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1 Specifcations 
In this section, we introduce HQC, an eÿcient encryption scheme based on coding theory. 

HQC stands for Hamming Quasi-Cyclic. This proposal is currently under revision for 
publication in IEEE Transactions on Information Theory. Many notations, defnitions 
and properties are very similar to [12]. We nevertheless include them in this proposal for 
completeness. 

HQC is a code-based public key cryptosystem with several desirable properties: 

• It is proved IND-CPA assuming the hardness of (a decisional version of) the Syndrome 
Decoding on structured codes. By construction, HQC perfectly fts the recent KEM-
DEM transformation of [21], and allows to get an hybrid encryption scheme with 
strong security guarantees (IND-CCA2) and good eÿciency, 

• In contrast with most code-based cryptosystems, the assumption that the family of 
codes being used is indistinguishable among random codes is no longer required, and 

• It features a decryption failure probability analysis. 

Organization of the Specifcations. This section is organized as follows: we provide 
the required background in Sec. 1.1, we make some recalls on encryption and security in 
Sec. 1.2 then present our proposal in Sec. 1.3. An analysis of the decryption failure rate 
is proposed in Sec. 1.4. Details about codes being used are provided in Sec. 1.5, together 
with a specifc analysis for these codes. Finally, concrete sets of parameters are provided in 
Sec. 1.6. 

1.1 Preliminaries 

1.1.1 General defnitions 

Throughout this document, Z denotes the ring of integers and F2 the binary fnite feld. 
Additionally, we denote by ω(·) the Hamming weight of a vector i.e. the number of its 
non-zero coordinates, and by Swn (F2) the set of words in Fn 

2 of weight w. Formally: 

Sn (F2) = {v ∈ Fn, such that ω(v) = w} .w 2 

V denotes a vector space of dimension n over F for some positive n ∈ Z. Elements of V 
can be interchangeably considered as row vectors or polynomials in R = F[X]/(Xn − 1). 
Vectors/Polynomials (resp. matrices) will be represented by lower-case (resp. upper-case) 
bold letters. A prime integer n is said primitive if the polynomial Xn − 1/(X − 1) is 
irreducible in R. 

For u, v ∈ V, we defne their product similarly as in R, i.e. uv = w ∈ V with X 
wk = xiyj , for k ∈ {0, 1, . . . , n − 1}. (1) 

i+j≡k mod n 
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Our new protocol takes great advantage of the cyclic structure of matrices. In the same 
fashion as [1], rot(h) for h ∈ V denotes the circulant matrix whose ith column is the vector 
corresponding to hX i. This is captured by the following defnition. 

Defnition 1.1.1 (Circulant Matrix). Let v = (v1, . . . , vn) ∈ Fn 
2 . The circulant matrix 

induced by v is defned and denoted as follows: ⎞⎛ 

rot(v) = 
⎜⎜⎜⎝ 

v0 vn−1 . . . v1 

v1 v0 . . . v2 
. . . . . . . . . . . . 

vn−1 vn−2 . . . v0 

⎟⎟⎟⎠ 
∈ Fn×n (2) 

As a consequence, it is easy to see that the product of any two elements x, y ∈ R can 
be expressed as a usual vector-matrix (or matrix-vector) product using the rot(·) operator 
as �> 

u · v = u × rot(v)> = rot(u) × v > = v × rot(u)> = v · u. (3) 

Coding Theory. We now recall some basic defnitions and properties about coding 
theory that will be useful to our construction. We mainly focus on general defnitions, and 
refer the reader to Sec. 1.3 the description of the scheme, and also to [22] for a complete 
survey on code-based cryptography. 

Defnition 1.1.2 (Linear Code). A Linear Code C of length n and dimension k (denoted 
[n, k]) is a subspace of R of dimension k. Elements of C are referred to as codewords. 

Defnition 1.1.3 (Generator Matrix). We say that G ∈ Fk×n is a Generator Matrix for 
the [n, k] code C if � 

C = mG, for m ∈ Fk . (4) 

Defnition 1.1.4 (Parity-Check Matrix). Given an [n, k] code C, we say that H ∈ F(n−k)×n 

is a Parity-Check Matrix for C if H is a generator matrix of the dual code C⊥, or more 
formally, if � 

C⊥ = v ∈ Fn such that Hv> = 0 . (5) 

Defnition 1.1.5 (Syndrome). Let H ∈ F(
2 
n−k)×n be a parity-check matrix of some [n, k] code 

C, and v ∈ Fn 
2 be a word. Then the syndrome of v is Hv>, and we have v ∈ C ⇔ Hv> = 0. 

Defnition 1.1.6 (Minimum Distance). Let C be an [n, k] linear code over R and let ω be 
a norm on R. The Minimum Distance of C is 

d = min ω(u − v). (6) 
u,v∈C,u6=v 

A code with minimum distance d is capable of decoding arbitrary patterns of up to 
δ = bd−

2
1 c errors. Code parameters are denoted [n, k, d]. 

Code-based cryptography usually su˙ers from huge keys. In order to keep our cryp-
tosystem eÿcient, we will use the strategy of Gaborit [17] for shortening keys. This results 
in Quasi-Cyclic Codes, as defned below. 
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successive blocks (n-tuples). An [sn, k, d] linear code C is Quasi-Cyclic (QC) of index s if, 
for any c = (c1, . . . , cs) ∈ C, the vector obtained after applying a simultaneous circular shift 
to every block c1, . . . , cs is also a codeword. 

More formally, by considering each block ci as a polynomial in R = F[X]/(Xn − 1), the 
code C is QC of index s if for any c = (c1, . . . , cs) ∈ C it holds that (X · c1, . . . , X · cs) ∈ C. 

Defnition 1.1.7 (Quasi-Cyclic Codes [28]). View a vector c = (c1, . . . , cs 2 as s 

Defnition 1.1.8 (Systematic Quasi-Cyclic Codes). A systematic Quasi-Cyclic [sn, n] code 
of index s and rate 1/s is a quasi-cyclic code with an (s − 1)n × sn parity-check matrix of 
the form: ⎤⎡ ⎢⎢⎢⎣ 

In 0 · · · 0 A1 

0 In A2 
. . . .. . 

0 · · · In As−1 

⎥⎥⎥⎦H = (7) 

where A1, . . . , As−1 are circulant n × n matrices. 

Remark 1.1. The defnition of systematic quasi-cyclic codes of index s can of course be 
generalized to all rates ̀ /s, ̀  = 1 . . . s − 1, but we shall only use systematic QC-codes of 
rates 1/2 and 1/3 and wish to lighten notation with the above defnition. In the sequel, 
referring to a systematic QC-code will imply by default that it is of rate 1/s. Note that 
arbitrary QC-codes are not necessarily equivalent to a systematic QC-code. 

1.1.2 Diÿcult problems for cryptography 

In this section we describe diÿcult problems which can be used for cryptography and discuss 
their complexity. 

All problems are variants of the decoding problem, which consists of looking for the 
closest codeword to a given vector: when dealing with linear codes, it is readily seen that 
the decoding problem stays the same when one is given the syndrome of the received vector 
rather than the received vector. We therefore speak of Syndrome Decoding (SD). 

Defnition 1.1.9 (SD Distribution). For positive integers, n, k, and w, the SD(n, k, w) 
$ $F(n−k)×n FnDistribution chooses H ← and x ← such that ω(x) = w, and outputs 

(H, σ(x) = Hx>). 

Defnition 1.1.10 (Search SD Problem). Let ω be a norm over R. On input (H, y >) ∈ 
F(n−k)×n × F(n−k) from the SD distribution, the Syndrome Decoding Problem SD(n, k, w) 
asks to fnd x ∈ Fn such that Hx> = y> and ω(x) = w. 

For the Hamming distance the SD problem has been proven to be NP-complete in [4]. 
This problem can also be seen as the Learning Parity with Noise (LPN) problem with a fxed 
number of samples [2]. For cryptography we also need a decision version of the problem, 
which is given in the following defnition. 
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$Defnition 1.1.11 (Decision SD Problem). On input (H, y >) ← F(n−k)×n × F(n−k), the 
Decision SD Problem DSD(n, k, w) asks to decide with non-negligible advantage whether 
(H, y >) came from the SD(n, k, w) distribution or the uniform distribution over F(n−k)×n × 
F(n−k). 

As mentioned above, this problem is the problem of decoding random linear codes from 
random errors. The random errors are often taken as independent Bernoulli variables acting 
independently on vector coordinates, rather than uniformly chosen from the set of errors of 
a given weight, but this hardly makes any di˙erence and one model rather than the other is 
a question of convenience. The DSD problem has been shown to be polynomially equivalent 
to its search version in [2]. 

Finally, as our cryptosystem will use QC-codes, we explicitly defne the problem on 
which our cryptosystem will rely. The following defnitions describe the DSD problem in 
the QC confguration, and are just a combination of Def. 1.1.7 and 1.1.11. Quasi-Cyclic 
codes are very useful in cryptography since their compact description allows to decrease 
considerably the size of the keys. In particular the case s = 2 corresponds to double 
circulant codes with generator matrices of the form (In | A) for A a circulant matrix. Such 
double circulant codes have been used for almost 10 years in cryptography (cf [18]) and 
more recently in [28]. Quasi-cyclic codes of index 3 are also considered in [28]. 

Defnition 1.1.12 (s-QCSD Distribution). For positive integers n, w and s, the s-
← F(sn−n)×snQCSD(n, w) Distribution chooses uniformly at random a parity matrix H 
$

of a systematic QC code C of index s and rate 1/s (see Def. 1.1.8) together with a vector 
← Fsnx = (x1, . . . , xs) 
$ such that ω(xi) = w, i = 1..s, and outputs (H, Hx>). 

Defnition 1.1.13 ((Search) s-QCSD Problem). For positive integers n, w, s, a random 
$parity check matrix H of a systematic QC code C of index s and y ← Fsn−n, the Search 
) ∈ Fsns-Quasi-Cyclic SD Problem s-QCSD(n, w) asks to fnd x = (x1, . . . , xs such that 

ω(xi) = w, i = 1..s, and y = xH> . 

It would be somewhat more natural to choose the parity-check matrix H to be made up 
of independent uniformly random circulant submatrices, rather than with the special form 
required by (7). We choose this distribution so as to make the security reduction to follow 
less technical. It is readily seen that, for fxed s, when choosing quasi-cyclic codes with this 
more general distribution, one obtains with non-negligible probability, a quasi-cyclic code 
that admits a parity-check matrix of the form (7). Therefore requiring quasi-cyclic codes to 
be systematic does not hurt the generality of the decoding problem for quasi-cyclic codes. 
A similar remark holds for the slightly special form of weight distribution of the vector x. 

Assumption 1. Although there is no general complexity result for quasi-cyclic codes, de-
coding these codes is considered hard by the community. There exist general attacks which 
uses the cyclic structure of the code [31] but these attacks have only a very limited impact on 
the practical complexity of the problem. The conclusion is that in practice, the best attacks 
are the same as those for non-circulant codes up to a small factor. 
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The problem has a decisional form: 

Defnition 1.1.14 (Decision s-QCSD Problem). For positive integers n, w, s, a random 
$parity check matrix H of a systematic QC code C and y ← Fsn, the Decision s-Quasi-Cyclic 

SD Problem s-DQCSD(n, w) asks to decide with non-negligible advantage whether (H, y >) 
F(sn−n)×sncame from the s-QCSD(n, w) distribution or the uniform distribution over × 

F(sn−n). 

As for the ring-LPN problem, there is no known reduction from the search version of 
s-QCSD problem to its decision version. The proof of [2] cannot be directly adapted in the 
quasi-cyclic case, however the best known attacks on the decision version of the problem 
s-QCSD remain the direct attacks on the search version of the problem s-QCSD. 

1.2 Encryption and security 

Encryption Scheme. An encryption scheme is a tuple of four polynomial time algorithms 
(Setup, KeyGen, Encrypt, Decrypt): 

• Setup(1λ), where λ is the security parameter, generates the global parameters param 
of the scheme; 

• KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a (private) 
decryption key sk; 

• Encrypt(pk, m, θ) outputs a ciphertext c, on the message m, under the encryption key 
pk, with the randomness θ. We also use Encrypt(pk, m) for the sake of clarity; 

• Decrypt(sk, c) outputs the plaintext m, encrypted in the ciphertext c or ⊥. 

Such an encryption scheme has to satisfy both Correctness and Indistinguishability under 
Chosen Plaintext Attack (IND-CPA) security properties. 

Correctness: For every λ, every param ← Setup(1λ), every pair of keys (pk, sk) generated 
by KeyGen, every message m, we should have P [Decrypt(sk, Encrypt(pk, m, θ)) = m] = 
1 − negl(λ) for negl(·) a negligible function, where the probability is taken over varying 
randomness θ. 

IND-CPA [19]: This notion formalized by the game depicted in Fig. 1, states that an 
adversary should not be able to eÿciently guess which plaintext has been encrypted even 
if he knows it is one among two plaintexts of his choice. 

In the following, we denote by |A| the running time of an adversary A. The global 
advantage for polynomial time adversaries running in time less than t is: 

Advind 
E (λ, t) = max Advind 

E,A(λ), (8)
|A|≤t 

where Advind 
E,A(λ) is the advantage the adversary A has in winning game Expind

E,A
−b(λ): 
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Expind−b(λ)E,A 

1. param ← Setup(1λ) 
2. (pk, sk) ← KeyGen(param) 
3. (m0, m1) ← A(FIND : pk) 
4. c ∗ ← Encrypt(pk, mb, θ) 
5. b0 ← A(GUESS : c ∗) 
6. RETURN b0 

Figure 1: Game for the IND-CPA security of an asymmetric encryption scheme. 

Advind 
E,A(λ) = 

��Pr[Expind−1(λ) = 1] − Pr[Expind−0 
E,A E,A (λ) = 1] 

�� . (9) 

IND-CPA and IND-CCA2: Note that the standard security requirement for a public key 
cryptosystem is IND-CCA2, indistinguishability against adaptive chosen-ciphertext attacks, 
and not just IND-CPA. The main di˙erence is that for IND-CCA2 indistinguishability 
must hold even if the attacker is given a decryption oracle frst when running the FIND 
algorithm and also when running the GUESS algorithm (but cannot query the oracle on the 
challenge ciphertext c ∗). We do not present the associated formal game and defnition as 
an existing (and inexpensive) transformation can be used [21] for our scheme to pass from 
IND-CPA to IND-CCA2. Various generic techniques transforming a IND-CPA scheme into 
an IND-CCA2 scheme are known [15, 16, 29, 11] but cannot be applied to our scheme due 
to potential decryption errors. 

In [21] Hofheinz et al. present a generic transformation that takes into account de-
cryption errors and can be applied directly to our scheme. Roughly, their construction 
provides a way to convert a guarantee against passive adversaries into indistinguishability 
against active ones by turning a public key cryptosystem into a KEM-DEM. The tightness 
(the quality factor) of the reduction depends on the ciphertext distribution. Regarding 
our scheme, random words only have a negligible (in the security parameter) probability of 
being valid ciphertexts. In other words, the γ-spreadness factor of [21] is small enough so 
that there is no loss between the IND-CPA security of our public key cryptosystem and the 
IND-CCA2 security of the KEM-DEM version presented in Fig. 3. 

The security reduction is tight in the random oracle model and does not require any 
supplemental property from our scheme as we have the IND-CPA property (instead of just 
a weaker property called One-Wayness ). Let us denote by Encrypt(pk, m, θ) the encryption 
function defned in Fig. 2 that uses randomness θ to generate uniformly random values 
r1, r2, and e. The idea of [21] transformation is to de-randomize the encryption function 
Encrypt(pk, m, θ) by using a hash function G and do a deterministic encryption of m by 
calling c = Encrypt(pk, m, G(m)). The ciphertext is sent together with a hash K = H(c, m) 
that ties the ciphertext to the plaintext. The receiver then decrypts c into m, checks 
the hash value, and uses again the deterministic encryption to check that c is indeed the 
ciphertext associated to m. 
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As the reduction is tight we do not need to change our parameters when we pass from 
IND-CPA to IND-CCA2. From a computational point of view, the overhead for the sender 
is two hash calls and for the receiver it is two hash calls and an encrypt call. From a 
communication point of view the overhead is the bitsize of a hash (or two if the reduction 
must hold in the Quantum Random Oracle Model, see [21] for more details). 

1.3 Presentation of the scheme 

In this section, we describe our proposal: HQC. We begin with the PKE version, then 
describe the transformation of [21] to obtain a KEM-DEM that achieves IND-CCA2. Pa-
rameter sets can be found in Sec. 1.6. 

1.3.1 Public key encryption version (HQC.PKE) 

Presentation of the scheme. HQC uses two types of codes: a decodable [n, k] code C, 
generated by G ∈ Fk×n and which can correct at least δ errors via an eÿcient algorithm 
C.Decode(·); and a random double-circulant [2n, n] code, of parity-check matrix (1, h). The 
four polynomial-time algorithms constituting our scheme are depicted in Fig. 2. 

• Setup(1λ): generates and outputs the global parameters param = (n, k, δ, w, wr, we). 

$• KeyGen(param): samples h ← R, the generator matrix G ∈ Fk×n of C, sk = 
$

(x, y) ← R2 such that ω(x) = ω(y) = w, sets pk = (h, s = x + h · y), and returns 
(pk, sk). 

$ $• Encrypt(pk, m): generates e ← R, r = (r1, r2) ← R2 such that ω(e) = we and 
ω(r1) = ω(r2) = wr, sets u = r1 +h·r2 and v = mG+s · r2 +e, returns c = (u, v). 

• Decrypt(sk, c): returns C.Decode(v − u · y). 

Figure 2: Description of our proposal HQC.PKE. 

Notice that the generator matrix G of the code C is publicly known, so the security of 
the scheme and the ability to decrypt do not rely on the knowledge of the error correcting 
code C being used. 

Correctness. The correctness of our new encryption scheme clearly relies on the decoding 
capability of the code C. Specifcally, assuming C.Decode correctly decodes v − u · y, we 
have: 

Decrypt (sk, Encrypt (pk, m)) = m. (10) 
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And C.Decode correctly decodes v − u · y whenever 

ω (s · r2 − u · y + e) ≤ δ (11) 
ω ((x + h · y) · r2 − (r1 + h · r2) · y + e) ≤ δ (12) 
ω (x · r2 − r1 · y + e) ≤ δ (13) 

In order to provide an upper bound on the decryption failure probability, an analysis of the 
distribution of the error vector e0 = x · r2 − r1 · y + e is provided in Sec. 1.4. 

1.3.2 KEM/DEM version (HQC.KEM) 

Let E be an instance of the HQC cryptosystem as described above. Let G, H, and K be 
hash functions, typically SHA512 as advised by NIST1. The KEM-DEM version of the HQC 
cryptosystem is defned as follows: 

• Setup(1λ): as before, except that k will be the length of the symmetric key being 
exchanged, typically k = 256. 

• KeyGen(param): exactly as before. 

← Fk 

key). Derive the randomness θ ← G(m). Generate the ciphertext c ← (u, v) = 
E .Encrypt(pk, m, θ), and derive the symmetric key K ← K(m, c). Let d ← H(m), 
and send (c, d). 

• Encapsulate(pk): generate m 
$ (this will serve as a seed to derive the shared 

• Decapsulate(sk, c, d): Decrypt m0 ← E .Decrypt(sk, c), compute θ0 ← G(m0), and 
0 0 0(re-)encrypt m to get c ← E .Encrypt(pk, m0, θ0). If c 6 c or d 6 H(m0) then= = 

abort. Otherwise, derive the shared key K ← K(m, c). 

Figure 3: Description of our proposal HQC.KEM. 

According to [21], the KEM-DEM version of HQC is IND-CCA2. More details regarding 
the tightness of the reduction are provided at the end of Sec. 1.6. 

Security concerns and implementation details. Notice that while NIST only rec-
ommends SHA512 as a hash function (or TupleHash256 for hardware eÿciency purposes), 
the transformation of [21] would be dangerous – at least in our setting – if one sets G = H. 
Indeed, publishing the randomness θ = G(m) = H(m) = d used to generate r1, r2, and e, 
would allow one to retrieve s, the secret key of E . 

We therefore suggest to use a pseudo-random function for G, such as an AES-based seed 
expander, and SHA512 for H. 

1See Dustin Moody’s mail entitled “new FAQ question” on PQC-forum (20/07/2017 – 12:58 CET) 
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1.3.3 A hybrid encryption scheme (HQC.HE) 

While NIST claimed that they will be using generic transformations to convert any IND-
CCA2 KEM into an IND-CCA2 PKE, no detail on these conversions have been provided. 
We therefore refer to HQC.HE to designate the PKE scheme resulting from applying a 
generic conversion to HQC.KEM. 

1.4 Analysis of the error vector distribution for Hamming distance 

The aim of this section is to determine the probability that the condition in Eq. (13) holds. 
In order to do so, we study the error distribution of the error vector e0 = x · r2 − r1 · y + e. 

The vectors x, y, r1, r2, e have been taken to be uniformly and independently chosen 
among vectors of weight w, wr or we. This distribution can be closely approximated by 
a binomial distribution B, where a vector consists of n Bernoulli variables of parameter 
p = w/n (or pr = wr/n and pe = we/n respectively). In other words, Swn(F2) is close to 
B (n, w/n), similarly for wr and we. To simplify the analysis we shall assume this model 
rather than the constant weight uniform model. Both models are very close, and our 
cryptographic protocols work just as well in both settings. 

We frst evaluate the distributions of the products x · r2 and r1 · y. 

Proposition 1.4.1. Let x = (X1, . . . , Xn) (resp. r = (R1, . . . , Rn)) be a random vector 
where the Xi (resp. Ri) are independent Bernoulli variables of parameter p (resp. pr), 
P (Xi = 1) = p and P (Ri = 1) = pr. Assuming x and r are independent, and denoting 
z = x · r = (Z1, . . . , Zn) as defned in Eq. (1), we have: (

Pr[Zk = 1] = 1
2 − 

2
1 (1 − 2ppr)

n , 
1 (14)

Pr[Zk = 0] = 1
2 + 

2 (1 − 2ppr)
n . 

Proof. We have X 
Zk = XiRj mod 2. (15) 

i+j=k+1 mod n 

Every term XiRj is the product of two independent Bernoulli variables of parameter re-
spectively p and pr, and is therefore a Bernoulli variable of parameter p × pr. The variable 
Zk is the sum modulo 2 of n such products, which are all independent since every variable 
Xi is involved exactly once in (15), for 1 ≤ i ≤ n, and similarly every variable Rj is involved 
once in (15). Therefore Zk is the sum modulo 2 of n independent Bernoulli variables of 
parameter p × pr, and we have � �X n 

)n−iPr[Zk = 1] = (ppr)
i (1 − ppr

i 
0≤i≤n,i odd 

which, using the equations: � � � �X n (a + b)n − (a − b)n X n (a + b)n + (a − b)n 
ibn−i ibn−i a = , and a = (16)

i 2 i 2 
0≤i≤n, 0≤i≤n, 
i odd i even 
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with a = ppr and b = 1 − ppr, simplifes into the claimed result. 

Let us denote by p̃ = p̃(n, w) = Pr[Zk = 1] from Eq. (14). Let x, y (resp. r1, r2) 
be independent random vectors whose coordinates are independently Bernoulli distributed 
with parameter p (resp. pr). Then the k-th coordinates of x · r2 and of r1 ·y are independent 
and Bernoulli distributed with parameter p̃. Therefore their modulo 2 sum t = x · r2 −r1 ·y 
is Bernoulli distributed with (

Pr[tk = 1] = 2p̃(1 − p̃), 
(17)

Pr[tk = 0] = (1 − p̃)2 + p̃2 . 

Finally, by adding the term e to t, we obtain the distribution of the coordinates of the 
error vector e0 = x · r2 − r1 · y + e. Since the coordinates of e are Bernoulli of parameter 
pe and those of t are Bernoulli distributed as (17) and independent from e, we obtain : � � � � � � 

w wr weProposition 1.4.2. Let x, y ∼ B n, , r1, r2 ∼ B n, and e ∼ B n, , and let 
n n n 

e0 = x · r2 − r1 · y + e. Then (
0 2) wePr[ek = 1] = 2p̃(1 − p̃)(1 − w

n 
e ) + ((1 − p̃)2 + p̃

n , (18)
Pr[e0 = 0] = ((1 − p̃)2 + p̃2) (1 − we ) + 2p̃(1 − p̃)we .k n n 

Proposition 1.4.2 gives us the probability that a coordinate of the error vector e0 is 1.√
In our simulations to follow, which occur in the regime p = α n with constant α, we make 
the simplifying assumption that the coordinates of e0 are independent, meaning that the 
weight of e0 follows a binomial distribution of parameter p?, where p? is defned as in Eq. 

? we 2) we(18): p = 2p̃(1 − p̃)(1 − 
n ) + ((1 − p̃)2 + p̃

n . This approximation will give us, for 
0 ≤ d ≤ min(2 × w × wr + we, n), � � 

n d (n−d)Pr[ω(e 0) = d] = (p ?) (1 − p ?) . (19)
d 

In practice, the results obtained by simulation on the decryption failure are very coherent 
with this assumption. 

1.5 Decoding codes with low rates and good decoding properties 

The previous section allowed us to determine the distribution of the error vector e in the 
confguration where a simple linear code is used. Now the decryption part corresponds 
to decoding the error described in the previous section. Any decodable code can be used 
at this point, depending on the considered application: clearly small dimension codes will 
allow better decoding, but at the cost of a lower encryption rate. The particular case that 
we consider corresponds typically to the case of key exchange or authentication, where only 
a small amount of data needs to be encrypted (typically 80, 128 or 256 bits, a symmetric 
secret key size). We therefore need codes with low rates which are able to correct many 
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errors. Again, a tradeo˙ is necessary between eÿciently decodable codes but with a high 
decoding cost and less eÿciently decodable codes but with a smaller decoding cost. 

An example of such a family of codes with good decoding properties, meaning a simple 
decoding algorithm which can be analyzed, is given by Tensor Product Codes, which are 
used for biometry [7], where the same type of issue appears. More specifcally, we will 
consider a special simple case of Tensor Product Codes (BCH codes and repetition codes), 
for which a precise analysis of the decryption failure can be obtained in the Hamming 
distance case. 

1.5.1 Tensor product codes 

Defnition 1.5.1 (Tensor Product Code). Let C1 (resp. C2) be a [n1, k1, d1] (resp. 
[n2, k2, d2]) linear code over F. The Tensor Product Code of C1 and C2 denoted C1 ⊗ C2 

is defned as the set of all n2 × n1 matrices whose rows are codewords of C1 and whose 
columns are codewords of C2. 

More formally, if C1 (resp. C2) is generated by G1 (resp. G2), then � 
C1 ⊗ C2 = G2 

>XG1 for X ∈ Fk2×k1 (20) 

Remark 1.2. Using the notation of the above defnition, the tensor product of two linear 
codes is a [n1n2, k1k2, d1d2] linear code. 

Specifying the tensor product code. Even if tensor product codes seem well-suited 
for our purpose, an analysis similar to the one in Sec. 1.4 becomes much more complicated. 
Therefore, in order to provide strong guarantees on the decryption failure probability for 
our cryptosystem, we chose to restrict ourselves to a tensor product code C = C1 ⊗C2, where 
C1 is a BCH(n1, k1, δ1) code of length n1, dimension k1, and correcting capability δ1 (i.e. 
it can correct up to δ1 errors), and C2 is the repetition code of length n2 and dimension 1, 

bn2−1denoted 1n2 . (Notice that 1n2 can decode up to δ2 = 
2 c.) Subsequently, the analysis 

becomes possible and remains accurate but the negative counterpart is that there probably 
are some other tensor product codes achieving better eÿciency (or smaller key sizes). 

In the Hamming metric version of the cryptosystem we propose, a message m ∈ Fk1 is 
frst encoded into m1 ∈ Fn1 with a BCH(n1, k1 = k, δ1) code, then each coordinate m1,i 

of m1 is re-encoded into m̃1,i ∈ Fn2 with a repetition code 1n2 . We denote n = n1n2 the 
length of the tensor product code2 (its dimension is k = k1 × 1), and by m̃ the resulting 
encoded vector, i.e. m̃ = ( m̃1,1, . . . , m̃1,n1 ) ∈ Fn1n2 . 

The eÿcient algorithm used for the repetition code is the majority decoding, i.e. more 
formally: � P n2−11 if m̃1,j,i ≥ dn2+1 e,

1n2 .Decode(m̃1,j ) = i=0 2 (21)
0 otherwise. 

2In practice, the length is the smallest primitive prime greater than n to avoid algebraic attacks. 

13 



1.5.2 BCH codes 

For any positive integers m ≥ 3 and t ≤ 2m−1, there exists a binary BCH code with the 
following parameters [24]: 

• Block length n = 2m − 1 

• Number of parity-check digits n − k ≤ mδ, with δ, the correcting capacity of the code 
and k the number of information bits 

• Minimum distance dmin ≥ 2δ + 1 

We denote this code by BCH[n, k, δ]. Let α be the primitive element in F2m , the gener-
ator polynomial g(x) of the BCH[n, k, δ] code is given by: 

g(x) = LCM {φ1(x), φ2(x), · · · , φ2δ(x)} 

with φi(x) being the minimal polynomial of αi (refer to [24] for more details on generator 
polynomial). 

Depending on the parameters of the HQC scheme, we construct shortened BCH codes 
such that k = 256 from the two following BCH codes BCH-1 and BCH-2 (codes from [24]): 

code n k δ 
BCH-1 1023 513 57 
BCH-2 1023 483 60 

We obtain the following shortened codes 

code n k δ 
BCH-S1 766 256 57 
BCH-S2 796 256 60 

The shortened codes are obtained by subtracting 257 (and 227) from BCH-1 (from 
BCH-2): 

• BCH-S1[766 = 1023 − 257, 256 = 513 − 257, 57] 

• BCH-S2[796 = 1023 − 227, 256 = 483 − 227, 60] 

Notice that shortening the BCH code does not a˙ect the correcting capacity. 
In our case, we will be working in F2m , for that we use the primitive polynomial of degree 

1 + X3 + X10 to build this feld (polynomial from [24]). We precomputed the generator 
polynomials for the two codes that we will be using in our implementation (BCH-S1 and 
BCH-S2) and we included their Hexadecimal formats in the fle parameters.h. 
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1.5.3 Decoding BCH codes 

We give a brief reminder on decoding BCH codes following [24]. Consider the BCH code 
defned by [n, k, δ], with n = 2m − 1 (m ≥ 0 of positive integer) and suppose that a code 
word v(x) = v0 + v1x + · · · + vn−1xn−1 is transmitted and that during transmission, error 
occurred in the following received vector: 

2 n−1 r(x) = r0 + r1x + r2x + · · · + rn−1x 

We have that the location of errors are given by the error polynomial e(x) = e0 + e1x + 
e2x

2 + · · · + en−1xn−1, if ei = 1, then there is an error occurred at that location. Then we 
can write 

r(x) = v(x) + e(x) 

We defne the set of syndromes S1, S2, · · · , S2δ as Si = r(αi), with α being the primitive 
element in F2m . We have that r(αi) = e(αi), since v(αi) = 0 (v is a code word). Suppose 
that e(x) has t errors at locations j1, · · · , jt, then 

j1 j2 jte(x) = x + x + · · · + x , 

we obtain the following set of equations, where αj1 , αj2 , · · · , αjt are unknown: 

S1 = αj1 + αj2 + · · · + αjt 

S2 = (αj1 )2 + (αj2 )2 + · · · + (αjt )2 

S3 = (αj1 )3 + (αj2 )3 + · · · + (αjt )3 

. . . 
S2δ = (αj1 )2δ + (αj2 )2δ + · · · + (αjt )2δ 

The goal of a BCH decoding algorithm is to solve this system of equations. We defne 
the error location numbers by βi = αji , which indicate the location of the errors. The 
equations above, can be expressed as follows: 

S1 = β1 + β2 + · · · + βt 

S2 = β1
2 + β2

2 + · · · + β2 
t 

S3 = β1
3 + β2

3 + · · · + β3 
t 

. . . 
β2δ + β2δ · + β2δS2δ = + · · 1 2 t 

we defne the error location polynomial as: 

σ(x) = (1 + β1x)(1 + β2x) · · · (1 + βtx) 

= 1 + σ1x + σ2x 2 + · · · + σtx t 
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We can see that, the roots of σ(x) are β1 
−1, β2 

−1 , · · · , βt 
−1 which are the inverses of the 

error location numbers. By inverting those roots we can construct the error polynomial 
e(x). 

We can summarize the decoding procedure of a BCH[n, k, δ] code by the following steps: 

1. The frst step is the computation of 2 × δ syndromes using the received polynomial 

2. The second step is the computation of the error-location polynomial σ(x) from the 
2 × δ syndromes computed in the frst step (in our implementation we will use the 
Simplifed Berlekamp’s Algorithm [23]) 

3. The third step is to fnd the error-location numbers by calculating the roots of the 
polynomial σ(x) and returning their inverse (in our implementation we will be using 
the Chien search algorithm [10]) 

4. The fourth step is the correction of errors in the received polynomial 

Remark 1.3. As mentioned before, in our implementation, we deal with shortened BCH 
code. We notice that we will be using the same decoding procedure described above. 

Step 1. Syndrome computations. The following function computes the syndromes. 

void syndrome_gen(syndrome_set* synd_set, gf_tables* tables, vector_u32* v); // 
bch.h 

The syndromes are computed by evaluating the received polynomial stored in the vector 
v at the 2× PARAM DELTA consecutive roots of the generator polynomial αi for i = 
1, 2, · · · , 2 ∗ PARAM DELTA. Let us denote by r(x) the polynomial in the vector v, thus the 
syndromes are 

, r(α2×PARAM DELTA)r(α), r(α2), · · · 

and they are stored as F2m elements in the structure synd set which is the output of the 
function. 

Step 2. Computing the Error-Location Polynomial. The following function com-
putes the error location polynomial σ(x) as defned above and store it in the vector sigma 

void get_error_location_poly(sigma_poly* sigma, gf_tables* tables, syndrome_set* 
synd_set);// bch.h 

This function implements the simplifed Berlekamp’s algorithm for fnding the error 
location polynomial for binary BCH codes given by Joiner and Komo in [23]. 
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Step 3. Finding the Error-Location Numbers. The following function computes the 
roots of the error location polynomial and fnds their inverses which are the error location 
numbers. 

void chien_search(uint16_t* error_pos, uint16_t* size, gf_tables* tables, 
sigma_poly* sigma);// bch.h 

To fnd the roots of the polynomial σ(x) stored in the structure sigma, we have to 
evaluate σ(x) in all the elements of the Galois Field: let α be the generator of the feld 
then we have to check for j = 1, 2, ... if σ(αj ) = 0. Then if αk is a root we store α−k in 
the output array of the function. The Chien procedure permits to compute σ(αk+1) from 
σ(αk), in fact : 

• Suppose that σ is of degree t. If we have evaluated αk, we obtain 

· + σtα
tkσ(αk) = 1 + σ1α

k + σ2α
2k + · · 

• Then, we can obtain σ(αk+1) in O(t) operation. In fact the i-th term in σ(αk+1) can 
be obtained from the i-th term of σ(αk) by multiplying that term by αi . 
Suppose that we are using BCH[n, k, δ] one of the shortened BCH codes described 
bellow. Then, we have that the inverses of the roots of the elements αi with i ∈ 
{1, · · · , 210 − 1 − n} will not be a valid error positions. In fact the location number 
obtained will be grater than n. For that it is useless to evaluate the error location 
polynomial σ(x) in the element αi for i ∈ {1, · · · , 210 − 1 − n}. Therefore, in our 
implementation we starts the evaluation at αi with i = 210 − n. 

Step 4. Error correction. To correct the errors in the received polynomial: we have 
to build the error polynomial e(x) using the error location numbers obtained by the Chien 
search algorithm, then we add the error polynomial to the received polynomial. The fol-
lowing function builds e(x) and store the result in the vector e 

void error_poly_gen(vector_u32* e, uint16_t* error_pos, uint16_t size);// bch.h 

1.5.4 Decryption Failure Probability 

With a tensor product code C = BCH(n1, k1, δ) ⊗ 1n2 as defned above, a decryption failure 
occurs whenever the decoding algorithm of the BCH code does not succeed in correcting 
errors that would have arisen after wrong decodings by the repetition code. Therefore, the 
analysis of the decryption failure probability is again split into three steps: evaluating the 
probability that the repetition code does not decode correctly, the conditional probability 
of a wrong decoding for the BCH code given an error weight and fnally, the decryption 
failure probability using the law of total probability. 

Step 1. We now focus on the probability that an error occurs while decoding the repetition 
code. As shown in Sec. 1.4, the probability for a coordinate of e0 = x · r2 −r1 ·y+e to be 1 is 
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p? (see Eq. (18)). As mentioned above, 1n2 can decode up to δ2 = bn2

2 
−1 c errors. Therefore, 

assuming that the error vector e0 has weight γ (which occurs with the probability given in 
Eq. (19)), the probability of getting a decoding error on a single block of the repetition 
code 1n2 is hence given by: 

n2 � �� �i � �n2−iX n2 γ γ 
p̄γ = p̄γ (n1, n2) = 1 − . (22) 

n2−1 
i n1n2 n1n2 

i=b c+1
2 

Step 2. We now focus on the BCH(n1, k1, δ1) code, and recall that it can correct up to 
δ1 errors. Now the probability P that the BCH(n1, k1, δ1) code fails to decode correctly the 
encoded message m1 back to m is given by the probability that an error occurred on at 
least δ1 + 1 blocks of the repetition code. Therefore, we have 

n1 � �X 
P = P(δ1, n1, n2, γ) = 

n1 
(p̄γ )

i (1 − p̄γ )
n1−i . (23)

i 
i=δ1+1 

Step 3. Finally, using the law of total probability, we have that the decryption failure 
probability is given by the sum over all the possible weights of the probability that the 
error has this specifc weight times the probability of a decoding error for this weight. This 
is captured in the following theorem, whose proof is a straightforward consequence of the 
formulae of Sec. 1.4 and 1.5.1. 

$Theorem 1.4. Let C = BCH(n1, k1, δ) ⊗ 1n2 , (pk, sk) ← KeyGen, and m ← F2 
k1 , then with 

the notations above, the decryption failure probability is 

pfail = Pr [Decrypt (sk, Encrypt (pk, m)) 6 (24)= m] 
min(2×w×wr+we,n1n2)X 

= Pr[ω(e 0) = γ]P(δ1, n1, n2, γ) (25) 
γ=0 

Eq. (25) gives a theoretical approximation of the decryption failure rate. The parameters 
presented in Tab. 1 were obtained using this formula. Experimental evidences supporting 
the validity of the assumptions made to obtained this formula are provided in Fig. 4. 

1.6 Parameters 

In this section, we specify which codes are used for our HQC and give concrete sets of 
parameters. As mentioned in the previous section, we use a tensor product code (Def. 1.5.1) 
C = BCH(n1, k, δ) ⊗ 1n2 . A message m ∈ Fk is encoded into m1 ∈ Fn1 with the BCH code, 
then each coordinate m1,i of m1 is encoded into ˜ ∈ Fn2 with 1n2 . To match the m1,i 
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Figure 4: Logarithm of theoretical and observed decryption failure rates (DFR). The red 
curve corresponding to theoretical DFR was obtained using Eq. (25) while the black curve 
corresponding to experimental DFR was obtained by running 105 encryption/decryption 
over 103 codes with n1 = 766, k1 = 256, δ1 = 57, w = 67, wr = 77. The parameters have 
been selected to make the theoretical DFR suÿciently high to compare it to experiments. 
Finally, the curves have been interpolated to the second order on the logarithm of the 
probability. 

description of our cryptosystem in Sec. 1.3, we have mG = ˜ m1,1, . . . , ˜ ) ∈ Fn1n2 .m = ( ˜ m1,n1 

$ $To obtain the ciphertext, r = (r1, r2) ← R2 and e ← R are generated and the encryption 
of m is c = (u = r1 + h · r2, v = mG + s · r2 + e). 

We propose several sets of parameters, targeting di˙erent levels of security. According 
to NIST, it may be assumed that an attacker can only make 264 queries to the decryption 
oracle. In this sense, we propose several decryption failure rates ranging from 2−64 to 
2−λ where λ is the security parameter. The proposed sets of parameters cover security 
categories 1, 3, and 5 (for respectively 128, 192, and 256 bits of security). For each parameter 
set, the parameters are chosen so that the minimal workfactor of the best known attack 
exceeds the security parameter. For classical attacks, best known attacks include the works √
from [8, 6, 14, 3] and for quantum attacks, the work of [5]. We consider w = O ( n) and 
follow the complexity described in [9] (see Sec. 5 for more details). 

In Tab. 1, n1 denotes the length of the BCH code, n2 the length of the repetition code 1 
so that the length of the tensor product code C is n ≈ n1n2 (actually the smallest primitive 
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prime greater than n1n2). k is the dimension of the BCH code and hence also the dimension 
of C. δ is the decoding capability of the BCH code, i.e. the maximum number of errors 
that the BCH can decode. w is the weight of the n-dimensional vectors x, y, wr the weight 
of r1, and r2 and similarly we = ω(e) for our cryptosystem. 

Instance n1 n2 n k δ w wr = we security pfail 

Basic-I 766 29 22,229 256 57 67 77 128 < 2−64 

Basic-II 766 31 23,747 256 57 67 77 128 < 2−96 

Basic-III 796 31 24,677 256 60 67 77 128 < 2−128 

Advanced-I 796 51 40,597 256 60 101 117 192 < 2−64 

Advanced-II 766 57 43,669 256 57 101 117 192 < 2−128 

Advanced-III 766 61 46,747 256 57 101 117 192 < 2−192 

Paranoiac-I 766 77 59,011 256 57 133 153 256 < 2−64 

Paranoiac-II 766 83 63,587 256 57 133 153 256 < 2−128 

Paranoiac-III 796 85 67,699 256 60 133 153 256 < 2−192 

Paranoiac-IV 796 89 70,853 256 60 133 153 256 < 2−256 

Table 1: Parameter sets for our cryptosystem in Hamming metric. The tensor product 
code used is C = BCH(n1, k1, δ1) ⊗ 1n2 (see Sec. 1.5.1). The considered BCH codes are 
initially of length 1023, then shortened to support 256 bits dimension (see Sec. 1.5.2). For 
the resulting public key, secret key and ciphertext sizes, please see Tab. 2 below. One may 
use seeds to shorten keys thus obtaining sizes presented in Tab. 3. The aforementioned 
sizes are the ones used in our reference implementation except that we also concatenate the 
public key within the secret key in order to respect the NIST API. 

Computational costs of the system. For encryption the main cost is a product of √
a cyclic matrix of size n with a vector of weight O( n). Using the Fourier transform the 
asymptotical cost is in O(n log(n)) but for our range of parameters, taking into account √
the weight O( n) allows to obtain a cost in O(n 

3 
2 ) which is better in practice that what 

3
is obtained with Fourier transform. For decryption, there is always the cost of a matrix 
times a small vector in O(n 2 ), plus the cost of decoding. For our proposition the decoding 
consists in a repetition code of length n2 and the decoding of BCH code of length n1 

(766 ≤ n1 ≤ 796), the cost of the repetition code decoding is hence linear, when the cost 
of the BCH is quadratic in the length n1 of the BCH code. Overall the main cost remains 
the computation of the matrix-vector product in O(n 

3 
2 ). 

Performance Analysis 
In this section, we provide concrete performance measures of our implementation. For each 
parameter set, results have been obtained by running 100,000 random instances and com-
puting their average execution time. The benchmarks have been performed on a machine 
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Instance pk size sk size ct size ss size 
Basic-I 5,558 252 5,622 64 
Basic-II 5,938 252 6,001 64 
Basic-III 6,170 252 6,234 64 

Advanced-I 10,150 404 10,214 64 
Advanced-II 10,918 404 10,982 64 
Advanced-III 11,688 404 11,752 64 
Paranoiac-I 14,754 532 14,818 64 
Paranoiac-II 15,898 532 15,962 64 
Paranoiac-III 16,926 566 16,990 64 
Paranoiac-IV 17,714 566 17,778 64 

Table 2: Resulting theoretical sizes in bytes for HQC. The public key pk is composed of (h, 
s) and has size 2n bits. The secret key sk is composed of (x, y) and has size 2wdlog2(n)e 
bits. The ciphertext ct is composed of (u, v, d) and has size 2n + 512 bits. The shared 
secret ss is composed of K and has size 512 bits (SHA512 output size). 

Instance pk size sk size ct size ss size 
Basic-I 2,819 40 5,622 64 
Basic-II 3,009 40 6,002 64 
Basic-III 3,125 40 6,234 64 

Advanced-I 5,115 40 10,214 64 
Advanced-II 5,499 40 10,982 64 
Advanced-III 5,884 40 11,752 64 
Paranoiac-I 7,417 40 14,818 64 
Paranoiac-II 7,989 40 15,962 64 
Paranoiac-III 8,503 40 16,990 64 
Paranoiac-IV 8,897 40 17,778 64 

Table 3: Resulting sizes in bytes for HQC using NIST seed expander initialized with 40 
bytes long seeds. The public key pk is composed of (seed1, s) and has size 320+n (in bits). 
The secret key sk is composed of (seed2) and has size 320 (in bits). The ciphertext ct is 
composed of (u, v, d) and has size 2n + 512 (in bits). The shared secret ss is composed of 
K and has size 512 bits (SHA512 output size). 

running Ubuntu 16.04 LTS. The latter has 32GB of memory and an Intel R
 CoreTM i7-4770 
CPU @ 3.4GHz for which the Hyper-Threading, Turbo Boost and SpeedStep features were 
disabled. The scheme have been compiled with gcc (version 7.2.0) using the compilation 
fags -O3 -std=c99 -pedantic. The following third party library have been used: openssl 
(version 1.1.0f). 
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2.1 Reference Implementation 

The performances of our reference implementation on the aforementioned benchmark plat-
form are described in Tab. 4 (timings in ms) and Tab. 5 (millions of CPU cycles required). 

Instance KeyGen Encaps Decaps 
Basic-I 0.17 0.36 0.57 
Basic-II 0.18 0.38 0.61 
Basic-III 0.19 0.40 0.63 
Advanced-I 0.37 0.77 1.13 
Advanced-II 0.40 0.83 1.21 
Advanced-III 0.43 0.89 1.28 
Paranoiac-I 0.65 1.38 1.96 
Paranoiac-II 0.76 1.60 2.22 
Paranoiac-III 0.78 1.65 2.35 
Paranoiac-IV 0.82 1.76 2.50 

Table 4: Timings (in ms) of the reference implementation for di˙erent instances of HQC. 

Instance KeyGen Encaps Decaps 
Basic-I 0.57 1.22 1.95 
Basic-II 0.61 1.28 2.07 
Basic-III 0.63 1.35 2.15 
Advanced-I 1.26 2.61 3.82 
Advanced-II 1.37 2.81 4.11 
Advanced-III 1.47 3.02 4.35 
Paranoiac-I 2.21 4.67 6.67 
Paranoiac-II 2.52 5.37 7.51 
Paranoiac-III 2.66 5.62 8.03 
Paranoiac-IV 2.81 5.95 8.46 

Table 5: Millions of cycles for the reference implementation for di˙erent instances of HQC. 

2.2 Optimized Implementation 

No optimized implementation has been provided. As a consequence, the folders 
Optimized_Implementation/ and Reference_Implementation/ are identical. Additional 
implementation (optimized variant using vectorization, constant-time implementation...) 
might be provided later. 
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3 Known Answer Test Values 
Known Answer Test (KAT) values have been generated using the script provided by 
the NIST. They are available in the folder KAT/Reference_Implementation/. As men-
tioned in Sec. 2.2, since the reference and optimized implementations are identical, 
KAT/Optimized_Implementation/ is just a copy of KAT/Reference_Implementation/. 

In addition, we provide, for each parameter set, an example with intermediate values in 
the folder KAT/Reference_Implementation/. 

Notice that one can generate the aforementioned test fles using respectively the kat 
and verbose modes of our implementation. The procedure to follow in order to do so is 
detailled in the technical documentation. 

4 Security 
In this section we prove the security of our encryption scheme viewed as a PKE scheme 
(IND-CPA). The security of the KEM/DEM version is provided by the transformation 
described in [21], and the tightness of the reduction provided by this transformation has 
been discussed at the end of Sec. 1.2. 

Theorem 4.1. The scheme presented above is IND-CPA under the 2-DQCSD and 3-DQCSD 
assumptions. 

Proof. To prove the security of the scheme, we are going to build a sequence of games 
transitioning from an adversary receiving an encryption of message m0 to an adversary 
receiving an encryption of a message m1 and show that if the adversary manages to distin-
guish one from the other, then we can build a simulator breaking the DQCSD assumption, 
for QC codes of index 2 or 3 (codes with parameters [2n, n] or [3n, n]), and running in 
approximately the same time. 

Game G1: This is the real game, which we can state algorithmically as follows: 

Game1 
E,A(λ) 

1. param ← Setup(1λ) � � 
2. (pk, sk) ← KeyGen(param) with pk = h,s = sk · h> 

3. (m0, m1) ← A(FIND : pk) 
4. c ∗ ← Encrypt(pk, m0) 
5. b0 ← A(GUESS : c ∗) 
6. RETURN b0 

Game G2: In this game we start by forgetting the decryption key sk, and taking s at 
random, and then proceed honestly: 
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Game2 
E,A(λ) 

1. param ← Setup(1λ) 
2a. (pk, sk) ← KeyGen(param) with pk = 

$2b. s ← R 
2c. (pk, sk) ← ((h,s), 0) 
3. (m0, m1) ← A(FIND : pk) 
4. c ∗ ← Encrypt(pk, m0) 
5. b0 ← A(GUESS : c ∗) 
6. RETURN b0 

∗ 

� � 
h,s = sk · h> 

The adversary has access to pk and c . As he has access to pk and the Encrypt 
function, anything that is computed from pk and c ∗ can also be computed from just 
pk. Moreover, the distribution of c ∗ is independent of the game we are in, and therefore 
we can suppose the only input of the adversary is pk. Suppose he has an algorithm Dλ, 
taking pk as input, that distinguishes with advantage � Game G1 and Game G2, for 
some security parameter λ. Then he can also build an algorithm DE0 ,Dλ 

which solves 
the 2-DQCSD(n, w) problem for parameters (n, ω) resulting from Setup(λ), with the 
same advantage �, when given as input a challenge (H, y>) ∈ Fn×2n × Fn . 

DE0 ,Dλ 
((H, y>)) 

1. Set param ← Setup(λ) and get G from KeyGen(param) 
2. pk ← (h, y) 
2. b0 ← Dλ(pk) 
4. If b0 == 0 output QCSD 
5. If b0 == 1 output UNIFORM 

Note that if we defne pk as (h, y) with G generated by KeyGen(n, k, δ, ω) and (H, y >) 
from a 2-QCSD(n, w) distribution pk follows exactly the same distribution as in 
Game G1. On the other hand if (H, y >) comes from a uniform distribution, pk 
follows exactly the same distribution as in Game G2. Thus we have � � � � 

D0Pr E,Dλ 
((h, y >)) = QCSD|(h, y >) ← 2-QCSD(n, w) = Pr Dλ(pk) = 0|pk from GameE

0 
,A(λ) 

and � � � � 
D0Pr E,Dλ 

((h, y >)) = UNIFORM|(h, y >) ← 2-QCSD(n, w) = Pr Dλ(pk) = 1|pk from GameE
0 
,A(λ) 

And similarly when (h, y>) is uniform the probabilities of DE0 ,Dλ 
outputs match those 

of Dλ when pk is from Game1 
E,A(λ). The advantage of DE0 ,Dλ 

is therefore equal to the 
advantage of Dλ. 

Game G3: Now that we no longer know the decryption key, we can start generating ran-
dom ciphertexts. So instead of picking correctly weighted r1, r2, e, the simulator now 
picks random vectors in the full space. 
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Game3 
E,A(λ) 

1. param ← Setup(1λ) � � 
2a. (pk, sk) ← KeyGen(param) with pk = h,s = sk · h> 

$2b. s ← R 
2c. (pk, sk) ← ((h,s), 0) 
3. (m0, m1) ← A(FIND : pk) 

$ $4a. Generate e ← R, r = (r1, r2) ← R2 uniformly at random 
4b. u> ← Hr> and v ← m0G + s · r2 + e 
4c. c ∗ ← (u, v) 
5. b0 ← A(GUESS : c ∗) 
6. RETURN b0 

As we have � � 
In 0 rot(h)

(u, v − m0G)> = · (r1, e, r2)> ,
0 In rot(s) 

the di˙erence between Game G2 and Game G3 is that in the former �� � � 
In 0 rot(h) 

, (u, v − m0G)> 

0 In rot(s) 

follows the 3-QCSD distribution (for a 2n × 3n QC matrix of index 3), and in the 
latter it follows a uniform distribution (as r1 and e are uniformly distributed and 
independently chosen One-Time Pads). 

Note that an adversary is not able to obtain c ∗ from pk any more, as depending on 
which game we are c ∗ is generated di˙erently. The input of a game distinguisher will 
therefore be (pk, c ∗). As it must interact with the challenger as usually we suppose it 
has two access modes FIND and GUESS to process frst pk and later c ∗ . 

Suppose the adversary is able to distinguish Game G2 and Game G3, with a distin-
guisher Dλ, which takes as input (pk, c ∗) and outputs a guess b0 ∈ {1, 2} of the game 
we are in. 

Again, we can build a distinguisher DE0 ,Dλ 
that will break the 3-DQCSD(n, w) as-

sumption for parameters (n, w) from Setup(1λ) with the same advantage as the game 
distinguisher, when given an input (H, y >) ∈ F2n×3n × F2n . In the 3-DQCSD(n, w) 
problem, matrix H is assumed to be of the form � � 

In 0 rot(a) 
. 

0 In rot(b) 

In order to use explicitly a and b we note the matrix Ha,b instead of just H. We will 
also note y = (y1, y2). 
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DE0 ,Dλ 
((Ha,b, (y1, y2)

>)) 
1. param ← Setup(1λ) 
2a. (pk, sk) ← KeyGen(param) with pk = (h,s) 
2b. (pk, sk) ← ((G, (In rot(a)), b), 0) 
3. (m0, m1) ← Dλ(FIND : pk) 
4. u ← y1, v ← m0G + y2 and c ∗ ← (u, v) 
5. b0 ← Dλ(GUESS : c ∗) 
4. If b0 == 1 output QCSD 
5. If b0 == 2 output UNIFORM 

The distribution of pk is unchanged with respect to the games as the frst matrix 
is from KeyGen, the second matrix follows the same distribution as in KeyGen, and 
the vectors b and s are both uniformly chosen. If (Ha,b, (y1, y2)

>) follows the 3-
QCSD(n, w) distribution, then � � 

(y1, y2)
> = 

In 

0 
0 
In 

rot(a) 
rot(b) · (x1, x2, x3)

> 

with ω(x1) = ω(x2) = ω(x3) = w. Thus, c ∗ follows the same distribution as in 
Game G2. If (Ha,b, (y1, y2)

>) follows an uniform distribution, then c ∗ follows the 
same distribution as in Game G3. We obtain therefore the same equalities for the 
output probabilities of DE0 ,Dλ 

and Dλ as with the previous games and therefore the 
advantages of both distinguishers are equal. 

0 0 0Game G4: We now encrypt the other plaintext. We chose r1, r2, e uniformly and set 
> hr0> 0 0u = and v = m1G + s · r2 + e . This is the last game we describe explicitly, 

since, even if it is a mirror of Game G3, it involves a new proof. 

Game4 
E,A(λ) 

1. param ← Setup(1λ) 
2a. (pk, sk) ← KeyGen(param) with pk = (h,s) 

$2b. s ← R 
2c. (pk, sk) ← ((h,s), 0) 
3. (m0, m1) ← A(FIND : pk) 

$ $0 0 04a. Generate e ← R, r = (r1, r2) ← R2 uniformly at random 
4b. u> ← Qr0> and v ← m1G + s · r0 2 + e0 

4c. c ∗ ← (u, v) 
5. b0 ← A(GUESS : c ∗) 
6. RETURN b0 

The outputs from Game G3 and Game G4 follow the exact same distribution, and 
therefore the two games are indistinguishable from an information-theoretic point of 
view. Indeed, for each tuple (r, e) of Game G3, resulting in a given (u, v), there is 
a one to one mapping to a couple (r0 , e0) resulting in Game G4 in the same (u, v), 

26 



namely r0 = r and e0 − m0G + m1G. This implies that choosing uniformly (r, e) 
in Game G3 and choosing uniformly (r0 , e0) in Game G4 leads to the same output 
distribution for (u, v). 

Game G5: In this game, we now pick r10 , r20 , e0 with the correct weight. 

Game G6: We now conclude by switching the public key to an honestly generated one. 

We do not explicit these last two games as Game G4 and Game G5 are the equivalents 
of Game G3 and Game G2 except that m1 is used instead of m0. A distinguisher 
between these two games breaks therefore the 3-DQCSD assumption too. Similarly 
Game G5 and Game G6 are the equivalents of Game G2 and Game G1 and a distin-
guisher between these two games breaks the 2-DQCSD assumption. 

We managed to build a sequence of games allowing a simulator to transform a ciphertext 
of a message m0 to a ciphertext of a message m1. Hence, the advantage of an adversary 
against the IND-CPA experiment is bounded as: � 

Adv2-DQCSD(λ) + Adv3-DQCSD � 
Advind 

E,A(λ) ≤ 2 (λ) . (26) 

5 Known Attacks 
The practical complexity of the SD problem for the Hamming metric has been widely studied 
for more than 50 years. Most eÿcient attacks are based on Information Set Decoding, a 
technique frst introduced by Prange in 1962 [30] and improved later by Stern [32], then 
Dumer [13]. Recent works [26, 3, 27] suggest a complexity of order 2cw(1+negl(1)), for some 
constant c. A particular work focusing on the regime w = negl(n) confrms this formula, 
with a close dependence between c and the rate k/n of the code being used [9]. 

Specifc structural attacks. Quasi-cyclic codes have a special structure which may 
potentially open the door to specifc structural attacks. A frst generic attack is the DOOM √
attack [31] which because of cyclicity implies a gain of O( n) (when the gain is in O(n) for 
MDPC codes, since the code is generated by a small weight vector basis). It is also possible 
to consider attacks on the form of the polynomial generating the cyclic structure. Such 
attacks have been studied in [20, 25, 31], and are especially eÿcient when the polynomial 
xn − 1 has many low degree factors. These attacks become ineÿcient as soon as xn − 1 has 
only two irreducible factors of the form (x − 1) and xn−1 + xn−2 + ... + x + 1, which is the 
case when n is prime and q generates the multiplicative group (Z/nZ) ∗. Such numbers are 
known up to very large values. We consider such n for our parameters. 

Parameters and tightness of the reduction. We proposed di˙erent sets of parameters 
in Sec. 1.6: basic, advanced, and paranoiac which respectively provide 128 (category 1), 
192 (category 3), and 256 (category 5) bits of classical (i.e. pre-quantum) security. The 
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quantum-safe security is obtained by dividing the security bits by two (taking the square 
root of the complexity) [5]. For each security level, we provide di˙erent decryption failure 
rates to better adapt to the adversary computing power. Notice that even if the adversary 
has access to a quantum computer, this does not change the decryption failure rate.3 Best 
known attacks include the works from [8, 6, 14, 26, 3, 27] and for quantum attacks, the work √
of [5]. In the setting w = O ( n), best known attacks have a complexity in 2−t ln(1−R)(1+o(1)) 

where t = O(w) and R is the rate of the code [9]. In our confguration, we have t = 2w 
and R = 1/2 for the reduction to the 2-DQCSD problem, and t = 3wr and R = 1/3 for the 
3-DQCSD problem. By taking into account the DOOM attack [31], and also the fact that 
we consider balanced vectors (x, y) and (r1, e, r2) for the attack (which costs only a very 
small factor, since random words have a good probability to be balanced on each block), √
we need to divide this complexity by approximately n (up to polylog factor). The term �� �2 � �� �� �3 � �� 

n 2n n 3n o(1) is respectively log 
w / 

2w and log / for the 2-DQCSD and 3-DQCSD
wr 3wr 

problems. Overall our security reduction is tight corresponding to generic instances of the 
classical 2-DQCSD and 3-DQCSD problems according to the best attacks of [9]. 

6 Advantages and Limitations 

6.1 Advantages 

The main advantages of HQC over existing code-based cryptosystems are: 

• its IND-CPA reduction to a well-understood problem on coding theory: the Quasi-
Cyclic Syndrome Decoding problem, 

• its immunity against attacks aiming at recovering the hidden structure of the code 
being used, 

• close estimations of its decryption failure rate. 

The last item allows to achieve a tight reduction for the IND-CCA2 security of the 
KEM-DEM version through the recent transformation of [21]. 

6.2 Limitations 

We have proposed an instantiation of HQC using BCH codes tensored with repetition 
codes. As seen above, this construction presents the major advantage of making possible 
and easy to conduct a study of the error vector distribution, yielding a good estimation of 
the decryption failure rate. HQC might be more eÿcient with other families of codes, but 
another analysis would have to be done. 

3We do not consider the very strong adversarial model where the adversary is given access to a quantum 
decryption oracle. 
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A frst limitation to our cryptosystem (at least for the PKE version) is the low encryption 
rate. It is possible to encrypt 256 bits of plaintext as required by NIST, but increasing this 
rate also increases the parameters. 

As a more general limitation and in contrast with lattices and the so-called Ring Learning 
With Errors problem, code-based cryptography does not beneft from search to decision 
reduction for structured codes. 
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NIST requires statements about the intellectual property of the present submission. While 
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The paper version of these statements will be provided directly to Dustin Moody (or any 
other NIST member) at the frst PQC Standardization Conference. 

The remainder of this submission consists of statements. Below is a list of the statements 
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Statement by each submitter. Each of the authors has such a statement included. 

Statement by patent owners. Carlos Aguilar Melchor and Philippe Gaborit 
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I, Carlos Aguilar Melchor, of University of Toulouse, 2 rue Charles Camichel, 31000 Toulouse,
FRANCE,  do  hereby  declare  that  the  cryptosystem,  reference  implementation,  or  optimized
implementations that I have submitted, known as HQC, is my own original work, or if submitted
jointly with others, is the original work of the joint submitters.

I further declare that (check one):

☐ I do not hold and do not intend to hold any patent or patent application with a
claim  which  may  cover  the  cryptosystem,  reference  implementation,  or  optimized
implementations  that  I  have  submitted,  known  as  HQC;   OR (check  one  or  both  of  the
following):

☑ to the best of my knowledge, the practice of the cryptosystem, reference
implementation, or optimized implementations that I have submitted, known as HQC, may be
covered  by  the  following  U.S.  and/or  foreign  patents:  “Cryptographic  method  for
communicating confidential  information” US9094189 B2,  and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190;

☐ I  do  hereby  declare  that,  to  the  best  of  my  knowledge,  the  following
pending  U.S.  and/or  foreign  patent  applications  may  cover  the  practice  of  my  submitted
cryptosystem, reference implementation or optimized implementations: “Cryptographic method
for communicating confidential information” US9094189 B2, and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190.

I  do hereby acknowledge and agree that  my submitted cryptosystem will  be provided to  the
public  for  review  and  will  be  evaluated  by  NIST,  and  that  it  might  not  be  selected  for
standardization  by  NIST.  I  further  acknowledge  that  I  will  not  receive  financial  or  other
compensation from the U.S. Government for my submission. I certify that,  to the best of my
knowledge,  I  have  fully  disclosed  all  patents  and  patent  applications  which  may  cover  my
cryptosystem, reference implementation or optimized implementations. I also acknowledge and
agree that the U.S. Government may, during the public review and the evaluation process, and, if
my submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent  or  patent  application  identified  to  cover  the  practice  of  my  cryptosystem,  reference
implementation or optimized implementations and the right to use such implementations for the
purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration  for  standardization.  If  my cryptosystem (or  the  derived
cryptosystem)  is  removed  from  consideration  for  standardization  or  withdrawn  from
consideration by all submitter(s) and owner(s), I understand that rights granted and assurances
made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized



implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate. 

Signed: Carlos AGUILAR MELCHOR

Title: Associate Professor
Date: November 28, 2017
Place: Toulouse



I, Nicolas Aragon, of University of Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
FRANCE,  do  hereby  declare  that  the  cryptosystem,  reference  implementation,  or  optimized
implementations that I have submitted, known as HQC, is my own original work, or if submitted
jointly with others, is the original work of the joint submitters.

I further declare that (check one):

☑ I do not hold and do not intend to hold any patent or patent application with a
claim  which  may  cover  the  cryptosystem,  reference  implementation,  or  optimized
implementations  that  I  have  submitted,  known  as  HQC;   OR (check  one  or  both  of  the
following):

☐ to the best of my knowledge, the practice of the cryptosystem, reference
implementation, or optimized implementations that I have submitted, known as HQC, may be
covered  by  the  following  U.S.  and/or  foreign  patents:  “Cryptographic  method  for
communicating  confidential  information” US9094189 B2,  and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190;

☐ I  do  hereby  declare  that,  to  the  best  of  my  knowledge,  the  following
pending  U.S.  and/or  foreign  patent  applications  may  cover  the  practice  of  my  submitted
cryptosystem, reference implementation or optimized implementations: “Cryptographic method
for communicating confidential information” US9094189 B2, and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190.

I  do hereby acknowledge and agree that my submitted cryptosystem will  be provided to the
public  for  review  and  will  be  evaluated  by  NIST,  and  that  it  might  not  be  selected  for
standardization  by  NIST.  I  further  acknowledge  that  I  will  not  receive  financial  or  other
compensation from the U.S. Government for my submission.  I certify that, to the best of  my
knowledge,  I  have  fully  disclosed  all  patents  and  patent  applications  which  may  cover  my
cryptosystem, reference implementation or optimized implementations. I also acknowledge and
agree that the U.S. Government may, during the public review and the evaluation process, and, if
my submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent  or  patent  application  identified  to  cover  the  practice  of  my  cryptosystem,  reference
implementation or optimized implementations and the right to use such implementations for the
purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration  for  standardization.  If  my cryptosystem (or  the  derived
cryptosystem)  is  removed  from  consideration  for  standardization  or  withdrawn  from
consideration by all submitter(s) and owner(s), I understand that rights granted and assurances
made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized



implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate. 

Signed: Nicolas Aragon

Title: PhD Student
Date: November 28, 2017
Place: Limoges



I, Slim Bettaieb, of Worldline, Zone Industrielle A, rue de la Pointe, 59113 Seclin, FRANCE, do
hereby declare that the cryptosystem, reference implementation, or optimized implementations
that I have submitted, known as HQC, is my own original work, or if submitted jointly with
others, is the original work of the joint submitters.

I further declare that (check one):

☑ I do not hold and do not intend to hold any patent or patent application with a
claim  which  may  cover  the  cryptosystem,  reference  implementation,  or  optimized
implementations  that  I  have  submitted,  known  as  HQC;   OR (check  one  or  both  of  the
following):

☐ to the best of my knowledge, the practice of the cryptosystem, reference
implementation, or optimized implementations that I have submitted, known as HQC, may be
covered  by  the  following  U.S.  and/or  foreign  patents:  “Cryptographic  method  for
communicating  confidential  information” US9094189 B2,  and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190;

☐ I  do  hereby  declare  that,  to  the  best  of  my  knowledge,  the  following
pending  U.S.  and/or  foreign  patent  applications  may  cover  the  practice  of  my  submitted
cryptosystem, reference implementation or optimized implementations: “Cryptographic method
for communicating confidential information” US9094189 B2, and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190.

I  do hereby acknowledge and agree that my submitted cryptosystem will  be provided to the
public  for  review  and  will  be  evaluated  by  NIST,  and  that  it  might  not  be  selected  for
standardization  by  NIST.  I  further  acknowledge  that  I  will  not  receive  financial  or  other
compensation from the U.S. Government for my submission.  I certify that, to the best of  my
knowledge,  I  have  fully  disclosed  all  patents  and  patent  applications  which  may  cover  my
cryptosystem, reference implementation or optimized implementations. I also acknowledge and
agree that the U.S. Government may, during the public review and the evaluation process, and, if
my submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent  or  patent  application  identified  to  cover  the  practice  of  my  cryptosystem,  reference
implementation or optimized implementations and the right to use such implementations for the
purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration  for  standardization.  If  my cryptosystem (or  the  derived
cryptosystem)  is  removed  from  consideration  for  standardization  or  withdrawn  from
consideration by all submitter(s) and owner(s), I understand that rights granted and assurances
made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized



implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate. 

Signed: Slim Bettaieb

Title: Research Engineer, Ph.D.
Date: November 28, 2017
Place: Seclin



I,  Loïc  Thierry  Bidoux,  of  Worldline,  Zone  Industrielle  A,  rue  de  la  Pointe,  59113  Seclin,
FRANCE,  do  hereby  declare  that  the  cryptosystem,  reference  implementation,  or  optimized
implementations that I have submitted, known as HQC, is my own original work, or if submitted
jointly with others, is the original work of the joint submitters.

I further declare that (check one):

☑ I do not hold and do not intend to hold any patent or patent application with a
claim  which  may  cover  the  cryptosystem,  reference  implementation,  or  optimized
implementations  that  I  have  submitted,  known  as  HQC;   OR (check  one  or  both  of  the
following):

☐ to the best of my knowledge, the practice of the cryptosystem, reference
implementation, or optimized implementations that I have submitted, known as HQC, may be
covered  by  the  following  U.S.  and/or  foreign  patents:  “Cryptographic  method  for
communicating  confidential  information” US9094189 B2,  and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190;

☐ I  do  hereby  declare  that,  to  the  best  of  my  knowledge,  the  following
pending  U.S.  and/or  foreign  patent  applications  may  cover  the  practice  of  my  submitted
cryptosystem, reference implementation or optimized implementations: “Cryptographic method
for communicating confidential information” US9094189 B2, and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190.

I  do hereby acknowledge and agree that my submitted cryptosystem will  be provided to the
public  for  review  and  will  be  evaluated  by  NIST,  and  that  it  might  not  be  selected  for
standardization  by  NIST.  I  further  acknowledge  that  I  will  not  receive  financial  or  other
compensation from the U.S. Government for my submission.  I certify that, to the best of  my
knowledge,  I  have  fully  disclosed  all  patents  and  patent  applications  which  may  cover  my
cryptosystem, reference implementation or optimized implementations. I also acknowledge and
agree that the U.S. Government may, during the public review and the evaluation process, and, if
my submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent  or  patent  application  identified  to  cover  the  practice  of  my  cryptosystem,  reference
implementation or optimized implementations and the right to use such implementations for the
purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration  for  standardization.  If  my cryptosystem (or  the  derived
cryptosystem)  is  removed  from  consideration  for  standardization  or  withdrawn  from
consideration by all submitter(s) and owner(s), I understand that rights granted and assurances
made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized



implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate. 

Signed: Loïc Bidoux

Title: Research Engineer, Ph.D.
Date: November 28, 2017
Place: Seclin



I, Olivier Blazy, of University of Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
FRANCE,  do  hereby  declare  that  the  cryptosystem,  reference  implementation,  or  optimized
implementations that I have submitted, known as HQC, is my own original work, or if submitted
jointly with others, is the original work of the joint submitters.

I further declare that (check one):

☑ I do not hold and do not intend to hold any patent or patent application with a
claim  which  may  cover  the  cryptosystem,  reference  implementation,  or  optimized
implementations  that  I  have  submitted,  known  as  HQC;   OR (check  one  or  both  of  the
following):

☐ to the best of my knowledge, the practice of the cryptosystem, reference
implementation, or optimized implementations that I have submitted, known as HQC, may be
covered  by  the  following  U.S.  and/or  foreign  patents:  “Cryptographic  method  for
communicating confidential  information” US9094189 B2,  and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190;

☐ I  do  hereby  declare  that,  to  the  best  of  my  knowledge,  the  following
pending  U.S.  and/or  foreign  patent  applications  may  cover  the  practice  of  my  submitted
cryptosystem, reference implementation or optimized implementations: “Cryptographic method
for communicating confidential information” US9094189 B2, and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190.

I  do hereby acknowledge and agree that  my submitted cryptosystem will  be provided to  the
public  for  review  and  will  be  evaluated  by  NIST,  and  that  it  might  not  be  selected  for
standardization  by  NIST.  I  further  acknowledge  that  I  will  not  receive  financial  or  other
compensation from the U.S. Government for my submission. I certify that,  to the best of my
knowledge,  I  have  fully  disclosed  all  patents  and  patent  applications  which  may  cover  my
cryptosystem, reference implementation or optimized implementations. I also acknowledge and
agree that the U.S. Government may, during the public review and the evaluation process, and, if
my submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent  or  patent  application  identified  to  cover  the  practice  of  my  cryptosystem,  reference
implementation or optimized implementations and the right to use such implementations for the
purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration  for  standardization.  If  my cryptosystem (or  the  derived
cryptosystem)  is  removed  from  consideration  for  standardization  or  withdrawn  from
consideration by all submitter(s) and owner(s), I understand that rights granted and assurances
made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized



implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate. 

Signed: Olivier Blazy

Title: Associate Professor
Date: November 28, 2017
Place: Limoges



I, Jean-Christophe Deneuville, of INSA-CVL, 88 boulevard Lahitolle, 18000 Bourges, FRANCE,
and University of Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex, FRANCE, do
hereby declare that the cryptosystem, reference implementation, or optimized implementations
that I have submitted, known as HQC, is my own original work, or if submitted jointly with
others, is the original work of the joint submitters.

I further declare that (check one):

☑ I do not hold and do not intend to hold any patent or patent application with a
claim  which  may  cover  the  cryptosystem,  reference  implementation,  or  optimized
implementations  that  I  have  submitted,  known  as  HQC;   OR (check  one  or  both  of  the
following):

☐ to the best of my knowledge, the practice of the cryptosystem, reference
implementation, or optimized implementations that I have submitted, known as HQC, may be
covered  by  the  following  U.S.  and/or  foreign  patents:  “Cryptographic  method  for
communicating confidential  information” US9094189 B2,  and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190;

☐ I  do  hereby  declare  that,  to  the  best  of  my  knowledge,  the  following
pending  U.S.  and/or  foreign  patent  applications  may  cover  the  practice  of  my  submitted
cryptosystem, reference implementation or optimized implementations: “Cryptographic method
for communicating confidential information” US9094189 B2, and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190.

I  do hereby acknowledge and agree that  my submitted cryptosystem will  be provided to  the
public  for  review  and  will  be  evaluated  by  NIST,  and  that  it  might  not  be  selected  for
standardization  by  NIST.  I  further  acknowledge  that  I  will  not  receive  financial  or  other
compensation from the U.S. Government for my submission. I certify that,  to the best of my
knowledge,  I  have  fully  disclosed  all  patents  and  patent  applications  which  may  cover  my
cryptosystem, reference implementation or optimized implementations. I also acknowledge and
agree that the U.S. Government may, during the public review and the evaluation process, and, if
my submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent  or  patent  application  identified  to  cover  the  practice  of  my  cryptosystem,  reference
implementation or optimized implementations and the right to use such implementations for the
purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration  for  standardization.  If  my cryptosystem (or  the  derived
cryptosystem)  is  removed  from  consideration  for  standardization  or  withdrawn  from
consideration by all submitter(s) and owner(s), I understand that rights granted and assurances



made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized
implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate. 

Signed: Jean-ChristopheDeneuville

Title: PhD, post-doc
Date: November 28, 2017
Place: Limoges



I, Philippe Gaborit, of University of Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
FRANCE,  do  hereby  declare  that  the  cryptosystem,  reference  implementation,  or  optimized
implementations that I have submitted, known as HQC, is my own original work, or if submitted
jointly with others, is the original work of the joint submitters.

I further declare that (check one):

☐ I do not hold and do not intend to hold any patent or patent application with a
claim  which  may  cover  the  cryptosystem,  reference  implementation,  or  optimized
implementations  that  I  have  submitted,  known  as  HQC;   OR (check  one  or  both  of  the
following):

☑ to the best of my knowledge, the practice of the cryptosystem, reference
implementation, or optimized implementations that I have submitted, known as HQC, may be
covered  by  the  following  U.S.  and/or  foreign  patents:  “Cryptographic  method  for
communicating confidential  information” US9094189 B2,  and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190;

☐ I  do  hereby  declare  that,  to  the  best  of  my  knowledge,  the  following
pending  U.S.  and/or  foreign  patent  applications  may  cover  the  practice  of  my  submitted
cryptosystem, reference implementation or optimized implementations: “Cryptographic method
for communicating confidential information” US9094189 B2, and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190.

I  do hereby acknowledge and agree that  my submitted cryptosystem will  be provided to  the
public  for  review  and  will  be  evaluated  by  NIST,  and  that  it  might  not  be  selected  for
standardization  by  NIST.  I  further  acknowledge  that  I  will  not  receive  financial  or  other
compensation from the U.S. Government for my submission. I certify that,  to the best of my
knowledge,  I  have  fully  disclosed  all  patents  and  patent  applications  which  may  cover  my
cryptosystem, reference implementation or optimized implementations. I also acknowledge and
agree that the U.S. Government may, during the public review and the evaluation process, and, if
my submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent  or  patent  application  identified  to  cover  the  practice  of  my  cryptosystem,  reference
implementation or optimized implementations and the right to use such implementations for the
purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration  for  standardization.  If  my cryptosystem (or  the  derived
cryptosystem)  is  removed  from  consideration  for  standardization  or  withdrawn  from
consideration by all submitter(s) and owner(s), I understand that rights granted and assurances
made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized



implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate. 

Signed: 

Title: Professor
Date: November 28, 2017
Place: Limoges



I, Edoardo Persichetti, of Department of Mathematical Sciences, Florida Atlantic Uni-
versity, 777 Glades Rd, Boca Raton, FL 33431, USA, do hereby declare that the cryptosys-
tem, reference implementation, or optimized implementations that I have submitted, known
as HQC, is my own original work, or if submitted jointly with others, is the original work of
the joint submitters.

I further declare that:

X I do not hold and do not intend to hold any patent or patent application with a claim
which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as HQC; OR:

2 to the best of my knowledge, the practice of the cryptosystem, reference implemen-
tation, or optimized implementations that I have submitted, known as HQC, may
be covered by the following U.S. and/or foreign patents: US9094189 B2 and FR
10/51190;

2 I do hereby declare that, to the best of my knowledge, the following pending U.S.
and/or foreign patent applications may cover the practice of my submitted cryp-
tosystem, reference implementation or optimized implementations: US9094189 B2
and FR 10/51190.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided
to the public for review and will be evaluated by NIST, and that it might not be selected
for standardization by NIST. I further acknowledge that I will not receive financial or other
compensation from the U.S. Government for my submission. I certify that, to the best of
my knowledge, I have fully disclosed all patents and patent applications which may cover my
cryptosystem, reference implementation or optimized implementations. I also acknowledge and
agree that the U.S. Government may, during the public review and the evaluation process,
and, if my submitted cryptosystem is selected for standardization, during the lifetime of the
standard, modify my submitted cryptosystem’s specifications (e.g., to protect against a newly
discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to pub-
lish the draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for
any patent or patent application identified to cover the practice of my cryptosystem, reference
implementation or optimized implementations and the right to use such implementations for
the purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may
remove my cryptosystem from consideration for standardization. If my cryptosystem (or
the derived cryptosystem) is removed from consideration for standardization or withdrawn
from consideration by all submitter(s) and owner(s), I understand that rights granted and
assurances made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference
and optimized implementations, may be withdrawn by the submitter(s) and owner(s), as
appropriate.

Signed:

Title: Assistant Professor
Date: November 16, 2017
Place: Boca Raton, Florida, USA



I, Gilles Zémor, of IMB, University of Bordeaux, 351 cours de la Libération, F-33405 Talence
Cedex,  FRANCE,  do  hereby  declare  that  the  cryptosystem,  reference  implementation,  or
optimized implementations that I have submitted, known as HQC, is my own original work, or if
submitted jointly with others, is the original work of the joint submitters.

I further declare that (check one):

☑ I do not hold and do not intend to hold any patent or patent application with a
claim  which  may  cover  the  cryptosystem,  reference  implementation,  or  optimized
implementations  that  I  have  submitted,  known  as  HQC;   OR  (check  one  or  both  of  the
following):

☐ to the best of my knowledge, the practice of the cryptosystem, reference
implementation, or optimized implementations that I have submitted, known as HQC, may be
covered  by  the  following  U.S.  and/or  foreign  patents:  “Cryptographic  method  for
communicating  confidential  information”  US9094189  B2,  and  “Procédé  cryptographique  de
communication d'une information confidentielle” FR 10/51190;

☐ I  do  hereby  declare  that,  to  the  best  of  my  knowledge,  the  following
pending  U.S.  and/or  foreign  patent  applications  may  cover  the  practice  of  my  submitted
cryptosystem, reference implementation or optimized implementations: “Cryptographic method
for communicating confidential information” US9094189 B2, and “Procédé cryptographique de
communication d'une information confidentielle” FR 10/51190.

I  do hereby acknowledge and agree that my submitted cryptosystem will  be provided to the
public  for  review  and  will  be  evaluated  by  NIST,  and  that  it  might  not  be  selected  for
standardization  by  NIST.  I  further  acknowledge  that  I  will  not  receive  financial  or  other
compensation from the U.S. Government for my submission.  I certify that, to the best of  my
knowledge,  I  have  fully  disclosed  all  patents  and  patent  applications  which  may  cover  my
cryptosystem, reference implementation or optimized implementations. I also acknowledge and
agree that the U.S. Government may, during the public review and the evaluation process, and, if
my submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish the
draft standards for public comment

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for any
patent  or  patent  application  identified  to  cover  the  practice  of  my  cryptosystem,  reference
implementation or optimized implementations and the right to use such implementations for the
purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration  for  standardization.  If  my cryptosystem (or  the  derived
cryptosystem)  is  removed  from  consideration  for  standardization  or  withdrawn  from
consideration by all submitter(s) and owner(s), I understand that rights granted and assurances



made under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized
implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate. 

Signed: Gilles Zémor

Title: Professor
Date: November 28, 2017
Place: Bordeaux



I, Carlos Aguilar Melchor, of University of Toulouse, 2 rue Charles Camichel, 31000 Toulouse,
FRANCE, am the owner of the following patents and/or patent applications: “Cryptographic
method  for  communicating  confidential  information”  US9094189  B2,  and  “Procédé
cryptographique  de  communication  d'une  information  confidentielle”  FR  10/51190,  and  do
hereby  commit  and  agree  to  grant  to  any  interested  party  on  a  worldwide  basis,  if  the
cryptosystem known as HQC is selected for standardization, in consideration of its evaluation
and selection by NIST, a non-exclusive license for the purpose of implementing the standard
(check one):

☑ without  compensation  and  under  reasonable  terms  and  conditions  that  are
demonstrably free of any unfair discrimination, OR

☐ under reasonable terms and conditions that are demonstrably free of any unfair
discrimination.

I further do hereby commit and agree to license such party on the same basis with respect to any
other patent application or patent hereafter granted to me, or owned or controlled by me, that is
or may be necessary for the purpose of implementing the standard.

I  further  do  hereby  commit  and  agree  that  I  will  include,  in  any  documents  transferring
ownership of each patent and patent application, provisions to ensure that the commitments and
assurances made by me are binding on the transferee and any future transferee.

I further do hereby commit and agree that these commitments and assurances are intended by me
to  be  binding on successors-in-interest  of  each patent  and patent  application,  regardless  of
whether such provisions are included in the relevant transfer documents.

I further do hereby grant to the U.S. Government, during the public review and the evaluation
process, and during the lifetime of the standard, a nonexclusive, nontransferrable, irrevocable,
paid-up worldwide  license  solely  for  the  purpose  of  modifying  my submitted  cryptosystem’s
specifications (e.g., to protect against a newly discovered vulnerability) for incorporation into
the standard.

Signed: Carlos AGUILAR MELCHOR

Title: Associate Professor
Date: November 28, 2017
Place: Toulouse



I, Philippe Gaborit, of University of Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
FRANCE, am the owner of the following patents and/or patent applications: “Cryptographic
method  for  communicating  confidential  information”  US9094189  B2,  and  “Procédé
cryptographique  de  communication  d'une  information  confidentielle”  FR  10/51190,  and  do
hereby  commit  and  agree  to  grant  to  any  interested  party  on  a  worldwide  basis,  if  the
cryptosystem known as HQC is selected for standardization, in consideration of its evaluation
and selection by NIST, a non-exclusive license for the purpose of implementing the standard
(check one):

☑ without  compensation  and  under  reasonable  terms  and  conditions  that  are
demonstrably free of any unfair discrimination, OR

☐ under reasonable terms and conditions that are demonstrably free of any unfair
discrimination.

I further do hereby commit and agree to license such party on the same basis with respect to any
other patent application or patent hereafter granted to me, or owned or controlled by me, that is
or may be necessary for the purpose of implementing the standard.

I  further  do  hereby  commit  and  agree  that  I  will  include,  in  any  documents  transferring
ownership of each patent and patent application, provisions to ensure that the commitments and
assurances made by me are binding on the transferee and any future transferee.

I further do hereby commit and agree that these commitments and assurances are intended by me
to  be  binding on successors-in-interest  of  each patent  and patent  application,  regardless  of
whether such provisions are included in the relevant transfer documents.

I further do hereby grant to the U.S. Government, during the public review and the evaluation
process, and during the lifetime of the standard, a nonexclusive, nontransferrable, irrevocable,
paid-up worldwide  license  solely  for  the  purpose  of  modifying  my submitted  cryptosystem’s
specifications (e.g., to protect against a newly discovered vulnerability) for incorporation into
the standard.

Signed:

Title: Professor
Date: November 28, 2017
Place: Limoges







I, Carlos Aguilar Melchor, of University of Toulouse, 2 rue Charles Camichel, 31000 Toulouse,
FRANCE,  am  the  owner  of  the  submitted  reference  implementation  and  optimized
implementations and hereby grant the U.S. Government and any interested party the right to
reproduce,  prepare  derivative  works  based  upon,  distribute  copies  of,  and  display  such
implementations for the purposes of the post-quantum algorithm public review and evaluation
process, and implementation if the corresponding cryptosystem is selected for standardization
and  as  a  standard,  notwithstanding  that  the  implementations  may  be  copyrighted  or
copyrightable.

Signed: Carlos AGUILAR MELCHOR

Title: Associate Professor
Date: November 28, 2017
Place: Toulouse



I, Nicolas Aragon, of University of Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
FRANCE,  am  the  owner  of  the  submitted  reference  implementation  and  optimized
implementations and hereby grant the U.S. Government and any interested party the right to
reproduce,  prepare  derivative  works  based  upon,  distribute  copies  of,  and  display  such
implementations for the purposes of the post-quantum algorithm public review and evaluation
process, and implementation if the corresponding cryptosystem is selected for standardization
and  as  a  standard,  notwithstanding  that  the  implementations  may  be  copyrighted  or
copyrightable.

Signed: Nicolas Aragon

Title: PhD Student
Date: November 28, 2017
Place: Limoges



I, Slim Bettaieb, of Worldline, Zone Industrielle A, rue de la Pointe, 59113 Seclin, FRANCE, am
the owner of the submitted reference implementation and optimized implementations and hereby
grant the U.S. Government and any interested party the right to reproduce, prepare derivative
works based upon, distribute copies of, and display such implementations for the purposes of the
post-quantum  algorithm  public  review  and  evaluation  process,  and  implementation  if  the
corresponding cryptosystem is selected for standardization and as a standard, notwithstanding
that the implementations may be copyrighted or copyrightable.

Signed: Slim Bettaieb

Title: Research Engineer, Ph.D.
Date: November 28, 2017
Place: Seclin



I,  Loïc  Thierry  Bidoux,  of  Worldline,  Zone  Industrielle  A,  rue  de  la  Pointe,  59113  Seclin,
FRANCE,  am  the  owner  of  the  submitted  reference  implementation  and  optimized
implementations and hereby grant the U.S. Government and any interested party the right to
reproduce,  prepare  derivative  works  based  upon,  distribute  copies  of,  and  display  such
implementations for the purposes of the post-quantum algorithm public review and evaluation
process, and implementation if the corresponding cryptosystem is selected for standardization
and  as  a  standard,  notwithstanding  that  the  implementations  may  be  copyrighted  or
copyrightable.

Signed: Loïc Bidoux

Title: Research Engineer, Ph.D.
Date: November 28, 2017
Place: Seclin



I, Olivier Blazy, of University of Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
FRANCE,  am  the  owner  of  the  submitted  reference  implementation  and  optimized
implementations and hereby grant the U.S. Government and any interested party the right to
reproduce,  prepare  derivative  works  based  upon,  distribute  copies  of,  and  display  such
implementations for the purposes of the post-quantum algorithm public review and evaluation
process, and implementation if the corresponding cryptosystem is selected for standardization
and  as  a  standard,  notwithstanding  that  the  implementations  may  be  copyrighted  or
copyrightable.

Signed: Olivier Blazy

Title: Associate Professor
Date: November 28, 2017
Place: Limoges



I, Jean-Christophe Deneuville, of INSA-CVL Bourges, 88 boulevard Lahitolle, 18000 Bourges,
FRANCE,  and  University  of  Limoges,  123  avenue  Albert  Thomas,  87060  Limoges  Cedex,
FRANCE,  am  the  owner  of  the  submitted  reference  implementation  and  optimized
implementations and hereby grant the U.S. Government and any interested party the right to
reproduce,  prepare  derivative  works  based  upon,  distribute  copies  of,  and  display  such
implementations for the purposes of the post-quantum algorithm public review and evaluation
process, and implementation if the corresponding cryptosystem is selected for standardization
and  as  a  standard,  notwithstanding  that  the  implementations  may  be  copyrighted  or
copyrightable.

Signed: Jean-Christophe Deneuville

Title: Ph.D. post-doc
Date: November 28, 2017
Place: Limoges



I, Philippe Gaborit, of University of Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex,
FRANCE,  am  the  owner  of  the  submitted  reference  implementation  and  optimized
implementations and hereby grant the U.S. Government and any interested party the right to
reproduce,  prepare  derivative  works  based  upon,  distribute  copies  of,  and  display  such
implementations for the purposes of the post-quantum algorithm public review and evaluation
process, and implementation if the corresponding cryptosystem is selected for standardization
and  as  a  standard,  notwithstanding  that  the  implementations  may  be  copyrighted  or
copyrightable.

Signed: 

Title: Professor
Date: November 28, 2017
Place: Limoges



I, Edoardo Persichetti, of Department of Mathematical Sciences, Florida Atlantic Uni-
versity, 777 Glades Rd, Boca Raton, FL 33431, USA, am the owner of the submitted reference
implementation and optimized implementations and hereby grant the U.S. Government and any
interested party the right to reproduce, prepare derivative works based upon, distribute copies
of, and display such implementations for the purposes of the post-quantum algorithm public re-
view and evaluation process, and implementation if the corresponding cryptosystem is selected for
standardization and as a standard, notwithstanding that the implementations may be copyrighted
or copyrightable.

Signed:

Title: Assistant Professor
Date: November 16, 2017
Place: Boca Raton, Florida, USA



I, Gilles Zémor, of IMB, University of Bordeaux, 351 cours de la Libération, F-33405 Talence
Cedex,  FRANCE,  am  the  owner  of  the  submitted  reference  implementation  and  optimized
implementations and hereby grant the U.S. Government and any interested party the right to
reproduce,  prepare  derivative  works  based  upon,  distribute  copies  of,  and  display  such
implementations for the purposes of the post-quantum algorithm public review and evaluation
process, and implementation if the corresponding cryptosystem is selected for standardization
and  as  a  standard,  notwithstanding  that  the  implementations  may  be  copyrighted  or
copyrightable.

Signed: Gilles Zémor

Title: Professor
Date: November 28, 2017
Place: Bordeaux
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