
1 BCH Codes
For any positive integers m ≥ 3 and t ≤ 2m−1, there exists a binary BCH code with the following
parameters [3]

• Block length n = 2m − 1

• Number of parity-check digits n − k ≤ mδ, with δ, the correcting capacity of the code and k the
number of information bits

• Minimum distance dmin ≥ 2δ + 1

We denote this code by BCH[n, k, δ]. Let α be the primitive element in GF(2m), the generator
polynomial g(x) of the BCH[n, k, δ] code is given by:

g(x) = LCM{φ1(x), φ2(x), · · · , φ2δ(x))}

with φi(x) being the minimal polynomial of αi (refer to [3] for more details on generator polynomial).
Depending on the parameters of the HQC scheme, we construct shortened BCH codes such that

k = 256 from the two following BCH codes BCH-1 and BCH-2 (codes from [3]):

code n k δ
BCH-1 1023 513 57
BCH-2 1023 483 60

We obtain the following shortened codes

code n k δ
BCH-S1 766 256 57
BCH-S2 796 256 60

The shortened codes are obtained by substracting 257 (and 227) from BCH-1 (from BCH-2):

• BCH-S1[766 = 1023− 257, 256 = 513− 257, 57]

• BCH-S2[796 = 1023− 227, 256 = 483− 227, 60]

We notice that shortening the BCH code does not affect the correcting capacity.

In our case, we will be working in GF(210), for that we use the primitive polynomial of degree
1 + X3 + X10 to build this field (polynomial from [3]). We precomputed the generator polynomials for
the two codes that we will be using in our implementation (BCH-S1 and BCH-S2) and we included their
Hexadecimal formats in the file parameters.h.

2 BCH Decoding
We give a brief reminder on decoding BCH codes following [3]. Consider the BCH code defined by [n, k, δ],
with n = 2m−1 (m ≥ 0 of positive integer) and suppose that a code word v(x) = v0+v1x+ · · ·+vn−1x

n−1

is transmitted and that during transmission, error occurred in the following received vector:

r(x) = r0 + r1x+ r2x
2 + · · ·+ rn−1x

n−1

1



We have that the location of errors are given by the error polynomial e(x) = e0+e1x+e2x
2+· · ·+en−1x

n−1,
if ei = 1, then there is an error occurred at that location. Then we can write

r(x) = v(x) + e(x)

We define the set of syndromes S1, S2, · · · , S2δ as Si = r(αi), with α being the primitive element in
GF(2m). We have that r(αi) = e(αi), since v(αi) = 0 (v is a code word). Suppose that e(x) has t errors
at locations j1, · · · , jt, then

e(x) = xj1 + xj2 + · · ·+ xjt ,

we obtain the following set of equations, where αj1 , αj2 , · · · , αjt are unknown:

S1 = αj1 + αj2 + · · ·+ αjt

S2 = (αj1)2 + (αj2)2 + · · ·+ (αjt)2

S3 = (αj1)3 + (αj2)3 + · · ·+ (αjt)3

...

S2δ = (αj1)2δ + (αj2)2δ + · · ·+ (αjt)2δ

The goal of a BCH decoding algorithm is to solve this system of equations. We define the error location
numbers by βi = αji , which indicate the location of the errors. The equations above, can be expressed as
follows:

S1 = β1 + β2 + · · ·+ βt

S2 = β2
1 + β2

2 + · · ·+ β2
t

S3 = β3
1 + β3

2 + · · ·+ β3
t

...

S2δ = β2δ
1 + β2δ

2 + · · ·+ β2δ
t

we define the error location polynomial as:

σ(x) = (1 + β1x)(1 + β2x) · · · (1 + βtx)

= 1 + σ1x+ σ2x
2 + · · ·+ σtx

t

We can see that, the roots of σ(x) are β−1
1 , β−1

2 , · · · , β−1
t which are the inverses of the error location

numbers. By inverting those roots we can construct the error polynomial e(x).
We can summarize the decoding procedure of a BCH[n, k, δ] code by the following steps:

1. The first step is the computation of 2× δ syndromes using the received polynomial

2. The second step is the computation of the error-location polynomial σ(x) from the 2× δ syndromes
computed in the first step (in our implementation we will use the Simplified Berlekamp’s Algorithm
[2])

3. The third step is to find the error-location numbers by calculating the roots of the polynomial σ(x)
and returning their inverse (in our implementation we will be using the Chien search algorithm [1])

4. The fourth step is the correction of errors in the received polynomial

Remark 1 As mentioned before, in our implementation, we deal with shortened BCH code. We notice
that we will be using the same decoding procedure described above.

2



2.1 Syndromes computations

The following function compute the syndromes.

// bch.h
void syndrome_gen(syndrome_set* synd_set, gf_tables* tables, vector_u32* v)

The syndromes are computed by evaluating the received polynomial stored in the vector v at the 2×
PARAM DELTA consecutive roots of the generator polynomial αi, i = 1, 2, · · · , 2 ∗ PARAM DELTA. Let
us denote by r(x) the polynomial in the vector v, thus the syndromes are

r(α), r(α2), · · · , r(α2×PARAM DELTA)

and they are stored as GF(210) elements in the structure synd set which is the output the function.

2.2 Computing the Error-Location Polynomial

The following function compute the error location polynomial σ(x) as defined above and store it in the
vector sigma

// bch.h
void get_error_location_poly(sigma_poly* sigma, gf_tables* tables, syndrome_set* synd_set);

This function implements the simplified Berlekamp’s algorithm for finding the error location polyno-
mial for binary BCH codes given by Joiner and Komo in [2].

2.3 Finding the Error-Location Numbers

The following function computes the roots of the error location polynomial and find their inverses which
are the error location numbers.

// bch.h
void chien_search(uint16_t* error_pos, uint16_t* size, gf_tables* tables, sigma_poly* sigma);

To find the roots of the polynomial σ(x) stored in the structure sigma, we have to evaluate σ(x) in
all the element of the Galois Field: let α be the generator of the field then we have to check for j = 1, 2, ...
if σ(αj) = 0. Then if αk is a root we store α−k in the output array of the function. The Chien procedure
permits to compute σ(αk+1) from σ(αk), in fact :

• Suppose that σ is of degree t. If we have evaluated αk, we obtain

σ(αk) = 1 + σ1α
k + σ2α

2k + · · ·+ σtα
tk

• Then, we can obtain σ(αk+1) in O(t) operation. In fact the i-th term in σ(αk+1) can be obtained
from the i-th term of σ(αk) by multiplying that term by αi.

Suppose that we are using BCH[n, k, δ] one of the shortened BCH codes described bellow. Then, we
have that the inverses of the roots of the elements αi with i ∈ {1, · · · , 210− 1−n} will not be a valid
error positions. In fact the location number obtained will be grater than n. For that it is useless to
evaluate the error location polynomial σ(x) in the element αi for i ∈ {1, · · · , 210−1−n}. Therefore,
in our implementation we starts the evaluation at αi with i = 210 − n.

3



2.4 Error correction

To correct the errors in the received polynomial: we have to build the error polynomial e(x) using the
error location numbers obtained by the Chien search algorithm, then we add the error polynomial to the
received polynomial. The following function build e(x) and store the result in the vector e

// bch.h
void error_poly_gen(vector_u32* e, uint16_t* error_pos, uint16_t size)

References
[1] Robert Chien. Cyclic decoding procedures for bose-chaudhuri-hocquenghem codes. IEEE Transactions

on information theory, 10(4):357–363, 1964.

[2] Laurie L Joiner and John J Komo. Decoding binary bch codes. In Southeastcon’95. Visualize the
Future., Proceedings., IEEE, pages 67–73. IEEE, 1995.

[3] Shu Lin and Daniel Costello. Error control coding: Fundamentals and applications. 1983.

4


