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1 Introduction 

Gravity-SPHINCS is a hash-based signature scheme that is a variant of SPHINCS [3]. Like 
SPHINCS, Gravity-SPHINCS is stateless, as required by NIST. 

Gravity-SPHINCS brings a number of optimizations and new features to SPHINCS: 

• PORS, a more secure variant of the HORS few-time signature scheme used in SPHINCS. 

• Secret key caching, to speed-up signing and reduce signature size. 

• Batch signing, to amortize signature time and reduce signature size when signing multiple 
messages at once. 

• Mask-less hashing to reduce the key size and simplify the scheme. 

• Octopus authentication, a technique to eliminate redundancies from authentication paths 
in Merkle trees, and thus reduce signature size. 

Detailed analyses related to Gravity-SPHINCS are available in [1, 2, 4]. 

1.1 Advantages and Limitations 

Advantages: 

• High-assurance: Security essentially depends on the collision resistance of hash functions, 
an assumption unlikely to fail for the proposed functions. 

• Speed/size trade-o˙s: Gravity-SPHINCS parameters and secret key caching allow for a 
range of trade-o˙s between 1) the key generation and signing time and 2) the size of keys 
and of signatures. 

• Batch signing allows to reduce the per-message signing time and signature size. 

Limitations: 

• Complexity: Gravity-SPHINCS isn’t the simplest signature scheme ever. 

• Signature size: Signatures aren’t small (around 20–30 KiB), but this size remains man-
ageable for many applications. 
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1.2 High-Level View 

Like the original SPHINCS, Gravity-SPHINCS can be seen as an extension of Goldreich’s [5, 
§6.4.2] constuction of a stateless hash-base signature scheme that is a binary authentication 
tree of one-time signatures (OTS). SPHINCS is essentially Goldreich’s construction with the 
following modifcations. 

1. Inner nodes of the tree are not OTSs but Merkle trees whose leaves are OTSs, namely 
Winternitz OTS (WOTS) [8, 6] instances. Thanks to Merkle trees, each node can sign 
up to 2x children nodes, where x is the height of the Merkle tree. SPHINCS thus uses a 
tree of trees, or hyper-tree. This change increases signing time compared to Goldreich’s 
scheme, because each Merkle tree on the path to a leave needs to be generated for every 
signature, but reduces the signature size because fewer OTS instances are included in the 
signature. 

2. Leaves of the hyper-tree are not OTSs but few-time signature (FTS) schemes. The FTS 
in SPHINCS is Reyzin—Reyzin’s [9] hash-to-obtain-a-random-subset (HORS) construction 
where public keys are “compressed” thanks to a Merkle tree. This variant is called HORST, 
for HORS with trees. Leaves can sign more than one message, which increases the resilience 
to path collisions, hence reducing the height needed for the hyper-tree. 

Like SPHINCS, Gravity-SPHINCS can be described as the combination of four types of trees 
(see Figure 1.1) 

• Type 1: The hyper-tree, whose root is part of the public key. The nodes of this tree are 
type-2 trees, and its leaves are type-4 trees. 

• Type 2: The subtrees, which are Merkle trees whose leaves are roots of type-3 trees; said 
roots connect a type-2 tree to another type-2 tree at a lower layer. 

• Type 3: The WOTS public key compression trees, which are L-trees (and not necessarily 
complete binary trees). The leaves of this tree are components of a WOTS public key. 
The associated WOTS instance signs a type-2 tree’s root. 

• Type 4: The PORST public key compression trees, at the bottom of the hyper-tree, 
which are Merkle trees whose root is a compressed representation of the actual PORS 
public key (that is, the Type-4 tree’s leaves). 
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Figure 1.1: Sketch of the Gravity-SPHINCS construction. 
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2 Specifcation 

This chapter includes a formal specifcation of Gravity-SPHINCS. For more context and an 
introduction to hash-based signature schemes, we refer to [4, 2]. 

2.1 Parameters 

An instance of Gravity-SPHINCS requires the following parameters: 

• Hash output bit length n, a positive integer 

• Winternitz depth w , a power of two such that w ≥ 2 and log2 w divides n 

• PORS set size t, a positive power of two 

• PORS subset size k , a positive integer such that k ≤ t 

• Internal Merkle tree height h, a positive integer 

• Number of layers of internal Merkle trees d , a non-negative integer 

• Cache height c , a non-negative integer 

• Batching height b, a non-negative integer 

• Message space M, usually a subset of bit strings {0, 1} ∗ 

From these parameters are derived the following values, where Bn = {0, 1}n denotes the set of 
n-bit strings: 

• Winternitz width ̀  = µ + blog2 (µ(w − 1))/ log2 w c + 1 where µ = n/ log2 w 

• PORS set T = {0, . . . , t − 1} 

• Address space A = {0, . . . , d} × {0, . . . , 2c+dh − 1} × {0, . . . , max(`, t) − 1} 

• Public key space PK = Bn 

• Secret key space SK = B2 n 

≤k(log2 t−blog2 kc) d• Signature space SG = Bn × Bk × Bn × (B ` × Bh) × Bc n n n n 

• Batched signature space SGB = Bb × {0, . . . , 2b − 1} × SG n 
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• Public key size, of n bits 

• Secret key size, of 2n bits 

• Maximal signature size, of 

sigsz = (1 + k + k(log2 t − blog2 kc) + d(` + h) + c)n bits 

• Maximal batched signature size, of sigsz+ bn + b bits 

2.2 Primitives 

An instance of Gravity-SPHINCS needs four primitives, which depend on the parameters n and 
M: 

• A length-preserving hash function F : Bn → Bn 

• A length-halving hash function H : B2 → Bnn 

• A pseudorandom function G : Bn ×A → Bn (takes as input a seed and an address) 

• A general-purpose hash function H∗ : M→ Bn 

2.3 Internal Algorithms 

We frst defne algorithms that are building blocks of Gravity-SPHINCS. 

2.3.1 Operations on Addresses 

Within the hyper-tree, each WOTS and PORST instance is assigned a unique address in order 
to generate its secret values on demand. Each address contains: 

• A layer index 0 ≤ i ≤ d in the hyper-tree, where 0 is the root layer, d − 1 is the last WOTS 
layer and d is the PORST layer; 

• An instance index j in the layer, with 0 ≤ j < 2c+(i+1)h if i < d and 0 ≤ j < 2c+dh if i = d ; 

• A counter λ within the instance, with 0 ≤ λ < ` if i < d and 0 ≤ λ < t if i = d . 

We defne the following functions to manipulate addresses. 
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• make-addr : {0, . . . , d} × N → A, which takes as input a layer i ∈ {0, . . . , d} and an index 
j ∈ N and returns the address a = (i , j mod 2c+dh , 0) ∈ A. 

• incr-addr : A× N → A, which takes as input an address a = (i , j, λ) and an integer x and 
returns the address a0 = (i , j, λ + x) ∈ A with the counter incremented by x . 

2.3.2 L-Tree 

The function L-tree : B+ → Bn takes as input a sequence of hashes xi ∈ Bn and returns the n 
associated L-tree root r ∈ Bn, defned by recurrence as follows. 8 >< >: 

L-tree(x1) = x1 
L-tree(x1, . . . , x2i+2) = L-tree(H(x1, x2), . . . , H(x2i+1, x2i+2)) 

L-tree(x1, . . . , x2i+3) = L-tree(H(x1, x2), . . . , H(x2i+1, x2i+2), x2i+3) 

P 

2.3.3 Winternitz Checksum 

The function checksummed : Bn → {0, . . . , w − 1} ` takes as input a hash x ∈ Bn and returns ̀  
integers xi , computed as follows. 

• For i ∈ {1, . . . , µ} compute zi ← substr(x, (i − 1) log2 w, log2 w ), where substr(x, j, m) 
denotes the substring of x of length m bits starting at bit index 0 ≤ j < |x |. 

• For i ∈ {1, . . . , µ} interpret zi as the big-endian encoding of a number 0 ≤ xi < w . 

µ• Compute the checksum C = i=1 w − 1 − xi . 

• For i ∈ {µ + 1, . . . , `} compute xi = bC/w i−µ−1c mod w . In other words, (xµ+1, . . . , x`) 
is the base-w little-endian encoding of the checksum C. 

2.3.4 Winternitz Public Key Generation 

The function WOTS-genpk : Bn ×A → Bn takes as input a secret seed ∈ Bn and a base address 
a ∈ A, and outputs the associated Winternitz public key p ∈ Bn, computed as follows. 

• For i ∈ {1, . . . , `} compute the secret value si ← G(seed, incr-addr(a, i − 1)). 

• For i ∈ {1, . . . , `} compute the public value pi ← F w−1(si ) where the F w −1 denotes the 
function F iterated w − 1 times. 

• Compute p ← L-tree(p1, . . . , p`). 
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2.3.5 Winternitz Signature 

The function WOTS-sign : Bn ×A× Bn → B ` takes as input a secret seed ∈ Bn, a base address n 
a ∈ A and a hash x ∈ Bn, and outputs the associated Winternitz signature σ ∈ B ` , computed n

as follows. 

• For i ∈ {1, . . . , `} compute the secret value si ← G(seed, incr-addr(a, i − 1)). 

• Compute (x1, . . . , x`) ← checksummed(x). 

• For i ∈ {1, . . . , `} compute the signature value σi ← F xi (si ). 

2.3.6 Winternitz Public Key Extraction 

The function WOTS-extractpk : Bn × B ` → Bn takes as input a hash x ∈ Bn and a signature n 
σ ∈ B ` , and outputs the associated Winternitz public key p ∈ Bn, computed as follows. n

• Compute (x1, . . . , x`) ← checksummed(x). 

• For i ∈ {1, . . . , `} compute the public value pi ← F w −1−xi (σi ). 

• Compute p ← L-tree(p1, . . . , p`). 

2.3.7 Merkle Tree Root 

B2
h

The function Merkle-rooth : → Bn takes as input 2h leaf hashes xi , and outputs then 
associated Merkle tree root r ∈ Bn. It is defned by recurrence on h as: 

• Merkle-root0(x0) = x0, 

• Merkle-rooth+1(x0, x1, . . . , x2i , x2i+1) = Merkle-rooth(H(x0, x1), . . . , H(x2i , x2i+1)). 

2.3.8 Merkle Tree Authentication 

The function Merkle-authh : B2
h ×{0, . . . , 2h −1} → Bh takes as input 2h leaf hashes xi and a leaf n n 

index 0 ≤ j < 2h, and outputs the associated Merkle tree authentication path (a1, . . . , ah) ∈ Bh .n 
It is defned by recurrence on h as: 

• Merkle-auth1(x0, x1, j) = a1 ← xj⊕1 where ⊕ denotes the bitwise XOR operation on 
non-negative integers, 
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• Merkle-authh+1(x0, x1, . . . , x2i , x2i+1, j) is 

a1 ← xj⊕1 
a2, . . . , ah+1 ← Merkle-authh(H(x0, x1), . . . , H(x2i , x2i+1), bj/2c)

(

2.3.9 Merkle Tree Root Extraction 

The function Merkle-extracth : Bn × {0, . . . , 2h − 1} × Bh → Bn takes as input a leaf hashn 
x ∈ Bn, a leaf index 0 ≤ j < 2h and an authentication path (a1, . . . , ah) ∈ Bh , and outputs then 
associated Merkle tree root r ∈ Bn. It is defned by recurrence on h as: 

• Merkle-extract0(x, j) = x , 

0• Merkle-extracth+1(x, j, a1, . . . , ah+1) = Merkle-extracth(x , bj/2c, a2, . . . , ah+1) where 

0 x =

(
H(x, a1) if j mod 2 = 0 

H(a1, x) if j mod 2 = 1 

2.3.10 Octopus Authentication 

kThe function Octopus-authh : B2
h × {0, . . . , 2h − 1} → B∗ × Bn takes as input 2h leaf hashesn n 

xi and 1 ≤ k ≤ 2h distinct leaf indices 0 ≤ ji < 2h sorted in increasing order, and outputs the 
associated octopus authentication nodes oct ∈ B∗ and the octopus root r ∈ Bn. It is defned byn 
recurrence on h as: 

• Octopus-auth0(x0, j1) = (∅, x0), 

• Octopus-authh+1(x0, x1, . . . , x2i , x2i+1, j1, . . . , jk ) is computed as 8 >>>>>>< >>>>>>: 

j1
0 , . . . , jκ 

0 ← unique(bj1/2c, . . . , bjk /2c) 
oct 0, r ← Octopus-authh(H(x0, x1), . . . , H(x2i , x2i+1), j1

0 , . . . , jκ
0 ) 

z1, . . . , z2κ−k ← (j1 ⊕ 1, . . . , jk ⊕ 1) \ (j1, . . . , jk ) 
a1, . . . , a2κ−k ← (xz1 , . . . , xz2κ−k ) 

oct ← (a1, . . . , a2κ−k , oct 0) 

where unique() removes duplicates in a sequence, and A \ B denotes the set di˙erence. 

In other words, Octopus-authh is a collective Merkle tree authentication for multiple leaves, that 
takes care to remove redundant authentication nodes. 
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2.3.11 Octopus Root Extraction 

k × B∗The function Octopus-extracth,k : Bk × {0, . . . , 2h − 1} → Bn ∪ {⊥} (with 1 ≤ k ≤ 2h)n n 
takes as input k leaf hashes xi ∈ Bn, k leaf indices 0 ≤ ji < 2h and an authentication octopus 
oct ∈ B∗ , and outputs the associated Merkle tree root r ∈ Bn, or ⊥ if the number of hashes inn

the authentication octopus is invalid. It is defned by recurrence on h as: 

• Octopus-extract0,1(x1, j1, oct) =

(
x1 if oct = ∅ 

, 
⊥ otherwise 

• Octopus-extracth+1,k (x1, . . . , xk , j1, . . . , jk , oct) is computed as 8 >>>>< >>>>: 

j1
0 , . . . , jκ 

0 ← unique(bj1/2c, . . . , bjk /2c) 
L ← Octopus-layer((x1, j1), . . . , (xk , jk ), oct) 

⊥ if L = ⊥ 
0 0 0 0Octopus-extracth,κ(x1, . . . , xκ, j1

0 , . . . , jκ
0 , oct 0) if L = (x1, . . . , xκ, oct

0) 

where Octopus-layer() is defned by recurrence as: 

• Octopus-layer(x1, j1, oct) = 

8 >< >: 

⊥ if oct = ∅ 
H(x1, a), oct

0 if oct = (a, oct 0) ∧ j1 mod 2 = 0 

H(a, x1), oct 0 if oct = (a, oct 0) ∧ j1 mod 2 = 1 

• Octopus-layer(x1, j1, x2, j2, . . . , xk , jk , oct) is 8 >>>>< >>>>: 

H(x1, x2), Octopus-layer(x3, j3, . . . , xk , jk , oct) if j1 ⊕ 1 = j2 
⊥ if j1 ⊕ 1 6= j2 ∧ oct = ∅ 
H(x1, a), Octopus-layer(x2, j2, . . . , xk , jk , oct 0) if oct = (a, oct 0) ∧ j1 mod 2 = 0 

H(a, x1), Octopus-layer(x2, j2, . . . , xk , jk , oct 0) if oct = (a, oct 0) ∧ j1 mod 2 = 1 

In other words, Octopus-layer() consumes authentication values from the octopus oct along 
with nodes xi and their indices ji to obtain nodes at the upper layer. 

2.3.12 PRNG to Obtain a Random Subset 

The function PORS : Bn × Bn → N × T k takes as input a salt s ∈ Bn and a hash x ∈ Bn, and 
outputs a hyper-tree index λ ∈ N and k distinct indices xi , computed as follows. 

• Compute g ← H(s, x). 

• Let a ← make-addr(0, 0). 
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• Compute b ← G(g, a) and interpret it as the big-endian encoding of an integer β ∈ 
{0, . . . , 2n − 1}. 

• Compute λ ← β mod 2c+dh . In other words, λ is the big-endian interpretation of the 
c + dh last bits of the block b. 

• Initialize X ← ∅ and j ← 0. 

• While |X| < k do the following: 

– increment j ← j + 1, 

– compute b ← G(g, incr-addr(a, j)), 

– split b into ν = bn/32c blocks of 32 bits, as bi = substr(b, 32(i − 1), 32), 

– for i ∈ {1, . . . , ν} interpret bi as the big-endian encoding of an integer bi ∈ T (as 
bi = bi mod t), 

– for i ∈ {1, . . . , ν}, if |X| < k compute X ← unique(X, bi ). 

• Compute (x1, . . . , xk ) ← sorted(X). 

2.3.13 PORST Signature 

The function PORST-sign : Bn ×A× T k → Bk × B∗ × Bn takes as input a secret seed ∈ Bn, a n n 
base address a ∈ A and k sorted indices xi ∈ T , and outputs the associated PORST signature 
(σ, oct) ∈ Bk × B∗ and PORST public key p ∈ Bn, computed as follows. n n 

• For i ∈ {1, . . . , t} compute the secret value si ← G(seed, incr-addr(a, i − 1)). 

• For j ∈ {1, . . . , k} set the signature value σj = sxj . 

• Compute the authentication octopus and root as 

oct, p ← Octopus-authlog2 t (s1, . . . , st , x1, . . . , xk ) 

2.3.14 PORST Public Key Extraction 

The function PORST-extractpk : T k × Bn
k × B∗ → Bn ∪ {⊥} takes as input k indices xi ∈ Tn 

and a PORST signature (σ, oct) ∈ Bk × B∗, and outputs the associated PORST public key n n

p ∈ Bn, or ⊥ if the authentication octopus is invalid, computed as follows. 

• Compute the octopus root p ← Octopus-extractlog2 t,k (σ, x1, . . . , xk , oct). 
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2.4 Signature Scheme 

We now specify the (KG, S, V) algorithms for Gravity-SPHINCS, as well as batched variants 
(KG, SB, VB). To simplify, we specify them without secret key caching by the signer. Indeed, 
this caching optimization is internal to the signer – to increase signing speed – and does not 
change the public results (public key, signature). We discuss this optimization in §4.2. 

2.4.1 Key Generation 

KG takes as input 2n bits of randomness and outputs the secret key sk ∈ B2 and the public key n 
pk ∈ Bn. 

$• Generate the secret key from 2n bits of randomness sk = (seed, salt) ← B2 .n 

• For 0 ≤ i < 2c+h generate a Winternitz public key 

xi ← WOTS-genpk(seed, make-addr(0, i)) 

• Generate the public key pk ← Merkle-rootc+h(x0, . . . , x2c+h−1). 

2.4.2 Signature 

S takes as input a hash m ∈ Bn and a secret key sk = (seed, salt), and outputs a signature 
computed as follows. 

• Compute the public salt s ← H(salt, m). 

• Compute the hyper-tree index and random subset as j, (x1, . . . , xk ) ← PORS(s,m). 

• Compute the PORST signature and public key 

(σd , oct, p) ← PORST-sign(seed, make-addr(d, j), x1, . . . , xk ) 

• For i ∈ {d − 1, . . . , 0} do the following: 

– compute the WOTS signature σi ← WOTS-sign(seed, make-addr(i , j), p), 

– compute p ← WOTS-extractpk(p, σi ), 

– set j 0 ← bj/2hc, 
– for u ∈ {0, . . . , 2h − 1} compute the WOTS public key 

pu ← WOTS-genpk(seed, make-addr(i , 2hj 0 + u)) 

– compute the Merkle authentication Ai ← Merkle-authh(p0, . . . , p2h−1, j − 2hj 0), 
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– set j ← j 0 . 

• For 0 ≤ u < 2c+h compute the WOTS public key 

pu ← WOTS-genpk(seed, make-addr(0, u)) 

• Compute the Merkle authentication 

(a1, . . . , ah+c ) ← Merkle-authh+c (p0, . . . , p2h+c −1, 2
hj) 

• Set Ac ← (ah+1, . . . , ah+c ). 

• The signature is (s, σd , oct, σd−1, Ad−1, . . . , σ0, A0, Ac ). 

2.4.3 Verifcation 

V takes as input a hash m ∈ Bn, a public key pk ∈ Bn and a signature 

(s, σd , oct, σd−1, Ad−1, . . . , σ0, A0, Ac ) 

and verifes it as follows. 

• Compute the hyper-tree index and random subset as j, (x1, . . . , xk ) ← PORS(s,m). 

• Compute the PORST public key p ← PORST-extractpk(x1, . . . , xk , σd , oct). 

• If p = ⊥, then abort and return 0. 

• For i ∈ {d − 1, . . . , 0} do the following: 

– compute the WOTS public key p ← WOTS-extractpk(p, σi ), 

– set j 0 ← bj/2hc, 
– compute the Merkle root p ← Merkle-extracth(p, j − 2hj 0, Ai ), 

– set j ← j 0 . 

• Compute the Merkle root p ← Merkle-extractc (p, j, Ac ). 

• The result is 1 if p = pk , and 0 otherwise. 

2.4.4 Batch Signature 

SB takes as input a sequence of messages (M1, . . . ,Mi ) ∈Mi with 0 < i ≤ 2b and a secret key 
sk = (seed, salt) along with its secret cache, and outputs i signatures σj , computed as follows. 

• For j ∈ {1, . . . , i} compute the message digest mj ← H∗(Mj ). 
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• For j ∈ {i + 1, . . . , 2b} set mj ← m1. 

• Compute m ← Merkle-rootb(m1, . . . , m2b ). 

• Compute σ ← S(sk,m). 

• For j ∈ {1, . . . , i} the j-th signature is σj ← (j, Merkle-authb(m1, . . . , m2b , j), σ). 

For b = 0, we simplify SB(sk,M) to S(sk,H∗(M)). 

2.4.5 Batch Verifcation 

VB takes as input a public key pk , a message M ∈M and a signature (j, A, σ), and verifes it as 
follows. 

• Compute the message digest m ← H∗(M). 

• Compute the Merkle root m ← Merkle-extractb(m, j, A). 

• The result is V(pk, m, σ). 

For b = 0, we simplify VB(pk, M, σ) to V(pk, H∗(M), σ). 

2.5 Proposed Instances 

We now propose concrete instances of parameters and primitives for Gravity-SPHINCS. 

2.5.1 Parameters 

We propose the following parameters, common to all our proposed instances. 

• Hash output n = 256 bits, to aim for 128 bits of security for collision-resistance, both 
classical and quantum. 

• Winternitz depth w = 16, a good trade-o˙ between size and speed often chosen in similar 
constructions (XMSS, SPHINCS). 

• A PORS set size t = 216, here again a good trade-o˙ between size and speed chosen in 
SPHINCS. 

Given these, Table 2.1 gives the parameters of our three proposed instances: 
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name log2 t k h d c sig sk capacity 

S 16 24 5 1 10 12 640 64 KiB 210 

M 16 32 5 7 15 28 929 2 MiB 250 

L 16 28 5 10 14 35 168 1 MiB 264 

Table 2.1: Proposed parameters for Gravity-SPHINCS, suitable for 128 bits of post-quantum 
security. The capacity is the number of messages (or batches of messages) that can be signed 
per key pair. The value under “sig” is the maximal signature byte size. The value under “sk” 
includes the 64-byte secret key plus the cached data. Public keys are always 32-byte. 

• Instance S produces signatures of at most 12 640 bytes and provides 128-bit security if no 
more than 210 messages are signed. This version is for use cases where a limited number 
of signatures is issued (frmware signatures, certifcate authorities, and so on). 

• Instance M produces signatures of at most 28 929 bytes and provides 128-bit security if 
no more than 250 messages are signed. This version is suitable for most use cases. 

• Instance L produces signatures of at most 35 168 bytes and provides 128-bit security if no 
more than 264 messages are signed. This version is for use cases where a single secret key 
may issue more than 250 signatures. 

If more than the authorized number of messages are signed, then the security level slowly 
degrades, and may eventually allow attackers to forge signatures eÿciently. Said forgeries would 
not be based on the real secret key, however, and could be distinguished from legitimately issued 
signatures. 

2.5.2 Primitives 

2.5.2.1 Hash Functions 

For the hash functions, we propose to use a 6-round version of Haraka-v2-256 as F , and a 
6-round version of Haraka-v2-512 as H. We extend the original Haraka-v2 construction with an 
additional round, whose constants are the following, computed with the same formula defned 
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in [7]: 

RC40 = 2ff372380de7d31e367e4778848f2ad2 

RC41 = 08d95c6acf74be8bee36b135b73bd58f 

RC42 = 5880f434c9d6ee9866ae1838a3743e4a 

RC43 = 593023f0aefabd99d0fdf4c79a9369bd 

RC44 = 329ae3d1eb606e6fa5cc637b6f1ecb2a 

RC45 = e00207eb49e01594a4dc93d6cb7594ab 

RC46 = 1caa0c4ff751c880942366a665208ef8 

RC47 = 02f7f57fdb2dc1ddbd03239fe3e67e4a 

For the general-purpose hash function H∗, we propose to use SHA-256, which is a NIST standard 
and widely available. 

2.5.2.2 Pseudorandom Function 

We propose a construction based on AES-256 for G, valid as long as the parameters verify the 
constraints c + dh ≤ 64 and max(`, t) ≤ 231. More precisely, given a seed s ∈ Bn and an address 
a = (i , j, λ) ∈ A, we compute G(s, a) as follows. 

• Compute P0 ← djc64||dic32||d2λc32 and P1 ← djc64||dic32||d2λ + 1c32, where dxc de-m 
notes the (bytewise) big-endian encoding of x as an m-bit number. 

• The result is AES-256(s, P0)||AES-256(s, P1), i.e. the encryption of P0 and P1 with key s. 

We recall that due to the constraints on (c, d, h), the in-layer index j satisfes 0 ≤ j < 2c+dh ≤ 264 , 
and the counter λ satisfes 2λ + 1 < 232 . 

This construction is essentially AES-256 in counter mode, except that we need two AES blocks 
for a 256-bit result. Note that the seed s is the same throughout the hyper-tree, which allows a 
signer to cache the AES round keys. 
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3 Security 

The security of Gravity-SPHINCS relies on the collision resistance of F , H, H∗, on the unde-
tectability and one-wayness of F , and on the pseudo-randomness of G. Security reductions in [4, 
Ch.6] give lower bounds on the complexity of attacks. We now describe some concrete attack 
strategies and Gravity-SPHINCS’s expected strength against them: 

• Find two messages that collide for H∗, because their signatures would be identical. A 
generic birthday attack has a complexity of 128 bits for n = 256. 

• Break the non-adaptive subset-resilience of G. Here again, our choices of parameters 
guarantee a complexity of at least 128 bits for known generic attacks, see [1] or [4, Ch.4]. 

• Exploit a collision in WOTS or PORST instances: if two secret values (in any of the 
WOTS and PORST instances) are identical, knowing one allows to forge another. With 
n = 256, this gives 128 bits of security if the secret values are chosen independently and 
uniformly. However, our construction with AES-256 guarantees that all secret values are 
distinct throughout the construction, because G is in fact a permutation. 

These security estimates hold both against classical and quantum attacks. 

This security level corresponds to NIST’s category 2 (fnd a collision for a 256-bit hash). 
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4 Performance 

We now describe optimization techniques to implement Gravity-SPHINCS eÿciently. 

4.1 Primitives 

We can frst apply optimizations specifc to the chosen primitives. 

4.1.1 Caching of AES Round Keys 

To generate secret values with G, the same seed is used throughout the construction. With 
our implementation based on AES-256 in counter mode, this seed is the AES key. To avoid 
recomputing them for each block, we can cache the AES round keys throughout the scheme. 

4.1.2 Haraka Pipelining 

The Haraka hash function [7] was designed to support parallel computation on several inputs 
for CPUs supporting optimized instructions, e.g. Intel’s Haswell and Skylake micro-architectures. 
Typically, a CPU core can evaluate Haraka on 4 to 8 inputs at the same time, depending on the 
micro-architecture. Hence, careful scheduling of hash evaluations is a way to improve the speed 
of Gravity-SPHINCS. 

In particular, the WOTS construction uses many long chains of hashes. A naive implementation 
evaluates the chains one after another, which does not leverage 4-way (or 8-way) hashing. On the 
other end, a more clever implementation evaluates the chains level by level, using the pipelined 
versions of Haraka. Likewise, Merkle trees can be compressed level by level. 

An even more eÿcient strategy is to fully compute the frst 4 chains (using 4-way Haraka), 
then the next 4 chains, and so on. Indeed, this avoids expensive loads and stores between CPU 
registers and the rest of the memory. This is even more e˙ective for mask-less constructions, 
because there is no need to load a mask from memory after each iteration. We improved the 
optimized Haraka implementation1 to support computation of mask-less hash chains, removing 
useless store and load instructions at each iteration. This proved to be the most eÿcient strategy. 

1Available at https://github.com/kste/haraka 
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4.1.3 AES-NI 

Gravity-SPHINCS spends most of its time computing Haraka hashes, that is, AES rounds (plus 
some mixing operations). AES-NIs, now available in most mainstream processors, are mandatory 
to achieve tolerable speeds, for they make AES rounds orders of magnitude faster than with 
dedicated implementations. 

On Skylake CPUs, the AES round instruction AESENC has a latency of four cycles and a 
reciprocal throughput of one. In Gravity-SPHINCS, many AES rounds can be pipelined in order 
to maximize the e˙ective throughput and return one AESENC result per cycle: Haraka-512 
computes up to four independent AES rounds, and rounds within four AES-256-CTR instances 
can be interleaved. 

These independent AES round instances can’t really be parallelized on current microarchitectures 
that have a single AES unit. But AMD’s new Ryzen CPUs have two AES units, and Intel is 
expected to follow in future microarchitectures versions and include two AES units as well. 

Our optimized implementation thus includes 4-way and 8-way interleaved versions of Haraka for 
computing the trees and its leaves2, as well as 4-way interleaved AES-256-CTR. 

Furthermore, future Intel microarchitectures (from Ice Lake) will include VAES (vector AES) 
instructions, which will compute four AES rounds simultaneously within a ZMM register. This 
will further speed-up Haraka-based hashing. 

4.2 Secret Cache 

As analyzed in [2], the top levels of the root Merkle tree can be cached by the signer, as they are 
shared among all signatures. In particular, given the threshold c, the 2c hash values at level c 
can be cached with 2c n bits of memory. Further, the levels above it total only 2c − 1 additional 
hash values, so a good strategy is to save all values from levels 0 to c , with (2c+1 − 1)n bits of 
memory. For our sets of parameters proposed in Table 2.1, this represents 16 KiB to 2 MiB of 
secret cache. 

4.3 Multithreading 

To reduce signature size, the slower versions of Gravity-SPHINCS use larger Merkle trees, at the 
expense of key generation and signing times. To reduce the latency of these operations, we can 
leverage multithreading, especially in Merkle trees. Indeed, computing the root of a Merkle tree 
of height h can be distributed among 2τ threads as follows: split the tree into 2τ subtrees of 
height h − τ (starting from the leaves), compute each subtree in a di˙erent thread, and then 

2Based on Haraka’s authors code at https://github.com/kste/haraka/, with a few optimizations and bug 
fxes. 
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compute the top τ layers in a single thread. The latency of this computation is now in the order 
of 2h−τ + 2τ , instead of 2h . 

This strategy is especially relevant in a batching context: instead of computing many independent 
signatures in parallel the signer computes a single signature, which means that many parallel 
threads of computation are available for one signature. 

4.4 Cost Estimation 

We estimate the cost of each operation (key generation, signing and verifcation) in terms of 
function calls. We let aside calls to the general-purpose hash function H∗, whose performance 
depends on the length of the message being signed. 

Key Generation We compute the top Merkle tree: 

• 2c+h` calls to G to generate the WOTS secret values, 

• 2c+h`(w − 1) calls to F to evaluate WOTS chains, 

• 2c+h − 1 calls to H to compress the Merkle tree. 

The bottleneck is the evaluation of WOTS hash chains. 

Signing Assuming that the top c levels of the hyper-tree are cached, we compute a PORST 
signature and d Merkle trees: 

• 2 calls to H and a few calls to G to obtain the random subset of PORST, 

• t calls to G to generate the PORST secret values, 

• t − 1 calls to H to compress the PORST tree, 

• d2h` calls to G to generate the WOTS secret values, 

• ≤ d2h`(w − 1) calls to F to evaluate partial WOTS chains, 

• d(2h − 1) calls to H to compress the d Merkle trees. 

Here again the bottleneck is the evaluation of many WOTS hash chains. 
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Verifcation We verify a PORST instance and d Merkle trees: 

• 1 call to H and a few calls to G to obtain the random subset of PORST, 

• k calls to F to compute PORST public values, 

• ≤ k(log2 t − blog2 kc) calls to H to compress octopus authentication nodes, 

• ≤ d`(w − 1) calls to F to evaluate partial WOTS chains, 

• c + dh calls to H to compress Merkle authentication paths. 

The bottleneck is again the evaluation of WOTS hash chains, but verifcation is much faster 
than signing and key generation. 

4.5 Benchmarks 

We measured the execution time of the three operations—key generation, sign, verify—for each 
of the three proposed instances. It doesn’t make much sense to count CPU cycles here since 
all operations are relatively slow, and signing/verifcation do a di˙erent number of operations 
depending on the message signed anyway. So we measure the wall time, reported here in 
microseconds on an Intel Core i5-6360U CPU @ 2.00 GHz. 

The measurements below are directly copied from executions of our bench program, included in 
the source code published. We measured three rounds of sign–verify, to show the variability of 
the measured time. 

Version S: 

# crypto_sign_keypair 
390823.00 usec 

# crypto_sign 
5982.00 usec 

# crypto_sign_open 
52.00 usec 

# crypto_sign 
4222.00 usec 

# crypto_sign_open 
32.00 usec 

# crypto_sign 
4118.00 usec 

# crypto_sign_open 
35.00 usec 
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Version M: 

# crypto_sign_keypair 
12114856.00 usec 

# crypto_sign 
9450.00 usec 

# crypto_sign_open 
126.00 usec 

# crypto_sign 
5920.00 usec 

# crypto_sign_open 
116.00 usec 

# crypto_sign 
6752.00 usec 

# crypto_sign_open 
115.00 usec 

Version L: 

# crypto_sign_keypair 
5894540.00 usec 

# crypto_sign 
10527.00 usec 

# crypto_sign_open 
169.00 usec 

# crypto_sign 
6744.00 usec 

# crypto_sign_open 
175.00 usec 

# crypto_sign 
8087.00 usec 

# crypto_sign_open 
162.00 usec 

As expected from the theoretical estimates in §4.4, key generation is super slow, while signing is 
a few milliseconds and verifcation is sub-millisecond. A very rough estimate of the CPU cycles 
count is obtained by multiplying the microsecond fgures by 2000, since 2000 cycles are elapsed 
within a microsecond, at the CPU’s nominal frequency (but note that we didn’t disable Turbo 
Boost). 
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When CPUs include two AES units instead of one, Gravity-SPHINCS will be at most twice as 
fast, since most of the time is spent computing AES rounds. 
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