
POST-QUANTUM CRYPTOGRAPHY
PROJECT

McNie: Compact
McEliece-Niederreiter Cryptosystem

Principal Submitter

This submission is from the following members, listed in alphabetical order:

• Lucky Galvez
• Jon-Lark Kim
• Myeong Jae Kim
• Young-Sik Kim
• Nari Lee

E-mail address: legalvez97@gmail.com, jlkim@sogang.ac.kr, device89@snu.ac.kr,
iamyskim@chosun.ac.kr, narilee3@gmail.com

Telephone: +82-10-2046-8836, +82-10-3251-1418

Postal address: Ricci 1401, Sogang University, 35 Baekbeom-ro,
Mapo-gu, Seoul 04107, South Korea

College of Electronic and Information 7111,
Chosun University, Gwangju, 61452, South Korea

Auxiliary submitters: There are no auxiliary submitters. The principal submitter is the
team listed above.

Inventors/developers: The inventors/developers of this submission are the same as the
principal submitter. Relevant prior work is credited below where appropriate.

Owner: Same as submitters.

Signature: Lucky Galvez Jon-Lark Kim
Myeong Jae Kim Young-Sik Kim
Nari Lee

Contents

1 Introduction 3

2 General Algorithm Specification (Part of 2.B.1) 4
2.1 Parameter space . 4
2.2 The McNie public-key Encryption . 4
2.3 Encryption . 4
2.4 Decryption . 5
2.5 McNie based on LRPC codes . 6

2.5.1 Public key encryption using 3-quasi-cyclic LRPC codes 6
2.5.2 Public key encryption using 4-quasi-cyclic LRPC codes 8
2.5.3 Decoding complexity . 11

3 List of Parameter Sets (Part of 2.B.1) 13
3.0.1 Parameter set encrypt/3Q 128 1 . 13
3.0.2 Parameter set encrypt/3Q 128 2 . 13
3.0.3 Parameter set encrypt/3Q 192 1 . 13
3.0.4 Parameter set encrypt/3Q 192 2 . 13
3.0.5 Parameter set encrypt/3Q 256 1 . 13
3.0.6 Parameter set encrypt/3Q 256 2 . 13
3.0.7 Parameter set encrypt/4Q 128 1 . 13
3.0.8 Parameter set encrypt/4Q 128 2 . 13
3.0.9 Parameter set encrypt/4Q 192 1 . 14
3.0.10 Parameter set encrypt/4Q 192 2 . 14
3.0.11 Parameter set encrypt/4Q 256 1 . 14
3.0.12 Parameter set encrypt/4Q 256 2 . 14

4 Design Rationale (Part of 2.B.1) 15

5 Detailed Performance Analysis (2.B.2) 16
5.1 Description of platform . 16
5.2 Time . 16
5.3 Space . 17
5.4 How parameters affect performance . 17
5.5 Optimizations . 17

1

6 Expected Strength (2.B.4) in General 18
6.1 Security definitions . 18
6.2 Rationale . 18

7 Expected Strength (2.B.4) for Each Parameter Set 19
7.1 Parameter set encrypt/random . 19

7.1.1 Parameter set encrypt/3Q 128 1 . 19
7.1.2 Parameter set encrypt/3Q 128 2 . 19
7.1.3 Parameter set encrypt/3Q 192 1 . 19
7.1.4 Parameter set encrypt/3Q 192 2 . 19
7.1.5 Parameter set encrypt/3Q 256 1 . 19
7.1.6 Parameter set encrypt/3Q 256 2 . 19
7.1.7 Parameter set encrypt/4Q 128 1 . 19
7.1.8 Parameter set encrypt/4Q 128 2 . 20
7.1.9 Parameter set encrypt/4Q 192 1 . 20
7.1.10 Parameter set encrypt/4Q 192 2 . 20
7.1.11 Parameter set encrypt/4Q 256 1 . 20
7.1.12 Parameter set encrypt/4Q 256 2 . 20

8 Analysis of Known Attacks (2.B.5) 21
8.1 Semantic security: IND-CCA2 conversion . 21
8.2 Practical security . 24

8.2.1 Direct attacks on the message . 24
8.2.2 Structural attacks . 25
8.2.3 Security of McNie . 26

9 Advantages and Limitations (2.B.6) 28

2

Chapter 1

Introduction

As we edge closer to the quantum era, we are confronted not only with obstacles and
hurdles, but also with a variety of challenges. The very first challenge we embrace is a
change in the current cryptosystem being implemented in almost every section of our lives
and businesses. It has arisen from the impact of the Shor’s algorithm which effectively break
RSA in polynomial time. Consequently, we need to employ a new cryptosystem which is
resistant to quantum computing.

There are several cryptosystem candidates named for post-quantum cryptography such as
code-based cryptography, lattice-based cryptography, multivariate cryptography and hash-
based cryptography. Among these, our interest is the code-based cryptography.

Since the code-based cryptosystem was introduced by McEliece in 1978, it has not been
adopted widely until it became one of the candidates for post-quantum cryptography due
to its large key size. However, this drawback can be overcome by our suggestion of a hybrid
version of McEliece and Niederreiter cryptosystems, called McNie.

McNie provides smaller key sizes employing quasi-cyclicity of matrices for 128-bit, 192-
bit and 256-bit securities compared to those of RSA. Note that the shortest key size based
on codes for the 128-bit security level is currently 2809 bits which was proposed by Gaborit–
Ruatta–Schrek–Tillich–Zémor (2015). McNie provides shorter ones. Especially, the McNie
based on a 4-quasi-cyclic [60, 30] LRPC code over F237 provide a key size of 2775 bits for
the 128-bit security. Furthermore, despite of reduction on key sizes, McNie is still secure
against structural and ISD attacks by deploying a randomly generated public key. It will be
demonstrated in a later section that it is not more difficult to break McEliece than McNie.

3

Chapter 2

General Algorithm Specification (Part
of 2.B.1)

2.1 Parameter space

McNie uses the following parameters : an (n − k) × n matrix H, an n × n matrix P , an
(n− k)× (n− k) matrix S, an l × n matrix G′, a block matrix size blk, and an l × (n− k)
matrix F over a finite field Fqm . Here q is a power of a prime and l > n− k.

2.2 The McNie public-key Encryption

Alice generates an (n − k) × n parity check matrix H for an r-error correcting code over
a finite field Fqm belonging to a family of codes with a known efficient decoding algorithm
ΦH . Her secret key consists of H and two other randomly generated matrices with entries
in Fqm , an invertible (n− k)× (n− k) matrix S and an n× n permutation matrix P .

Alice also randomly generates an l × n matrix G′ with dimension l over Fqm such that
l > n−k. She then computes F = G′P−1HTS which is an l× (n−k) matrix, and publishes
G′ and F as her public key.

2.3 Encryption

Bob sends a secret message m to Alice in the form of a length l vector m over Fqm :

• Generate a random error vector e of length n over Fqm of weight at most r which can
be decodable by an appropriate decoding algorithm.

• Multiply the vector m by G′ and add the error vector e to mG′. The resulting vector
is c1 = mG′ + e of length n.

• Multiply m by F . The resulting vector is c2 = mF of length n− k.

• The ciphertext is c = (c1, c2) of length 2n− k.

4

We describe the McNie encryption in Figure 2.1.

Figure 2.1: The McNie encryption

2.4 Decryption

Alice decrypts c = (c1, c2) by the following steps:

• Compute s′ = c1P
−1HT −c2S

−1=(mG′+e)P−1HT − (mG′P−1HTS)S−1 = eP−1HT .

• Apply to s′ the efficient decoding algorithm ΦH to obtain e′ = eP−1.

• Multiply e′ by P to get the error vector e.

• Obtain m by solving the system mG′ = c1 − e. In particular, when G′ is in standard
form, take the first l entries of c1 − e to recover m.

We describe the McNie decryption in Figure 2.2.

Figure 2.2: The McNie decryption

5

2.5 McNie based on LRPC codes

A Low Rank Parity Check (LRPC) code of rank d, length n and dimension k over Fqm

is a linear [n, k] block code over Fqm that has for its parity check matrix an (n − k) × n
matrix H = (hij) such that the sub-vector space of Fqm generated by its coefficients hij
has dimension at most d. We call this dimension the weight of H. Letting F be the sub-
vector space of Fqm generated by the coefficients hij of H, we denote one of its bases by
{F1, F2, . . . , Fd}.

In particular we use quasi-cyclic LRPC codes along with the parameter condition l > n−k
in order to have short key sizes. A quasi-cyclic code is an [n, k] linear block code of dimensions
n = mn0 and k = mk0 if every cyclic shift of a codeword by n0 symbols yields another
codeword. Any [n, k] Quasi-Cyclic code over Fq is equivalent to an [mn0,mk0] code with an
mk0 ×mn0 generator matrix composed of m×m circulant matrices,

G =


C1,1 C1,2 C1,3 · · · C1,n0

C2,1 C2,2 C2,3 · · · C2,n0

...
...

...
...

Ck0,1 Ck0,2 Ck0,3 · · · Ck0,n0

.

A circulant matrix C is uniquely specified by a polynomial formed of the entries of the
first row, c(x) = c0 +c1x+c2x

2 + · · ·+cm−1x
m−1, i.e., there is a one-to-one mapping between

the circulant matrices Ci and the polynomials ci(x). Note that the sum and product of two
circulants is a circulant. In particular, AB = C where c(x) = a(x)b(x) mod xm − 1.

Specific parameters are given for 3- and 4-quasi-cyclic LRPC codes as follows:

• 2-quasi-cyclic: In this case, the code length n is even. The parity check matrix H is
a double-circulant n

2
× n matrix. Since l > n

2
, an l × n matrix G′ cannot be a double

circulant matrix and it implies that F = G′HTS is an l × n
2

matrix which cannot be
circulant either. So we cannot describe G′ and F as a single vector, respectively. This
leads to large key sizes for G′ and F . We do not consider 2-quasi-cyclic case.

• 3-quasi-cyclic: Note that n is a multiple of 3 and l = k = 2n
3

. The public keys are
2n
3
× n matrix G′ and 2n

3
× n

3
matrix F .

• 4-quasi-cyclic: Note that n is a multiple of 4, k = n
2

and l = 3n
4

. The public keys are
3n
4
× n matrix G′ and 3n

4
× n

2
matrix F .

• s-quasi-cyclic: When s ≥ 5, our simulation shows that the key sizes for McNie based
on s-quasi cyclic LRPC codes are not shorter than those for McNie based on 3 or
4-quasi cyclic LRPC. So we omit their parameters.

2.5.1 Public key encryption using 3-quasi-cyclic LRPC codes

Key generation

In order to reduce key sizes in McNie, we use circulant matrices and construct quasi-cyclic
LRPC codes over Fqm in the public and private keys. Let n be a multiple of 3 and blk = n

3
.

6

• Generate vectors h1, h2 and h3 of length n
3

each with entries from an Fq-subspace of
Fqm of small dimension d.

• For i = 1, 2, 3, construct the n
3
× n

3
circulant matrices Hi whose first row is the vector

hi and each of the succeeding rows is the cyclic shift of the previous row.

• The n
3
× n matrix H =

[
H1 H2 H3

]
is a parity check matrix for an LRPC code of

weight d. ΦH is the LRPC decoding algorithm presented in the previous section.

Normally H is stored in vectors h1, h2 and h3. However we are going to store H in a little bit
different way. Since H will be used later in the decoding algorithm, we store the Fq-vector

ai’s for hi =
∑d

i=1 Fiai to reduce the decoding time. The following are what we store for H.

• a basis {F1, . . . , Fd} of F

• the coefficients of hi’s when they are written in the basis {F1, . . . , Fd}
The coefficients of each hi will be stored as a q-ary length n string. Thus the private key
size for H is d(m+n)

8
Log(q) bytes. The other private key S has a size of m(n−k)

8
Log(q) bytes.

• Generate vectors g1 and g2 of length n
3

each with entries from Fqm .

• As before, construct the n
3
×n

3
circulant matrices G1 and G2 from g1 and g2 respectively,

by cyclic shift.

• Define G′ =

[
In

3
0 G1

0 In
3

G2

]
.

• Take P to be the n× n identity matrix.

• Let S = (H1 +H3G
T
1)−1, also an n

3
× n

3
circulant matrix.

• Compute F = G′P−1HTS, a 2n
3
× n

3
matrix with the following form :

F =

[
In

3
0 G1

0 In
3

G2

] HT
1

HT
2

HT
3

S =

[
HT

1 +G1H
T
3

HT
2 +G2H

T
3

]
S =

[
In

3

F ′

]
,

where F ′ = (HT
2 +G2H

T
3)(H1 +H3G

T
1)−1.

• We generate the following keys:

1. Private keys: (H,S)

– Key size: d(m+n)+m(n−k)
8

Log(q) bytes

· H: d(m+n)
8

Log(q), S: m(n−k)
8

Log(q)

2. Public keys: (G′, F)

– Key size: nm
8
Log(q) bytes

· G′: 2nm
24
Log(q), F : nm

24
Log(q)

There is a probability that the F can not be reduced to column echelon form. In this case,
generate new vectors until the reduced column echelon form of F is achieved.

7

Encryption

The message vector m̄ is over Fqm . The message string m is a concatenation of the message
vector m̄ and a 4-byte string a which contains the information of the message length, i.e.,
m = (a||m̄). Let α be the number of bytes in 2 blocks. We consider the cases when s ≤ α
in the following.

Bob sends an s-byte secret message m to Alice.

• If s < α: Define x as the α-byte string such that (m||v) where v is a uniform random
(α− s)-byte string.

• If s = α: Define x = m.

• Generate an random error vector e of length n over Fqm of rank weight at most r which
can be decodable by an appropriate decoding algorithm.

• Multiply x by G′ and add the error vector e to xG′. The resulting vector is c1 = xG′+e
of nm

8
bytes.

• Multiply x by F . The resulting vector is c2 = xF of nm
24

bytes.

• The ciphertext is c = (c1, c2) of nm
6

bytes.

Decryption

Alice decrypts c = (c1, c2) by the following steps:

• Compute s′ = c1P
−1HT −c2S

−1=(mG′+e)P−1HT − (mG′P−1HTS)S−1 = eP−1HT .

• Apply the efficient decoding algorithm ΦH to s′ to obtain ê = eP−1.

• Multiply ê by P to get the error vector e.

• Compute x by solving the system xG′ = c1− e. In particular, when G′ is in standard
form, take the first lm

8
bytes of c1 − e to recover x.

• Get the information of message length from the first 4 bytes of the vector x.

• Obtain the message m̄.

2.5.2 Public key encryption using 4-quasi-cyclic LRPC codes

Key generation

Let n be divisible by 4 and blk = n
4
.

• Generate vectors h1,h2, . . . ,h8 of length n
4

each with entries from an Fq-subspace of
Fqm of small dimension d.

8

• For i = 1, . . . , 8, construct the n
4
× n

4
circulant matrices Hi whose first row is the vector

hi and each of the succeeding rows is the cyclic shift of the previous row.

• The n
2
×n matrix H =

[
H1 H2 H3 H4

H5 H6 H7 H8

]
is a parity check matrix for an LRPC code

of weight d. ΦH is the LRPC decoding algorithm presented in the previous chapter.

In this case as well, the private key H is stored in the same way as Section 2.2.1.

• a basis {F1, . . . , Fd} of F

• the coefficients of hi’s when they are written in the basis {F1, . . . , Fd}

The coefficient of each hi will be stored as a q-ary length n string. As a result, the private
key size for H and S are d(m+2n)

8
Log(q) and 2m(n−k)

8
Log(q) bytes, respectively.

• Generate vectors g1,g2,g3 of length n
4

each with entries from Fqm .

• As before, construct the n
4
× n

4
circulant matrices G1, G2 and G3 from g1,g2 and g3,

respectively, by cyclic shift.

• Define G′ =

 In
4

0n
4

0n
4

G1

0n
4

In
4

0n
4

G2

0n
4

0n
4

In
4

G3

.

• Take P to be the n× n identity matrix.

• Generate a nonsingular block-circulant matrix S̄ of the form S̄ =

[
S1 S2

S3 S4

]
, where

S1, S2, S3, S4 are n
4
× n

4
circulant matrices.

• Compute F̄ = G′P−1HTS, a 3n
4
× n

2
matrix with the following form :

F̄ =

 In
4

0n
4

0n
4

G1

0n
4

In
4

0n
4

G2

0n
4

0n
4

In
4

G3



HT

1 HT
5

HT
2 HT

6

HT
3 HT

7

HT
4 HT

8

[S1 S2

S3 S4

]

=

 (HT
1 +G1H

T
4)S1 + (HT

5 +G1H
T
8)S3 (HT

1 +G1H
T
4)S2 + (HT

5 +G1H
T
8)S4

(HT
2 +G2H

T
4)S1 + (HT

6 +G2H
T
8)S3 (HT

2 +G2H
T
4)S2 + (HT

6 +G2H
T
8)S4

(HT
3 +G3H

T
4)S1 + (HT

7 +G3H
T
8)S3 (HT

3 +G3H
T
4)S2 + (HT

7 +G3H
T
8)S4


=

 F1 F2

F3 F4

F5 F6



• Reduce F̄ in column echelon form F = F̄E =

 In
4

0n
4

0n
4

In
4

F ′ F ′′

 using the matrix

E =

[
E1 E2

E3 E4

]
=

[
(F−12 F1 − F−14 F3)

−1F−12 (F−14 F3 − F−12 F1)
−1F−14

−F−14 F3E1 −F−12 F1E2

]
.

9

(Our experiment shows that there is a very small probability of around 10−4 that in
the key generation step, the public key F cannot be reduced to column echelon form.
In that case, we repeat the key generation step until the matrix F can be reduced to
column echelon form.)

• Compute S = S̄E.

• We generate the following keys:

1. Private keys: (H,S)

– Key size: d(m+2n)+2m(n−k)
8

Log(q) bytes

· H: d(m+2n)
8

Log(q), S: 2m(n−k)
8

Log(q)

2. Public keys: (G′, F)

– Key size: nm
8
Log(q) bytes

· G′: 3nm
32
Log(q), F ′: nm

16
Log(q)

There is a probability that F can not be reduced to column echelon form. In this case,
generate new vectors until the reduced column echelon form of F is achieved.

Encryption

The message vector m̄ is over Fqm . The message string m is a concatenation of the message
vector m̄ and a 4-byte string a which contains the information of the message length, i.e.,
m = (a||m̄). Let α be the number of bytes in 3 blocks. We consider the cases when s ≤ α
in the following.

Bob sends a secret message m to Alice in s-byte binary vector.

• If s < α: Define x as the α-byte vector such that (m||v) where v is a uniform random
(α− s)-byte vector.

• If s = α: Define x = m.

• Generate an random error vector e of length n over Fqm of rank weight at most r which
can be decodable by an appropriate decoding algorithm.

• Multiply the vector x by G′ and add the error vector e to xG′. The resulting vector
is c1 = xG′ + e of nm

8
bytes.

• Multiply x by F . The resulting vector is c2 = xF of length nm
32

.

• The ciphertext is c = (c1, c2) of 5nm
32

bytes.

10

Decryption

Alice decrypts c = (c1, c2) by the following steps:

• Compute s′ = c1P
−1HT −c2S

−1=(mG′+e)P−1HT − (mG′P−1HTS)S−1 = eP−1HT .

• Apply the efficient decoding algorithm ΦH to s′ to obtain ê = eP−1.

• Mutiply ê by P to get the error vector e.

• Compute x by solving the system xG′ = c1− e. In particular, when G′ is in standard
form, take the first lm

8
bytes of c1 − e to recover x.

• Get the information of message length from the first 4 bytes of the vector x.

• Obtain the message m̄.

2.5.3 Decoding complexity

The original decoding algorithm for LRPC codes is introduced in the Gaborit–Ruatta–
Schrek–Tillich–Zémor (GRSTZ) cryptosystem[14]. The decoding complexity in [14] is
r2(4d2m + n2). However we modified the original decoding algorithm more efficiently. The
following is the modified matrix Kr

H = (kij) which is used in the decoding algorithm reducing
the complexity from r2(4d2m + n2) to r(4d2mr + n2). The size of Kr

H is an (n − k)d × n
matrix and ki+(n−k)(v−1),j = hijv for 1 ≤ v ≤ d, 1 ≤ u ≤ r, 1 ≤ i ≤ n− k, and 1 ≤ j ≤ n.

Kr
H =



h111 h121 · · · h1n1
h211 h221 · · · h2n1
...

...
...

h(n−k)11 h(n−k)21 · · · h(n−k)n1
h112 h122 · · · h1n2
h212 h222 · · · h2n2
...

...
...

h(n−k)12 h(n−k)22 · · · h(n−k)n2

...
...

...

h11d h12d · · · h1nd
h21d h22d · · · h2nd
...

...
...

h(n−k)1d h(n−k)2d · · · h(n−k)nd



s =



s111 s112 · · · s11r
s211 s212 · · · s21r
...

...
...

s(n−k)11 s(n−k)12 · · · s(n−k)1r
s121 s122 · · · s12r
s221 s222 · · · s22r
...

...
...

s(n−k)21 s(n−k)22 · · · s(n−k)2r

...
...

...

s1d1 s1d2 · · · s1dr
s2d1 s2d2 · · · s2dr
...

...
...

s(n−k)d1 s(n−k)d2 · · · s(n−k)dr



e =


e11 e12 · · · e1r
e21 e22 · · · e2r
...

...
...

en1 en2 · · · enr


11

In addition, to minimize failure in the decoding, the above parameters must also satisfy
the following relations:

rd < n− k
r(d+ 1) < m

The complexity of the decoding depends on the complexity of the error-correction algo-
rithm ΦH . In the case of 3-quasi-cyclic and 4-quasi-cyclic LRPC codes, it is r(4d2m + n2),
the complexity of the modified LRPC decoding algorithm.

12

Chapter 3

List of Parameter Sets (Part of 2.B.1)

3.0.1 Parameter set encrypt/3Q 128 1

PKE with m = 37, blk = 31, d = 3, and r = 5

3.0.2 Parameter set encrypt/3Q 128 2

PKE with m = 37, blk = 35, d = 3, and r = 5

3.0.3 Parameter set encrypt/3Q 192 1

PKE with m = 41, blk = 37, d = 3, and r = 7

3.0.4 Parameter set encrypt/3Q 192 2

PKE with m = 41, blk = 41, d = 3, and r = 7

3.0.5 Parameter set encrypt/3Q 256 1

PKE with m = 59, blk = 37, d = 3, and r = 7

3.0.6 Parameter set encrypt/3Q 256 2

PKE with m = 47, blk = 47, d = 3, and r = 9

3.0.7 Parameter set encrypt/4Q 128 1

PKE with m = 37, blk = 15, d = 3, and r = 5

3.0.8 Parameter set encrypt/4Q 128 2

PKE with m = 37, blk = 18, d = 3, and r = 5

13

3.0.9 Parameter set encrypt/4Q 192 1

PKE with m = 41, blk = 19, d = 3, and r = 7

3.0.10 Parameter set encrypt/4Q 192 2

PKE with m = 41, blk = 21, d = 3, and r = 7

3.0.11 Parameter set encrypt/4Q 256 1

PKE with m = 53, blk = 19, d = 3, and r = 7

3.0.12 Parameter set encrypt/4Q 256 2

PKE with m = 47, blk = 22, d = 3, and r = 8

Table 3.1: Suggested parameters using 3-quasi-cyclic LRPC codes

n k l blk d r m q
Decryption Public Key Private Key Message Ciphertext

Security
failure 1 failure 2 Size (bytes) Size (bytes) Size (bytes) Size (bytes)

93 62 62 31 3 5 37 2 -17 -34 431 194 314 579 128
105 70 70 35 3 5 37 2 -20 -34 486 218 358 653 128
111 74 74 37 3 7 41 2 -17 -26 569 247 454 764 192
123 82 82 41 3 7 41 2 -20 -26 631 274 505 846 192
111 74 74 37 3 7 59 2 -17 -62 819 337 636 1097 256
141 94 94 47 3 9 47 2 -20 -22 829 348 699 1110 256

Table 3.2: Suggested parameters using 3-quasi-cyclic LRPC codes

n k l blk d r m q
Decryption Public Key Private Key Message Ciphertext

Security
failure 1 failure 2 Size (bytes) Size (bytes) Size (bytes) Size (bytes)

60 30 45 15 3 5 37 2 -16 -34 347 340 215 422 128
72 36 54 18 3 5 37 2 -21 -34 417 401 264 505 128
76 38 57 19 3 7 41 2 -18 -26 487 465 336 590 192
84 42 63 21 3 7 41 2 -21 -26 539 512 373 651 192
76 38 57 19 3 7 53 2 -18 -50 630 584 432 761 256
88 44 66 22 3 8 47 2 -20 -30 647 601 461 781 256

14

Chapter 4

Design Rationale (Part of 2.B.1)

The GRSTZ cryptosystem based on LRPC codes is the first rank metric based cryptosystem
with a random structure that is still considered secure. Moreover, this cryptosystem with
quasi-cyclic (QC) LRPC codes provides compact key sizes. This motivates us to design the
McNie cryptosystem based on QC-LRPC codes.

The GRSTZ cryptosystem uses a low rank parity check matrix H as the private key and
uses the product RG of the generator matrix G of the same code and a masking matrix R
as the public key. Known structural attacks on the GRSTZ cryptosystem aim at finding a
low weight codeword in the dual of this code to obtain H.

McNie utilizes the decoding algorithm of the GRSTZ cryptosystem and various quasi-
cyclic LRPC codes. Therefore, McNie is as secure as the GRSTZ cryptosystem against
structural and information set decoding attacks. Furthermore, because McNie employs two
different matrices in the private and public keys, that is, the public key G′ does not contain
any information about the private key H, it can be expected that McNie is harder to break
than the GRSTZ cryptosystem.

McNie’s encryption scheme is a combination of McEliece and Niedereitter cryptosystem
in the sense that c1 = mG′+e resembles the ciphertext in the McEliece cryptosystem while
c2 = mF resembles the ciphertext in the Niedereitter cryptosystem.

Note that if G is the generator matrix of the code with parity check matrix H and
G′ = SGP , then F = (SGP)P−1HTS = 0 ∈ Fl×(n−k)

qm . So c2 = 0 ∈ Fn−k
qm and c1 =

mG′ + e = mSGP + e is the ciphertext for the McEliece cryptosystem. Hence, it is not
more difficult to break the McEliece cryptosystem than our proposed system.

15

Chapter 5

Detailed Performance Analysis
(2.B.2)

5.1 Description of platform

Implementation of McNie was done in C and tested on Intel Core i7-4790 3.60GHz (RAM
8GB, Windows 8).

5.2 Time

In the following tables, we give the time in milliseconds for the key generation, encryption
and decryption steps for each parameters using 3-quasi-cyclic and 4-quasi-cyclic LRPC codes.

Table 5.1: Implementation results for McNie using 3-quasi-cyclic LRPC codes

n k l blk d r m q security
key gen. encryption decryption

(ms) (ms) (ms)

93 62 62 31 3 5 37 2 128 62 1.087 1.595
105 70 70 35 3 5 37 2 128 91.5 1.358 2.016
111 74 74 37 3 7 41 2 192 121.8 1.660 2.473
123 82 82 41 3 7 41 2 192 163.5 1.996 2.934
111 74 74 37 3 7 59 2 256 171.1 2.299 3.366
141 94 94 47 3 9 47 2 256 288.5 2.941 4.352

16

Table 5.2: Implementation results for McNie using 4quasi-cyclic LRPC codes

n k l blk d r m q security
key gen. encryption decryption

(ms) (ms) (ms)

60 30 45 15 3 5 37 2 128 45.9 0.502 1.174
72 36 54 18 3 5 37 2 128 78 0.679 1.608
76 38 57 19 3 7 41 2 192 109 0.824 1.959
84 42 63 21 3 7 41 2 192 142 0.970 2.346
76 38 57 19 3 7 53 2 256 140 1.020 2.466
88 44 66 22 3 8 47 2 256 185.8 1.191 2.873

5.3 Space

Sizes can be computed based on the parameter. Public and private key sizes are given in
Tables 3.1 and 3.2. In both the 3-quasi and 4-quasi cyclic cases, the length of the message
is (lm

8
) bytes and the ciphertext is twice the size of the message.

5.4 How parameters affect performance

• Notice that the dimension l of a public key G′ should be greater than the dimension
n− k of the parity check matrix H. Otherwise, the attacker may recover the message
vector from the ciphertext c2 = mF , where m = (m1,m2, . . . ,ml) ∈ Fl

qm and F an
l× (n−k) matrix. That is, if l ≤ n−k, the linear system with l unknowns will give us
the unique solution, which is the message m. When l > n− k, the number of possible
solutions of m in c2 = mF is qm(l−n+k).

• Let H0 = P−1HTS. Then F = G′P−1HTS = G′H0 and the number of possible H0 is
qm(n−l)(n−k).

5.5 Optimizations

The same as the reference implementation.

17

Chapter 6

Expected Strength (2.B.4) in General

6.1 Security definitions

The McNie cryptosystem is designed for IND-CCA2 security. See Chapter 8 for the estimates
of security of specific parameter sets.

6.2 Rationale

See Chapter 8 for an analysis of semantic and known attacks. This analysis also presents
the rationale for these security estimates.

18

Chapter 7

Expected Strength (2.B.4) for Each
Parameter Set

7.1 Parameter set encrypt/random

7.1.1 Parameter set encrypt/3Q 128 1

Category 1, classical elementary operations.

7.1.2 Parameter set encrypt/3Q 128 2

Category 1, classical elementary operations.

7.1.3 Parameter set encrypt/3Q 192 1

Category 3, classical elementary operations.

7.1.4 Parameter set encrypt/3Q 192 2

Category 3, classical elementary operations.

7.1.5 Parameter set encrypt/3Q 256 1

Category 5, classical elementary operations.

7.1.6 Parameter set encrypt/3Q 256 2

Category 5, classical elementary operations.

7.1.7 Parameter set encrypt/4Q 128 1

Category 1, classical elementary operations.

19

7.1.8 Parameter set encrypt/4Q 128 2

Category 1, classical elementary operations.

7.1.9 Parameter set encrypt/4Q 192 1

Category 3, classical elementary operations.

7.1.10 Parameter set encrypt/4Q 192 2

Category 3, classical elementary operations.

7.1.11 Parameter set encrypt/4Q 256 1

Category 5, classical elementary operations.

7.1.12 Parameter set encrypt/4Q 256 2

Category 5, classical elementary operations.

20

Chapter 8

Analysis of Known Attacks (2.B.5)

8.1 Semantic security: IND-CCA2 conversion

The security of the McNie cryptosystem relies on the following LRPC problem which can
be understood as the codeword existence problem in MDPC code based cryptosystem and
the NTRU problem in rank metric sense.

The LRPC problem [14] Given a public matrix Gpub it is difficult to recover low weight
vector of rank weight d in the dual code.

In McNie, the generator matrix G′ and the scrambler matrix S are randomly generated.
Using S, the structure of the parity check matrix H of an LRPC code is masked to have F .
The approach introduced in [23] for the MDPC cryptosystem on the indistinguishability to
random codes and the CCA-2 conversion in [21] can be adapted in McNie as follows:

Notations
Prep(m) : Preprocessing to a message m, such as data-compression, data-padding

and so on. Its inverse is represented as Prep−1().
Hash(x) : One-way hash function of an arbitrary length binary string x to a

fixed length binary string.
Conv(z̄) : Bijective function which converts a vector z̄ over Fqm into the corresponding

error vector z of length n with a constant rank weight r. Its inverse is
represented as Conv−1().

Gen(x) : Generator of a cryptographically secure pseudo random sequences of
arbitrary length from a fixed length seed x.

Msbx1(x2) : The left x1 bits of x2.
Lsbx1(x2) : The right x1 bits of x2.
Const : Predetermined constant used in public.
Rand : Random source which generates a truly random (or computationally

indistinguishable pseudo random) sequence.
EMcNie(x, z): Encryption of x using the McNie PKC with an error vector z.
DMcNie(x) : Decryption of x using the McNie PKC.

21

Table 8.1: McNie conversion
Encryption of m: Decryption of c:

r := Rand y5 := Msbn−l(c)
m̄ := Prep(m) z := Lsb2n(c)
y1 := Gen(r)⊕ (m̄||Const) c1 := Msbn(z)
y2 := r⊕Hash(y1) c2 := Lsbn(z)

(y5||y4||y3) := (y2||y1) y3 := DMcNie(c1||c2)
e := Conv(y4) e := y3G

′ ⊕ c1

(c1||c2) := EMcNie(y3, e) y4 :=Conv−1(e)
c := (y5||c1||c2) (y2||y1) := (y5||y4||y3)

return c r := y2 ⊕Hash(y1)
m̄||Const′ := Gen(r)⊕ y1

If Const′ = Const
return Prep−1(m̄)

Otherwise reject c

The lengths of y3, y4, and y5 are as follows.

• Len(y3) = b lm
8
c bytes.

• Len(y4) = b
(

r(r−1)
2

+ r(m+ n− 2r)
)
/8c bytes.

• Len(y5) = Len(m̄) + Len(Const) + Len(r)− Len(y4)− Len(y3) bytes.

• If Len(m̄) + Len(Const) + Len(r) = Len(y4) + Len(y3), remove y5.

Referring to [14], it is possible to use the approach in [11] which permits that no infor-
mation is given in the case of decryption failure. This approach is used in NTRU and the
MDPC code based cryptosystem as well.

The function Conv
Conv is a function that takes as input a vector y ∈ Fk

qm and outputs a vector e ∈ Fn
qm of

rank r. The idea is to use a fixed basis β = {β1, β2, . . . , βm} of Fqm over Fq to express y as
a matrix with entries in Fq and use this to form an m×n matrix E of rank r over Fq. From
this matrix we can form the vector e. This approach is similar to Procedure P given in [2].

The matrix E will be constructed in the following way. Let D be an r× r matrix of rank
r, E1 be an (m− r)× r matrix, and E2 be an r × (n− r) matrix over Fq. Then the matrix

E =

[
D DE2

E1 E1E2

]
is of rank r over Fq. Berger and Loidreau [2] pointed out that it is important to ensure
randomness in the matrix E. If the random positions are in the matrix D, then the ran-
domness of the error is located on a known subspace of dimension r. This fact can be used
for message resend attack. To avoid this, they suggested to use Rijndael S-box, an invertible
function which takes in input a byte and return a byte in the output. This S-box has good

22

diffusion and non-linearity properties. The information bits and the random bits must be
spread in bytes such that each byte contains at least one random bit. We apply the Rijndael
S-box to each byte and then we put these in D, E1 and E2.

Let y = (y1, y2, . . . , yk) ∈ Fk
qm . For the fixed basis β, consider the function f : Fqm → Fm

q

such that f(
∑m

i=1 aiβi) = (a1, a2, . . . , am). Form the vector ȳ = (f(y1), f(y2), . . . , f(yk)) :=
(ȳ1, ȳ2, . . . , ȳkm).

Similar to a construction in [12], we construct D by filling the diagonal with 1’s and

the entries below the diagonal by the first r(r−1)
2

entries of ȳ in a lower triangular form as
follows:

D =


1 0 0 · · · 0
ȳ1 1 0 · · · 0

ȳr ȳ2 1
. . .

...
...

. 0
ȳ r(r−1)

2

· · · ȳ2r−3 ȳr−1 1

 .
Next, the matrices E1 and E2 are filled with the remaining entries of ȳ, i.e.,

E1 =

 ȳ r(r−1)
2

+1
· · · ȳ r(r−1)

2
+r

...
. . .

...
ȳ r(r−1)

2
+r(m−r−1)+1

· · · ȳ r(r−1)
2

+r(m−r)



E2 =

 ȳ r(r−1)
2

+r(m−r)+1
· · · ȳ r(r−1)

2
+r(m−r)+(n−r)

...
. . .

...
ȳ r(r−1)

2
+r(m−r)+(r−1)(n−r)+1

· · · ȳ r(r−1)
2

+r(m−r)+r(n−r)


where yi = 0 whenever i > km. Therefore we have

e =
[
β1 β2 . . . βm

]
· E =

(
m∑
i=1

Ei1βi,
m∑
i=1

Ei2βi, . . . ,
m∑
i=1

Einβi

)
∈ Fn

qm .

Note that the length of ȳ is

b
(r(r − 1)

2
+ r(m+ n− 2r)

)
/8c bytes.

The inverse Conv−1 is simple, which is the reverse of the previous construction. If the
error vector e = (e1, e2, . . . , en) is obtained using the decoding algorithm, we can construct
the matrix E =

[
f(e1)

T , f(e2)
T , . . . , f(en)T

]
using the fixed basis of Fqm . This matrix should

be of the form E =

[
D DE2

E1 E1E2

]
. From the nonzero entries in lower triangular matrix D

except the diagonal along with the entries of E1 and E2, the vector ȳ = (ȳ1, ȳ2, . . . , ȳkm) can
be obtained. So we recover y as

y =

(
m∑
i=1

ȳiβi,

m∑
i=1

ȳm+iβi, . . . ,

m∑
i=1

ȳ(k−1)m+iβi

)
.

23

8.2 Practical security

Rank metric code based cryptosystem relies on the rank syndrome decoding (RSD) problems.

Rank Syndrome Decoding (RSD) Problem
Let H be a (n− k)× n matrix over Fqm with k ≤ n, s ∈ Fk

qm and r an integer. Find x such
that Rank(x) = r and Hxt = s.

This problem has been proved to be NP-hard with a randomized reduction [18]. The first
proposed McEliece cryptosystem based on rank metric codes was the Gabidulin-Paramonov-
Tretjakov (GPT) cryptosystem [13]. But this was broken by Overbeck [26], exploiting the
strong algebraic structure of Gabidulin codes. LRPC code based cryptosystem is not the
case of GPT cryptosystem since its security relies on the same problem to find a low rank
weight codeword in a linear code under no structure.

As the code parameters increase, the complexity of practical attacks also increase very
fast since counting the number of possible supports of size r for a rank code of length n
over Fqm is the same as counting the number of subspaces of dimension r in Fqm [6]. The
associated decoding problem, named MinRank, is known to be NP-complete [4].

8.2.1 Direct attacks on the message

There are two types of attacks on the LRPC cryptosystem: direct attacks on the message
and structural attacks. Direct attacks on the message try to recover directly the message
by finding the error e of rank r with combinatorial and algebraic attacks. When parameters
satisfy the required conditions, combinatorial or algebraic attacks are the most efficient
attacks.

· Combinatorial attacks
The performance of the attack in [5] is better when q is small, especially q = 2. When q
increases and when n and k are not too small, the decoding complexity (nr+m)3q(m−r)(r−1)

increases rapidly. Ourivski and Johannson’s attack shows an improved performance having
a complexity of (k + r)3r3q(r−1)(k+1) [25]. The complexities of these two attacks were gen-

eralized to (n − k)3m3q(r−1)b
(k+1)m

n
c by Gaborit et al. [15], considering n in the complexity

when the previous two attacks did not. This new proposed attack deployed the support of
a codeword and applied the Information Set Decoding [1] in rank metric sense. The combi-
natorial attack complexity of McNie is presented in Table 8.2 and calculated for proposed
parameters in 8.3 and 8.4 after taking log base q.

· Algebraic attacks
This attack is natural for rank metric case since it is independent of q and in some cases, also
independent of m. Thus this attack is most useful when q increases. There are several types
of algebraic equations settings to try to solve a multivariate system with Gröbner basis. In
2006 Levy and Perret considered directly the RSD problem, taking the support E of the
error as unknowns and the error coordinates regarding E [22]. This algebraic attack used

Gröbner basis with complexity lower bound given by qrd
r(k+1)−(n+1)

r
e. However, it is known

24

that the complexity bounds of these attacks are too huge for practical use. There are also
the Kernel attack [8] and the minor attack which uses minors of matrices to get multivariate
equations of degree r + 1 over Fq [7]. Recently there is an attack using q-polynomials and
the annihilator, giving multivariate sparse equations of degree qr+1 on the large field Fqm

[15]. The algebraic attack complexity of McNie is presented in Table 8.2 and calculated for
proposed parameters in 8.3 and 8.4 after taking log base q.

8.2.2 Structural attacks

Structural attacks tries to attack directly the structure of the public key to recover the secret
key. The following two attacks use the structure of LRPC codes to obtain the secret key.

· Known attacks on the LRPC cryptosystem [16]
The fact that all the elements of the LRPC matrix H belong to the same subspace F of rank
d can be used. For the dual code D generated by H, all the coordinates of x ∈ D belong
to F . By rewriting x =

∑n−k
i=1 aiHi for ai ∈ Fq where the n − k rows of H are denoted by

Hi(1 ≤ i ≤ n− k) and determining d ai’s in Fq, it allows x to have b(n− k)/dc coordinates
of zeros since H has the weight of d. With a high probability, this vector x lies in the dual
code D and we may assume the first b(n − k)/dc coordinates of x are all zeros without
loss of generality. Now the structural attack can be done to LRPC code by choosing the
subcode D′ of D by puncturing the first b(n − k)/dc columns of D. Then D′ will be an
[n− b(n− k)/dc, n− k − b(n− k)/dc] code which contains a codeword of rank d.

This attack uses the structure of the LRPC matrix and the attacker only needs to find
a subcode which contains at least one codeword of rank d. However the computational
cost of this attack is exponential. There is a result with a slightly reduced cost using
the cyclicity to decrease the number of columns of the attacked matrix. The attacker can
remove columns corresponding to zeros of a small weight vector of the secret key and try
to recover it. This attack is equivalent to the attack for NTRU [20] and for MDPC codes
based cryptosystem[23].

· Hauteville and Tillich’s attacks [19]
McEliece cryptosystem based on quasi-cyclic or quasi-monoidic codes can be attacked by
reducing the size of the code by adding coordinates which belong to the same orbit of the
automorphism group, called the “folding” process [9, 10]. This process is applied to quasi-
cyclic, quasi-dyadic, alternant or Goppa codes to attack the cryptosystem for key recovery.
It was shown that the same method can be used for quasi-cyclic LRPC codes to obtain
a code of much smaller size but have in its dual some low weight codewords. Then the
decoding algorithm in [15] can be applied to find low weight codewords in more efficient
way than that of the original code. Hauteville and Tillich show their attacks are efficient for
double circulant LRPC based system, especially when the polynomial in which the folding
process is generalized can be factored. Using this method, one of the proposed parameters
in [14] got broken by an attack of complexity 243.6. However McNie is secure against this
attack since the public key G′ is randomly generated so that it can be independent of the
secret key H. Thus an attacker trying to recover H from G gains no information using this
attack.

25

8.2.3 Security of McNie

In McNie, since the public code generated by G′ is not related to the secret code generated
by H, attacking G′ does not in any way expose the private code. Thus, finding a low weight
codeword in the dual of G′ is useless since G′ is randomly chosen, and in general, not LRPC.
This allows us to have freedom on choosing our low rank d as it does not affect the public
keys. Since LRPC decoding can be used as long as rd ≤ n−k, we can choose d small enough
and r high enough for increased security.

An attacker may, on the other hand, attack the public matrix F to obtain H. Since
G′ is known, an attacker can proceed with decomposing F to F = G′H0. This would
yield qm(n−l)(n−k) possible solutions H0. However, because of scrambler matrix S, a solution
H0 = HTS may not be a low rank so LRPC decoding may not be successful. The number of
possible solutions is calculated and shown in 10th column of Tables 8.3 and 8.4 after taking
log base q.

For the message attack, in general, if G′ has a smaller error-correction capability com-
pared to H, then decoding using G will fail. Also, since G′ is randomly generated, this is
the rank-RSD problem. In this proposal, we can select good parameters in order to increase
the decoding failure probability of using the public matrix G′ while keeping a low decoding
failure probability using the private matrix H. An attacker may also use c2 to recover m
by solving linear systems. However McNie is designed to have qm(l−(n−k)) possible solutions.
Although c2 = mF resembles the ciphertext from the Niederreiter cryptosystem, notice
that there is no restriction on the weight of the message m so attacking the Niederreiter
cryptosystem does not threaten the security of McNie.

Table 8.2: Complexity of known attacks to McNie
Combinatorial Algebraic McNie

Attack Attack Attacks

(n− l)3m3q(r−1)b
(l+1)m

n
c qrd

r(l+1)−(n+1)
r

e qm(l−(n−k))

Table 8.3: Complexity of known attacks to suggested parameters using 3-quasi-cyclic LRPC
codes

n k l d r m q
Combi. Algeb. McNie Key Size

Security
Attack Attack Attack (bits)

84 56 56 3 4 29 2 86 124 812 2436 80
96 64 64 3 4 29 2 86 164 928 2784 80
93 62 62 3 5 37 2 130 225 1147 3441 128
105 70 70 3 5 37 2 131 250 1295 3885 128
111 74 74 3 7 41 2 194 413 1517 4551 192
123 82 82 3 7 41 2 194 462 1681 5043 192
111 74 74 3 7 59 2 267 413 2183 6549 256
141 94 94 3 9 47 2 281 720 2209 6627 256

26

Table 8.4: Complexity of known attacks to suggested parameters using 4-quasi-cyclic LRPC
codes

n k l d r m q
Combi. Algeb. McNie Key Size

Security
Attack Attack Attack (bits)

48 24 36 2 4 29 2 91 100 348 1740 80
56 28 42 2 4 37 2 111 116 518 2590 80
60 30 45 3 5 37 2 139 170 555 2775 128
72 36 54 3 5 37 2 140 205 666 3330 128
76 38 57 3 7 41 2 214 315 738 3895 192
84 42 63 3 7 41 2 215 364 861 4305 192
76 38 57 3 7 53 2 269 329 1007 5035 256
88 44 66 3 8 47 2 275 448 1034 5170 256

Table 8.5: Key-size (bits) comparison with other code-based cryptosystems
Security McNie DC-LRPC DC-MDPC QD-Goppa Goppa

Level 3-quasi 4-quasi [17] [23] [24] [3]

80 2436 1740 1681 4801 20480 460647
128 3441 2775 2809 9857 32768 1537536
192 4551 3895 - - 45056 4185415
256 6549 5035 - 32771 65536 7667855

Table 8.6: Comparison of key sizes (bits)

Security Level
McNie

NTRU RSA ECC ECC AWC
3-quasi 4-quasi

80 2436 1740 3487 1024 163 112210
128 3441 2775 4939 3072 256 277280
192 4551 3895 6523 7680 384 936618
256 6549 5035 8173 15360 512 1595434

27

Chapter 9

Advantages and Limitations (2.B.6)

• Advantages

1. A random code is used in the encryption so that McNie is secure against structural
and information set decoding attacks.

2. McNie provides significant improvement in security compared to the GRSTZ
cryptosystem with the same parameters. Table 9.1 shows the complexities in
bits of known attacks on both cryptosystems that uses an (n − k) × n parity
check matrix of an LRPC code of weight d in the private key. Here we use
the suggested parameters for McNie using 4-quasi-cyclic LRPC codes achieving
192-bit and 256-bit security levels.

Table 9.1: McNie vs the GRSTZ cryptosystem of the same parameters
Decryption Combi. Attack Algeb. Attack

n k d r m q McNie QC-LRPC McNie QC-LRPC

76 38 3 7 41 2 214 158 315 196

76 38 3 7 53 2 269 194 329 196

3. The GRSTZ cryptosystem can be shown to be a special case of McNie. Suppose
H is the parity check-matrix for a quasi-cyclic LRPC code, as described in Section
2.5 and G be its generator matrix. If G′ = RG for some invertible matrix R and P
is the identity matrix, then F = RGHTS = 0. Hence c2 = 0 and c1 = mRG+ e
is the same as the ciphertext for the GRSTZ cryptosystem. McNie uses the same
decryption algorithm as the GRSTZ cryptosystem. Thus we conclude that McNie
is harder to attack than the GRSTZ cryptosystem.

4. Comparing with other encryption schemes, McNie provides significantly smaller
public key sizes that increase at a more gradual rate as security level increases.

5. McNie can use various kinds of known block codes as inputs even though McEliece
cryptosystem based on those codes were broken. The reason is that McNie uses
a random code seems more secure than McEliece against structural and ISD
attacks. Therefore, studying McNie will open more research areas in the near
future.

28

• Limitations

LRPC decoding is probabilistic and there is a nonzero probability of failure in de-
cryption that the n − k syndromes does not generate the space P = 〈E.F 〉. It was
originally mentioned in the GRSTZ cryptosystem and eventually the GRSTZ cryp-
tosystem also has the second failure problem of dim(∩Si) 6= r. It was considered as
a small probability in GRSTZ, but it was large for some parameters. While this can
be easily minimized by adjusting parameters, it comes at the cost of the key size. Our
suggested parameters are optimized for key size and low failure probabilities that we
think best fit.

In the IND-CCA2 conversion, encrypting the same message results in a different ci-
phertext. So in the event of a decryption failure, receiver may ask to resend the
message and this does not pose a threat in the security of McNie.

McNie will be useful for applications such that third party can resend ciphertext several
times without knowing the original message and reducing the failure probability in
decryption. For example, for encrypt/3Q 128 1, the failure probability is 2−17 as
shown in Table 3.1, which can be further reduced to 2−34 by resending the message
twice.

29

Bibliography

[1] Becker, A., Joux, A., May, A. and Meurer, A.: Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding. Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pp. 520-536.
Springer, Berlin, Heidelberg (2012)

[2] Berger, T. and Loidreau, P.: Designing an efficient and secure public-key cryptosys-
tem based on reducible rank codes. In: Canteaut A., Viswanathan K. (eds) Progress
in Cryptology - INDOCRYPT 2004. INDOCRYPT 2004. Lecture Notes in Computer
Science, vol 3348, pp. 218-229 Springer, Berlin, Heidelberg (2004)

[3] Bernstein, D.J., Lange, T., and Peters, C.: Attacking and defending the McEliece
cryptosystem. In Proceedings of the 2nd International Workshop on Post-Quantum
Cryptography, PQCrypto ’08, pp. 31–46, Springer-Verlag, Berlin, Heidelberg (2008)

[4] Buss, J.F., Frandsen, G.S. and Shallit, J.O.: The computational complexity of some
problems of linear algebra. Journal of Computer and System Sciences 58(3), pp. 572-596
(1999)

[5] Chabaud, F. and Stern, J.: The cryptographic security of the syndrome decoding prob-
lem for rank distance codes. ASIACRYPT 1996. LNCS vol. 1163, pp. 368-381. Springer,
Heidelberg (1999)

[6] Delsarte, P.H.: Bilinear Forms over a finite field, with applications to coding theory.
Journal of Combinatorial Theory Series A 25, pp. 226-241 (1978)

[7] Faugère, J.C., El Din, M.S. and Spaenlehauer, P.J.: Computing loci of rank defects of
linear matrices using Gröbner bases and applications to cryptology. Proceedings of the
2010 International Symposium on Symbolic and Algebraic Computation, pp. 257-264.
ACM (2010)

[8] Faugère, J.C., Levy-Dit-Vehel, F. and Perret, L.: Cryptanalysis of MinRank. CRYPTO
2008. LNCS vol. 5157, pp. 280-296. Springer Heidelberg (2008)

[9] Faugère, J.C., Otmani, A., Perret, L., de Portzamparc, F. and Tillich, J.P.: Struc-
tural weakness of compact variants of the McEliece cryptosystem. IEEE International
Symposium on Information Theory - ISIT 2014, pp.1717-1721 (2014)

30

[10] Faugère, J.C., Otmani, A., Perret, L., de Portzamparc, F. and Tillich, J.P.: Structural
cryptanalysis of McEliece schemes with compact keys. Designs, Codes and Cryptogra-
phy 79(1), pp. 87-112 (2016)

[11] Fujisaki, E. and Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. CRYPTO’99. LNCS vol. 1666, pp. 537-554 (1999)

[12] Gabidulin, E. M., Ourivski, A. V., Honary, B., and Ammar, B.: Reducible rank codes
and their applications to cryptography. IEEE Transactions on Information Theory,
49(12), pp. 3289-3293 (2003)

[13] Gabidulin, E.M., Paramonov, A.V. and Tretjakov, O.V.: Ideals over a non-commutative
ring and their application in cryptology. Workshop on the Theory and Application of
of Cryptographic Techniques, pp. 482-489. Springer, Berlin, Heidelberg (1991)

[14] Gaborit, P., Murat, G., Ruatta, O. and Zémor, G.: Low rank parity check codes
and their application to cryptography. The Proceedings of Workshop on Coding and
Cryptography (WCC) 2013, Borgen, Norway, pp. 168-180 (2013)

[15] Gaborit, P., Ruatta, O. and Schrek, J.: On the complexity of the rank syndrome
decoding problem. IEEE Transactions on Information Theory 62(2), pp. 1006-1019
(2016)

[16] Gaborit, P., Ruatta, O., Schrek, J. and Zémor, G.: New results for rank-based cryp-
tography. AFRICACRYPT 2014: Progress in Cryptology. LNCS vol 8469, pp. 1-12.
Springer, Cham (2016)

[17] Gaborit, P., Ruatta, O., Schrek, J., Tillich, J. P., Zémor, G.: Rank based Cryptography:
a credible post-quantum alternative to classical crypto. In NIST 2015: Workshop on
Cybersecurity in a Post-Quantum World 2015 (2015)

[18] Gaborit, P. and Zémor, G.: On the hardness of the decoding and the minimum distance
problems for rank codes. IEEE Transactions on Information Theory 62(12), pp. 7245-
7252 (2016)

[19] Hauteville, A. and Tillich, J.P.: New algorithms for decoding in the rank metric and
an attack on the LRPC cryptosystem. IEEE International Symposium on Information
Theory - ISIT 2015, pp. 2747-2751 (2015)

[20] Hoffstein, J., Pipher, J. and Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. International Algorithmic Number Theory Symposium, pp. 267-288. Springer,
Berlin, Heidelberg (1998)

[21] Kobara, K. and Imai, H.: Semantically secure McEliece public-key cryptosystems-
conversions for McEliece PKC. Public Key Cryptography vol. 1992, pp. 19-35 (2001)

[22] Levy-dit-Vehel, F. and Perret, L.: Algebraic decoding of rank metric codes. Proceedings
of YACC06. (2006)

31

[23] Misoczki, R., Tillich, J. P., Sendrier, N. and Barreto, P. S.: MDPC-McEliece: New
McEliece variants from moderate density parity-check codes. IEEE International Sym-
posium on Information Theory - ISIT 2013, pp. 2069-2073 (2013)

[24] Misoczki, R., and Barreto, P. S.: Compact McEliece keys from Goppa codes. In Selected
Areas in Cryptography, pp. 376–392 (2009)

[25] Ourivski, A.V., and Johansson, T.: New technique for decoding codes in the rank
metric and its cryptography applications. Problems of Information Transmission 38(3),
pp. 237-246 (2002)

[26] Overbeck, R.: A new structural attack for GPT and variants. Mycrypt 2005: Progress
in Cryptology. LNCS vol. 3715, pp. 50-63 (2005)

32

	Introduction
	General Algorithm Specification (Part of 2.B.1)
	Parameter space
	The McNie public-key Encryption
	Encryption
	Decryption
	McNie based on LRPC codes
	Public key encryption using 3-quasi-cyclic LRPC codes
	Public key encryption using 4-quasi-cyclic LRPC codes
	Decoding complexity

	List of Parameter Sets (Part of 2.B.1)
	Parameter set encrypt/3Q_128_1
	Parameter set encrypt/3Q_128_2
	Parameter set encrypt/3Q_192_1
	Parameter set encrypt/3Q_192_2
	Parameter set encrypt/3Q_256_1
	Parameter set encrypt/3Q_256_2
	Parameter set encrypt/4Q_128_1
	Parameter set encrypt/4Q_128_2
	Parameter set encrypt/4Q_192_1
	Parameter set encrypt/4Q_192_2
	Parameter set encrypt/4Q_256_1
	Parameter set encrypt/4Q_256_2

	Design Rationale (Part of 2.B.1)
	Detailed Performance Analysis (2.B.2)
	Description of platform
	Time
	Space
	How parameters affect performance
	Optimizations

	Expected Strength (2.B.4) in General
	Security definitions
	Rationale

	Expected Strength (2.B.4) for Each Parameter Set
	Parameter set encrypt/random
	Parameter set encrypt/3Q_128_1
	Parameter set encrypt/3Q_128_2
	Parameter set encrypt/3Q_192_1
	Parameter set encrypt/3Q_192_2
	Parameter set encrypt/3Q_256_1
	Parameter set encrypt/3Q_256_2
	Parameter set encrypt/4Q_128_1
	Parameter set encrypt/4Q_128_2
	Parameter set encrypt/4Q_192_1
	Parameter set encrypt/4Q_192_2
	Parameter set encrypt/4Q_256_1
	Parameter set encrypt/4Q_256_2

	Analysis of Known Attacks (2.B.5)
	Semantic security: IND-CCA2 conversion
	Practical security
	Direct attacks on the message
	Structural attacks
	Security of McNie

	Advantages and Limitations (2.B.6)

