
1

Supporting Documentation the Mersenne-756839 KEM

Divesh Aggarwal∗ Antoine Joux† Anupam Prakash‡ Miklos Santha§

November 30, 2017

Notations

The Mersenne-756839 key exchange mechanism specified in the present document relies on the
choice of the following pameters:

n = 756839,

h = 256 and

ρ = 2048.

These being fixed, we define P = 2n − 1 which is a Mersenne prime number. Most operations
occuring in the cryptosystem are basic arithmetic operations modulo P . Numbers modulo P are
represented by their unique representative in [0, P − 1].

nMoreover, we set K = 32 d e and at the computer level, we represent every number x modulo 256
P by an array of K bytes. We choose K as a multiple of 32 in order to ease respecting memory
alignement constraints on modern computers. The array that represents x is denoted by [x] and
starts with the low order byte. Conversely, given a byte array B of length L, we let V (B) denote
its value computed from the formula:

L−1X
V (B) = 28i Bi.

i=0

Thus, we have the relation:
x = V ([x]).

Given a byte b, HW (b) denotes the Hamming weight of b, i.e. the number of bits set to 1 in
its binary expansion. Similarly, given an array of bytes B, HW (B) is its Hamming weight, which
is equal to the sum of the Hamming weight of the individual bytes of B. The notation ⊕ denotes
the exclusive-OR of bytes or arrays of bytes.

∗ School of Computing and CQT, NUS.
†Chaire de Cryptologie de la Fondation de l’UPMC; Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6

UMR 7606, Paris, France
‡School of Physical and Mathematical Sciences, Nanyang Technological University and Centre for Quantum Tech-

nologies, National University of Singapore, Singapore.
§IRIF, Université Paris Diderot, CNRS, 75205 Paris, France; and Centre for Quantum Technologies, National

University of Singapore Singapore 117543

1

2

Given an array of bytes B and two integers i ≤ j, we denote by B[i...j] the sub-array formed
of the bytes Bi up to Bj . Given two array B and C, we denote their concatenation by BkC, it
consists of the bytes of B followed by those of C.

The cryptosystem also makes use of the XOF (expandable output function) provided by NIST
to provide pseudo-randomness from a 256-bit seed. To allow for an easy replacement, we call
them from two wrapper functions InitExpandableState and GetExpandableOutput. Given a
seed, InitExpandableState produces a state. Given a state and an output length in bytes,
GetExpandableOutput produces the requested number of bytes and evolves the state.

Basic routines

The cryptosystem requires the ability to produce numbers x modulo P whose Hamming weights
are precisely equal to h. In order to do that, we write a routine called GenerateHSparseString
that produces the array [x] representing x. Since this routine needs to generate random numbers
modulo values which are close to n, we first provide a subroutine RandomMod that constructs such
numbers using rejection sampling.

Let n0 = 220 be the smallest power of 2 greater than n.

Algorithm 1 Pseudo-Random number modulo m
function RandomMod(m, ExpandableState)

repeat
Get a three bytes array B from GetExpandableOutput (on ExpandableState)��P2Let v = 28iBi mod n0i=0

until v < m
return v

end function

Algorithm 2 Generate sparse byte array in B
procedure GenerateHSparseString(B, h, ExpandableState)

Set the first h bits of the array B to 1
Set the rest of the bits in the array B to 0
Let i = h − 1
while i ≥ 0 do

Let j = RandomMod(n − i, ExpandableState)
Exchange bits of B in position i and i + j
Let i = i − 1

end while
end procedure

2

3 Cryptosystem

Our cryptosystem needs to specify three basic routines: key generation, Kem encapsulation and
Kem decapsulation. For convenience, we give deterministic versions of key generation and Kem en-
capsulation and embed them in functions that includes the randomness generation. The determin-
istic key generation returns an expanded key, containing extra data that is useful for decapsulation
but never used outside of these routines.

3.1 Key pair generation

In the system, the private key is a 256-bit value S which is used as a seed to the XOF function in
order to generate an expanded private key and a public key.

Using S, we pseudo-randomly generate two numbers f and g modulo P of Hamming weight
h and a number R modulo P (without any Hamming weight constraint). Then, we compute
T = (fR + g) mod P .

The private key is the seed S, the public key is the pair (R, T) and the expanded private key
is f .

Algorithm 3 Deterministic key generation from seed in array S
procedure DetKeypair(Array PK, Array LongSK, Seed S)

Call InitExpandableState on S and get ExpandableState
Call GenerateHSparseString on ExpandableState to generate array Af of weight h
Call GenerateHSparseString on ExpandableState to generate array Ag of weight h
Call GetExpandableOutput to generate array AR of K bytes.
Let f = V (Af), g = V (Ag) and R = V (AR) mod P .
Let T = (fR + g) mod P .
Set array PK to [R]k[T]
Set array LongSK to [f]

end procedure

Algorithm 4 Key generation
procedure KeyPair(Array PK, Array SK)

Generate 32 random bytes in Array SK (256 bits)
Call DetKeypair using SK as Seed
Discard LongSK
Return PK and SK as public and private key

end procedure

3.2 Kem encapsulation

Given a public key (R, T) and a seed S to the XOF, we create a Kem ciphertext and a shared secret
as follows. After initialization of the XOF with the S, we first generate 256-bits of shared secret.
Then we generate 3 numbers a, b1 and b2 of Hamming weight h and compute C1 = (aR+b1) mod P
and C2 = (aT + b2) mod P . We form a message M by concatening ρ repeated copies of each bit

3

of S. The ciphertext is the pair (C1, Tr(C2) ⊕ M) where Tr(C2) is a truncation of [C2] to the size
of M .

Algorithm 5 Deterministic KEM encapsulation from seed in array S
procedure DetKemEnc(Array CT, Array SS, Array PK, Seed S)

Call InitExpandableState on S and get ExpandableState
Call GetExpandableOutput to fill 32-byte Array SS with shared secret.
Call GenerateHSparseString on ExpandableState to generate array Aa of weight h
Call GenerateHSparseString on ExpandableState to generate array Ab1 of weight h
Call GenerateHSparseString on ExpandableState to generate array Ab2 of weight h
Let a = V (Aa), b1 = V (Ab1) and b2 = V (Ab2).
Let R = V (PK[0...K−1]) and T = V (PK[K...2K−1])
Let C1 = (aR + b1) mod P .
Let C2 = (aT + b2) mod P .
Allocate M an array of 32ρ bytes
for i from 0 to 255 do

if Bit i of S is 0 then
for j from iρ/8 to (i + 1)ρ/8 − 1 do

Set byte j of M to 0
end for

else
for j from iρ/8 to (i + 1)ρ/8 − 1 do

Set byte j of M to 255
end for

end if
end for � �
Set Array CT to [C1]k [C2][0...32ρ−1] ⊕ M

end procedure

Algorithm 6 Kem Encapsulation routine
procedure DetKemEnc(Array CT, Array SS, Array PK)

Generate 32 random bytes seed S
Call DetKemEnc on CT, SS, PK and S
Return ciphertext CT and shared key SS

end procedure

3.3 Kem decapsulation

Given a private key Sk and a ciphertext, we proceed as follows. We first compute the corresponding
public key (R, T) and expanded private key f . We also extract C1 from the ciphertext. Then,
we compute C 0 = fC1 mod P and perform an exclusive-or with the rest of the ciphertext. By2
construction, C2

0 is close in Hamming distance to the original C2 and we thus obtain a noisy copy
of the message M that was encrypted. Taking majority in each slice of ρ bits, we recover the seed
S used for Kem encapsulation.

4

4

Once S is obtained, we re-encapsulate to recover the shared secret and we check that the freshly
obtained ciphertext is identical to the one we received. If the check fails, the shared key is erased
and an error returned.

Algorithm 7 Kem Decapsulation routine
function KemDec(Array CT, Array SS, Array SK)

Call DetKeypair using SK as Seed, producing PK and LongSK
Let f = V (LongSK), C1 = V (CT[0...K−1])
Let C2

0 = fC1 mod P
Let M = [C2

0][0...32ρ−1] ⊕ CT[K...K+32ρ−1]
Let S0 be a 32-byte string (initially set to 0)
for i from 0 to 255 do

if HW (M[iρ/8...(i+1)ρ/8−1]) > ρ/2 then
Set bit j of S0 to 1

end if
end for
Call DetKemEnc on CT2, SS, PK and S0

if CT and CT2 are identical then
Return Array SS

else
Erase Array SS
Return Error

end if
end function

Note: In order to optimize Kem decapsulation, an implementation may memorize the public
key and expanded private key. This avoids having to recompute them for every subsequent de-
capsulation. In that case, care should be taken to protect the expanded private key, which is as
sensitive as the private key itself.

Design rationales

The Mersenne cryptosystem can be seen as belonging to a family that started with the Ntru
cryptosystem and as been instantiated in many ways [HPS98, Reg09, LPR10, MTSB13]. The
common idea behind all these cryptosystems is to work with elements in a ring which are hidden
by adding some small noise. This notion of smallness needs to be somewhat preserved under the
arithmetic operations. At the same time, it should be somewhat unnatural and not fully compatible
with the ring structure in order to lead to hard problems.

Our goal in designing the Mersenne cryptosystem was to find a very simple instantiation of this
paradigm based on the least complicated ring we could find, using only an elementary mathematical
structure. This led us to consider numbers modulo a prime together with the Hamming weight
to measure smallest. In this context, it is natural to restrict ourselves to Mersenne primes, since
reduction modulo such a prime cannot increase Hamming weights.

Our first proposal using this structure [AJPS17] only allowed us to encrypt a single bit at a
time. This inefficiency forced us to choose parameters that turned out to be vulnerable [BCGN17,

5

dBDJdW17]. In the present proposal, we describe a variation that permits us to encrypt many
bits at a time. This allows in turn to choose much larger parameters which resist the attacks in
[BCGN17] and [dBDJdW17], even in their Groverized quantum form. The best quantum attack
mentioned in these articles has a complexity of the order 2h where h is the Hamming weight we
allow for low Hamming weight numbers. This explains our choice of h to be equal to the desired
quantum security level.

Since it is well-known that cryptosystems of this type can be easily vulnerable to chosen-
ciphertext attacks, it is extremely important to bind them together with a CCA-secure wrapper.
We chose to present the system as a key encapsulation mechanism because this makes the design
of the CCA wrapper very simple.

In addition, like many systems in this family, our system suffers from potential decryption
failures. At the present time, we are unable to provide a tight rigorous analysis of the decryption
error probability. In order to give a satisfactory bound (say below 2−128), we would need either to
enlarge the parameters of the scheme again or to replace the very simple repetition encoding that
we are using by a more complex one. One very simple option would be to combine the repetition
encoding with a random permutation of the bits of C2 with are used to mask the encoded value
at encryption time. This random permutation could be built from C1 using the XOF provided by
NIST. However, both methods would make the cryptosystem too slow and the second one would
add an extra layer of complexity that is really undesirable.

Thus, we propose a heuristic analysis of the decryption error probability. This analysis is
based on the distribution of the Hamming weights that are encountered in the decryption blocks
corresponding to a single bit. Since, with our choice of parameters, every bit is encoded into
ρ = 2048 bits, we want to see how often a bit might cross the Hamming weight 1024 boundary.
It is easy to equip the code and count the Hamming weights encountered during decryption. We
performed experiments involving 10000 of each key generation, encapsulation and decapsulation
in order to collect the distribution shown in Figure 1. We see that the distribution looks like a
superposition of two Gaussian distributions one corresponding to encryptions of a 0 and one to
encryptions of a 1. Our heuristic assumption is that the probability of decryption failure is very
close to the one corresponding to these Gaussian distributions. More precisely, we fitted a Gaussian
G0 corresponding to zeroes by searching for best fitting values of p and σ in:

(x−p)21 −G0(x) = √ e 2σ2 .
2σ 2π

Note the extra 1/2 compared to a usual normal distribution. This is due to the fact that half of the
encrypted bits are zeroes and half are ones. By symmetry, the Gaussian distribution corresponding
to ones is simply G1(x) = G0(ρ − x). We found that taking p = 499.6 and σ = 28.64 yields the very
good approximation shown on Figure 2, where the two Gaussian are superposed with the measured
data.

As a consequence, the probability that a single bit crosses the 1024 boundary is approximated
by: � �

1024 − p
< 2−2470.5 erfc √ .

σ 2

Since the encrypted value is formed of 256-bits, the overall probability of decryption failure during
a full decapsulation can be heuristically upper bounded by 2−239 .

6

Figure 1: Density distribution of Hamming Weights during decryption

Figure 2: Density distribution with fitted Gaussians

7

5 Expected Security Strength

The best known classical cryptanalytic attack on our security assumption as discussed in the next
section runs in time higher than 22h . With access to a quantum computer, one could use Grover’s
algorithm to obtain a quadratic speedup over this attack.

However, it would requite to perform lattice reduction at the botton of Grover’s to implement
this attack. This would certainly need very sophisticated universal quantum computers and it may
well be infeasible for near term quantum devices. Yet, in view of this potential quantum attack
and potential cryptananalytic improvements, we found preferable to take this attack into account.
As a consequence, our cryptosystem can only be secure if we make sure that h is at least equal to
the desired security level. For simplicity, we just set h = λ.

8

6 Known Cryptanalytic Attacks

As mentioned in the paper we provide as supporting documentation, the security of the cryptosys-
tem relies on the following hardness assumption.

Definition 1. The Mersenne Low Hamming Combination Assumption states that, given an n-
bit Mersenne prime p = 2n − 1 and an integer h such that 4 h2 < n ≤ 16 h2, the advantage of
any probabilistic polynomial time adversary running in time poly(n) in attempting to distinguish
between �� � � � � �� �� � � ��

R1 R1 B1 R1 R3 , · A + and ,
R2 R2 B2 R2 R4

is at most O(2−h), where R1, R2, R3, R4 are independent and uniformly random n-bit strings, and
A, B, are independently chosen n-bit strings each having Hamming weight h.

6.1 Attempts at Cryptanalysis

In this section, we mention the known approaches to break our security assumption and thereby
mention the conjectured security guarantee for our scheme. For cryptanalysis, it is often more
convenient to talk about search problems. We introduce the following search problem whose solution
would imply an attack on our cryptosystem.

Definition 2 (Mersenne Low Hamming Combination Search Problem). For an n-bit Mersenne
number p = 2n − 1 and an integer h, given tuple (R, F R + G (mod p)) where R is a uniformly
random n-bit string and F, G have Hamming weight h, find F, G.

For the remainder of the paper, we call this problem P. It is easy to see that if one can efficiently
solve the problem P, then one can break the assumption in Definition 1, and hence the security of
our cryptosystem. It is therefore important to study the hardness of this problem.

Hamming Distance Distribution. Let R be a uniformly random n bit string and Y = FR + G
where F, G are chosen uniformly at random from n bit strings with Hamming weight h. A basic test
for the assumption that Y is pseudorandom given R is to check that the distribution of Ham(R, R0)
is close to the distribution of Ham(R, T) where T is a uniformly random n bit string.

If R is a fixed string and X is a uniformly random n bit string, the random variable fR(X) =
Ham(X,R)−n/2√ is approximated by the standard normal random variable N(0, 1). We generated R at

n/4

random and then obtained samples Y = FR + G where F, G are uniformly distributed over strings √
of Hamming weight n. A quantile-quantile plot of fR(Yi) against samples from N(0, 1) is close
to a straight line and does not show significant deviations from normality.

One could also perform more advanced statistical tests, such as the NIST suite [RSN+01] to
verify the pseudorandomness of Y given R. However, in the context of cryptographic schemes, such
tests only serve as sanity checks and it is preferable to focus on dedicated cryptanalysis.

Weak key attack. Following the appearance of a preliminary version of this paper, [BCGN17]
found a weak key attack on the Mersenne Low Hamming Ratio search problem where given H =

int(F)seq() mod P with F, G having low Hamming weight, the goal is to find F and G.int(G)

9

The weak key attack of [BCGN17] is based on rational reconstruction. If all the bits of F and√
G are in the right half of the bits, then both F and G are smaller than P and they can easily be
recovered using a continued fraction expansion of H/P .

Generalization using LLL. The authors of the above weak attack also proposed in [BCGN17]
a generalization based on guessing a decomposition of F and G into windows of bits such that
in any window all the ’1’s are on the right. Using such a decompostion and replacing the use
of continued fraction by LLL in relatively small dimension they can recover F and G from any
compatible window decomposition.

A careful analysis of this method and its cost is presented in [dBDJdW17] and concludes that
its running time is 2(2+�)h for some small constant h. For simplicity, we assume that the cost of
this attack is 22h on a classical computer.

Even if this attack was developped for the homogeneous Mersenne Low Hamming Ratio as-
sumption, it is likely that it generalizes to the Mersenne Low Hamming Combination Assumption.
We thus assume that it is the case. To the best of our knowledge, this is the most efficient known
attack on our security assumption and the security parameters proposed in Section ?? have been
revised to withstand it.

Quantum Speedup via Grover’s Algorithm. With access to a quantum computer, one could
use Grover’s algorithm [Gro96] to obtain a quadratic speedup over the above attack.

Note that the attack performs a lattice reduction step for each guess of window decomposition
and concludes that they are correct if the lattice reduction step succeeds. As a consequence, the
Groverized version would requite to perform lattice reduction at the botton of Grover’s to implement
it. This would certainly need very sophisticated universal quantum computers and it may well be
infeasible for near term quantum devices. However, in view of this potential quantum attack and
potential cryptananalytic improvements, we take this attack into account. With this constraint,
our cryptosystem can only be secure if we make sure that h is at least equal to the desired security
level. For simplicity, we just set h = λ and assume that the best possible attack on the Mersenne
Low Hamming Combination problem has complexity at least 2h to derive security estimates.

Meet in the middle attack. In [dBDJdW17], an efficient meet-in-the-middle attack that makes �� ��1/2n−1use of locality-sensitive hash functions is also mentioned. Its complexity is O h−1 on classical �� ��1/3n−1computers and O h−1 on quantum machines.

For our choice of parameters, this is much bigger than 2h and thus doesn’t affect the security
level.

Attacking the system if n is not a prime. We mention here that it seems quite important to
choose 2n − 1 to be a prime for our cryptosystem. There is at least a partial attack when n is not
prime. Indeed if n0 divides n, then q = 2n0 − 1 divides p = 2n − 1, and also F, G have Hamming
weight at most h modulo q. Thus, given Y = FR + G mod q, one can try to guess the secret key q� �

n0G modulo q, which can be done in h time using a quantum algorithm. This also reveals F
modulo q and we can likely use it to guess F, G modulo p much faster than the attacks that work
in the prime case.

10

7 Performance analysis

The performance of the system depends on the speed of two main components. The expandable
hash function and the large number arithmetic. The code in our submission uses the XOF provided
by NIST, which turns out to be an important limiting factor during keypair generation. This is
due to the fact that in order to generate R we need to produce n bits of pseudo-random output.
Roughly 3/4 of a Mbit of pseudo-randomness. This could be largely improved by using a different
XOF, however, we understood that it was recommended to stay with the provided XOF. We would
suggest to replace it by a faster function during the evalation period. The limiting factor for
encryption is the speed of large integer multiplication. We simply used the GMP library for that
purpose.

In order to help understanding the relative contributions of these two factors, Table 1 provides
the amount of randomness needed and the number of multiplications required for every operation.
It also gives timing on a MacOs X v10.11.6 laptop equiped with a Intel R CoreTM i7-4980HQ CPU
at 2.80 GHz. These timings have been obtained by compiling the provided code with gcc 6.1.0
and option -Ofast. Note that for optimized decapsulation, since the cost of the first decapsulation
with a given key is the same at for a non-optimized decapsulation, we only provide the cost of
subsequent calls.

Keypair Encaps Decaps Optimized
Pseudo-Random
Kbytes

95 3 98 3

Multiplications 1 2 4 3
Time (ms) 5.3 7.2 16.2 10.5

Table 1: Count of critical operations and Timings on reference platform

The cryptosystem can be easily ported to any architecture that supports multiplication of large
numbers. It would be interesting to study the extend to which hardware multipliers that were
developed for RSA can be re-used with our system.

11

8 Advantages and Limitations

In this paper, we propose a simple new public-key encryption scheme. The only non trivial arith-
metic operations that we require are multiplication and addition for bit strings. As a result, this
scheme is easy to implement on platforms supporting a high precision arithmetic library like GMP.
The GMP library is available across platforms and supports very efficient arithmetic operations, so
it is also easy to implement optimized versions of our scheme.

As with other public-key cryptosystems, the security of our cryptosystem relies on an unproven
assumption. The main disadvantage is that our assumption is quite new and requires more crypt-
analytic effort before one can be reasonably confident about the security it provides.

References

[AJPS17] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha. A new public-key
cryptosystem via mersenne numbers. Cryptology ePrint Archive, Report 2017/481, ver-
sion:20170530.072202, 2017.

[BCGN17] Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache. On the hardness of
the Mersenne Low Hamming Ratio assumption. Technical report, Cryptology ePrint Archive,
2017/522, 2017.

[dBDJdW17] Koen de Boer, Léo Ducas, Stacey Jeffery, and Ronald de Wolf. Attacks on the ajps cryptosys-
tem. (Personal communication of the preprint), November 2017.

[Gro96] Lov K Grover. A fast quantum mechanical algorithm for database search. Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman. Ntru: A ring-based public key cryptosys-
tem. Algorithmic number theory, pages 267–288, 1998.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 1–23. Springer, 2010.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo SLM Barreto. Mdpc-
mceliece: New mceliece variants from moderate density parity-check codes. In Information
Theory Proceedings (ISIT), 2013 IEEE International Symposium on, pages 2069–2073. IEEE,
2013.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal
of the ACM, 56(6):Art. 34, 40, 2009.

[RSN+01] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine Barker. A statistical
test suite for random and pseudorandom number generators for cryptographic applications.
Technical report, DTIC Document, 2001.

12

