1 Multiplication Algorithm

Let x be a vector of dimension n, with Hamming weight close to v/n and y be
any vector of dimension n. This document explain a multiplication algorithm that
compute X - y.

For that, we will exploit the fact of doing operations by blocks of 32 bits. We
consider the multiplication of two vectors x and y, using the matrix vector form. In
fact we have that :

Xy =x x rot(y)"

We start by subdividing the matrix of size n x n into blocks of 32 bits, we
have :

_]yo y31\]932 y63\ Y1
’yn—l"' y30\ ’y?)l yﬁz\
rot(y)" = : : : :
]92 y33\]?/34 yas\
(Y1 - sz |¥Uss o Yed| oo

Notice that in our case the parameter n is not multiple of 32, thus the last
block in each line of the obtained matrix is of size less than 32. In fact, the last block
is of size 6 = n mod 32. In order to obtain a block of 32 bits, we apply a padding of
zeros 0. We can also do this by using the following mask, let mask = 232 — 2% (where
a =32 —§). We denote by D, the new matrix.

"yo y31‘ ’y32 y63‘ v | ypy10-440

]yn_r-- y%‘]y31 yw‘ N T)
D= : : : :

’yQ y33‘ ’y34 ye5\ T)

jy1 y32‘ ’y33 ye4\)

Let © = n — 6, we notice that the matrix D can be build using the following
formula :

D[i] = (2% X yi, 2% X Y1) modns 5 2° X Y31 modn) for i € [0,m —1] (1)
[DJ0] D[32] --- Dju| & mask
Din—1] D[31] .- Djlu— 1] & mask
Din — 2] :
D= : D[0] DJ[0] & mask
: Din —1] :
D:[Q] D[:34] Diu+ 2]: & mask
| D[1] D[33] --- Dj[u+ 1] & mask]

The idea of the algorithm is explained by the following toy example. Suppose
that the Hamming weight of vector x is equal to 3, in particular

x=(1,1,0,---,0,1,0)
We have that x -y = x x rot(y)" = x x D, it’s easy to see that

D[] Dfn —1]" D2
D[32]" D[31]" D[34]"
xx D= : ® : @ :
(D[p] & mask) " (D[— 1] & mask) " (D[u + 2] & mask) "

In fact the position of the 1s in the vector x indicates the rows of the matrix
D that we need to xor to obtain the matrix vector product.

We give a brief description of this algorithm. The Algorithm 1, describes all
the steps of the multiplication of two vectors x and y. The Algorithm 2, is used to
compute the value of D[i] for i € [0,n — 1] using the vector y.

Algorithm 1 Multiplication
1: Imput : a an array of size s that contains the support of the vector x and b an
array of size m = 1+ [n/32] that contains the coordinates of the vector y

2: Output : ¢ an array of size m that contains the product x -y
3: mask «— 232 — 2% with o = 32 — § and § = n mod 32
4: D[i], i € [0,n — 1] +— ComputeTab(b)

5. for 0 < i< sdo

6: for0<j<m—1do

7 val <— (32 x j — a[i]) mod n

8: tmp[j] «— DJval]

9: end for

100 j4+—m-—1

11: wal «— (32 x j — a[i]) mod n

12 tmplj] «— D[val] & mask

13: for0<k<mdo

14: tlk] «— t[k] ® tmplk]

15: end for
16: end for

Algorithm 2 ComputeTab
1: Imput : b an array of size m = 1+ |n/32] that is the coordinates of the vector

y
2: Output : D[i], i € [0,n — 1]
3: Compute D[i], i € [0,n — 1] using the equation 1 and the array b.

