1 BCH Codes

For any positive integers m > 3 and t < 2™! there exists a binary BCH code with the following
parameters [3|

e Block length n =2™ — 1

e Number of parity-check digits n — k < md, with 4, the correcting capacity of the code and k the
number of information bits

e Minimum distance d,,;, > 20 + 1

We denote this code by BCH[n, k,0]. Let a be the primitive element in GF(2™), the generator
polynomial g(z) of the BCH|n, k, d] code is given by:

9(x) = LOCM{¢1(x), @2(x), - -+, das())}

with ¢;(z) being the minimal polynomial of .
Depending on the parameters of the HQC scheme, we construct shortened BCH codes such that
k = 256 from the two following BCH codes BCH-1 and BCH-2 (codes from [3]):

code n k 1)
BCH-1 | 1023 | 513 | 57
BCH-2 | 1023 | 483 | 60

We obtain the following shortened codes

code n k 1)
BCH-S1 | 766 | 256 | 57
BCH-S2 | 796 | 256 | 60

The shortened codes are obtained by substracting 257 (and 227) from BCH-1 (from BCH-2), thus,
we have the following BCH codes:

e BCH-S1[766 = 1023 — 257, 256 = 513 — 257, 57|

e BCH-S2[796 = 1023 — 227, 256 = 483 — 227, 60|

We notice that shortening the BCH code does not affect the correcting capacity.

In our case, we will be working in GF(2!), for that we use the primitive polynomial of degree
1+ X3 + X9 to build this field (polynomial from [3]). We precomputed the generator polynomials for
the two codes that we will be using in our implementation (BCH-S1 and BCH-S2) and we included their
Hexadecimal formats in the file parameters.h.

2 BCH Decoding

We give a brief reminder on decoding BCH codes following [3|. Consider the BCH code defined by [n, &, 4],
with n = 2™ —1 (m > 0 of positive integer) and suppose that a code word v(x) = vo+ vz + -+ v, 12"}
is transmitted and that during transmission, error occurred in the following received vector:

r(x) =ro+rr+rox® 4 Frp_jz"t

We have that the location of errors are given by the error polynomial e(x) = eg+ejx+e92?+- - -+, 12",

if e; = 1, then there is an error occurred at that location. Then we can write
r(z) = v(x) + e(z)

We define the set of syndromes Sy, Sa, - -+, Sas as S; = r(a'), with a being the primitive element in
GF(2™). We have that r(a’) = e(a'), since v(a’) = 0 (v is a code word). Suppose that e(x) has t errors
at locations jq,-- -, j;, then

e(x) =" + a2 + -+ a7,

we obtain the following set of equations, where a/t, a2, --- | o/t are unknown:

Slza]1+a]2++a]t
Sy =(a”)" + ()" + - + (o)’
Sy = (")’ + () + - + (o)’

Sas = (@@)® + (a?)® + -+ + (a?)®

The goal of a BCH decoding algorithm is to solve this system of equations. We define the error location
numbers by 3; = a7, which indicate the location of the error. The equations above, can be expressed as
follows:

Si=0+fat-+ 5
So= B2+ 0+ o+ B}
Sy= B4 B+t B

Sop =B + B3+ + B

we define the error location polynomial as:

o(x) = (14 f1x)(1 + Box)--- (1 + Fix)
:ao+01x+02x2+---+atxt

We can see that, the roots of o(x) are 87", 8;",--, 8" which are the inverses of the error location
numbers.
We can summarize the decoding procedure of a BCH[n, k, d] code by the following steps:

1. The first step is the computation of 2 x § syndromes using the received polynomial

2. The second step is the computation of the error-location polynomial o(x) from the 2 x § syndromes
computed in the first step (in our implementation we will use the Simplified Berlekamp’s Algorithm

21)

3. The third step is to find the error-location numbers by calculating the roots of the polynomial o(x)
and returning their inverse (in our implementation we will be using the Chien search algorithm [1])

4. The fourth step is the correction of errors in the received polynomial

Remark 1 As mentioned before, in our implementation, we deal with shortened BCH code. We notice
that we will be using the same decoding procedure described above.

2.1 Syndromes computations

// bch.h
void syndrome_gen(syndrome_set* synd_set, gf_tables* tables, vector_u32* v)

The syndromes are computed by evaluating the received polynomial stored in the vector v at the 2x
PARAM DELTA consecutive roots of the generator polynomial af,i = 1,2,---,2 * PARAM DELTA. Let

us denote by p(z) the polynomial in the vector v, thus the syndromes are

p<a) p(a2) L. p(QZXPARAM DELTA)

and they are stored as GF(2!°) elements in the structure synd set which is the output the function.

2.2 Computing the Error-Location Polynomial

// bch.h
void get_error_location_poly(sigma_poly* sigma, gf_tables* tables, syndrome_set* synd_set);

This function implements the simplified Berlekamp’s algorithm for finding the error location polyno-
mial for binary BCH codes.
The algorithm has initial conditions: Tableau a faire (format Lin Costello) Following XX, we define

e {: the correcting capacity of the BCH code
e 51,55, ,Sy: the set of syndromes
1. Ifd, =0

U(/Hrl)(I) — o (z)
bt = Ly
2. If d,, # 0, find another row p prior to uth row such that:
e d, # 0 (the discrepancy of the rwo is not equal to zero)
® 2% p—[,is maximum

Then compute
O—(/Hrl)(x) — oW (z) + dudpflm?(ufp)a(p) (z)

and set
b = maz(ly, L, + 2(p — p)

3. In either case the new value of discrepancy is

du+1 = S2u+3 + U%“H)Szmz + -+ Ul(fjll)smw—zwl-

4. Increment p and compute yu — 1,

5. Repeat steps 1 to 4, until ¢! (z) is computed

2.3 Finding the Error-Location Numbers

// bch.h
void chien_search(uint16_t* error_pos, uintl6_t* size, gf_tables* tables, sigma_poly* elp);

2.4 Error correction

// bch.h
void error_poly_gen(vector_u32* error_poly, uintl6_t* error_pos, uintl6_t size)

References

[1] Robert Chien. Cyclic decoding procedures for bose-chaudhuri-hocquenghem codes. IEEE Transactions
on information theory, 10(4):357-363, 1964.

[2] Laurie L Joiner and John J Komo. Decoding binary bch codes. In Southeastcon’95. Visualize the
Future., Proceedings., IEEFE, pages 67-73. IEEE, 1995.

[3] Shu Lin and Daniel Costello. Error control coding: Fundamentals and applications. 1983.

