives.

4.1.1 Caching of AES Round Keys

To generate secret values with G, the same seed is used throughout the construction. With
our implementation based on AES-256 in counter mode, this seed is the AES key. To avoid
recomputing them for each block, we can cache the AES round keys throughout the scheme.

4.1.2 Haraka Pipelining

The Haraka hash function [7] was designed to support parallel computation on several inputs
for CPUs supporting optimized instructions, e.g. Intel’s Haswell and Skylake micro-architectures.
Typically, a CPU core can evaluate Haraka on 4 to 8 inputs at the same time, depending on the
micro-architecture. Hence, careful scheduling of hash evaluations is a way to improve the speed
of Gravity-SPHINCS.

In particular, the WOTS construction uses many long chains of hashes. A naive implementation
evaluates the chains one after another, which does not leverage 4-way (or 8-way) hashing. On the
other end, a more clever implementation evaluates the chains level by level, using the pipelined
versions of Haraka. Likewise, Merkle trees can be compressed level by level.

An even more eÿcient strategy is to fully compute the frst 4 chains (using 4-way Haraka),
then the next 4 chains, and so on. Indeed, this avoids expensive loads and stores between CPU
registers and the rest of the memory. This is even more e˙ective for mask-less constructions,
because there is no need to load a mask from memory after each iteration. We improved the
optimized Haraka implementation1 to support computation of mask-less hash chains, removing
useless store and load instructions at each iteration. This proved to be the most eÿcient strategy.

1Available at https://github.com/kste/haraka

19

https://github.com/kste/haraka

4.1.3 AES-NI

Gravity-SPHINCS spends most of its time computing Haraka hashes, that is, AES rounds (plus
some mixing operations). AES-NIs, now available in most mainstream processors, are mandatory
to achieve tolerable speeds, for they make AES rounds orders of magnitude faster than with
dedicated implementations.

On Skylake CPUs, the AES round instruction AESENC has a latency of four cycles and a
reciprocal throughput of one. In Gravity-SPHINCS, many AES rounds can be pipelined in order
to maximize the e˙ective throughput and return one AESENC result per cycle: Haraka-512
computes up to four independent AES rounds, and rounds within four AES-256-CTR instances
can be interleaved.

These independent AES round instances can’t really be parallelized on current microarchitectures
that have a single AES unit. But AMD’s new Ryzen CPUs have two AES units, and Intel is
expected to follow in future microarchitectures versions and include two AES units as well.

Our optimized implementation thus includes 4-way and 8-way interleaved versions of Haraka for
computing the trees and its leaves2, as well as 4-way interleaved AES-256-CTR.

Furthermore, future Intel microarchitectures (from Ice Lake) will include VAES (vector AES)
instructions, which will compute four AES rounds simultaneously within a ZMM register. This
will further speed-up Haraka-based hashing.

4.2 Secret Cache

As analyzed in [2], the top levels of the root Merkle tree can be cached by the signer, as they are
shared among all signatures. In particular, given the threshold c, the 2c hash values at level c
can be cached with 2c n bits of memory. Further, the levels above it total only 2c − 1 additional
hash values, so a good strategy is to save all values from levels 0 to c , with (2c+1 − 1)n bits of
memory. For our sets of parameters proposed in Table 2.1, this represents 16 KiB to 2 MiB of
secret cache.

4.3 Multithreading

To reduce signature size, the slower versions of Gravity-SPHINCS use larger Merkle trees, at the
expense of key generation and signing times. To reduce the latency of these operations, we can
leverage multithreading, especially in Merkle trees. Indeed, computing the root of a Merkle tree
of height h can be distributed among 2τ threads as follows: split the tree into 2τ subtrees of
height h − τ (starting from the leaves), compute each subtree in a di˙erent thread, and then

2Based on Haraka’s authors code at https://github.com/kste/haraka/, with a few optimizations and bug
fxes.

20

https://github.com/kste/haraka/
http:times.To

compute the top τ layers in a single thread. The latency of this computation is now in the order
of 2h−τ + 2τ , instead of 2h .

This strategy is especially relevant in a batching context: instead of computing many independent
signatures in parallel the signer computes a single signature, which means that many parallel
threads of computation are available for one signature.

4.4 Cost Estimation

We estimate the cost of each operation (key generation, signing and verifcation) in terms of
function calls. We let aside calls to the general-purpose hash function H∗, whose performance
depends on the length of the message being signed.

Key Generation We compute the top Merkle tree:

• 2c+h` calls to G to generate the WOTS secret values,

• 2c+h`(w − 1) calls to F to evaluate WOTS chains,

• 2c+h − 1 calls to H to compress the Merkle tree.

The bottleneck is the evaluation of WOTS hash chains.

Signing Assuming that the top c levels of the hyper-tree are cached, we compute a PORST
signature and d Merkle trees:

• 2 calls to H and a few calls to G to obtain the random subset of PORST,

• t calls to G to generate the PORST secret values,

• t − 1 calls to H to compress the PORST tree,

• d2h` calls to G to generate the WOTS secret values,

• ≤ d2h`(w − 1) calls to F to evaluate partial WOTS chains,

• d(2h − 1) calls to H to compress the d Merkle trees.

Here again the bottleneck is the evaluation of many WOTS hash chains.

21

http:calls.We

Verifcation We verify a PORST instance and d Merkle trees:

• 1 call to H and a few calls to G to obtain the random subset of PORST,

• k calls to F to compute PORST public values,

• ≤ k(log2 t − blog2 kc) calls to H to compress octopus authentication nodes,

• ≤ d`(w − 1) calls to F to evaluate partial WOTS chains,

• c + dh calls to H to compress Merkle authentication paths.

The bottleneck is again the evaluation of WOTS hash chains, but verifcation is much faster
than signing and key generation.

4.5 Benchmarks

We measured the execution time of the three operations—key generation, sign, verify—for each
of the three proposed instances. It doesn’t make much sense to count CPU cycles here since
all operations are relatively slow, and signing/verifcation do a di˙erent number of operations
depending on the message signed anyway. So we measure the wall time, reported here in
microseconds on an Intel Core i5-6360U CPU @ 2.00 GHz.

The measurements below are directly copied from executions of our bench program, included in
the source code published. We measured three rounds of sign–verify, to show the variability of
the measured time.

Version S:

crypto_sign_keypair
390823.00 usec

crypto_sign
5982.00 usec

crypto_sign_open
52.00 usec

crypto_sign
4222.00 usec

crypto_sign_open
32.00 usec

crypto_sign
4118.00 usec

crypto_sign_open
35.00 usec

22

http:390823.00
mailto:CPU@2.00

Version M:

crypto_sign_keypair
12114856.00 usec

crypto_sign
9450.00 usec

crypto_sign_open
126.00 usec

crypto_sign
5920.00 usec

crypto_sign_open
116.00 usec

crypto_sign
6752.00 usec

crypto_sign_open
115.00 usec

Version L:

crypto_sign_keypair
5894540.00 usec

crypto_sign
10527.00 usec

crypto_sign_open
169.00 usec

crypto_sign
6744.00 usec

crypto_sign_open
175.00 usec

crypto_sign
8087.00 usec

crypto_sign_open
162.00 usec

As expected from the theoretical estimates in §4.4, key generation is super slow, while signing is
a few milliseconds and verifcation is sub-millisecond. A very rough estimate of the CPU cycles
count is obtained by multiplying the microsecond fgures by 2000, since 2000 cycles are elapsed
within a microsecond, at the CPU’s nominal frequency (but note that we didn’t disable Turbo
Boost).

23

http:10527.00
http:5894540.00
http:12114856.00

When CPUs include two AES units instead of one, Gravity-SPHINCS will be at most twice as
fast, since most of the time is spent computing AES rounds.

24

Bibliography

[1] Jean-Philippe Aumasson and Guillaume Endignoux. Clarifying the subset resilience problem.
Cryptology ePrint Archive, Report 2017/909, 2017.

[2] Jean-Philippe Aumasson and Guillaume Endignoux. Improving stateless hash-based signatures.
Cryptology ePrint Archive, Report 2017/933, 2017.

[3] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen,
Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-O’Hearn.
SPHINCS: practical stateless hash-based signatures. In EUROCRYPT, 2015.

[4] Guillaume Endignoux. Design and implementation of a post-quantum hash-based crypto-
graphic signature scheme. Master’s thesis, EPFL, 2017.

[5] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
University Press, 2004.

[6] Andreas Hülsing. W-OTS+ - shorter signatures for hash-based signature schemes. In
AFRICACRYPT, 2013.

[7] Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian Rechberger. Haraka v2
- eÿcient short-input hashing for post-quantum applications. Cryptology ePrint Archive,
Report 2016/098, 2016.

[8] Ralph C. Merkle. A certifed digital signature. In CRYPTO, 1989.

[9] Leonid Reyzin and Natan Reyzin. Better than BiBa: Short one-time signatures with fast
signing and verifying. In ACISP, 2002.

25

	Introduction
	Advantages and Limitations
	High-Level View

	Specification
	Parameters
	Primitives
	Internal Algorithms
	Operations on Addresses
	L-Tree
	Winternitz Checksum
	Winternitz Public Key Generation
	Winternitz Signature
	Winternitz Public Key Extraction
	Merkle Tree Root
	Merkle Tree Authentication
	Merkle Tree Root Extraction
	Octopus Authentication
	Octopus Root Extraction
	PRNG to Obtain a Random Subset
	PORST Signature
	PORST Public Key Extraction

	Signature Scheme
	Key Generation
	Signature
	Verification
	Batch Signature
	Batch Verification

	Proposed Instances
	Parameters
	Primitives

	Security
	Performance
	Primitives
	Caching of AES Round Keys
	Haraka Pipelining
	AES-NI

	Secret Cache
	Multithreading
	Cost Estimation
	Benchmarks

	Bibliography

