
A New Public-Key Cryptosystem via Mersenne Numbers

Divesh Aggarwal∗ Antoine Joux† Anupam Prakash‡ Miklos Santha§

November 30, 2017

Abstract

In this work, we propose a new public-key cryptosystem whose security is based on the
computational intractability of the following problem: Given a Mersenne number p = 2n − 1,
where n is a prime, a positive integer h , and two n-bit integers T,R , find two n-bit integers
F, G each of Hamming weight at most h such that T = F · R + G modulo p , under the promise
that they exist.

1 Introduction

1.1 Motivation

Since the seminal work of Diffie and Hellman [DH76] which presented the fundamentals of public-
key cryptography, one of the most important goal of cryptographers has been to construct secure
and practically efficient public-key cryptosystems. Rivest, Shamir, and Adleman [RSA78] came
up with the first practical public-key cryptosystem based on the hardness of factoring integers; it
remains the most popular scheme to date.

Shor [Sho97] gave a quantum algorithm that solves the abelian hidden subgroup problem and
as a result solves both discrete logarithms and factoring. At the time, this was not considered a
real threat against practical cryptographic schemes since quantum computers were far from being
a reality. However, given the recent advances in quantum technologies, there is serious effort in
both the industry and the scientific community to make information security systems resistant to
quantum computing. In fact, the National Institute of Standards and Technology (NIST) is now
beginning to prepare for the transition into quantum-resistant cryptography and has announced
a project where they are accepting submissions for quantum-resistant public-key cryptographic
algorithms [NIS17].

In the recent years, some presumably quantum-safe public-key cryptosystems have been pro-
posed in the literature. Perhaps the most promising among these are those based on the hardness

∗ School of Computing and CQT, NUS.
†Chaire de Cryptologie de la Fondation de l’UPMC; Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6

UMR 7606, Paris, France
‡School of Physical and Mathematical Sciences, Nanyang Technological University and Centre for Quantum Tech-

nologies, National University of Singapore, Singapore.
§IRIF, Université Paris Diderot, CNRS, 75205 Paris, France; and Centre for Quantum Technologies, National

University of Singapore Singapore 117543

1

of lattice problems like Learning with Errors (LWE) based cryptosystems [Reg09], Ring-LWE based
cryptosystems [LPR10] and NTRU [HPS98]. While these cryptosystems have so far resisted any
classical or quantum attacks, it cannot be excluded that such attacks are possible in the future.
In fact, there have been some, albeit unsuccessful, attempts at a quantum algorithm solving the
LWE problem [ES16]. In particular, there is no unifying complexity-theoretic assumption (like
NP-hardness) that relates the difficulty of breaking all these cryptosystems. Thus, it is desirable
to come up with other promising proposals for public-key cryptosystems.

It is worthwhile to note that even though the concept of public-key cryptography was introduced
four decades ago, creating public-key cryptographic schemes is a difficult tasks and until recently,
very few proposals were able to withstand cryptanalysis. Moreover, in practice, systems based on
factoring and discrete logarithms — two problems which collapse in front of quantum computers
— dominated the market. The treat posed by quantum computers is reviving the search for new
cryptosystems. Assessing the true security of such systems is a major cryptanalytic task for the
coming years.

1.2 Our Cryptosystem

Our cryptosystem is based on arithmetic modulo so called Mersenne numbers, i.e., numbers of the
form p = 2n − 1, where n is a prime. These numbers have asimple and extremely useful property:
for any number x modulo p , and y = 2z , where z is a positive integer, x · y is a cyclic shift of
x by z positions and thus the Hamming weight of x is unchanged under multiplication by powers
of 2. Our encryption scheme is based on the simple observation that, given a uniformly random
n-bit string R , when we consider T = F · R + G (mod p), where the binary representation of F
and G modulo p has low Hamming weight, then T appears pseudorandom, i.e., it seems hard to
obtain any non-trivial information about F, G from R, T .

The public-key is chosen to be the pair (R, T), and the secret key is the string F . The encryption
scheme also requires an efficient error correcting code with encoding function E : {0, 1}k → {0, 1}n

and decoding function D : {0, 1}n → {0, 1}k . In order to encrypt a message m ∈ {0, 1}k , the
encryption algorithm chooses three random numbers A, B1, B2 of low Hamming weight modulo p
and then outputs

C := (C1, C2) ,

where C1 = A ·R +B1 , and C2 = (A ·T +B2)⊕E(m) where ⊕ denotes the bitwise XOR operation.
Given the private key, one can compute

C2
∗ := C1 · F = (A · T + B2) − A · G − B2 + B1 · F .

Since A, B1, B2, F, G have low Hamming weight, the Hamming distance between A · T + B2 and
C∗ is expected to be low, and so we get that D(C2 ⊕ C2

∗) is equal to to m with high probability. 2
For more details on our scheme and the underlying security assumption, we refer the reader to
Section 4 and 5.

1.3 Related Work

The Mersenne cryptosystem can be seen as belonging to a family that started with the Ntru
cryptosystem and as been instantiated in many ways [HPS98, Reg09, LPR10, MTSB13]. The

2

common idea behind all these cryptosystems is to work with elements in a ring which are hidden
by adding some small noise. This notion of smallness needs to be somewhat preserved under the
arithmetic operations. At the same time, it should be somewhat unnatural and not fully compatible
with the ring structure in order to lead to hard problems.

Our goal in designing the Mersenne cryptosystem was to find a very simple instantiation of this
paradigm based on the least complicated ring we could find, using only an elementary mathematical
structure. This led us to consider numbers modulo a prime together with the Hamming weight
to measure smallest. In this context, it is natural to restrict ourselves to Mersenne primes, since
reduction modulo such a prime cannot increase Hamming weights.

Our first proposal using this structure [AJPS17] only allowed us to encrypt a single bit at a
time. This inefficiency forced us to choose parameters that turned out to be vulnerable [BCGN17,
dBDJdW17]. In the present proposal, we describe a variation that permits us to encrypt many
bits at a time. This allows in turn to choose much larger parameters which resist the attacks in
[BCGN17] and [dBDJdW17], even in their Groverized quantum form. The best quantum attack
mentioned in these articles has a complexity of the order 2h where h is the Hamming weight we
allow for low Hamming weight numbers. This explains our choice of h to be equal to the desired
quantum security level.

Since it is well-known that cryptosystems of this type can be easily vulnerable to chosen-
ciphertext attacks, it is extremely important to bind them together with a CCA-secure wrapper.
We chose to present the system as a key encapsulation mechanism because this makes the design
of the CCA wrapper very simple.

1.4 Organization of the Paper

In section 2 we introduce some preliminaries about Mersenne primes and security definitions. In
section 3 we provide a semantically secure basic bit by bit encryption scheme. In section 4 we give
a semantically secure blockwise encryption scheme. In section 5, we prove the semantic security
for the scheme presented in section 4. In section 6 we discuss the known cryptanalytic attacks
against this scheme. In section 7 we give the final key encapulation scheme secure against chosen
ciphertext attacks in the random oracle model. In sections 8 and 9 we provide an instantiation for
the error correcting codes used in our encryption/key encapsulation schemes.

2 Preliminaries

Notations. For any distinguisher D that outputs a bit b ∈ {0, 1} , the distinguishing advantage
to distinguish between two random variables X and Y is defined as:

ΔD(X ; Y) := | Pr[D(X) = 1] − Pr[D(Y) = 1]| .

The following lemma is well known and easy to see.

Lemma 1. Given a probabilistic polynomial time computable function f on two random variables
X and Y , if there is a probabilistic polynomial time distinguisher D that distinguishes between
f(X) and f(Y) with advantage δ , then there is a probabilistic polynomial time distinguisher D0

that distinguishes between X and Y with advantage δ .

3

2.1 Mersenne Numbers and Mersenne Primes

Let n be a positive integer, and let p = 2n − 1. When n is a prime, p is called a Mersenne number,
and if 2n − 1 is itself a prime number, then it is called a Mersenne prime. Note that if n is a
composite number of the form n = k` , then 2k − 1 and 2 ̀ − 1 divide p , and hence p is not a prime.
The smallest Mersenne primes are

22 − 1, 23 − 1, 25 − 1, 27 − 1, 213 − 1, 217 − 1, . . .

We denote by Zp the ring of integers modulo p . We index binary strings from right to left, that
is for x ∈ {0, 1}n we write x as xn . . . x1 . The Hamming weight of an n-bit string y is the total
number of 1’s in y and is denoted by Ham(y). Let seq : Zp → {0, 1}n be the map which to x ∈ Zp

associates the binary string seq(x) representing the representative of x in the interval [0, p − 1].
The map int : {0, 1}n → Zp sends a string y into the integer represented by y modulo p . Clearly
seq and int are inverse bijections between Zp and {0, 1}n \ {1n} , and int(1n) = 0. We use this
bijection between Zp and {0, 1}n \ {1n} to define addition and multiplication over {0, 1}n in the
natural way: for y, y0 ∈ {0, 1}n , let y +y0 = seq(int(y)+int(y0)), and let y ·y0 = seq(int(y) · int(y0)).
It is easy to see that both operations remain associative and commutative, and the distributivity
of the multiplication over the addition also holds. We also set (−1) · y = −y = seq(−(int(y)).
Observe that addition is invariant by rotation, that is if rotk(y) denotes the circular rotation of y
by k positions to the left, then rotk(y + y0) = rotk(y) + rotk(y0).

Lemma 2. Let p = 2n − 1. For all A, B ∈ {0, 1}n , we have

1. Ham(A + B) ≤ Ham(A) + Ham(B).

2. Ham(A · B) ≤ Ham(A) · Ham(B).

3. If A 6 then Ham(−A) = n − Ham(A).= 0n

Proof. 1. If A = 1n 6the result is obviously true. When A = 1n , we prove the result by induction
on the Hamming weight of B . If B = 0n the statement is obviously true.

For the induction step we first prove the claim when Ham(B) = 1. Let i be the index on
which B takes the value 1. Since addition is invariant by rotation, we may assume that i = 1
and thus B = 0n−11. A can be written as C01j for some 0 ≤ j ≤ n − 1, and A + B = C10j .
Thus Ham(A + B) = Ham(A) − j + 1 ≤ Ham(A) + 1.

Let Ham(B) = k > 1. Then we can decompose B as B1 + B2 , where Ham(B1) = k − 1 and
Ham(B2) = 1. By the previous claim and the induction hypothesis we get:

Ham(A + B) = Ham((A + B1) + B2) ≤ Ham(A + B1) + 1 ≤ Ham(A) + (k − 1) + 1,

and the result follows.

2. If B = 0n the statement is obviously true. Otherwise, for some k ≥ 1, we can decompose
B as B1 + · · · + Bk , where each Bi has Hamming weight 1, for 1 ≤ i ≤ k . Let ji be
the index of the position where Bi takes the value 1. Then A · Bi = rotji−1(A). Thus
Ham(A · Bi) = Ham(A), and by distributivity we get A · B = A · B1 + · · · + A · Bk . The result
then follows from part (1).

4

3. If A 6 then −A is the binary string obtained fromA by replacing 0’s by 1’s and 1’s by = 0n

0’s.

2.2 Security Definitions

2.2.1 Public-Key Encryption

A public key encryption scheme comprises three algorithms: the key generation algorithm KeyGen ,
the encryption algorithm Enc , and the decryption algorithm Dec . The KeyGen algorithm outputs
a public-key pk , and a secret key sk . The encryption algorithm Enc takes as input a message
m , and pk , and outputs a ciphertext C . The decryption algorithm takes as input a ciphertext C
and sk , and outputs a message m0 or a special symbol ⊥ indicating rejection. We say that the
encryption scheme is 1 − δ correct if for all m , Pr[Dec(sk, Enc(pk,m)) = m] ≥ 1 − δ , where the
probability is over the randomness of pk, sk and the encryption algorithm.

We denote the security parameter by λ . All other parameters including key lengths and cipher-
text size are given as polynomially bounded functions of λ .

Definition 1. The public-key encryption scheme PKE = (KeyGen, Enc, Dec) is said to be semanti-
cally secure if for any probabilistic polynomial time distinguisher and any pair of messages m0,m1

of equal length, given the public key pk , the advantage for distinguishing C0 = Enc(pk,m0) and
poly(|Ci|)C1 = Enc(pk,m1) is at most 2λ for some polynomial poly.

Definition 2. The public-key encryption scheme PKR = (KeyGen, Enc, Dec) is said to be secure
under chosen ciphertext attacks if for any probabilistic polynomial time distinguisher that is given
access to an oracle that decrypts any given ciphertext, the following holds: For any pair of messages
m0,m1 of equal length, given the public key pk , the advantage for distinguishing C0 = Enc(pk,m0)

poly(|Ci|)and C1 = Enc(pk,m1) is at most 2λ for some polynomial poly under the assumption that
the distinguisher does not query the oracle with C0 or C1 .

Note: As usual, these are asymptotic definitions of security for a family of system when λ goes to
infinity. It is also useful to consider concrete definitions of security when giving explicit instances of
a cryptosystem. One difficulty is that concrete security definitions lose the (classical) computation
model independence that is provided by the asymptotic definition thanks to the polynomial factors.
Moreover, concrete definitions easily allow for non uniform adversaries which are excluded from the
asymptotic ones. Basically, the requirement is that, in a given computing model, any adversary
with running time at most T , memory (including code size) at most M and advantage δ should
satisfy:

TM ≤ 2λ .
δ

For simplicity of presentation, through the rest of the paper, we stick to the asymptotic security
definitions.

5

2.2.2 Key Encapsulation Mechanism

A key-encapsulation mechanism (KEM) comprises three algorithms: the key generation algorithm
KeyGen , the encapsulation algorithm Encaps , and the decapsulation algorithm Decaps , and a key
space K . The KeyGen algorithm outputs a public-key pk , and a secret key sk . The encapsulation
algorithm Encaps takes as input a public key pk to produce a ciphertext C and a key K ∈ K . The
decapsulation algorithm Decaps takes as input a ciphertext C and sk , and outputs a key K 0 or a
special symbol ⊥ indicating rejection. We say that the KEM is (1 − δ)-correct if

Pr[Decaps(sk, C) = K : (C, K) ← Encaps(pk)] ≥ 1 − δ ,

where the probability is over the randomness of pk, sk and the encapsulation algorithm.

Again, we denote the security parameter by λ . All other parameters including key lengths and
ciphertext size are given as polynomially bounded functions of λ .

Definition 3. The key-encapsulation mechanism KEM = (KeyGen, Encaps, Decaps) is said to be
semantically secure if for any probabilistic polynomial time distinguisher, given the public key pk ,
the advantage for distinguishing (C, K0) and (C, K1), where (C, K0) ← Encaps(pk) and K1 is

poly(|C|,|K0|)uniform and independent of C is at most
2λ for some polynomial poly.

Definition 4. The key-encapsulation mechanism KEM = (KeyGen, Encaps, Decaps) is said to be
secure under chosen ciphertext attacks if for any probabilistic polynomial time distinguisher that
is given access to the decapsulation oracle and the public key pk , the advantage for distinguishing
(C, K0) and (C, K1), where (C, K0) ← Encaps(pk) and K1 is uniform and independent of C is at

poly(|C|,|K0|)most
2λ for some polynomial poly under the assumption that the distinguisher does not

query the oracle with C .

2.3 Security Assumptions

The semantic security of our encryption scheme is based on the following assumption.

Definition 5. The Mersenne Low Hamming Combination Assumption states that, given an n-bit
Mersenne prime p = 2n − 1 and an integer h such that 4 h2 < n ≤ 16 h2 , the advantage of
any probabilistic polynomial time adversary running in time poly(n) in attempting to distinguish
between �� � � � � �� �� � � ��

R1 R1 B1 R1 R3 , · A + and ,
R2 R2 B2 R2 R4

is at most O(2−h), where R1, R2, R3, R4 are independent and uniformly random n-bit strings, and
A, B , are independently chosen n-bit strings each having Hamming weight h .

We note that the assumption has some striking similarity to the learning with errors assumption
by Regev [Reg09], where A corresponds to the secret, and B1, B2 correspond to the small error.
The Mersenne Low Hamming Combination Assumption, in particular implies that one cannot
obtain any useful information about A, B from the pair (R1, A · R1 + B). Notice that if the pair
(R1, A · R1 + B) is assumed to be pseudorandom, then so is the pair (−R1, A · R1 + B). Since for
a random R1 , −R1 is also random, one cannot obtain any useful information about A, B from

6

the pair (R1, −A · R1 + B). The Mersenne Low Hamming Ratio Assumption is a homogeneous
version of this assumption in the sense that we state that no useful information about A, B can be
obtained from (R1, −A ·R1 +B) given that −A ·R1 +B = 0. It is required for the semantic security
of the bit-by-bit encryption scheme that we describe in the next section, and was introduced in a
previous version of this paper.

Informally, the Mersenne Low Hamming Ratio Assumption states that given an n-bit Mersenne
int(A)prime p = 2n − 1, and an integer h , it is difficult to distinguish between the quotient seq() of int(B)

two independently chosen n-bit strings A and B of Hamming weight h and a uniformly random
n-bit string.

3 Basic bit-by-bit Encryption

In the following, we describe a basic encryption scheme to encrypt a single bit b ∈ {0, 1} .

Key Generation.

• Given the security parameter λ , choose a Mersenne prime p = 2n − 1 and an integer h such � �
nthat h ≥ 2λ and 4 h2 < n ≤ 16 h2 .

• Choose F, G to be two independent n-bit strings chosen uniformly at random from all n-bit
strings of Hamming weight h .

int(F)• Set pk := H = seq(), and sk := G .int(G)

Encryption. The encryption algorithm chooses two independent strings A, B uniformly at random
from all strings with Hamming weight h . A bit b is encrypted as

C = Enc(pk, b) := (−1)b (A · H + B) .

Decryption. The decryption algorithm computes d = Ham(C · G). If d ≤ 2h2 , then output 0; if
d ≥ n − 2h2 , then output 1. Else output ⊥ .
For the correctness of the decryption note that C ·G = (−1)b ·(A·F +B ·G) which, by Lemma 2,

has Hamming weight at most 2h2 if b = 0, and at least n − 2h2 if b = 1.

The basic bit-by-bit encryption scheme can be viewed as a simple proposal for a cryptosys-
tem based on arithmetic modulo the Mersenne primes, however it is not efficient with respect to
ciphertext size.

In the next section, we describe a scheme for encrypting longer message blocks at once.

4 Our Main Semantically Secure Public-Key Cryptosystem

It is reasonable to choose the message block length to be the same as the security parameter in
practice. For this reason, we describe below a scheme for encrypting a message block m ∈ {0, 1}λ .

7

Key Generation.

• Given the security parameter λ , choose a Mersenne prime p = 2n − 1 such that h = λ and
16h2 ≥ n > 10h2 .

• Let F, G to be two independent n-bit strings chosen uniformly at random from all n-bit
strings of Hamming weight h . Let R be a uniformly random n-bit string.

• Set pk := (R, F · R + G) := (R, T), and sk := F .

Encryption. The encryption algorithm chooses three strings A, B1, B2 independently and uni-
formly at random from all strings with Hamming weight h . Let (E , D) be the encoding and
decoding algorithms of an error correcting code that we choose later. The message m ∈ {0, 1}λ is
encrypted as,

Enc(pk,m) := (C1, C2) := (A · R + B1, (A · T + B2) ⊕ E(m)) .

Here E : {0, 1}λ → {0, 1}n is a suitably chosen error correcting code and ⊕ denotes the bitwise
XOR operation.

Decryption. The decryption algorithm computes D((F · C1) ⊕ C2).

In order to say that the scheme is (1 − δ)-correct, we need to choose the error correcting code
such that Pr(C1,C2)←Enc(pk,m)[D((F · C1) ⊕ C2) = m] ≥ 1 − δ , where the probability is over the
randomness of the encryption algorithm and the choice of pk, sk . For concrete instantiations of
error-correcting codes that satisfy this for a small enough δ , see Section 8.

5 Semantic Security of the Cryptosystem

In this section, we prove the semantic security of the PKE scheme in Section 4.

Theorem 1. The encrpytion scheme (Enc, Dec) described in Section 4 is semantically secure under
the Mersenne Low Hamming Combination Assumption.

Proof. In the following, let A, B1, B2, F, G, R, R0, R00, R000 be independently chosen such that A, B1 ,
B2, F, G are chosen uniformly from all strings of Hamming weight h , and R, R0, R00, R000 are uni-
formly random strings. Let T = F · R + G .

In the course of this proof, we are using many polynomial functions. In order to lighten the
notation, all of them are denoted by poly. However, it should be understood that all these functions
are possibly distinct and the reader should mentally replace them by poly1 , poly2 , . . .

By the Mersenne Low Hamming Combination Assumption, for any probabilistic polynomial
time distinguisher D running in time poly(n),

poly(n)
ΔD(R, T ; R, R0) ≤

2λ .

8

Now, from Lemma 1, we have that for any probabilistic polynomial time distinguisher D0

running in time poly(n),

poly(n)
ΔD0 (R, T, A · R + B1, A · T + B2; R, R0, A · R + B1, A · R0 + B2) ≤

2λ .

Again, by the Mersenne Low Hamming Combination Assumption, we have that

poly(n)
ΔD0 (R, R0, A · R + B1, A · R0 + B2 ; R, R0, R00, R000) ≤

2λ .

Using the triangle inequality, we get that

poly(n)
ΔD0 (R, T, A · R + B1, A · T + B2 ; R, R0, R00, R000) ≤

2λ .

This implies that for any message m ,

poly(n) poly(λ)
ΔD0 (R, T, A · R + B1, A · T + B2 ⊕ E(m) ; R, R0, R00, R000) ≤ ≤ ,

2λ 2λ

since R, R0, R00, R000 and R, R0, R00, R000 ⊕E(m) are identically distributed. This implies the required
semantic security. The final inequality comes from the fact that n is polynomial in λ in our choice
of parameters.

6 Analysis of our Security Assumption

6.1 Attempts at Cryptanalysis

In this section, we mention the known approaches to break our security assumption and thereby
mention the conjectured security guarantee for our scheme. For cryptanalysis, it is often more
convenient to talk about search problems. We introduce the following search problem whose solution
would imply an attack on our cryptosystem.

Definition 6 (Mersenne Low Hamming Combination Search Problem). For an n-bit Mersenne
number p = 2n − 1 and an integer h, given tuple (R, F R + G (mod p)) where R is a uniformly
random n-bit string and F, G have Hamming weight h, find F, G.

For the remainder of the paper, we call this problem P . It is easy to see that if one can efficiently
solve the problem P , then one can break the assumption in Definition 5, and hence the security of
our cryptosystem. It is therefore important to study the hardness of this problem.

Hamming Distance Distribution. Let R be a uniformly random n bit string and Y = FR + G
where F, G are chosen uniformly at random from n bit strings with Hamming weight h . A basic
test for the assumption that Y is pseudorandom given R is to check that the distribution of
Ham(R, R0) is close to the distribution of Ham(R, T) where T is a uniformly random n bit string.

If R is a fixed string and X is a uniformly random n bit string, the random variable fR(X) =
Ham(X,R)−n/2√ is approximated by the standard normal random variable N(0, 1). We generated R

n/4

9

at random and then obtained samples Y = FR + G where F, G are uniformly distributed over √
strings of Hamming weight n . A quantile-quantile plot of fR(Yi) against samples from N(0, 1)
is close to a straight line and does not show significant deviations from normality.

One could also perform more advanced statistical tests, such as the NIST suite [RSN+ 01] to
verify the pseudorandomness of Y given R . However, in the context of cryptographic schemes,
such tests only serve as sanity checks and it is preferable to focus on dedicated cryptanalysis.

Weak key attack. Following the appearance of a preliminary version of this paper, [BCGN17]
found a weak key attack on the Mersenne Low Hamming Ratio search problem where given H =

int(F)seq() mod P with F, G having low Hamming weight, the goal is to find F and G .int(G)

The weak key attack of [BCGN17] is based on rational reconstruction. If all the bits of F and√
G are in the right half of the bits, then both F and G are smaller than P and they can easily
be recovered using a continued fraction expansion of H/P .

Generalization using LLL. The authors of the above weak attack also proposed in [BCGN17] a
generalization based on guessing a decomposition of F and G into windows of bits such that in any
window all the ’1’s are on the right. Using such a decompostion and replacing the use of continued
fraction by LLL in relatively small dimension they can recover F and G from any compatible
window decomposition.

A careful analysis of this method and its cost is presented in [dBDJdW17] and concludes that
its running time is 2(2+�)h for some small constant h . For simplicity, we assume that the cost of
this attack is 22h on a classical computer.

Even if this attack was developped for the homogeneous Mersenne Low Hamming Ratio as-
sumption, it is likely that it generalizes to the Mersenne Low Hamming Combination Assumption.
We thus assume that it is the case. To the best of our knowledge, this is the most efficient known
attack on our security assumption and the security parameters proposed in Section 8 have been
revised to withstand it.

Quantum Speedup via Grover’s Algorithm. With access to a quantum computer, one could use
Grover’s algorithm [Gro96] to obtain a quadratic speedup over the above attack.

Note that the attack performs a lattice reduction step for each guess of window decomposition
and concludes that they are correct if the lattice reduction step succeeds. As a consequence, the
Groverized version would requite to perform lattice reduction at the botton of Grover’s to implement
it. This would certainly need very sophisticated universal quantum computers and it may well be
infeasible for near term quantum devices. However, in view of this potential quantum attack and
potential cryptananalytic improvements, we take this attack into account. With this constraint,
our cryptosystem can only be secure if we make sure that h is at least equal to the desired security
level. For simplicity, we just set h = λ and assume that the best possible attack on the Mersenne
Low Hamming Combination problem has complexity at least 2h to derive security estimates in
Section 8.

10

Meet in the middle attack. In [dBDJdW17], an efficient meet-in-the-middle attack that makes use �� ��1/2n−1of locality-sensitive hash functions is also mentioned. Its complexity is O h−1 on classical �� ��1/3n−1computers and O h−1 on quantum machines.

For our choice of parameters, this is much bigger than 2h and thus doesn’t affect the security
level.

Attacking the system if n is not a prime. We mention here that it seems quite important to
choose 2n − 1 to be a prime for our cryptosystem. There is at least a partial attack when n is not
prime. Indeed if n0 divides n , then q = 2n0 − 1 divides p = 2n − 1, and also F, G have Hamming
weight at most h modulo q . Thus, given Y = FR + G mod q , one can try to guess the secret key q� �

n0G modulo q , which can be done in h time using a quantum algorithm. This also reveals F
modulo q and we can likely use it to guess F, G modulo p much faster than the attacks that work
in the prime case.

6.2 Active attacks

Active attacks and/or decryption errors attacks are powerful tools that can be used to attack our
bit-by-bit encryption. We recall that the basic idea of such attacks is to ask for the decryption of
incorrectly formed ciphertext and use the answers to recover information about the key.

For example, incorrect ciphertexts can be obtained by picking a random bitstring, by modifying
a valid one or encrypting in a non conformant way. Here, we review the attack in the context of a
single bit, but it is important to note that the encryption of many bits remain vulnerable to such
attacks, even if plaintext redundancy in the style of OAEP paddings [Sho02] is added. We show in
Section 7 how to withstand such attacks using appropriate checks of ciphertext validity.

For simplicity, assume that we have access to a decryption oracle. Forming pseudo ciphertexts
of the form A∗H + B∗ with A∗ and B∗ with low but not conformant Hamming weights can leak
information about the private key. In particular, one might incrementally add ’1’ bits into B∗ (or
A∗) until decryption transitions from 0 to ⊥ . We did not concretely write down a full working
attack along this line, but it is clear that our encryption scheme would be vulnerable to such
attacks.

7 Mersenne Key Encapsulation Mechanism

Since we have seen in section 6.2 that the semantically secure cryptosystem described in Section 4
cannot offer resistance to chosen-ciphertext attack, we need to integrate it into a more complex
scheme with this ability. A first approach would be to use an existing generic transformation for this
purpose. However, this is not a simple matter, indeed, systems such as OAEP or REACT [OP01]
perform checks at the plaintext level and thus cannot protect against the attack strategy of Sec-
tion 6.2. The Naor-Yung paradigm [NY90, CHK10] would be more suitable but the introduction
of dual-encryption and non-interactive proofs is too costly for our purpose.

In this section, we specify a full cryptosystem that achieves this level of resistance using a
transformation specifically designed for our encryption scheme. We present our cryptosystem as

11

a key encapsulation mechanism. It can be turned into an public key encryption scheme using a
standard transformation.

Let Enc, Dec be the encryption and decryption algorithms as defined in Section 4. In addition
to this, our transformation uses three random oracles H1 , H2 and H3 that all take as input a
λ-bit string and output a uniformly random string of Hamming weight h on n bits. It is quite
easy to construct instantiation for H1 , H2 and H3 using an expandable hash function, we omit
the details here.

Key Generation. The key generation is identical to the semantically secure cryptosystem and
produces pk := R, T := F · R + G , and sk := F where R is a uniformly random n-bit string, and
F, G are chosen uniformly at random from n-bit strings of Hamming weight h .

Key Encapsulation. Given the public key pk = (R, T), the algorithm Encaps proceeds as follows:

1. Pick a uniformly random λ-bit string K .

2. Let A = H1(K), B1 = H2(K), and B2 = H3(K).

3. Let C = (C1, C2), where C1 = A · R + B1 , and C2 = E(K) ⊕ (A · T + B2).

4. Output C, K .

Decapsulation. Given a ciphertext C = (C1, C2), and sk = F , the decapsulation algorithm Decaps
algorithm proceeds as follows:

1. Compute K 0 = D((F · C1) ⊕ C2).

2. Let A0 = H1(K 0), B0 = H2(K 0), and B2 = H3(K 0). 1

3. Let C 0 = (C1
0 , C2

0), where C 0 = A0 · R + B1
0 , and C 0 = E(K 0) ⊕ (A0 · T + B2

0). 1 2

4. If C = C 0 , output K 0 , else output ⊥ .

Theorem 2. Assume that H is a random oracle and that the scheme from Section 4 is semantically
secure. Then the above mentioned key encapsulation mechanism is secure against chosen-ciphertext
attacks.

Proof. We need to show that chosen-ciphertext queries are not helping the adversary, i.e. that they
can be simulated without significantly degrading the adversary’s advantage. Once this is done, the
semantic security suffices to conclude our result.

For this, we consider the behavior of the decapsulation oracle when receiving a ciphertext
C? = (C1

?, C2
?). We want to conclude, that unless the ciphertext was produced by a procedure

functionally equivalent to the encapsulation specification, the decapsulation oracle outputs ⊥ with
overwhelming probability.

The decapsulation oracle, on input C? = (C1
?, C2

?) computes K? = D((F · C1
?) ⊕ C2

?), and then
calls the encapsulation algorithm with input Ke to obtain Ce = (Ce1, Ce2). If Ce = C? , then the eoracle outputs K , and the oracle outputs ⊥ otherwise.

12

eIf the random oracle was previously queried with the seed K by the adversary, then since the eencapsulation procedure is a deterministic function of K , the output of the decapsulation oracle
could be efficiently simulated by the adversary. On the other hand, if the random oracle was never e C1queried with the key K , then we have that e = A · R + B1 , where A = H1(Ke) and B1 = H2(Ke).
Since H2 is a random oracle, A, B are assumed to be independent of everything else, and hence
the probability that the decapsulation oracle does not output ⊥ is at most

Pr[A · R + B1 = C1
?] = Pr[B1 = C1

? − A · R] ≤ �
1 � . n
h

8 Instantiating Error-correcting Code in Our Scheme

In this section, we give a concrete choice of parameters, instantiate error-correcting codes in our
scheme, and analyze the probability of decryption error.

We set the security parameter to λ = 256. This is the one of the most acceptable choices in
the cryptographic community given the current computational powers.

As we discussed in Section 6, the best known efficient attack on our cryptosystem succeeds
runs in time more than O(22h). We assume, somewhat conservatively, that even with future
advancements in cryptanalysis of our scheme and quantum computers, the running time cannot be
improved beyond O(2h). Under this assumption, we set h to be the security parameter λ . Thus,
λ = h = 256. Also, in order to prevent against unforeseen attacks that exploit the factorization
of p , we choose p = 2n − 1 to be a Mersenne prime. Moreover, we want an error corrector code
allowing us to encode k bits, with k close to 256.

8.1 Instantiation based on Deterministic Error-Correction Codes

We also need the following result. it is proved in Section 9.

Theorem 3. Let U be a random variable having uniform distribution on strings of length n. For
every n-bit string x of Hamming weight Δ and for every ε > 0,

Pr[Ham(U, U + x) ≥ 2(1 + ε)Δ] ≤ 2−2Δ(ε−ln(1+ε)) .

We now bound the Hamming distance between F · (A · R + B1) and A · (F · R + G)+ B2 . Using
Theorem 3, and Lemma 2, we get that for any ε ∈ (0, 1),

· (A · R)) ≥ 2h2(1 + ε)] ≤ 2−2h
2(ε−ln(1+ε))Pr[Ham(F · (A · R + B1), F ,

and

+h)(ε−ln(1+ε))Pr[Ham(A · (F · R + G) + B2, F · (A · R)) ≥ 2(h2 + h)(1 + ε)] ≤ 2−(2h
2

.

Using union bound, and triangle inequality, we get that

2−(2h
2−1)(ε−ln(1+ε))Pr[Ham(F · (A · R + B1), A · (F · R + G) + B2) ≥ (4h2 + 2h)(1 + ε)] ≤

2−(2h
2−1)(ε2/2−ε3/3)≤

2−(2h
2−1)(ε2/6)≤ ,

13

where the second to last inequality follows from the Taylor series expansion of ln(1 + ε).

This our scheme is 1−δ -correct if the error correction code (E , D) corrects up to (4h2+2h)(1+ε)
errors where ε is chosen such that 2−(2h

2−1)(ε2/6) < δ .

This implies that by choosing an appropriate error-correction code, we get that for any δ > 0,
and for n = ch2 , for a large enough constant c , our scheme is 1 − δ -correct. In particular, we
can instantiate our scheme with n ≥ 222 = 64h2 , and using Reed-Muller Codes [HCA+ 10], we can
encode a message of length � � � � � �

22 22 22
k = + + = 254

0 1 2

n 8h2
just two bits short of 256 and corrects up to > 8h2 errors. Thus, choosing ε = − 1 gives 8 4h2+2h

an instantiation of our scheme with decryption error as low as 2−h
2/4 .

One can choose more sophisticated error correcting codes like dual BCH codes to obtain a
construction with small decryption error and a smaller n . However, this will likely still be far from
optimal. Notice that the bound on the Hamming weight of F · B1 , A · G , and also the bound on
the Hamming distance in Theorem 3 is not tight, and perhaps it will be difficult to prove much
tighter bounds. Moreover, the error distribution is randomized, which could perhaps lead to even
better error correction as we discuss in the next section.

8.2 Instantiation based on Repetition Codes

In the previous section we considered Reed Muller codes which correct a certain fraction of errors
no matter how these errors are distributed. On the other hand we observe that for our particular
application, the error is “quite” random, and even though this distribution is difficult to mathe-
matically analyze, it is reasonable to conjecture that the error pattern is somewhat similar to the

(4h2+2h)(1+ε)model where each bit is flipped with probability q < . As we stated in the previous n
section, the bounds on the Hamming weight of F · B1 and A · G , and also the bound in Theorem 3

4h2+2hare not tight, which means q will likely be sufficiently smaller than . n

Thus if we choose n > 10h2 , and we encode each bit b of the message m ∈ {0, 1}k using a
repetition code of length ρ (where k · ρ < n) as bb · · · b ∈ {0ρ , 1ρ} , then we expect the number of
bits flipped to be smaller than ρ/2 with very high probability. Thus, we could decrypt correctly by
looking at blocks of length ρ , and decode 1 if the number of 1s in this block of length ρ is more
than ρ/2, and is 0, otherwise.

We analyzed the error probability when we choose n = 756839, k = 256, and ρ = 2048. At the
present time, we are unable to provide a tight rigorous analysis of the decryption error probability.

2−128),In order to give a satisfactory bound (say below we would need either to enlarge the
parameters (as discussed in the previous section) of the scheme again or to replace the very simple
repetition encoding that we are using by a more complex one. One very simple option would be
to combine the repetition encoding with a random permutation of the bits of C2 which are used
to mask the encoded value at encryption time. However, implementing an instantiation of this
random permutation would make the cryptosystem too slow and add an extra layer of complexity
that is really undesirable.

Thus, we propose a heuristic analysis of the decryption error probability. This analysis is
based on the distribution of the Hamming weights that are encountered in the decryption blocks

14

Figure 1: Density distribution of Hamming Weights during decryption

corresponding to a single bit. Since, with our choice of parameters, every bit is encoded into
ρ = 2048 bits, we want to see how often a bit might cross the Hamming weight 1024 boundary.
It is easy to equip the code and count the Hamming weights encountered during decryption. We
performed experiments involving 10000 of each key generation, encapsulation and decapsulation
in order to collect the distribution shown in Figure 1. We see that the distribution looks like a
superposition of two Gaussian distributions one corresponding to encryptions of a 0 and one to
encryptions of a 1. Our heuristic assumption is that the probability of decryption failure is very
close to the one corresponding to these Gaussian distributions. More precisely, we fitted a Gaussian
G0 corresponding to zeroes by searching for best fitting values of p and σ in:

(x−p)21 −G0(x) = √ e 2σ2 .
2σ 2π

Note the extra 1/2 compared to a usual normal distribution. This is due to the fact that half of the
encrypted bits are zeroes and half are ones. By symmetry, the Gaussian distribution corresponding
to ones is simply G1(x) = G0(ρ−x). We found that taking p = 499.6 and σ = 28.64 yields the very
good approximation shown on Figure 2, where the two Gaussian are superposed with the measured
data.

As a consequence, the probability that a single bit crosses the 1024 boundary is approximated
by: � �

1024 − p
< 2−2470.5 erfc √ .

σ 2

Since the encrypted value is formed of 256-bits, the overall probability of decryption failure during
a full decapsulation can be heuristically upper bounded by 2−239 .

15

Figure 2: Density distribution with fitted Gaussians

9 Proof of Theorem 3

Let x be an arbitrary n-bit string of Hamming weight Δ, for some positive integer Δ. We can
decompose x as x1 + . . . xΔ where for all 1 ≤ i ≤ Δ, the string xi has Hamming distance 1 whose
single 1 bit is in position ji , and j1 < . . . < jΔ . Let U = U0 be the random variable which takes
an n-bit binary string with uniform distribution. For 1 ≤ i ≤ Δ, we define the random variables
U i = U i−1 + xi and Yi = Ham(U, U i) − Ham(U, U i−1). The main result in this section is an upper
bound the tail of the random variable measuring the Hamming distance of U and U + x , that is
U and UΔ .

We recall that we want to prove Theorem 3, namely:

Theorem. Let U be a random variable having uniform distribution on strings of length n. For
every n-bit string x of Hamming weight Δ and for every ε > 0,

Pr[Ham(U, U + x) ≥ 2(1 + ε)Δ] ≤ 2−2Δ(ε−ln(1+ε)) .

Proof. The string UΔ is constructed from U in Δ steps, where in every step we add a new string
of Hamming weight 1 to the string obtained in the previous steps. Our first lemma bounds the tail
of the random variable measuring the increase in the Hamming distance in one step.

Lemma 3. For every n-bit string x of Hamming weight Δ,for all integers s, y1, . . . , yΔ−1 , we have

Pr[YΔ ≥ s|Y1 = y1, . . . , YΔ−1 = yΔ−1] ≤ min{1, 2−(s−1)}.

16

Proof. Observe that for s ≤ 1 the statement is trivial, therefore we only consider s ≥ 2. For every
r ≥ s , and for every Δ, we well determine Pr[YΔ = r|Y1, . . . , YΔ−1|Y1 = y1, . . . , YΔ−1 = yΔ−1],
and then we will sum up these values. Let ZΔ−1 denote the event Y1 = y1, . . . , YΔ−1 = yΔ−1 .

Since addition, Hamming distance and the uniform distribution are invariant under rotation,
we can suppose without generality that x1 = 1. Under the condition that U and x don’t have a
1 in the same position, YΔ = 1 with probability 1, and the statement follows. Therefore we can
work under the condition that U and x have a common 1, and we can suppose, again without loss
of generality, that U1 = 1.

First we consider the case Δ = 1. For 2 ≤ r ≤ n , the random variable Y1 is r when Ur = 0
and Ur−1 = . . . = U2 = 1. Thus Pr[Y1 = r] = 2−r+1 .

We suppose now that Δ ≥ 2. We say that i ≤ Δ is a wrap-around step if U i−1 = 1 and n
U i = 0. Observe that in that case U i−1 and U i are different. We define the random variable tΔn 1 1
as n + 1 if i is a wrap-around step for some 1 ≤ i ≤ Δ − 1. Otherwise, let tΔ be the smallest
integer such that all but the first (from right) tΔ bits are the same in U and UΔ−1 . Since the
single 1 bit in xΔ−1 is in position jΔ−1 , it follows from the definition that tΔ ≥ jΔ−1 , and that
UΔ−1 = . . . = UΔ−1 = 0. In addition, if tΔ ≤ n then UΔ−1 = 1. tΔ−1 jΔ−1 tΔ

Case 1: jΔ ≤ tΔ − 1. Since jΔ > jΔ−1 , we have then Uj
Δ
Δ

−1 = 0. Therefore UΔ−1 and UΔ

differ only in one position, implying YΔ is never more than 1.

Case 2: jΔ ≥ tΔ . Then tΔ ≤ n and therefore none of the previous steps was a wrap-around
step. Thus U1

Δ−1 = . . . = U1
1 = UtΔ = 0 and Ut

Δ
Δ

−1 = 1.

Step Δ is a wrap-around step when Uj
Δ
Δ

−1 = . . . = UΔ−1 = 1. When jΔ > tΔ , this is equivalent n

to UjΔ = . . . = Un = 1, and happens with probability 2−(n−jΔ+1) . In that case UΔ−1 and UΔ differ
in positions 1, jΔ . . . , n . Among these positions UΔ and U differ at jΔ, . . . , n but U1

Δ = U1 = 1,
and therefore YΔ = n − jΔ . When jΔ = tΔ , this is equivalent to UjΔ+1 = . . . = Un = 1, and
happens with probability 2−(n−jΔ) . In that case UΔ−1 and UΔ differ in positions 1, jΔ . . . , n .
Among these positions UΔ and U differ at jΔ + 1, . . . , n but UΔ = U1 = 1, and therefore 1
YΔ = n − jΔ − 1.

Step Δ is not a wrap-around step when U`
Δ−1 = 0 and Uj

Δ
Δ

−1 = . . . = UΔ−1 = 1, for some `−1
jΔ ≤ ` ≤ n . This never happens when jΔ = n . When tΔ < jΔ < n , this is equivalent to U` = 0
and UΔ−1 = . . . = UΔ−1 = 1, which happens with probability 2−(`−jΔ+1) . In that case UΔ−1 andjΔ `−1

UΔ differ in positions jΔ, . . . , ` , where UΔ−1 coincides with U and UΔ differs from U , implying
YΔ = ` − jΔ + 1. When jΔ = tΔ , ` must be at least jΔ + 1, and the condition is equivalent to

UΔ−1U` = 0 and UΔ−1 = . . . = = 1, which happens with probability 2−(`−jΔ) . In that case jΔ+1 `−1

UΔ−1 and UΔ differ in positions jΔ +1, . . . , ` , where UΔ−1 coincides with U and UΔ differs from
U , implying YΔ = ` − jΔ .

All together, Pr[YΔ = 6 0 in the following cases. When jΔ > tΔ , we have Pr[YΔ =r|ZΔ−1] =
r|ZΔ−1] = 2−r for r ∈ {2, . . . n − jΔ − 1, n − jΔ +1} and Pr[YΔ = n − jΔ] = 2−(n−jΔ+1) +2−(n−jΔ) .
When jΔ = tΔ , we have Pr[YΔ = r|ZΔ−1] = 2−r for r ∈ {2, . . . n − jΔ − 2, n − jΔ} and Pr[YΔ =
n−jΔ −1|ZΔ−1] = 2−(n−jΔ) +2−(n−jΔ−1) . The statement follows by summing up these probabilities
for r ≥ s .

Observe that Ham(U, U + x) = Y1 + . . . + YΔ . In order to bound the tail of Y1 + . . . + YΔ , we
introduce the independent random variables X1, . . . XΔ , where Xi is a geometric random variable

17

with success probability 1 , for each 1 ≤ i ≤ Δ. This means that by definition, for every positive 2
integer r , we have Pr[Xi = r] = 2−r . The definition immediately implies that for every integer s ,
we also have Pr[Xi ≥ s] = min{1, 2−(s−1)} . Our next lemma states that the tail of Y1 + . . . + YΔ

can be upper bounded by the tail of X1 + . . . + XΔ .

Lemma 4. For every n-bit string x of Hamming weight Δ, for every integer s,

Pr[Y1 + . . . + YΔ ≥ s] ≤ Pr[X1 + . . . + XΔ ≥ s].

Proof. We prove it by induction on Δ. When Δ = 1, from Lemma 3 we have

Pr[Y1 ≥ s] ≤ min{1, 2−(s−1)} = Pr[X1 ≥ s].

When Δ ≥ 2, we have the following series of (in)equalities:

Δ Δ−1X X X
Pr[Yi ≥ s] = Pr[Y1 = y1, . . . , YΔ−1 = yΔ−1] Pr[YΔ ≥ s − yi|Y1 = y1, . . . , YΔ−1 = yΔ−1]

i=1 y1,...,yΔ−1 i=1

Δ−1X X
≤ Pr[Y1 = y1, . . . , YΔ−1 = yΔ−1] Pr[XΔ ≥ s − yi]

y1,...,yΔ−1 i=1

Δ−1X
= Pr[Yi + XΔ ≥ s]

i=1

Δ−1X X
= Pr[Yi ≥ y] Pr[XΔ = s − y]

y i=1

Δ−1X X
≤ Pr[Xi ≥ y] Pr[XΔ = s − y]

y i=1

ΔX
= Pr[Xi ≥ s].

i=1

The first inequality follows from Lemma 3 and the second inequality from the inductive hypothesis.
For the third equality we have used that XΔ is independent from the random variables Yi .

Our final lemma is a special case of Theorem 2.3 in the artice [Jan17] on tail bounds for sums of
geometric and exponential variables.

Lemma 5. [Jan17] Let X1, . . . XΔ be independent geometric random variables with success proba-
1bility 2 , and let ε > 0. Then

ΔX
Pr[Xi ≥ 2(1 + ε)Δ] ≤ 2−2Δ(ε−ln(1+ε)).

i=1

Putting together Lemmas 4 and 5, we immediately obtain our bound on the Hamming distance of
U and UΔ , which concludes the proof.

18

10 Conclusion

In this paper, we propose a simple new public-key encryption scheme. As with many other public-
key cryptosystems, the security of our cryptosystem relies on an unproven assumption introduced
in Definition 5. In Section 6.1, we summarized the known cryptanalytic attacks against this scheme.
Since the proposed cryptosystem is based on a relatively new assumption, it requires more crypt-
analytic effort before one can become reasonably confident about its security.

Acknowledgments

This research was partially funded by the Singapore Ministry of Education and the National Re-
search Foundation, also through the Tier 3 Grant “Random numbers from quantum processes,”
MOE2012-T3-1-009. This work has been supported in part by the European Union’s H2020 Pro-
gramme under grant agreement number ERC-669891 and the French ANR Blanc program under
contract ANR-12-BS02-005 (RDAM project). The second author is grateful to CQT where the
work has started during his visit.

References

[AJPS17] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha. A new public-key
cryptosystem via Mersenne numbers. Cryptology ePrint Archive, Report 2017/481, ver-
sion:20170530.072202, 2017.

[BCGN17] Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache. On the hardness of
the Mersenne Low Hamming Ratio assumption. Technical report, Cryptology ePrint Archive,
2017/522, 2017.

[CHK10] Ronald Cramer, Dennis Hofheinz, and Eike Kiltz. A twist on the Naor-Yung paradigm and
its application to efficient CCA-secure encryption from hard search problems. In Theory
of Cryptography, 7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland,
February 9-11, 2010. Proceedings, pages 146–164, 2010.

[dBDJdW17] Koen de Boer, Léo Ducas, Stacey Jeffery, and Ronald de Wolf. Attacks on the ajps cryptosys-
tem. (Personal communication of the preprint), November 2017.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions on
Information Theory, 22(6):644–654, 1976.

[ES16] Lior Eldar and Peter W. Shor. An efficient quantum algorithm for a variant of the closest
lattice-vector problem. arXiv preprint arXiv:1611.06999, 2016.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.

[HCA+ 10] Prahladh Harsha, Moses Charikar, Matthew Andrews, Sanjeev Arora, Subhash Khot, Dana
Moshkovitz, Lisa Zhang, Ashkan Aazami, Dev Desai, Igor Gorodezky, et al. Limits of approx-
imation algorithms: Pcps and unique games (dimacs tutorial lecture notes). arXiv preprint
arXiv:1002.3864, 2010.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman. NTRU: A ring-based public key cryp-
tosystem. Algorithmic number theory, pages 267–288, 1998.

19

[Jan17] Svante Janson. Tail bounds for sums of geometric and exponential variables. arXiv preprint
arXiv:1709.08157, 2017.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev.
errors over rings. In Annual International Conference
Cryptographic Techniques, pages 1–23. Springer, 2010.

On ideal lattices and learning with
on the Theory and Applications of

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo Barreto. MDPC-McEliece:
New McEliece variants from moderate density parity-check codes. In Information Theory
Proceedings (ISIT), 2013 IEEE International Symposium on, pages 2069–2073. IEEE, 2013.

[NIS17] NIST. Post quantum crypto project. http://csrc.nist.gov/groups/ST/post-quantum-crypto/,
2017. Accessed: 2017-05-19.

[NY90] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext at-
tacks. In Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing,
STOC ’90, pages 427–437, New York, NY, USA, 1990. ACM.

[OP01] Tatsuaki Okamoto and David Pointcheval. REACT: rapid enhanced-security asymmetric cryp-
tosystem transform. In Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at
RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings, pages 159–
175, 2001.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal
of the ACM, 56(6):Art. 34, 40, 2009.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[RSN+ 01] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine Barker. A statistical
test suite for random and pseudorandom number generators for cryptographic applications.
Technical report, DTIC Document, 2001.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM journal on computing, 26(5):1484–1509, 1997.

[Sho02] Victor Shoup. OAEP reconsidered. J. Cryptology, 15(4):223–249, 2002.

20

