
LUOV
Signature Scheme proposal for NIST PQC Project

Principal submitter Ward Beullens, imec-COSIC KU Leuven
ward.beullens@esat.kuleuven.be
+32471 12 64 57
Afdeling ESAT - COSIC,
Kasteelpark Arenberg 10 - bus 2452,
3001 Heverlee, Belgium

Auxiliary submitters Bart Preneel, imec-COSIC KU Leuven
Alan Szepieniec, imec-COSIC KU Leuven
Frederik Vercauteren, imec-COSIC KU Leuven

Inventors/developers The same as the principal submitter. Relevant
prior work is credited below where appropriate.

Owner Same as submitter
Signature

Contents

1 Introduction 4

2 Algorithm specification (part of 2.B.1) 4

2.1 Overview of the scheme . 4

2.2 Relation to the UOV scheme . 5

2.3 Parameter space . 6

2.4 Key Generation Algorithm . 6

2.4.1 Finding the remaining coefficients of P 6

2.5 Signature Generation Algorithm . 7

2.6 Signature Verification Algorithm . 9

2.7 Signatures with message recovery . 12

2.8 Encoding of objects . 13

2.8.1 Encoding of finite field elements . 13

2.8.2 Encoding of private key . 15

2.8.3 Encoding of public key . 15

2.8.4 Encoding of signature . 15

2.9 Sampling objects with the SHAKE function 16

2.9.1 Squeezing public seed . 16

2.9.2 Squeezing T . 16

2.9.3 Squeezing hash digest and vinegar variables 17

2.9.4 Squeezing most part of the public map 17

3 List of parameter sets (part of 2.B.1) 17

4 Detailed performance analysis (2.B.2) 18

4.1 Description of platform . 18

4.2 Time . 18

4.3 Space . 18

4.4 How parameters affect performance . 19

2

4.5 Optimizations . 20

4.5.1 Bit slicing . 20

4.5.2 Precomputing P and F . 20

5 Expected strength (2.B.4) 20

6 Analysis of known attacks (2.B.5) 22

6.1 Direct attack . 22

6.2 Key recovery attacks. 26

6.2.1 UOV attack . 26

6.2.2 Reconciliation attack . 26

6.3 Hash collision attack . 27

7 Advantages and limitations (2.B.6) 27

7.1 Advantages . 27

7.2 Limitations . 28

References

A Statements

29

30

A.1 Statement by Each Submitter . 31

A.2 Statement by Reference/Optimized Implementations’ Owner(s) 33

3

1 Introduction

One of the major candidates for providing secure cryptographic primitives in a post-quantum
world is Multivariate Cryptography. Multivariate Cryptography is based on the hardness
of problems related to multivariate polynomials over finite fields, such as solving systems of
multivariate polynomial equations. In general, Multivariate Cryptography is very fast and
requires only moderate computational resources, which makes it attractive for applications
in low-cost devices. In the field of Multivariate Cryptography, the Unbalanced Oil and
Vinegar signature scheme (UOV) is one of the oldest and best studied cryptosystems. Since
the proposal of the Oil and Vinegar scheme in 1997 by Patarin [15], UOV has successfully
withstood almost two decades of cryptanalysis. The UOV scheme is very simple, has small
signatures and is fast. The main disadvantage of UOV is arguably that its public keys are
quite large. This document presents the Lifted Unbalanced Oil and Vinegar signature scheme
(LUOV), which is a simple improvement of the UOV scheme that greatly reduces the size of
the public keys.

2 Algorithm specification (part of 2.B.1)

2.1 Overview of the scheme

→ FmThe LUOV signature scheme uses a one-way function P : Fn
2r 2r , which is a multivariate

quadratic polynomial map in n = m + v variables with coefficients in the binary subfield
F2 ⊂ F2r . The trapdoor is a factorization P = F ◦ T , where T : F2

n
r → F2

n
r is an invertible

→ Fmlinear map, and F : Fn
2r 2r is a quadratic map whose components f1, · · · , fm are of the

form Xv n nX X
fk(x) = αi,j,kxixj + βi,kxi + γk ,

i=1 j=i i=1

where the αi,j,k, βi,k and γ are chosen randomly from F2 and v = n − m. We say that the
first v variables x1, · · · , xv are the vinegar variables, whereas the remaining m variables are
the oil variables. Equivalently, the components of F are quadratic polynomials with random
binary coefficients in the variables xi such that there are no quadratic terms which contain
two oil variables. One could say that the vinegar variables and the oil variables are not fully
mixed, which is where their names come from.

How does the trapdoor P = F ◦ T 2rhelp to invert the function P? Given a target x ∈ Fm a
solution y for P(y) = x can be found by first solving F(y0) = x for y0 and then computing
y = T −1(y0). The system F(y0) = x can be solved efficiently by fixing the vinegar variables
to some pseudo-randomly chosen values. If we substitute these values in the equations the
remaining system only contains linear equations, because every quadratic term contains at
least one vinegar variable and thus turns into a linear or constant term after substitution.
The remaining linear system can be solved using linear algebra. In the event that there are
no solutions we can simply try again with a different assignment to the vinegar variables.

4

The trapdoor function is then combined with a collision resistant hash function H : {0, 1}∗ →
Fm
2r into a signature scheme using the standard hash-and-sign paradigm. The resulting key

generation, signature generation and verification algorithms are described in the next few
sections.

A large part of the coefficients of P is generated from a seed. This seed is included in the
public key and replaces all the generated coefficients to make the public key much smaller.
In order to reduce the size of the secret key we do not store F nor T . Instead, we only store
a private seed that was used to generate the public seed and T .

The LUOV scheme can be used in two modes. One option is the usual appended signature
mode where a message is authenticated by appending a signature. A different option is the
message recovery mode, which can be used to reduce the size of a message-signature pair.
In message recovery mode (part of) the message is not transmitted but recovered from the
signature.

2.2 Relation to the UOV scheme

The LUOV scheme is an adaptation of the Unbalanced Oil and Vinegar signature scheme.
It differs from the original UOV scheme in a number of ways. The first modification, due
to Petzoldt [16], changes the key generation algorithm to make it possible to choose a large
part of the public key. One can then choose this part to correspond with the output of a
pseudo-random number generator and replace a large part of the public key by a seed. The
modified key generation algorithm generates a distribution of public polynomial maps P
that is indistinguishable from the original signature scheme if we assume the output of the
PRNG (we have used the Keccak1600 Sponge construction) is indistinguishable from true
randomness.

→ FmA second modification is that a public key P : Fn
2 2 for the UOV scheme over F2 is used

as a public key for the UOV scheme over a large extension field F2r . The public key is ‘lifted’
to the extension field by just extending the polynomial map P to a map from Fn

2r 2r .to Fm

This is were the Lifted UOV scheme gets its name from. The advantage of this approach is
that the public key remains small (since the coefficients of the public key are 0 or 1), while
solving the system P(x) = y for some y in Fm

2r becomes more difficult compared to the case
where y is in Fm

2 . This adaptation is due to Beullens and Preneel. [5].

Thirdly, the linear map T is chosen to have a matrix representation of the form � �
1v T
0 1m

,

where T is a v-by-m matrix. This choice makes the key generation algorithm and the signing
algorithm much faster, but does not affect the security of the scheme because for a random
public key there exists an equivalent private key with T of this form with high probability [18].
This implies that if there is an attack against the modified signature scheme, the same attack
would work on nearly all public keys of the original UOV scheme. This choice of T was first

5

proposed by Czypek [7], where it was used to speed up the key generation algorithm. LUOV
makes the same choice of T , but uses different key generation and signature generation
algorithms that are even faster.

Lastly, in the signing algorithm, instead of choosing the assignments to the vinegar variables
truly randomly, the assignments are deterministically generated from the message M and
the private key. This ensures that when a message is signed multiple times, the generated
signatures will be identical. If the vinegar variables were chosen at random, an attacker
could query many different signatures for the same message. We are not aware of an attack
that exploits this fact, but it is cautious to block this kind of attack anyway.

2.3 Parameter space

The parameters for the LUOV algorithm are :

• r — The degree of the field extension F2 ⊂ F2r .

• m — The number of polynomials in the public key, also the number of oil variables.

• v — The number of vinegar variables.

• n = m + v — The total number of variables

• SHAKE — The extendable output function that is used, either SHAKE128 or
SHAKE256.

2.4 Key Generation Algorithm

The key generation algorithm (Alg. 4) first uses a private seed to pseudo-randomly generate
a seed that will be published, as well as the v-by-m matrix that determines the linear map
T . Then, the public seed is used to generate C ∈ Fm

2 , the constant part of the public
v(v+1)

2map P , L ∈ Fm
2
×n

2

+vm

2
, the linear part of P and Q1 ∈ Fm×

, the first v(v+1) +vm columns
of the Macaulay matrix of the quadratic part of P in the lexicographic ordering. Then

m(m+1)

∈ Fm×
2 , the remaining part of the Macaulay matrix of the quadratic part of P isQ2 2

calculated (see Sect. 2.4.1). The public key consists of the public seed and Q2. The private
key is simply the seed that was used as input for the key generation algorithm. The details
of how the different objects are sampled from the SHAKE function are described in Sect. 2.9.

2.4.1 Finding the remaining coefficients of P

For each polynomial pk in the public map P there is a uniquely determined upper triangular
∈ Fn×nmatrix Pk 2 , such that x>Pkx is equal to the evaluation of the quadratic part of pk

6

at x. The matrix corresponding to the polynomial fk in the secret map F is then, up to the
addition of a skew-symmetric matrix, equal to � �� �� � � �

1v 0 Pk,1 Pk,2 1v −T
=

Pk,1 −Pk,1T + Pk,2 ,−T> 1m 0 Pk,3 0 1m −T>Pk,1 T>Pk,1T − T>Pk,2 + Pk,3

where we have split up the matrix Pk, into Pk,1 ∈ Fv
2
×v , Pk,2 ∈ Fv

2
×m and Pk,3 ∈ Fm

2
×m . The

terms of fk that are quadratic in the vinegar variables have to vanish, so

Pk,3 = −T>Pk,1T + T>Pk,2 ,

up to the addition of a skew-symmetric matrix. This formula completely determines the
upper triangular matrix Pk,3. The entries of the Pk,1 and Pk,2 are generated from the public
seed and the matrix T is known, so the matrices Pk,3 can easily be computed. The entries of
the matrices Pk,3 are then arranged in the Macaulay matrix Q2. A detailed implementation
of this procedure is shown in Alg. 3.

Algorithm findPk1

input: k — An integer between 1 and m.
Q1 — First part of Macaulay matrix of the quadratic part of P

output: Pk,1 — The v-by-v matrix representing the part of pk that is quadratic in
the vinegar variables.

1: Pk,1 ← 0v

2: column ← 1
3: for i from 1 to v do
4: for j from i to v do
5: Pk,1[i,j] ← Q1[k, column]
6: column ← column + 1 . move to the next term
7: end for
8: column ← column + m . Skip the terms xixv+1 up to xixv+m

9: end for
10: return Pk,1

Alg. 1: Algorithm for reading Pk,1 from Q1.

2.5 Signature Generation Algorithm

The signature generation algorithm first generates C, L, Q1 and T from the private seed
in the same way as the key generation algorithm. Then, it calculates h, the hash digest
of the message that will be signed, concatenated with a zero. Concatenating the message
with zero is done to make signatures generated in appended signature mode unrelated to
signatures generated in message recovery mode (see Sect. 2.7). Then, the algorithm produces

7

Algorithm findPk2

input: k — An integer between 1 and m.
Q1 — First part of Macaulay matrix of quadratic part of P

output: Pk,2 — The v-by-m matrix representing the part of pk that is bilinear in
the vinegar variables and the oil variables.

1: Pk,2 ← 0v×m

2: column ← 1
3: for i from 1 to v do
4: column ← column + v − i + 1 . Skip terms x2

i up to xixv

5: for j from 1 to m do
6: Pk,2[i,j] ← Q1[k, column]
7: column ← column + 1 . Move to the next term
8: end for
9: end for
10: return Pk,2

Alg. 2: Algorithm for reading Pk,2 from Q1.

Algorithm findQ2

input: Q1 — First part of Macaulay matrix of quadratic part of P
T — A v-by-m matrix

output: Q2 — The second part of Macaulay matrix for quadratic part of P

1: Q2 ← 0m×D2

2: for k from 1 to m do
3: Pk,1 ←findPk1(k, Q1)
4: Pk,2 ←findPk2(k, Q1)
5: Pk,3 ← −T>Pk,1T + T>Pk,2 . Compute Pk,3 up to skew-symmetric matrix
6: column ← 1
7: for i from 1 to m do . Read off Q2

8: Q2[k, column] ← Pk,3[i, i]
9: column ← column + 1
10: for j from i + 1 to m do
11: Q2[k, column] ← Pk,3[i, j] + Pk,3[j, i]
12: column ← column + 1
13: end for
14: end for
15: end for
16: return Q2

Alg. 3: Algorithm for determining Q2 from Q1 and T.

8

Algorithm KeyGen

input: private seed — seed to generate a key-pair

output: (public seed, Q2) — A public key
private seed — A corresponding private key

1: private sponge ← InitializeAndAbsorb(private seed)
2: public seed ← SqueezePublicSeed(private sponge)
3: T ← SqueezeT(private sponge)
4: public sponge ← InitializeAndAbsorb(public seed)
5: C, L, Q1 ← SqueezePublicMap (public sponge)
6: Q2 ← FindQ2(Q1, T)
7: return (public seed, Q2) and private seed

Alg. 4: The key generation algorithm

a signature in two steps. First, the special structure of F is exploited to produce a solution
s0 to the equation F(s0) = h. Then, the signature s is calculated as � �

1v −T 0 s = s .
0 1m

Solving F(s0) = h is done by repeatedly substituting pseudo-randomly generated values
into the vinegar variables and trying to solve the resulting linear system until a unique
solution is found. A unique solution is almost always found on the first try, the probability
of failing being roughly 2−r . For a particular assignment to the vinegar variables v ∈ F2

v
r ,

the augmented matrix for the linear system F((v||o)>) = h can be derived as in Alg. 5.
This algorithm relies on the fact that after fixing the vinegar variables to v, the map F is a
linear map with constant part ⎛ ⎞ � � v>P1,1v

v ⎝ ⎠C + L + · · · ,
0

v>Pm,1v

and a linear part with the matrix representation ⎛ ⎞ � � v>[(P1,1 + P>
1,1)T + P1,2]−T ⎝ ⎠L + · · · .

1m v>[(Pm,1 + P>
m,1)T + Pm,2]

Pseudocode for the signature generation algorithm is provided in Alg. 6.

2.6 Signature Verification Algorithm

First, the signature verification algorithm uses the public seed to generate C, L and Q1.
Together with Q2, which is included in the public key, this completely determines the public

9

Algorithm BuildAugmentedMatrix

input: C ∈ Fm
2r — The constant part of the public map P

L ∈ Fm
2r
×n — The linear part of P

v(v+1)
2Q1 ∈ Fm

2r
× +vm

— The first part of quadratic part of P
T ∈ Fv

2
×m — The matrix that determines the linear transformation T .

h ∈ Fm
2r — The hash digest to target.

v ∈ Fv
2r — An assignment to the vinegar variables.

output: LHS||RHS ∈ Fm
2r
×m+1 — The augmented matrix for F(v||o) = h

1: RHS ← h − C − Ls(v||0)> . Right hand side of linear system � �
−T

2: LHS ← L . Left hand side of linear system
1m

3: for k from 1 to m do
4: Pk,1 ← findPk1(k, Q1)
5: Pk,2 ← findPk2(k, Q1)
6: RHS[k] ← RHS[k] − v>Pk,1v . evaluation of terms of fk that are

quadratic in vinegar variables
7: Fk,2 ← −(Pk,1 + P>

k,1)T + Pk,2 . Terms of fk that are bilinear in the
vinegar and the oil variables

8: LHS[k] ← LHS[k] + vFk,2 . Insert row in the left hand side
9: end for
10: return LHS||RHS

Alg. 5: Builds the augmented matrix for the linear system P(v||o) = h after fixing the
vinegar variables.

10

Algorithm Sign

input: private seed — A private key
M — A message to sign

output: s — A signature for the message M

1: sponge ← InitializeAndAbsorb(private seed)
2: public seed ← SqueezePublicSeed(sponge)
3: T ← SqueezeT(sponge)
4: public sponge ← InitializeAndAbsorb(public seed)
5: C, L, Q1 ← SqueezePublicMap (public sponge)
6:

7:

hash sponge ←InitializeAndAbsorb(M ||0x00)
h ←SqueezeHashDigest(hash sponge) . Calculate hash digest

8: vinegar sponge ←InitializeAndAbsorb(M ||0x00||private seed) . Sponge
mining

for deter-
vinegar

variables
9: while No solution s0 to the system F(s0) = h is found do
10:

11:

12:

13:

14:

15:

16:

v ← SqueezeVinegar (vinegar sponge)
A ← BuildAugmentedMatrix (C, L, Q1, T, h, v)

. Build the augmented matrix for the linear system F(v||o) = h
GaussianElimination(A)
if F(v||o) = h has a unique solution o then

s0 ← (v||o)>

end if
17: end while � �

1v −T
18: s ← s0

0 1m

19: return s

Alg. 6: The signature generation algorithm

11

map P . To verify a signature s for a message M , the verification algorithm simply checks
whether P(s) is equal to the rm-bit long hash digest of the message M , appended with 0x00.
Pseudocode for this algorithm is provided in Alg. 9.

Algorithm EvaluatePublicMap

input: (public seed, Q2) — A public key
s — A candidate–signature

output: The evaluation of P at s

1: sponge ← InitializeAndAbsorb(public seed)
2: C, L, Q1 ← SqueezePublicMap (sponge)
3: Q ← Q1||Q2

4: e ← C + Ls . Evaluate constant and linear part of P at s
5: column ← 1
6: for i from 1 to n do . Evaluate quadratic parts of P at s
7: for j from i to n do
8: for k from 1 to m do
9: e[k] ← e[k] + Q[k, column]s[i]s[j] . Evaluate terms in xixj

10: end for
11: column ← column + 1
12: end for
13: end for
14: return e

Alg. 7: The algorithm for evaluating the public map at a point

2.7 Signatures with message recovery

It is possible to use the signature scheme in a message recovery mode. Whether or not
message recovery is used does not affect the signature generation algorithm. The same
key pair can be used to sign messages in message recovery mode and in appended signature
mode, a signature for M in appended signature mode is unrelated to a signature for the same
message in message recovery mode, because a different byte is appended to the message
in each mode. The signing algorithm in message recovery mode differs from the signing
algorithm in appended signature mode (Alg. 6) because the message is padded with 0x01
instead of 0x00 in lines 6 and 8. Furthermore, the procedure to determine the target of the
public map is altered to make message recovery possible. In the appended signature mode,
the target was determined by interpreting the r

8 m byte long output of a SHAKE function
as a vector of m elements of F2r . In message recovery mode, the target is obtained by
interpreting

SHAKE(M ||0x01, l1)||SHAKE(SHAKE(M ||0x01, l1), l2) ⊕ M 0

as a vector of m elements in F2r , where l1 is equal to 256 if SHAKE128 is used, or equal to
r512 if SHAKE265 is used, and l2 is equal to
8 m − l1, and M 0 is formed by taking the last

12

Algorithm Verify

input: (public seed, Q2) — A public key
M — A message
s — A candidate–signature

output: Accept if s is a valid signature for M , Reject otherwise

1:

2:

sponge ←InitializeAndAbsorb(M ||0x00)
h ←SqueezeHashDigest(sponge)

3: e ←EvaluatePublicMap((public seed, Q2), s)
4: if e = h then . Check if P(s) = h
5: return Accept
6: else
7: return Reject
8: end if

Alg. 8: The signature verification algorithm in appended signature mode

l2 − 1 bytes of the message M , appending the byte 0x01 from the right, and padding with
zeros in the case that the message M is shorter that l2 − 1 bytes.

The signature verification algorithm evaluates the public map P at the signature s, and
interprets the output as a sequence first bytes of l1 bytes, concatenated with a sequence
last bytes of l2 bytes. The signature verification algorithm recovers up to l2 − 1 bytes of the
message M , by calculating

M 0 = last bytes ⊕ SHAKE(first bytes, l2)

and removing the padding. If the computed value of M 0 does not end in a 0x01, followed by
a (possibly empty) sequence of 0x00s, the signature is rejected. Otherwise, the signature is
accepted if t1 is equal to SHAKE(M ||0x01, l1).

2.8 Encoding of objects

2.8.1 Encoding of finite field elements

The finite fields that are used by the various instantiations of the LUOV signature scheme
are F28 , F216 , F248 , F264 and F280 .

Field of size 28 . Field elements in the field F28 are represented as binary polynomials
modulo the irreducible polynomial f8 = x8 + x4 + x3 + x + 1. This choice is arbitrary and
does not affect the security of the scheme. An element of F2[x]/(f8) is encoded as the byte
obtained by concatenating its coefficients, where the least significant bits correspond to the
lowest degree terms.

13

Algorithm Verify

input: (public seed, Q2) — A public key
M — The first part of a message (possibly the empty string)
s — A candidate–signature

output: The full message M if s is a valid signature, Reject otherwise

1: e ←EvaluatePublicMap((public seed, Q2), s)
2: first bytes, last bytes ←Enc(e) . Split e into l1 and l2 bytes
3: padded message ← last bytes⊕SHAKE(first bytes, l2)
4: if padded message is not properly padded then
5: return Reject . Reject if padded message doesn’t end in 0x01 0x00 · · · 0x00
6: end if
7: M ← M ||RemovePadding(padded message)
8: hash digest ←SHAKE(M ||0x01, l1)
9: if first bytes = hash digest then
10: return M
11: else
12: return Reject
13: end if

Alg. 9: The signature verification algorithm in message recovery mode

Example.

Enc(1) = 0x01

Enc(x 6) = 0x40

Enc(x + x 5 + x 7) = 0xa2

Field of size 216 . Field elements in the field F216 are represented as binary polynomials
16 + x12 + xmodulo the irreducible polynomial f16 = x 3 + x + 1. This choice is arbitrary

and does not affect the security of the scheme. An element of F2[x]/(f16) is encoded as the
two bytes obtained by concatenating its coefficients. The first byte represents the terms of
degree 0 op to 7, the second byte represents the terms of degree 8 up to 15.

Example.

Enc(1) = 0x01 0x00

Enc(x 8 + x 9) = 0x00 0x03

Enc(x + x 5 + x 7 + x 15) = 0xa2 0x80

Larger fields. The larger fields used by the scheme are seen as simple field extensions
of F216 . The irreducible polynomials of these field extensions are given in Table 1. If F is

14

Table 1: Irreducible polynomials used for representing finite fields.

Finite Field Irreducible polynomial in F2[X, x]/(f16)
F248 X3 + X + 1
F264 X4 + X2 + xX + 1
F280 X5 + X2 + 1

such an irreducible polynomial of degree d, an element of F2[X, x]/(f16, F) is encoded by the
2d bytes obtained by concatenating the encodings of its coefficients in order of increasing
degrees, i.e.

Enc(c0 + c1X + · · · + cd−1X
d−1) = Enc(c0) · · · Enc(cd−1)

2.8.2 Encoding of private key

A private key for the LUOV signature scheme is a sequence of 256 random bits (used to seed
a Keccak1600 Sponge) and is simply encoded as a sequence of 32 bytes.

2.8.3 Encoding of public key

A public key of the LUOV signature scheme consists of a sequence of 32 bytes (which are
used to seed a Keccak Sponge) and an m-by-m(m + 1)/2 matrix with binary entries. The
matrix is encoded by concatenating the columns and padding the result with zero bits to get
a sequence of bits of length divisible by 8. Then, the sequence is interpreted as a sequence
of bytes, where the first bits have the least significant values. The encoding of a public keys

2(m+1) 1is 32 + dm
2 8 e bytes large.

Example. For a parameter set with m = 3, the public key could contain the matrix ⎛ ⎞
010111 ⎝ ⎠Q2 = 111001 .
000101

Concatenating its columns gives 010110010101100111, which results in the 3 bytes
(01011001) (01011001) (11000000), so

Enc(0x36 · · · 0x5d, Q2) = 0x36 · · · 0x5d 0x9a 0x9a 0x03 .| {z } | {z }
32-byte Public seed T

2.8.4 Encoding of signature

A signature of the UOV signature scheme consists of a vector s ∈ Fn
2r of n = v + m field

elements. The encoding of the signature consists of the concatenation of the encodings of

15

these n field elements. The encoding of a signature is nr bytes large. (r is always divisible
8

by 8)

Enc(s) = Enc(s[0])Enc(s[1]) · · · Enc(s[n − 1])

2.9 Sampling objects with the SHAKE function

The LUOV signature scheme uses the SHAKE extendable-output functions to provide cryp-
tographically secure pseudorandom bit-streams. First, a seed is fed into the Keccak1600
sponge construction. Then output bytes are squeezed from the sponge and interpreted as
some mathematical object. This approach is used to generate the following objects:

• public seed — The public seed used to generate a large part of the public map P .

• T — The matrix that determines the linear transformation that hides the UOV struc-
ture of the secret map F .

• h — The hash digest of a message.

• v — An assignment to the vinegar variables.

• C, L, Q1 — A large part of the public map P .

Before sampling objects from a Keccak sponge, the sponge has to be initialized to the all-
zero state and used to absorb a seed. In our pseudocode description of the LUOV algorithm
we refer to this operation as InitializeAndAbsorb, which receives a sequence of bytes as
input, and outputs a Keccak sponge object that was initialized and has absorbed the input
sequence. The sponge can then provide an arbitrarily long sequence of pseudorandom bytes
with the Squeeze operation, which takes a sponge object and an integer b as input, outputs a
sequence of b bytes and updates the state of the sponge, such that it can be used to squeeze
more bytes if needed.

2.9.1 Squeezing public seed

A public seed, represented by 32 bytes, is simply obtained from a sponge by squeezing out
the 32 bytes. This operation is called SqueezePublicSeed.

2.9.2 Squeezing T

The matrix T ∈ Fv
2
×m is squeezed out of a sponge by squeezing dm ev bytes from the sponge,

8
and interpreting the bytes (i−1)dm e+1 up to idm e as the i-th row of T. If m is not divisible

8 8
by 8, the most significant bits of the last byte (i.e. idm e-th byte in the sequence) are ignored.

8
This operation is referred to as SqueezeT.

16

Example. Suppose m = 3, v = 4 and the following 4 bytes are squeezed from the Keccak
sponge :

0x49 0xa2 0x86 0x4d .

Then, the matrix T ∈ Fv
2
×m is equal to ⎞⎛ ⎜⎜⎝

001
010
110
101

⎟⎟⎠ .

2.9.3 Squeezing hash digest and vinegar variables

The hash digest and the assignment to the vinegar variables are vectors over F2r of length
n = m + v and length v respectively. They are obtained by squeezing n

8
r and v

8
r bytes from

the sponge and interpreting these as the encoding of n, respectively v elements of F2r . These
operations are referred to as SqueezeHashDigest and SqueezeVinegar.

2.9.4 Squeezing most part of the public map

o(o+1)
2 +mo)

The matrices C ∈ Fm×1 , L ∈ Fm×n and Q1 ∈ Fm×(
are squeezed column by column 2 2 2

from the Keccak sponge. Each column is obtained by squeezing dm e bytes from the sponge,
8

and interpreting these as m-bit long columns, ignoring the most significant bits of the last
byte in the case that m is not divisible by 8. The process of sampling columns of coefficients
of P is identical to the process of sampling rows of T.

o(o+1)In total, 1+n+
2 +mo columns are sampled from the sponge. The first column represents

C, the next n columns represent L, and the remaining o(o
2
+1) +mo columns represent Q1. The

entire operation is called SqueezePublicMap, it takes a sponge object as input and returns
the matrices C, L and Q1.

3 List of parameter sets (part of 2.B.1)

We define two sets of parameter choices. The first set aims to provide small signatures,
which is suitable for applications where many signatures are communicated. The second set
of parameter choices aims to minimize the combined cost of a signature and a public key
and is more suitable when the signatures and the public key are both communicated, such
as a chain of signatures anchored to a root certificate authority.

17

Table 2: Different parameter choices for the LUOV signature scheme. The first 3 choices
provide small signatures, the last three choices give small public keys at the cost of larger
signatures.

claimed
security
level r m v SHAKE |sig| |pk| |sk|

message
recovery

(optional)

LUOV-8-63-256
LUOV-8-90-351
LUOV-8-117-404

lvl 2
lvl 4
lvl 5

8
8
8

63
90
117

256
351
404

128
256
256

319 B
441 B
521 B

15.5 KB
45.0 KB
98.6 KB

32B
32B
32B

30 B
25 B
52 B

LUOV-48-49-242
LUOV-64-68-330
LUOV-80-86-399

lvl 2
lvl 4
lvl 5

48
64
80

49
68
86

242
330
399

128
256
256

1.7 KB
3.1 KB
4.7 KB

7.3 KB
19.5 KB
39.3 KB

32B
32B
32B

261 B
479 B
795 B

4 Detailed performance analysis (2.B.2)

4.1 Description of platform

The following measurements were collected using supercop-20171020 running on a com-

puter named bas. The CPU on bas is an Intel R
TM

i5-7500T running at 3.3 GHz. bas Core
has 7.5GB of RAM and runs CentOS Linux release 7.4.1708. Benchmarks used crypto_sign,
which ran on one core of the CPU. The gcc version 4.8.5 20150623 (Red Hat 4.8.5-16) was
used.

4.2 Time

The median number of cycles consumed by the different algorithms are reported in Table 3.
The measurements are made in appended signature mode, but there is no noticeable differ-
ence between the cycle count in appended signature mode and in message recovery mode.
A more optimized implementation that uses vectorization instructions is likely to reduce the
cycle counts significantly.

4.3 Space

For all parameter choices, the secret key consists of a 32-byte seed.
2(m+1)The public key consists of a 4 byte seed, and the remaining m

2 coefficients of the public
2(m+1)map P . This makes a total of 4 + dm
16 e bytes. If message recovery is used, the messages

can be shortened by roughly 15% of the signature size.

18

Table 3: Median cycle counts of optimized implementation. Measured with
supercop20171020. The SUPERCOP output files with the compiler flags that were
used and the exact cycle counts for various message sizes are included in the Support-
ing Documentation folder.

claimed Key generation Signing Verification
security level (million cycles) (million cycles) (million cycles)

LUOV-8-63-256 lvl 2 21.0 5.87 4.93
LUOV-8-90-351 lvl 4 81.8 21.6 17.3
LUOV-8-117-404 lvl 5 146 36.5 29.7

LUOV-48-49-242 lvl 2 14.8 34.1 23.6
LUOV-64-68-330 lvl 4 50.8 111 66.1
LUOV-80-86-399 lvl 5 96.8 216 124

r(v+m)A signature consists of v + m elements of the field F2r , good for a total of
8 bytes.

The concrete sizes for the proposed parameter choices are displayed in Table 2.

When implemented properly, the signing and verification algorithms require very little RAM
memory. The RAM usage of the signing algorithm is dominated by storing the augmented
matrix for the linear system after fixing the vinegar variables. This requires storing m(m+1)
elements of F2r . For the LUOV-8-63-256 parameter set this is 4032 bytes. Besides storing
the public key and a signature, the memory requirements of the verification algorithm is
dominated by the state of the Keccak sponge (i.e. 200 bytes), or storing the evaluation of
the public map P , (i.e. rm/8 bytes).

4.4 How parameters affect performance

Table 3 shows that key generation is faster for the parameter sets with large extension fields.
This is so because key generation benefits from the smaller polynomial systems, without
paying the price of more complex field arithmetic, since key generation works in F2.

In contrast, in our implementation of the signing and verification algorithms, the smaller
size of the polynomial systems does not make up for the increased complexity of the field
arithmetic. Therefore, signing and verification is faster for the parameter sets with smaller
field extensions.

The size of the public key is only impacted by the parameter m, and scales as O(m3),
therefore to keep the public key small m should not be too large. By increasing r, the degree
of the field extension F2 ⊂ F2r , the required value of m to achieve a fixed security level
decreases. However, increasing r also increases the size of the signatures. Therefore, it is
possible to make a trade-off between small public keys (i.e. large r) or small signatures (i.e.
small r). We propose two sets of parameter choices, one aiming at small signatures, the
other aiming at small public keys. By varying the parameter r it is possible to interpolate

19

between these parameter sets.

Example. One might want a signature scheme that attains security level 2 with signatures
as small as possible, subject to the condition that the public key is smaller than 10KB. The
best option from the proposed parameter sets would be LUOV-48-49-242, having signatures
of 1.7KB and public keys of 7.3KB. We can do better by adjusting the parameter r. For the
choice r = 28, the python script that is included in the submission proposes the parameters
m = 54, v = 247, resulting in signatures of 1.0KB and public keys of just under 10KB.

4.5 Optimizations

4.5.1 Bit slicing

The i-th row of Q2 is calculated using only the data T and the i-th row of Q1 and this
calculation is exacly the same for each row. This is an ideal situation for using bit slicing. The
bits in the columns of Q1 and Q2 are packed into words and the computation is performed
for all rows simultaneously. This greatly speeds up the key generation algorithm. This
optimization is included in the reference implementation, because it does not affect the
legibility of the code.

4.5.2 Precomputing P and F

With each verification of a signature a lot of coefficients of the public map P have to be
generated with the SHAKE function. According to the gprof profiler, this computation is
responsible for roughly 75% of the cycle usage of the verification algorithm in our optimized
implementation of the first parameter set. If enough memory is available (e.g. roughly 380
KB for the first parameter set) the coefficients of P can be precomputed and stored to
speed up the verification of signatures. Similarly, the coefficients of the secret map F can
be precomputed to speed up the signing algorithm. This optimization was not used in the
reference or optimized implementation.

5 Expected strength (2.B.4)

The LUOV signature system is designed for EUF-CMA security. The parameters of the
LUOV scheme are chosen such that lower bounds to the bit complexity of all the known
attacks exceed the required complexity level by a margin of 10 percent to account for possible
future improvements in the attacks. The process of choosing the parameters is implemented
in a python script which is included in the submission package. The designer specifies the
desired security level and chooses the size of the field extension, then the script determines
the parameters m and v to reach the required security level. Larger field extensions lead to
smaller public keys at the cost of larger signatures. Table 4 summarizes the lower bounds

20

to the complexity of the various attacks. An overview of the known attacks and what the
lower bounds to their complexities are is given in section 6.

To reach security level 2 i.e. “Any attack that breaks the relevant security definition must
require computational resources comparable to or greater than those required for collision
search on a 256-bit hash function (e.g. SHA256/ SHA3-256)” we assure that all known
attacks (except hash collision attacks) require at least 2160 operations. This number was
determined by considering the estimated number of gates required to find a hash collision
in SHA3-256 (i.e. 2146), and increasing the exponent by a margin of 10 percent to allow for
future improvements of the attacks. Similarly, to reach security level 4, we require that all
known attacks require at least 2231 = 2210×1.1 operations.

To reach security level 5, i.e. “any attack that breaks the relevant security definition must
require computational resources comparable to or greater than those required for key search
on a block cipher with a 256-bit key (e.g. AES 256)” we require that all classical attacks
require at least 2299 operations, and all quantum attacks require at least 2257 operations.
These numbers are obtained by considering the estimated number of classical gates (i.e. 2272)
or quantum gates (i.e. 2234) and increasing their exponent by 10 percent to allow for future
improvements of the attacks. In all attack scenarios the depth of a quantum computation is
assumed to be bounded by 264 quantum gates.

21

Table 4: Summary of attacks against our parameters. The table reports log2 of a lower
bound to the number of operations required for each attack. Quantum computations are
bounded to a depth of 264 field operations.

(r, m, v) security
Direct

optimal k
forgery
complexity

UOV
classical

attack
quantum

Reconciliation
classical

attack
quantum

(8, 63, 256)
(8, 90, 351)
(8, 117, 404)

lvl 2
lvl 4
lvl 5

2
3
4

161
231
300

225
295
322

161
231
258

192
263
303

192
287
340

(48, 49, 242)
(64, 68, 330)
(80, 86, 399)

lvl 2
lvl 4
lvl 5

1
1
1

165
235
300

224
295
347

160
231
283

181
247
299

178
266
335

6 Analysis of known attacks (2.B.5)

The signature scheme is an adaptation of Oil and Vinegar [15] scheme that was proposed
by Patarin in 1997. The Oil and Vinegar scheme is one of the best studied multivariate
signature schemes which has, with the right parameter choices, withstood all cryptanalysis
since 1997.

All the adaptations that LOUV makes to the Unbalanced Oil and Vinegar scheme (see
Sect. 2.2) can be shown not to impact the security of the scheme (assuming the output of
the Keccak1600 sponge construction is indistinguishable from random bits), an exception
being the adaptation of lifting a public key of UOV over F2 to a large extension field. It
requires some argument to show that a direct signature forgery against the modified scheme
is as difficult as a direct signature forgery against UOV over the extension field. However,
since the key generation algorithm is not changed by this adaptation, it is clear that a key
recovery attack against LUOV is equivalent to a key recovery attack against UOV over F2.

We now give an overview of known attacks. The overview is based on the overview given
in [5]; We have adapted the example to match one of the proposed parameter sets.

6.1 Direct attack

This attack tries to forge a signature for a certain message M by trying to find a solution
s ∈ Fn

2r for the system F(s) = H(M). This is an instance of the MQ (Multivariate Quadratic)
problem.

→ Fm

x ∈ Fn
q that satisfies P(x) = 0.

MQ Problem. Given a quadratic polynomial map P : Fn
q q over a finite field Fq, find

22

Thomae and Wolf showed that finding a solution for an underdetermined system with n =
αm can be reduced to finding a solution of a determined system with only m + 1 − bαc
equations [17]. This means that as a system becomes more underdetermined it becomes
easier to solve.

For all but very small values of q, (e.g. q = 2, q = 3), the best known classical algorithms
to solve the MQ-problem for generic determined systems over finite fields use a hybrid
approach [3, 4] that combines exhaustive search with Gröbner basis computations. In this
approach k variables are fixed to random values and the remaining n − k variables are found
with a Gröbner basis algorithm such as F4, F5 or XL. If no assignment to the remaining
n − k variables exists that solves the system, the procedure starts again with a different
guess for the first k variables. We require on average roughly qk Gröbner basis computations
until a solution is found. As a result, the optimal value of k decreases as q increases. The
complexity of computing a Gröbner basis for a system of polynomials depends critically on
the degree of regularity (dreg) of that system. We refer to Bardet [1] for a precise definition
of the degree of regularity.

The most costly part of the F5 algorithm is doing Gaussian elimination on a large matrix � �
n+dreg with roughly rows and columns. The complexity of the F5 algorithm is thus given
dreg

by �� �ω�
n + dreg

CF5 (n, dreg) = O ,
dreg

where 2 ≤ ω < 3 is the constant in the complexity of doing Gaussian reduction on the
matrices constructed in the Gröbner basis computation. These matrices are structured
and sparse, which can be exploited to make Gaussian elimination more efficient [9]. The
complexity of the hybrid approach is � � �ω�

k n − k + dreg(k)
CHybridF5(n,dreg ,k) = O q , (1)

dreg(k)

where dreg(k) stand for the degree of regularity of the system after fixing the values of k
variables.

Determining the degree of regularity for a specific polynomial system is difficult, but for a
certain class of systems, called semi-regular systems, it is known that the degree of regularity
can be deduced from the number m of equations and the number n of variables [1, 8]. In
particular, for quadratic semi-regular systems the degree of regularity is the degree of the
first term in the power series of

(1 − x2)m

Sm,n(x) =
(1 − x)n

that has a non-positive coefficient. This gives a practical method to calculate the degree of
regularity of any semi-regular system. Empirically, polynomial systems that are randomly
chosen have a very large probability of being semi-regular and it is conjectured that most
systems are semi-regular systems. For the definition and the theory of semi-regular systems
we refer to chapter 3 of the PhD thesis of Bardet [1].

23

In a direct attack against the LUOV scheme all the coefficients of the system that needs to
be solved lie in F2, except those of the constant terms, because those coefficients come from
the message digest. We claim that this property does not significantly reduce the hardness
of finding solutions relative to the case where the coefficients are generic elements of F2r .
By definition [1], the degree of regularity of a polynomial system does only depend on its
quadratic part, and it is apparent that lifting a polynomial system to a field extension does
not affect its degree of regularity. Therefore, the degree of regularity of a LUOV public key
follows the same distribution of a UOV public key over the field F2, even after fixing a number
of variables. It has been observed by Faugère and Perret [10] that polynomial systems that
result from fixing ≈ v variables in a UOV system behave like semi-regular systems, whose
degree of regularity does not depend on q. Therefore, the degree of regularity of a LUOV
public polynomial system is distributed identically to that of a UOV public polynomial
system, independently of the size q of the finite field that is used.

Since the degree of regularity, in combination with the number of variables, determines
the complexity of a Gröbner basis computation (measured in number of field operations),
a Gröbner basis computation on the LUOV polynomial system is not significantly more
efficient than a Gröbner basis computation against regular UOV with the same parameters.
This argument is confirmed by the experimental data in Table 5. There we see that a direct
attack is slightly faster against the modified scheme than against the original UOV scheme,
but only by a small constant factor. Even though the Gröbner basis is computed over F2r ,
the largest part of the arithmetic only involves the field elements 0 and 1, so the arithmetic
is faster than with generic elements of F2r . This is where the difference observed in Table 5
comes from. If we do the same experiment with a smaller extension field such as F28 there
is no observed difference between the running time of a direct attack against a regular UOV
scheme and our modified scheme.

Remark. In a direct attack one fixes ≈ v variables randomly to make the system a slightly
overdetermined system. In our experiments we have fixed these variables to values in F2 to
make sure that we do not introduce linear terms with coefficients in F2r instead of F2 in the
case of the modified UOV scheme.

Table 5: Running time of a direct attack against the regular UOV scheme over F264 and the
modified UOV scheme, with the MAGMA v2.22-10 implementation of the F4 algorithm. We
did not implement the method of Thomae and Wolf [17].

(m, v) Regular UOV (s) Lifted UOV (s) difference
(7,35) 0.43 0.21 -52%
(8,40) 1.56 0.76 -51%
(9,45) 7.00 3.21 -54%
(10,50) 33.50 17.44 -48%
(11,55) 132.88 76.60 -42%
(12,60) 828.31 588.33 -29%

To obtain a lower bound to the complexity of a Gröbner basis computation we assume that
the parameter ω in the complexity of Gaussian elimination on the matrices constructed

24

in the Gröbner basis algorithm is equal to 2 and that the constant factor hidden by the
big O notation is equal to 1. That is, in Eqn. (1) we put ω = 2 and we drop the big O
notation to get a concrete lower bound to the number of bit operations of a hybrid attack.
Even though this is a generous lower bound, we require that this lower bound exceeds the
required bit complexity by 10 percent when choosing parameters. This is done to allow for
future improvements in algorithms that find solutions to polynomial equations.

Example. We will estimate the complexity of a direct attack against LUOV with the param-
eter set (r = 8,m = 63, v = 256); this set is proposed as a set that achieves security level 2.
Using the method of Thomae and Wolf. we can reduce finding a solution to this underdeter-
mined system to finding a solution of a determined system with 63+1−b(63+256)/63c = 59
equations. We assume this system, and the systems that are derived by fixing a number of
variables, to be semi-regular. If we fix k extra variables the degree of regularity is equal to
the degree of the first term in the power series of

2)59(1 − x
S59,59−k(x) =

(1 − x)59−k

which has a non-positive coefficient. For k = 0 we have S59,59(x) = (1 + x)59, so the degree
of regularity is 60. For k = 1 we have

3 30 31) ,S59,58(x) = 1 + 58x + 1652x + · · · + 3814986502092304x 29 + 0x + O(x

where all the omitted terms have positive coefficients, so the degree of regularity is 30. We
can now use (1) to obtain a lower bound to the complexity of the hybrid approach. For k
equal to 0 and 1 this is equal to �

59 + 60
�2

≈ 2230.4 and 28

�
59 − 1 + 30

�2

≈ 2164.0

60 30

respectively. Repeating this calculation for higher values of k we eventually see that the
optimal value of k is 2, the corresponding degree of regularity is 27 and the complexity of the
direct attack is estimated as 2161.3 . Thus, this lower bound exceeds 2146×1.1, as required.

In theory, a quantum attacker could use Grover search instead of the brute force part of the
hybrid approach to speed up a direct attack. The complexity of this attack would be � � �ω�

(k)k/2 n − k + dreg
CHybridF5(n,dreg ,k) = O q , (2)

dreg(k)

k k/2where the only difference with (1) is that the factor q is replaced by q . However, this
attack is not possible if the depth of a quantum computation is limited to, say, 264 operations.
For all our parameter choices and all practical values of k, the complexity of even a single
Gröbner basis computation is beyond 264, and the Grover algorithm should do a large number
of these computations sequentially in order to enjoy a noticeable speedup over the classical
brute force search.

25

6.2 Key recovery attacks.

Since the key pair generation algorithm used by the LUOV scheme is identical to that of the
original UOV scheme over the field F2 it is clear that a key recovery attack against the Lifted
UOV scheme is equivalent to a key recovery attack against a regular UOV scheme over F2.
Key recovery attacks against UOV have been investigated ever since the invention of the
Oil and Vinegar scheme in 1997 [15], so it is well understood which attacks are possible and
what the complexities of these attacks are. It is also clear that we can make key recovery
attacks harder by increasing the number of vinegar variables.

6.2.1 UOV attack

Patarin [15] suggested in the original version of the Oil and Vinegar scheme to choose the
same number of vinegar and oil variables, or v = m. This choice was cryptanalyzed by
Kipnis and Shamir [14]: they showed that an attacker can find the inverse image of the oil
variables under the map T . This is enough information to find an equivalent secret key, so
this breaks the scheme. This approach generalizes for the case v > m; the complexity then
increases to O(qv−mn4) [13] and is thus exponential in v − m. Since a UOV attack on the
Lifted UOV scheme is equivalent to a UOV attack over F2, we have that the complexity of
a UOV attack against the Lifted UOV scheme is approximately 2v−m−1 ·n4 binary operations.

The generalized UOV attack chooses a random linear combination of the matrices that
represent the quadratic parts of the polynomials in the public system and computes the
minimal eigenspaces of the matrix. With probability 2m−v+1 this computation yields a
vector in the oil subspace. This means that a quantum attacker can use the Grover search
algorithm [11] to look for a random linear combination that will yield a vector in the oil
subspace. Ignoring issues of ‘Groverizing’ the algorithm such as making the computation
reversible and the probabilistic nature of the eigenspace computation, the complexity of a

v−m−1
2quantum attack becomes 2 n4 . If we limit the depth of a quantum computation to

2depth, and we ignore the depth of the eigenspace-finding subroutine, the complexity of an
v−m−1 4 , 2v−m−1 4/2depth).2attack is at least max(2 n n

6.2.2 Reconciliation attack

The reconciliation attack against the lifted UOV scheme is equivalent to the UOV reconcilia-
tion attack against UOV over the field F2. A lower bound on the complexity of this attack is
given by the complexity of solving a quadratic system of v variables and v equations over F2,
but the problem is expected to be harder [5]. There exists specialized algorithms for solving
polynomial systems over F2 that are more efficient than the generic hybrid approach. One
method is a smart exhaustive search, which requires approximately log2(n)2n+2 bit opera-
tions [6]. The BooleanSolve algorithm [2] combines an exhaustive search with sparse linear
algebra to achieve a complexity of O(20.792n). However the method only becomes faster than

26

the exhaustive search method when n > 200. Recently, Joux and Vitse proposed a new
algorithm that was able to solve a Boolean system of 146 quadratic equations in 73 vari-
ables in one day [12]. The algorithm beats the exhaustive search algorithm, even for small
systems. The complexity of this algorithm is still under investigation, but a rough estimate
based on the reported experiments suggests that the number of operations scales like 2αn

with α between 0.8 and 0.85 and with a constant factor between 27 and 210 . For choosing
the parameters of the LUOV signature scheme, we have assumed that finding a solution
to a determined system of n quadratic Boolean equations requires 20.75n operations in F2,
even though this is likely to seriously overestimate the capabilities of the state of the art
algorithms.

Due to the limit on the circuit depth of quantum computations, the Gröbner based methods
of solving a Boolean system cannot be ’Groverised’. In contrast, quantum attackers can still
use a brute force Grover search to solve systems over F2 with 2n/2 sequential evaluations of
the polynomials in the system. However, if the depth of a quantum computation is restricted
to 2depth evaluations of the polynomials, the required number of polynomial evaluations in a
Grover search is at least max(2n−depth, 2n/2). Asymptotically this is worse than the classical
Gröbner basis based methods, which is why the reported hardness of a quantum reconciliation
attack in Table 6 is higher than the hardness of the classical reconciliation attack. One would
expect quantum attacks to be at least as efficient as classical attacks, because a quantum
computer can simulate a classical computer. In our analysis this is not the case, because
the depth of a quantum computation is assumed to be limited, which is not the case for a
classical computation.

6.3 Hash collision attack

As is the case for all hash-and-sign digital signature algorithms, a hash collision can be
exploited to break the EUF-CMA security definition. The SHAKE extendable output func-
tions are used to generate a hash digest of the required length. The parameter sets claiming
a security level 2 use SHAKE-128, those claiming security level 4 or 5 use SHAKE-256. In
each proposed parameter set the output length (i.e. rm bits) is large enough to reach the
required hardness of finding collisions. Therefore, a hash collision attack does not threaten
the claimed security levels.

7 Advantages and limitations (2.B.6)

7.1 Advantages

• Small signatures. Like many other MQ signature schemes, the signatures of the
LUOV scheme are very small. For security level 2 the signatures are only 319 bytes
long.

27

• A wide security margin Instead of trying to estimate the complexity of existing
attacks and choosing the parameters such that these estimates match the required
security level we have formulated conservative lower bounds to plausible attacks. For
example, we have assumed that a classical attacker can solve a determined system of n
Boolean quadratic polynomials with only 20.75n bit operations, whereas the best known
algorithms seem to require 20.80n+7 operations at best. On top of our conservative
lower bounds, we require the log2 of this lower bound to exceed the log2 of the required
number of operations by 10% (see Sect. 5).

• Simple arithmetic. The scheme only uses SHA-3 and simple arithmetic operations
over F2 or over an extension field. Arithmetic over F2 translates to the operations AND
and XOR, while the arithmetic over an extension field can be implemented with XOR,
additions and table lookups in small tables. This makes the algorithm very suitable
for hardware implementations.

• Message recovery. It is possible to use the LUOV scheme in a message recovery
mode. In this mode, a part of the message can be recovered from the signature and
does not need to be communicated. This can reduce the size of a message-signature
pair by up to 15 percent of the signature size.

• Deterministic signatures. The generation of a signature does not require any ex-
ternal source of randomness. This makes a secure implementation easier and excludes
any attack that might exploit the usage of a poor source of randomness.

• Stateless. The signing algorithm does not need to maintain a state between sign-
ing sessions and can sign an unbounded number of messages. This makes a secure
implementation of the algorithm easier.

• Flexible. The parameters of the signature are easily adjustable to reach a specific
security level. It is also possible to choose parameters to make a trade-off between
small signatures and small public keys.

• Diversity. Multivariate cryptography relies on a different hard problem than other
branches such as lattice cryptography or hash-based cryptography. It is prudent to have
cryptographic algorithms that rely on a diverse set of hard problems such that if one
hard problem is broken and wipes out a branch of cryptography, there are alternative
algorithms available.

7.2 Limitations

• Public key size. Even though the public key size of the LUOV scheme is much
smaller than the public key size of other MQ signature schemes, it remains larger than
the public key size of some other post quantum signature schemes. It is possible to
mitigate this problem by making a trade-off for a smaller public key at the cost of
larger signatures.

28

• No encryption or KEM. The LUOV scheme is a digital signature scheme. This
submission does not include an encryption scheme or a key encapsulation mechanism.

References

´ [1] Magali Bardet. Etude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. PhD thesis, Université Pierre et Marie Curie-Paris VI,
2004.

[2] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer. On
the complexity of solving quadratic Boolean systems. Journal of Complexity, 29(1):53–
75, 2013.

[3] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach for solving
multivariate systems over finite fields. Journal of Mathematical Cryptology, 3(3):177–
197, 2009.

[4] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Solving polynomial systems
over finite fields: Improved analysis of the hybrid approach. In Proceedings of the 37th
International Symposium on Symbolic and Algebraic Computation, pages 67–74. ACM,
2012.

[5] Ward Beullens and Bart Preneel. Field lifting for smaller UOV public keys. In Progress
in Cryptology–INDOCRYPT 2017: 18th International Conference on Cryptology in In-
dia, Chennai, India, December 10-13, 2016, Proceedings 18. Springer, 2017.

[6] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Nieder-
hagen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive search for polynomial systems
in F2. In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 203–218. Springer, 2010.

[7] Peter Czypek. Implementing Multivariate Quadratic Public Key Signature Schemes on
Embedded Devices. PhD thesis, Diploma Thesis, Chair for Embedded Security, Ruhr-
Universität Bochum, 2012.

[8] Claus Diem. The XL-algorithm and a conjecture from commutative algebra. In Asi-
acrypt, volume 4, pages 338–353. Springer, 2004.

[9] Jean-Charles Faugère and Sylvain Lachartre. Parallel Gaussian elimination for Gröbner
bases computations in finite fields. In Proceedings of the 4th International Workshop on
Parallel and Symbolic Computation, pages 89–97. ACM, 2010.

[10] Jean-Charles Faugère and Ludovic Perret. On the security of UOV. IACR Cryptology
ePrint Archive, 2009:483, 2009.

29

[11] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219.
ACM, 1996.

[12] Antoine Joux and Vanessa Vitse. A crossbred algorithm for solving Boolean polynomial
systems. IACR Cryptology ePrint Archive, 2017:372, 2017.

[13] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar signa-
ture schemes. In International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 206–222. Springer, 1999.

[14] Aviad Kipnis and Adi Shamir. Cryptanalysis of the Oil and Vinegar signature scheme.
In Annual International Cryptology Conference, pages 257–266. Springer, 1998.

[15] Jacques Patarin. The Oil and Vinegar signature scheme. In Dagstuhl Workshop on
Cryptography1997, 1997.

[16] Albrecht Petzoldt. Selecting and Reducing Key Sizes for Multivariate Cryptography.
PhD thesis, TU Darmstadt, July 2013. Referenten: Professor Dr. Johannes Buchmann,
Professor Jintai Ding, Ph.D.

[17] Enrico Thomae and Christopher Wolf. Solving underdetermined systems of multivariate
quadratic equations revisited. In International Workshop on Public Key Cryptography,
pages 156–171. Springer, 2012.

[18] Christopher Wolf and Bart Preneel. Equivalent keys in multivariate quadratic public
key systems. Journal of Mathematical Cryptology, 4(4):375–415, 2011.

A Statements

These statements “must be mailed to Dustin Moody, Information Technology Laboratory,
Attention: Post-Quantum Cryptographic Algorithm Submissions, 100 Bureau Drive – Stop
8930, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930, or can
be given to NIST at the first PQC Standardization Conference (see Section 5.C).”

First blank in submitter statement: full name. Second blank: full postal address. Third,
fourth, and fifth blanks: name of cryptosystem. Sixth and seventh blanks: describe and
enumerate or state “none” if applicable.

First blank in patent statement: full name. Second blank: full postal address. Third blank:
enumerate. Fourth blank: name of cryptosystem.

First blank in implementor statement: full name. Second blank: full postal address. Third
blank: full name of the owner.

30

A.1 Statement by Each Submitter

I, Ward Beullens, of Afdeling ESAT - COSIC, Kasteelpark Arenberg 10 - bus 2452,
3001 Heverlee, Belgium, do hereby declare that the cryptosystem, reference implementation,
or optimized implementations that I have submitted, known as LUOV, is my own original
work, or if submitted jointly with others, is the original work of the joint submitters. I
further declare that (check one):

X I do not hold and do not intend to hold any patent or patent application with a claim
which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as LUOV OR (check one or both of the following):

to the best of my knowledge, the practice of the cryptosystem, reference im-
plementation, or optimized implementations that I have submitted, known
as LUOV may be covered by the following U.S. and/or foreign patents:
None
I do hereby declare that, to the best of my knowledge, the following pend-
ing U.S. and/or foreign patent applications may cover the practice of my sub-
mitted cryptosystem, reference implementation or optimized implementations:
None

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the
public for review and will be evaluated by NIST, and that it might not be selected for standard-
ization by NIST. I further acknowledge that I will not receive financial or other compensation
from the U.S. Government for my submission. I certify that, to the best of my knowledge,
I have fully disclosed all patents and patent applications which may cover my cryptosystem,
reference implementation or optimized implementations. I also acknowledge and agree that
the U.S. Government may, during the public review and the evaluation process, and, if my
submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish
the draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for
any patent or patent application identified to cover the practice of my cryptosystem, reference
implementation or optimized implementations and the right to use such implementations for
the purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration for standardization. If my cryptosystem (or the derived
cryptosystem) is removed from consideration for standardization or withdrawn from consider-
ation by all submitter(s) and owner(s), I understand that rights granted and assurances made
under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized
implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed: Ward Beullens

31

Title:
Date:
Place:

32

A.2 Statement by Reference/Optimized Implementations’
Owner(s)

I, Ward Beullens, Afdeling ESAT - COSIC, Kasteelpark Arenberg 10 - bus 2452,
3001 Heverlee, Belgium, am the owner or authorized representative of the owner
Ward Beullens of the submitted reference implementation and optimized implementa-
tions and hereby grant the U.S. Government and any interested party the right to reproduce,
prepare derivative works based upon, distribute copies of, and display such implementations
for the purposes of the post-quantum algorithm public review and evaluation process, and
implementation if the corresponding cryptosystem is selected for standardization and as a
standard, notwithstanding that the implementations may be copyrighted or copyrightable.

Signed: Ward Beullens
Title:
Date:
Place:

33

	Introduction
	Algorithm specification (part of 2.B.1)
	Overview of the scheme
	Relation to the UOV scheme
	Parameter space
	Key Generation Algorithm
	Finding the remaining coefficients of P

	Signature Generation Algorithm
	Signature Verification Algorithm
	Signatures with message recovery
	Encoding of objects
	Encoding of finite field elements
	Encoding of private key
	Encoding of public key
	Encoding of signature

	Sampling objects with the SHAKE function
	Squeezing public seed
	Squeezing T
	Squeezing hash digest and vinegar variables
	Squeezing most part of the public map

	List of parameter sets (part of 2.B.1)
	Detailed performance analysis (2.B.2)
	Description of platform
	Time
	Space
	How parameters affect performance
	Optimizations
	Bit slicing
	Precomputing P and F

	Expected strength (2.B.4)
	Analysis of known attacks (2.B.5)
	Direct attack
	Key recovery attacks.
	UOV attack
	Reconciliation attack

	Hash collision attack

	Advantages and limitations (2.B.6)
	Advantages
	Limitations

	References
	Statements
	Statement by Each Submitter
	Statement by Reference/Optimized Implementations' Owner(s)

