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Notations 

The Mersenne-756839 key exchange mechanism specified in the present document relies on the 
choice of the following pameters: 

n = 756839, 

h = 256 and 

ρ = 2048. 

These being fixed, we define P = 2n − 1 which is a Mersenne prime number. Most operations 
occuring in the cryptosystem are basic arithmetic operations modulo P . Numbers modulo P are 
represented by their unique representative in [0, P − 1]. 

nMoreover, we set K = 32 d e and at the computer level, we represent every number x modulo 256 
P by an array of K bytes. We choose K as a multiple of 32 in order to ease respecting memory 
alignement constraints on modern computers. The array that represents x is denoted by [x] and 
starts with the low order byte. Conversely, given a byte array B of length L, we let V (B) denote 
its value computed from the formula: 

L−1X 
V (B) = 28i Bi. 

i=0 

Thus, we have the relation: 
x = V ([x]). 

Given a byte b, HW (b) denotes the Hamming weight of b, i.e. the number of bits set to 1 in 
its binary expansion. Similarly, given an array of bytes B, HW (B) is its Hamming weight, which 
is equal to the sum of the Hamming weight of the individual bytes of B. The notation ⊕ denotes 
the exclusive-OR of bytes or arrays of bytes. 
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Given an array of bytes B and two integers i ≤ j, we denote by B[i...j] the sub-array formed 
of the bytes Bi up to Bj . Given two array B and C, we denote their concatenation by BkC, it 
consists of the bytes of B followed by those of C. 

The cryptosystem also makes use of the XOF (expandable output function) provided by NIST 
to provide pseudo-randomness from a 256-bit seed. To allow for an easy replacement, we call 
them from two wrapper functions InitExpandableState and GetExpandableOutput. Given a 
seed, InitExpandableState produces a state. Given a state and an output length in bytes, 
GetExpandableOutput produces the requested number of bytes and evolves the state. 

Basic routines 

The cryptosystem requires the ability to produce numbers x modulo P whose Hamming weights 
are precisely equal to h. In order to do that, we write a routine called GenerateHSparseString 
that produces the array [x] representing x. Since this routine needs to generate random numbers 
modulo values which are close to n, we first provide a subroutine RandomMod that constructs such 
numbers using rejection sampling. 

Let n0 = 220 be the smallest power of 2 greater than n. 

Algorithm 1 Pseudo-Random number modulo m 
function RandomMod(m, ExpandableState) 

repeat 
Get a three bytes array B from GetExpandableOutput (on ExpandableState)��P2Let v = 28iBi mod n0i=0 

until v < m 
return v 

end function 

Algorithm 2 Generate sparse byte array in B 
procedure GenerateHSparseString(B, h, ExpandableState) 

Set the first h bits of the array B to 1 
Set the rest of the bits in the array B to 0 
Let i = h − 1 
while i ≥ 0 do 

Let j = RandomMod(n − i, ExpandableState) 
Exchange bits of B in position i and i + j 
Let i = i − 1 

end while 
end procedure 
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3 Cryptosystem 

Our cryptosystem needs to specify three basic routines: key generation, Kem encapsulation and 
Kem decapsulation. For convenience, we give deterministic versions of key generation and Kem en-
capsulation and embed them in functions that includes the randomness generation. The determin-
istic key generation returns an expanded key, containing extra data that is useful for decapsulation 
but never used outside of these routines. 

3.1 Key pair generation 

In the system, the private key is a 256-bit value S which is used as a seed to the XOF function in 
order to generate an expanded private key and a public key. 

Using S, we pseudo-randomly generate two numbers f and g modulo P of Hamming weight 
h and a number R modulo P (without any Hamming weight constraint). Then, we compute 
T = (fR + g) mod P . 

The private key is the seed S, the public key is the pair (R, T ) and the expanded private key 
is f . 

Algorithm 3 Deterministic key generation from seed in array S 
procedure DetKeypair(Array PK, Array LongSK, Seed S) 

Call InitExpandableState on S and get ExpandableState 
Call GenerateHSparseString on ExpandableState to generate array Af of weight h 
Call GenerateHSparseString on ExpandableState to generate array Ag of weight h 
Call GetExpandableOutput to generate array AR of K bytes. 
Let f = V (Af ), g = V (Ag) and R = V (AR) mod P . 
Let T = (fR + g) mod P . 
Set array PK to [R]k[T ] 
Set array LongSK to [f ] 

end procedure 

Algorithm 4 Key generation 
procedure KeyPair(Array PK, Array SK) 

Generate 32 random bytes in Array SK (256 bits) 
Call DetKeypair using SK as Seed 
Discard LongSK 
Return PK and SK as public and private key 

end procedure 

3.2 Kem encapsulation 

Given a public key (R, T ) and a seed S to the XOF, we create a Kem ciphertext and a shared secret 
as follows. After initialization of the XOF with the S, we first generate 256-bits of shared secret. 
Then we generate 3 numbers a, b1 and b2 of Hamming weight h and compute C1 = (aR+b1) mod P 
and C2 = (aT + b2) mod P . We form a message M by concatening ρ repeated copies of each bit 
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of S. The ciphertext is the pair (C1, Tr(C2) ⊕ M) where Tr(C2) is a truncation of [C2] to the size 
of M . 

Algorithm 5 Deterministic KEM encapsulation from seed in array S 
procedure DetKemEnc(Array CT, Array SS, Array PK, Seed S) 

Call InitExpandableState on S and get ExpandableState 
Call GetExpandableOutput to fill 32-byte Array SS with shared secret. 
Call GenerateHSparseString on ExpandableState to generate array Aa of weight h 
Call GenerateHSparseString on ExpandableState to generate array Ab1 of weight h 
Call GenerateHSparseString on ExpandableState to generate array Ab2 of weight h 
Let a = V (Aa), b1 = V (Ab1) and b2 = V (Ab2). 
Let R = V (PK[0...K−1]) and T = V (PK[K...2K−1]) 
Let C1 = (aR + b1) mod P . 
Let C2 = (aT + b2) mod P . 
Allocate M an array of 32ρ bytes 
for i from 0 to 255 do 

if Bit i of S is 0 then 
for j from iρ/8 to (i + 1)ρ/8 − 1 do 

Set byte j of M to 0 
end for 

else 
for j from iρ/8 to (i + 1)ρ/8 − 1 do 

Set byte j of M to 255 
end for 

end if 
end for � � 
Set Array CT to [C1]k [C2][0...32ρ−1] ⊕ M 

end procedure 

Algorithm 6 Kem Encapsulation routine 
procedure DetKemEnc(Array CT, Array SS, Array PK) 

Generate 32 random bytes seed S 
Call DetKemEnc on CT, SS, PK and S 
Return ciphertext CT and shared key SS 

end procedure 

3.3 Kem decapsulation 

Given a private key Sk and a ciphertext, we proceed as follows. We first compute the corresponding 
public key (R, T ) and expanded private key f . We also extract C1 from the ciphertext. Then, 
we compute C 0 = fC1 mod P and perform an exclusive-or with the rest of the ciphertext. By2 
construction, C2 

0 is close in Hamming distance to the original C2 and we thus obtain a noisy copy 
of the message M that was encrypted. Taking majority in each slice of ρ bits, we recover the seed 
S used for Kem encapsulation. 
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Once S is obtained, we re-encapsulate to recover the shared secret and we check that the freshly 
obtained ciphertext is identical to the one we received. If the check fails, the shared key is erased 
and an error returned. 

Algorithm 7 Kem Decapsulation routine 
function KemDec(Array CT, Array SS, Array SK) 

Call DetKeypair using SK as Seed, producing PK and LongSK 
Let f = V (LongSK), C1 = V (CT[0...K−1]) 
Let C2 

0 = fC1 mod P 
Let M = [C2

0 ][0...32ρ−1] ⊕ CT[K...K+32ρ−1] 
Let S0 be a 32-byte string (initially set to 0) 
for i from 0 to 255 do 

if HW (M[iρ/8...(i+1)ρ/8−1]) > ρ/2 then 
Set bit j of S0 to 1 

end if 
end for 
Call DetKemEnc on CT2, SS, PK and S0 

if CT and CT2 are identical then 
Return Array SS 

else 
Erase Array SS 
Return Error 

end if 
end function 

Note: In order to optimize Kem decapsulation, an implementation may memorize the public 
key and expanded private key. This avoids having to recompute them for every subsequent de-
capsulation. In that case, care should be taken to protect the expanded private key, which is as 
sensitive as the private key itself. 

Design rationales 

The Mersenne cryptosystem can be seen as belonging to a family that started with the Ntru 
cryptosystem and as been instantiated in many ways [HPS98, Reg09, LPR10, MTSB13]. The 
common idea behind all these cryptosystems is to work with elements in a ring which are hidden 
by adding some small noise. This notion of smallness needs to be somewhat preserved under the 
arithmetic operations. At the same time, it should be somewhat unnatural and not fully compatible 
with the ring structure in order to lead to hard problems. 

Our goal in designing the Mersenne cryptosystem was to find a very simple instantiation of this 
paradigm based on the least complicated ring we could find, using only an elementary mathematical 
structure. This led us to consider numbers modulo a prime together with the Hamming weight 
to measure smallest. In this context, it is natural to restrict ourselves to Mersenne primes, since 
reduction modulo such a prime cannot increase Hamming weights. 

Our first proposal using this structure [AJPS17] only allowed us to encrypt a single bit at a 
time. This inefficiency forced us to choose parameters that turned out to be vulnerable [BCGN17, 
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dBDJdW17]. In the present proposal, we describe a variation that permits us to encrypt many 
bits at a time. This allows in turn to choose much larger parameters which resist the attacks in 
[BCGN17] and [dBDJdW17], even in their Groverized quantum form. The best quantum attack 
mentioned in these articles has a complexity of the order 2h where h is the Hamming weight we 
allow for low Hamming weight numbers. This explains our choice of h to be equal to the desired 
quantum security level. 

Since it is well-known that cryptosystems of this type can be easily vulnerable to chosen-
ciphertext attacks, it is extremely important to bind them together with a CCA-secure wrapper. 
We chose to present the system as a key encapsulation mechanism because this makes the design 
of the CCA wrapper very simple. 

In addition, like many systems in this family, our system suffers from potential decryption 
failures. At the present time, we are unable to provide a tight rigorous analysis of the decryption 
error probability. In order to give a satisfactory bound (say below 2−128), we would need either to 
enlarge the parameters of the scheme again or to replace the very simple repetition encoding that 
we are using by a more complex one. One very simple option would be to combine the repetition 
encoding with a random permutation of the bits of C2 with are used to mask the encoded value 
at encryption time. This random permutation could be built from C1 using the XOF provided by 
NIST. However, both methods would make the cryptosystem too slow and the second one would 
add an extra layer of complexity that is really undesirable. 

Thus, we propose a heuristic analysis of the decryption error probability. This analysis is 
based on the distribution of the Hamming weights that are encountered in the decryption blocks 
corresponding to a single bit. Since, with our choice of parameters, every bit is encoded into 
ρ = 2048 bits, we want to see how often a bit might cross the Hamming weight 1024 boundary. 
It is easy to equip the code and count the Hamming weights encountered during decryption. We 
performed experiments involving 10000 of each key generation, encapsulation and decapsulation 
in order to collect the distribution shown in Figure 1. We see that the distribution looks like a 
superposition of two Gaussian distributions one corresponding to encryptions of a 0 and one to 
encryptions of a 1. Our heuristic assumption is that the probability of decryption failure is very 
close to the one corresponding to these Gaussian distributions. More precisely, we fitted a Gaussian 
G0 corresponding to zeroes by searching for best fitting values of p and σ in: 

(x−p)21 −G0(x) = √ e 2σ2 . 
2σ 2π 

Note the extra 1/2 compared to a usual normal distribution. This is due to the fact that half of the 
encrypted bits are zeroes and half are ones. By symmetry, the Gaussian distribution corresponding 
to ones is simply G1(x) = G0(ρ − x). We found that taking p = 499.6 and σ = 28.64 yields the very 
good approximation shown on Figure 2, where the two Gaussian are superposed with the measured 
data. 

As a consequence, the probability that a single bit crosses the 1024 boundary is approximated 
by: � � 

1024 − p 
< 2−2470.5 erfc √ . 

σ 2 

Since the encrypted value is formed of 256-bits, the overall probability of decryption failure during 
a full decapsulation can be heuristically upper bounded by 2−239 . 
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Figure 1: Density distribution of Hamming Weights during decryption 

Figure 2: Density distribution with fitted Gaussians 
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5 Expected Security Strength 

The best known classical cryptanalytic attack on our security assumption as discussed in the next 
section runs in time higher than 22h . With access to a quantum computer, one could use Grover’s 
algorithm to obtain a quadratic speedup over this attack. 

However, it would requite to perform lattice reduction at the botton of Grover’s to implement 
this attack. This would certainly need very sophisticated universal quantum computers and it may 
well be infeasible for near term quantum devices. Yet, in view of this potential quantum attack 
and potential cryptananalytic improvements, we found preferable to take this attack into account. 
As a consequence, our cryptosystem can only be secure if we make sure that h is at least equal to 
the desired security level. For simplicity, we just set h = λ. 
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6 Known Cryptanalytic Attacks 

As mentioned in the paper we provide as supporting documentation, the security of the cryptosys-
tem relies on the following hardness assumption. 

Definition 1. The Mersenne Low Hamming Combination Assumption states that, given an n-
bit Mersenne prime p = 2n − 1 and an integer h such that 4 h2 < n ≤ 16 h2, the advantage of 
any probabilistic polynomial time adversary running in time poly(n) in attempting to distinguish 
between �� � � � � �� �� � � �� 

R1 R1 B1 R1 R3 , · A + and ,
R2 R2 B2 R2 R4 

is at most O(2−h), where R1, R2, R3, R4 are independent and uniformly random n-bit strings, and 
A, B, are independently chosen n-bit strings each having Hamming weight h. 

6.1 Attempts at Cryptanalysis 

In this section, we mention the known approaches to break our security assumption and thereby 
mention the conjectured security guarantee for our scheme. For cryptanalysis, it is often more 
convenient to talk about search problems. We introduce the following search problem whose solution 
would imply an attack on our cryptosystem. 

Definition 2 (Mersenne Low Hamming Combination Search Problem). For an n-bit Mersenne 
number p = 2n − 1 and an integer h, given tuple (R, F R + G (mod p)) where R is a uniformly 
random n-bit string and F, G have Hamming weight h, find F, G. 

For the remainder of the paper, we call this problem P. It is easy to see that if one can efficiently 
solve the problem P, then one can break the assumption in Definition 1, and hence the security of 
our cryptosystem. It is therefore important to study the hardness of this problem. 

Hamming Distance Distribution. Let R be a uniformly random n bit string and Y = FR + G 
where F, G are chosen uniformly at random from n bit strings with Hamming weight h. A basic test 
for the assumption that Y is pseudorandom given R is to check that the distribution of Ham(R, R0) 
is close to the distribution of Ham(R, T ) where T is a uniformly random n bit string. 

If R is a fixed string and X is a uniformly random n bit string, the random variable fR(X) = 
Ham(X,R)−n/2√ is approximated by the standard normal random variable N(0, 1). We generated R at 

n/4 

random and then obtained samples Y = FR + G where F, G are uniformly distributed over strings √ 
of Hamming weight n. A quantile-quantile plot of fR(Yi) against samples from N(0, 1) is close 
to a straight line and does not show significant deviations from normality. 

One could also perform more advanced statistical tests, such as the NIST suite [RSN+01] to 
verify the pseudorandomness of Y given R. However, in the context of cryptographic schemes, such 
tests only serve as sanity checks and it is preferable to focus on dedicated cryptanalysis. 

Weak key attack. Following the appearance of a preliminary version of this paper, [BCGN17] 
found a weak key attack on the Mersenne Low Hamming Ratio search problem where given H = 

int(F )seq( ) mod P with F, G having low Hamming weight, the goal is to find F and G.int(G) 
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The weak key attack of [BCGN17] is based on rational reconstruction. If all the bits of F and√ 
G are in the right half of the bits, then both F and G are smaller than P and they can easily be 
recovered using a continued fraction expansion of H/P . 

Generalization using LLL. The authors of the above weak attack also proposed in [BCGN17] 
a generalization based on guessing a decomposition of F and G into windows of bits such that 
in any window all the ’1’s are on the right. Using such a decompostion and replacing the use 
of continued fraction by LLL in relatively small dimension they can recover F and G from any 
compatible window decomposition. 

A careful analysis of this method and its cost is presented in [dBDJdW17] and concludes that 
its running time is 2(2+�)h for some small constant h. For simplicity, we assume that the cost of 
this attack is 22h on a classical computer. 

Even if this attack was developped for the homogeneous Mersenne Low Hamming Ratio as-
sumption, it is likely that it generalizes to the Mersenne Low Hamming Combination Assumption. 
We thus assume that it is the case. To the best of our knowledge, this is the most efficient known 
attack on our security assumption and the security parameters proposed in Section ?? have been 
revised to withstand it. 

Quantum Speedup via Grover’s Algorithm. With access to a quantum computer, one could 
use Grover’s algorithm [Gro96] to obtain a quadratic speedup over the above attack. 

Note that the attack performs a lattice reduction step for each guess of window decomposition 
and concludes that they are correct if the lattice reduction step succeeds. As a consequence, the 
Groverized version would requite to perform lattice reduction at the botton of Grover’s to implement 
it. This would certainly need very sophisticated universal quantum computers and it may well be 
infeasible for near term quantum devices. However, in view of this potential quantum attack and 
potential cryptananalytic improvements, we take this attack into account. With this constraint, 
our cryptosystem can only be secure if we make sure that h is at least equal to the desired security 
level. For simplicity, we just set h = λ and assume that the best possible attack on the Mersenne 
Low Hamming Combination problem has complexity at least 2h to derive security estimates. 

Meet in the middle attack. In [dBDJdW17], an efficient meet-in-the-middle attack that makes �� ��1/2n−1use of locality-sensitive hash functions is also mentioned. Its complexity is O h−1 on classical �� ��1/3n−1computers and O h−1 on quantum machines. 

For our choice of parameters, this is much bigger than 2h and thus doesn’t affect the security 
level. 

Attacking the system if n is not a prime. We mention here that it seems quite important to 
choose 2n − 1 to be a prime for our cryptosystem. There is at least a partial attack when n is not 
prime. Indeed if n0 divides n, then q = 2n0 − 1 divides p = 2n − 1, and also F, G have Hamming 
weight at most h modulo q. Thus, given Y = FR + G mod q, one can try to guess the secret key q� � 

n0G modulo q, which can be done in h time using a quantum algorithm. This also reveals F 
modulo q and we can likely use it to guess F, G modulo p much faster than the attacks that work 
in the prime case. 
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7 Performance analysis 

The performance of the system depends on the speed of two main components. The expandable 
hash function and the large number arithmetic. The code in our submission uses the XOF provided 
by NIST, which turns out to be an important limiting factor during keypair generation. This is 
due to the fact that in order to generate R we need to produce n bits of pseudo-random output. 
Roughly 3/4 of a Mbit of pseudo-randomness. This could be largely improved by using a different 
XOF, however, we understood that it was recommended to stay with the provided XOF. We would 
suggest to replace it by a faster function during the evalation period. The limiting factor for 
encryption is the speed of large integer multiplication. We simply used the GMP library for that 
purpose. 

In order to help understanding the relative contributions of these two factors, Table 1 provides 
the amount of randomness needed and the number of multiplications required for every operation. 
It also gives timing on a MacOs X v10.11.6 laptop equiped with a Intel R CoreTM i7-4980HQ CPU 
at 2.80 GHz. These timings have been obtained by compiling the provided code with gcc 6.1.0 
and option -Ofast. Note that for optimized decapsulation, since the cost of the first decapsulation 
with a given key is the same at for a non-optimized decapsulation, we only provide the cost of 
subsequent calls. 

Keypair Encaps Decaps Optimized 
Pseudo-Random 
Kbytes 

95 3 98 3 

Multiplications 1 2 4 3 
Time (ms) 5.3 7.2 16.2 10.5 

Table 1: Count of critical operations and Timings on reference platform 

The cryptosystem can be easily ported to any architecture that supports multiplication of large 
numbers. It would be interesting to study the extend to which hardware multipliers that were 
developed for RSA can be re-used with our system. 
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8 Advantages and Limitations 

In this paper, we propose a simple new public-key encryption scheme. The only non trivial arith-
metic operations that we require are multiplication and addition for bit strings. As a result, this 
scheme is easy to implement on platforms supporting a high precision arithmetic library like GMP. 
The GMP library is available across platforms and supports very efficient arithmetic operations, so 
it is also easy to implement optimized versions of our scheme. 

As with other public-key cryptosystems, the security of our cryptosystem relies on an unproven 
assumption. The main disadvantage is that our assumption is quite new and requires more crypt-
analytic effort before one can be reasonably confident about the security it provides. 
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