
QC-MDPC KEM: A Key

Encapsulation Mechanism

Based on the QC-MDPC

McEliece Encryption Scheme

Principal submitter:

Atsushi Yamada
Atsushi.Yamada@isara.com
+1 877 319-8576
ISARA Corporation
560 Westmount Rd North,
Waterloo, ON, Canada. N2L 0A9

Auxiliary submitters:

Edward Eaton
Kassem Kalach
Philip Lafrance
Alex Parent

Owner: ISARA Corporation
Developer: Alex Parent

Atsushi Yamada Date

c© ISARA Corporation 2017

 Atsushi Yamada November 30 2017

Abstract

This document constitutes the algorithmic specifications and other supporting
documentation regarding an IND-CPA secure ephemeral Key Encapsulation
Mechanism (KEM) based on the Quasi-Cyclic Moderate Density Parity-Check
(QC-MDPC) McEliece encryption scheme. This report is one part of a sub-
mission to the NIST Post-Quantum Cryptography Project. In particular, this
report proposes the KEM described herein for NIST standardization.

ii

Table of Contents

Abstract ii

Table of Contents iii

1 Preliminaries 1

1.1 Definitions and Notation . 3

2 The QC-MDPC McEliece Encryption Scheme 6

2.1 Encryption Scheme Specification 6
2.1.1 Key Generation . 6
2.1.2 Encryption . 8
2.1.3 Decryption . 9
2.1.4 Decoding . 9

3 Security of the QC-MDPC McEliece Encryption Scheme 14

3.1 Theoretical Security Analysis 14
3.2 Analysis Against Known Attacks 15

3.2.1 Grover’s Algorithm . 15
3.2.2 Information Set Decoding 16
3.2.3 Quantum Information Set Decoding 18
3.2.4 Asymptotic Quantum Security 20
3.2.5 Practical Quantum Security 22
3.2.6 Other quantum attacks 23

3.3 Parameter Selection . 24
3.3.1 Deciding the value of n0 24
3.3.2 Suggested Parameter Sets and Expected Security . . . 25
3.3.3 Computing other parameter sets 25

4 The QC-MDPC McEliece KEM 27

4.1 KEM Specification . 27
4.1.1 Key Generation . 27
4.1.2 Encapsulation . 27

iii

4.1.3 Decapsulation . 28
4.2 Ephemeral use of the QC-MDPC McEliece KEM 29
4.3 Static Use of the QC-MDPC McEliece KEM 30

4.3.1 A Key Recovery Attack 30
4.3.2 Constant Time Decoders 32

4.4 Design Rationale . 33

5 Security of the QC-MDPC McEliece KEM 34

5.1 Theoretical Security Analysis 34
5.1.1 Game Definitions . 34
5.1.2 Reduction . 35

5.2 Analysis Against Known Attacks 37
5.3 Parameter Selection and Expected Security 37

6 Performance of the QC-MDPC McEliece KEM 38

6.1 Performance Analysis . 38
6.1.1 Platform . 38
6.1.2 Time . 38
6.1.3 Space . 38

6.2 Advantages and Limitations 39

Appendix A KEM Options 45

A.1 Key Confirmation Value C2 45
A.2 Appending Additonal Hash Information 45

iv

1. Preliminaries

This document profiles the Quasi-Cyclic Moderate Density Parity-Check (QC-
MDPC) McEliece encryption scheme and specifies a simple, efficient, and
secure Key Encapsulation Mechanism (KEM) which utilizes it. In particular,
this document proposes the aforementioned KEM for NIST post-quantum
standardization. The described encryption scheme is already well known and
its security against classical adversaries has been diligently studied by experts
world wide. Moreover, its security against quantum capable adversaries has
been a major focus of study. This document includes an extensive post-
quantum security analysis of both the QC-MDPC encryption scheme and
the associated KEM.

This chapter serves to give the relevant background information on QC-
MDPC McEliece to facilitate understanding of later chapters. We begin by
giving a history of the McEliece encryption scheme.

In 1978 Robert J. McEliece published his seminal paper “A public-key
cryptosystem based on algebraic coding theory” [30] wherein he succinctly
described a secure encryption scheme based on binary Goppa codes (c.f
[31, Chapter 5]). McElieces’ paper was published less than a year after the
famed RSA paper [42]. This is interesting for a few reasons; not the least
of which are the following. Efficiency of the original McEliece system aside,
the concrete security of the scheme has been available for study for nearly
forty years and in that time the scheme has not been broken in the classical
setting. Moreover, over this time a high level of confidence in the scheme’s
security against a quantum adversary has been grown (a rigorous analysis
of the scheme against a quantum capable adversary using state-of-the-art
attacks is given in Chapter 2).

The “test of time” is of paramount importance for the widespread adoption
of any cryptographic protocol. For example, lattice-based, and supersingular
isogeny-based cryptography are relatively young, and so general understand-
ing of the fundamental security of such schemes is immature and is only
studied by a small subset of those who study such things. While this does

1

not directly imply any security vulnerabilities in those younger branches of
cryptography, the more conservative approach is to implement time-tested
algorithms.

Multivariate polynomial-based cryptography is slightly older than lattice-
based and isogeny-based cryptography. The original 1988 scheme by Mat-
sumoto and Imai [27] was broken in 1998 [36], and many subsequent multivari-
ate schemes have also been broken. Not all multivariate schemes are broken,
for example Ding and Schmidt’s scheme Rainbow is believed to be quantum-
secure (for example see [38]). It should be noted however, that Rainbow is a
signature scheme and that this document proposes a KEM.

Although the “hard problems” underlying the security of the original McEliece
cryptosystem have not received the same level of attention as say integer
factorization or discrete logarithms, it has still been studied extensively and
confidence in their difficulty remains high.

It is true that an unsettling number of code-based schemes have been broken
[45, 15, 16, 32, 12]. However, Misoczki in his PhD thesis [33] addresses this
problem and argues in essence that this is perhaps not as important a concern
as some believe. Misoczki argues that the broken McEliece variants are all
based on algebraic codes and that the inherent algebraic structure of such
codes is what so often leads to their insecurity. It is partly for this reason that
Misoczki et. al. published their 2012 paper “MDPC-McEliece: New McEliece
Variants from Moderate Density Parity-Check Codes” [34]. The new schemes
are based on graph-based codes which do not have exploitable algebraic
structures (as argued by Misoczki). The original proposal by McEliece did
not use graph-based codes, but rather a type of algebraic code called (binary)
Goppa Codes. It is concluded then that binary Goppa codes, while still
considered secure, do not seem to be the optimal choice for security. It is one
of the schemes from [34] that this document uses as the work-horse within
the proposed KEM.

The reader may be aware of a recent key recovery attack on QC-MDPC [19].
This attack uses information gained from decoding failures to reconstruct
the secret key. This attack is completely defeated by avoiding the use of
static keys. For this reason, it is suggested that the KEM proposed in
this document be used in an exclusively ephemeral context. However, as
discussed in Section 4.3, the attack requires a large number of decoding
failures, and so the accidental reuse of an ephemeral key does not necessarily
spell disaster.

Below we give the relevant definitions needed to understand the cryptosystems
described herein.

2

1.1 Definitions and Notation

In the following n is a positive integer and Fn
2 is the finite field of 2n elements.

We write log(·) to denote the base-2 logarithm, and ⊕ to denote the bit-wise
exclusive or operation.
Definition 1.1.1 (Hamming weight). Let x = (x0, x1, . . . , xn−1) ∈ Fn

2 be a
binary vector. Then the Hamming weight of a x, denoted wt(x), is given by
wt(x) =

∑n−1
i=0 xi. Equivalently it is the number of non-zero components in

the vector.

In this document we will refer to the Hamming weight simply as weight.
Definition 1.1.2 (Linear Map). Let A, and B be vector spaces over Fn

2 . A
function f : A→ B is a linear map iff for all x, y ∈ A and for all c ∈ F2:

1. f(x + y) = f(x) + f(y), and

2. f(cx) = cf(x).

A more general definition allows for A and B to be vector spaces over
arbitrary fields rather than Fn

2 , but this definition is suitable for the needs of
this document. These linearity properties allow us to discuss linear codes in
the language of vector (sub)spaces as follows.
Definition 1.1.3 (Linear Code). An (n, k)-linear code C is a vector subspace
of Fn

2 such that |C| = 2k.

Vectors c ∈ C are referred to as codewords, whereas we may refer to arbitrary
vectors in Fn

2 simply as words.
Definition 1.1.4 (Distance). For some linear code C we can define a distance
metric d : C × C → Z≥0 as

d(u, v) = wt(u− v).

Definition 1.1.5 (Minimum Distance). The minimum distance of a code C,
denoted d0, is defined as

d0 = min{wt(c) | c ∈ C − {0}}.

Equivalently, this value may be defined as d0 = min{wt(u− v) | u, v ∈ C, u 6=
v}.
Definition 1.1.6 (Code Rate). The code rate is defined as R = k/n. This
value represents the proportion between the bits of codewords that are useful
and those that are redundant or noise. A higher code rate implies better error
detection and correction.

Because linear codes are themselves vector spaces, they can be generated by
a basis. The most convenient representation of such a basis is in matrix form
as follows.

3

Definition 1.1.7 (Generator Matrix). A matrix G ∈ Fk×n
2 is a generator

matrix for an (n, k)-linear code C ⊆ Fn
2 iff

C = {mG | m ∈ Fk
2}.

Definition 1.1.8 (Parity-check Matrix). A matrix H ∈ F
(n−k)×n
2 is a parity-

check matrix for an (n, k)-linear code C ⊆ Fn
2 iff

C = {c ∈ Fn
2 | HcT = 0}.

Definition 1.1.9 (Syndrome). The syndrome s of a vector c ∈ Fn
2 with

respect to a parity-check matrix H ∈ Fr×n
2 is given by sT = HcT ∈ Fr

2.

It follows immediately from the definition of parity-check matrices that if H
is a parity-check matrix for code C, then all codewords c ∈ C have a syndrome
of 0. Since each row of G is itself a codeword it follows that HGT = 0. This
fact is useful because it allows one to efficiently compute a generator matrix
from a parity-check matrix (c.f. Section 2.1.1).

Given an (n, k)-linear code, the value n is usually referred to as the length of
the code, and k is referred to as the dimension. In what follows, the value
r = (n− k) is referred to as the co-dimension of the code.
Definition 1.1.10 (Moderate Density Parity-Check (MDPC) code). An
(n, r, w)-MDPC code is a linear code of length n and co-dimension r whose
parity-check matrix has a constant weight w ∈ O

(

√

n log(n)
)

.
Definition 1.1.11 (Quasi-Cyclic code). A linear code C ⊆ Fn

2 is quasi-cyclic
if there exists a positive integer n0 ∈ {1, 2, . . . , n − 1}1 such that for every
codeword c ∈ C the word c′ obtained from a right cyclic shift of c by n0

positions is itself a codeword of C.
This brings us to our final definition of this section.
Definition 1.1.12 (QC-MDPC code). An (n, r, w)-linear code is a Quasi-
Cyclic Moderate Density Parity-Check (QC-MDPC) code if it is both an
MDPC code and a Quasi-Cyclic code.

Now we make some important remarks.
Remark 1.1.1. When n = n0r for some positive integer r, then it is possible
to construct both the parity-check matrix and the generator matrix so that
they are composed of square, r×r circulant blocks. Hence, exactly one row (or
column) from each circulant block is needed to be stored in order to describe
the matrices in their entirety.
Remark 1.1.2. The algebra of r× r circulant matrices is isomorphic to that
of polynomials over F2[x]/〈xr−1〉, the ring of polynomials modulo xr−1 over

1Most articles omit this constraint on n0. However, we contend that this constraint is
important or else, taking n0 = n implies that every code is Quasi-Cyclic.

4

F2. This isomorphism allows for efficient computations because, it allows
one to use efficient polynomial multiplication instead of more bulky matrix
multiplication algorithms within the protocols.

The remainder of this document is organized as follows.

Chapter 2 completely specifies the QC-MDPC McEliece encryption scheme;
including key generation, encryption, and decryption, and discusses require-
ments of the decoding algorithm used in decryption. Chapter 3 includes the
security reduction for the encryption scheme, as well as an analysis of the
scheme’s security against state-of-the-art (and generic) classical and quan-
tum attacks, and proposes parameter sets accordingly. Chapters 4, and 5
accomplish the same as the second through third chapters, but for the KEM
as opposed to the encryption scheme. Chapter 6 discusses the performance
of the proposed KEM.

5

2. The QC-MDPC McEliece Encryp-

tion Scheme

2.1 Encryption Scheme Specification

This section fully describes the QC-MDPC McEliece encryption scheme.
Each algorithm is described in a fairly generic way so as to facilitate their
understanding. Possible optimizations and speedups are briefly discussed for
each of the provided algorithms. For a more detailed description of possible
optimizations, see the accompanying optimized implementation included with
this submission.

2.1.1 Key Generation

To construct an (n, r, w)-QC-MDPC code is to construct its parity-check
matrix. This document is only concerned with the case when n = n0r where
r is prime. In this case the parity-check matrix will have the form

H = [H0|H1| . . . |Hn0−1],

where each Hi is itself a circulant r × r matrix. To construct such a parity-
check matrix its first row need only be generated. This is done by randomly

selecting a length n binary vector h of weight w ∈ O
(

√

n log(n)
)

and parsing

h into n0 length r substrings as follows:

h = [(h0, h1, . . . , hn0−1), (hn0
, hn0+1, . . . , h2n0−1), . . . , (h(r−1)n0

, h(r−1)n0+1, . . . , hrn0−1)].

Subvector (hin0
, . . . , h(i+1)n0−1) is the first row of Hi - with the rest of Hi

obtained by sequential cyclic shifts of its first row. In this way, each of these
subvectors have their own weight wi and w =

∑n0−1
i=0 wi.

By applying the fact that HGT = 0 for a generator matrix G and its parity-
check matrix H together with the assumption that Hn0−1 is invertible, one

6

can calculate a generator matrix in reduced row-echelon form as G = [Ik | Q]
where,

Q =

(H−1
n0−1H0)T

(H−1
n0−1H1)T

...

(H−1
n0−1Hn0−2)T

and Ik is the k × k identity matrix; recalling that r = n− k. If Hn0−1 is not
invertible then it must be recalculated. However, in practice there is a high
probability that it will be invertible.

There is a subtlety here that merits mentioning. The generator matrix G
is not in general a generator matrix for a quasi-cyclic code, but rather it
is isomorphic to such a generator matrix. However, as it turns out, the
representation of G given above is suitable for the needs of the cryptosystem
and furthermore, using this representation of G does not degrade security at
all. The particular details are not important for this document and are thus
omitted, but essentially to obtain a generator matrix G′ for a QC-MDPC
code from a matrix G as above, one must interleave the columns of G (a
simple permutation).

Note that indeed G is a k×n matrix and that for any vector x ∈ Fk
2, the first

k bits of xG exactly equal x itself. We can now present the key generation
algorithm for QC-MDPC McEliece.

Algorithm 1 QCMDPC.KeyGen

Input: Security parameter n, weight w, co-dimension r, and error-correction
threshold t.

Output: Public key G, secret key H.

1: Generate a parity-check matrix H ∈ Fr×n
2 of a t-error-correcting (n, r, w)-

QC-MDPC code as described above.
2: Calculate G = [Ik | Q] as described above.
3: return (G, H).

The value t in the above depends on the decoding algorithm employed. See
Section 2.1.4 for more details.

Key sizes: A QC-MDPC McEliece public key has size nk. However, the
entirety of G need not necessarily be stored. As G always contains the
k × k identity matrix, only the submatrix Q need be stored. The size of
Q is k(n− k) = k2. However, by using the fact that the block (H−1

n0−1Hi)
T

are themselves circulant matrices the storage requirements can be further
reduced as one only need store the first rows. In total then, this requires

7

(n0 − 1)k bits of storage. In the case where n0 = 2 (the case this document
is most concerned with), only k bits need be stored. Similarly the secret key
H is nk bits, but only the first row (consisting of n bits), or a secret seed
used to generate the row need be stored.

Run time: In this generic way, computation of the parity-check matrix
requires producing n bits of randomness, parsing said randomness into n0

substrings, and performing n0k subsequent cyclic shifts. As we discuss in
Section [what section?], n0 is typically taken to be 2, and so the value of
k largely determines this cost. Moreover, the entire secret key need not be
generated because, the first row provides enough information to efficiently
generate the corresponding generator matrix. Computation of the generator
matrix requires one r × r matrix inversion, and n0 − 1 multiplications and
transpositions of r×r matrices. If we make the highly conservative assumption
that matrix inversion and each matrix multiplication takes r3 operations,
computation of G takes approximately n0r3 operations (the cost of the
transpositions can be safely excluded from this analysis). In actuality, an
optimized implementation of this algorithm would run in time roughly linear
in r.

2.1.2 Encryption

Encryption in the QC-MDPC McEliece scheme can be succinctly described
as a matrix multiplication followed by an xor with an error vector. A generic
description of this algorithm is described below.

Algorithm 2 QCMDPC.Encrypt

Input: Public key G, message m ∈ Fk
2, and error vector e ∈ Fk

2 of weight at
most t.

Output: Ciphertext c ∈ Fn
2 .

1: c← mG⊕ e.
2: return c.

Observe that this algorithm takes an error vector e as input. Most authors
calculate the error vector within the encryption algorithm. However, this
document does not propose QC-MDPC McEliece encryption for standardiza-
tion, but rather an associated KEM. As such (and as the reader will see in
Chapter 5) this variant of QC-MDPC encryption is desirable for the needs of
this document.

Ciphertext size A ciphertext in this scheme is a compact n bits.

8

Run time The matrix/vector multiplication can be done very quickly; for
example, recall that G = [Ik | Q], and so the first k elements of this
mG exactly equals m hence no computation is required to compute
those bits. The xor operation takes trivial amounts of resources.

2.1.3 Decryption

Decryption requires as a subroutine a t-error-correcting QC-MDPC decoding
algorithm with knowledge of the secret key H. Denote by this decoder ΨH .
For further details on this decoder, see Section 2.1.4.

Algorithm 3 QCMDPC.Decrypt

Input: Ciphertext c ∈ Fn
2 and dimension k.

Output: Vector m ∈ Fk
2 such that d(mG, c) ≤ t, or ⊥.

1: Compute mG = ΨH(c) = ΨH(mG⊕ e). If this step fails output ⊥.
2: Extract m as the first k bits of mG.
3: return m.

Run time The decryption algorithm takes time and resources essentially
equal to that of the decoding algorithm.

2.1.4 Decoding

When it comes to decoding algorithms for (QC-)MDPC codes, one has a
variety of options. There are two basic families of decoding algorithms:
those of the Berlekamp et. al. variety [5] (note that McEliece himself was an
author of that paper), and those of the Gallager variety [14]. For reasons dis-
cussed below, this submission employs a Gallager styled decoding algorithm;
henceforth referred to as a bit-flipping algorithm.

The style of decoder put forth by Berlkamp et. al. does provide a lower
decoding failure rate (more on failure rates later) which is desirable, but this
advantage is countered by the fact that those styles of decoders are much
more computationally complex and involve tedious floating-point arithmetic.
On the other hand, bit-flipping algorithms are much more computationally
simple.

Maurich et. al. in [28, Section 3.1] give a good high-level description of the
guiding principles of bit-flipping algorithms. We reiterate this description
below.

1. Compute the syndrome of the received ciphertext sT = HcT .

9

2. Count the number of unsatisfied parity-check equations (c.f Defini-
tion 2.1.2) denoted #upc associated with each ciphertext bit.

3. Flip each ciphertext bit that violates more than b equations (for some
pre-determined positive integer b).

4. Recompute the syndrome of the updated ciphertext.

5. Repeat this process until one of the following events occur:

(a) The syndrome computed equals 0, in which case the decoder is
successful and outputs the corrected code.

(b) A pre-defined maximum number of iterations is reached, in which
case the decoder fails and outputs ⊥.

To understand how and why a bit-flipping algorithm works, we find it
necessary to first discuss it in the languages of Graph Theory and Linear
Algebra. This is done below.
Definition 2.1.1 (Tanner Graph). Let H be a k×n parity-check matrix for
a QC-MDPC code C. Then the Tanner graph of H is the bipartite graph1

(with partite sets A and B) obtained from H as follows.

• A contains one node for each row of H. These nodes are denoted as
f0, f1, . . . , fk−1,

• B contains one node for each column of H. These nodes are denoted
as c0, c1, . . . , cn−1.

• Vertex fi is adjacent to (has an edge between) cj if and only if the ijth

entry of H equals 1.

The vertices of A are called check nodes, and the vertices of B are called
variable nodes.

The Tanner graph is due to (as the name somewhat suggests) Michael Tanner
in [47]. In what follows we denote the neighbours (vertices with whom an
edge is shared) of vertex fi by ci0

, ci1
, . . . , ciw−1

. Note that the notation cj

is also used to refer to the jth coordinate of a ciphertext c (which we are
presumably trying to decode); this notation is intentional. Moreover, as fi

corresponds to a row of H, which has weight w, it follows that each fi indeed
has w neighbours. The variable nodes can themselves be thought of as the
current coordinates of the ciphertext. As their name suggests, these variables
may vary (i.e., change) as the algorithm iterates. Below is an important
definition which highlights this fact.

1That is its vertex set V set can be divided into disjoint sets A and B such that no two
vertices in A (resp. B) have an edge joining them.

10

Definition 2.1.2 (Parity-check equation). Let fi be a check vertex, and let
variable node cij

be a neighbour of fi. Then the parity-check equation for
the pair (fi, cij

) is the equation:

⊕

ℓ6=j

ciℓ
= cij

.

If equality fails to hold, then that parity-check equation is called unsatisfied
by cij

.

More generally, we may refer simply to “the parity-check equation for fi” as
⊕

ℓ ciℓ
= 0 if we do not need to specify a particular cij

. However, if we are
asking if a particular cij

satisfies the equation, we will generally put that
variable on the right hand side.

Below is a general framework for a graph-based bit-flipping algorithm. This
framework assumes as input a parity-check matrix H, and a ciphertext c
which it is trying to decode. This framework is based on that found in [25,
Section 3.1].

1. Each variable node cj sends to each of its neighbouring check nodes the
value “it believes is the correct value” for bit cj . The only information
node cj has at this step is the jth bit of c. Thus, node cj forwards this
information to its neighbours.

2. In the second step, each check node computes and sends a response to
each of its neighbours. The check nodes send to their neighbours the
values they “believe” to be the correct values for them (the variable
nodes). The check nodes have more information at this step than
the variable nodes had in the previous step, and so this calculation
is slightly less trivial. For each neighbour cij

of fi, node fi sends the
value cij

would need to be in order to satisfy the (fi, cij
)-parity-check

equation to node cij
.

3. In the third step, each variable node uses the data they have sent and
received to determine which bits in the ciphertext have been corrupted.
At this point, there are many different ways to proceed with bit flipping.

4. If all parity-check equations are satisfied by the current values of the
cj then the algorithm terminates and outputs the current ciphertext;
else, return to step 2.

At a high-level, the algorithm essentially finds and flips the bits of c which
are most likely to be corrupted.

The last two steps in the above offer some wiggle room so to speak. In
particular, what methods can the variable nodes employ to decide if they

11

should be flipped or not? One way is by majority rule; the check node
assigns to itself whatever value is most common amongst the data it has
(guessing in the case of a tie). More often though, this decision is based on
some pre-determined (but not necessarily fixed) threshold. For example, only
flip bits who fail to satisfy “too many” parity-check equations. This second
method is essentially the one proposed by Misoczki (et. al.) and Gallagher
[34, 33, 14]. Moreover, one does not need to flip every bit at the same time.
Some decoding algorithms only flip one bit at a time, then recomputes the
syndrome, and then compares that updated syndrome to 0 before flipping
the next bit (and terminates if equality holds).

Now we translate this graph theoretic approach into the language of Coding
Theory. Observe that since a word is a codeword if and only if it is annihilated
(mapped to 0) by the parity-check matrix, then if we recompute the syndrome
after flipping some bits and the result is 0 it must be the case that the
ciphertext was corrected to a valid codeword. Moreover, the weight of the
error vector used in encryption is such that the decoding algorithm (if it
outputs anything except ⊥) outputs the correct, uncorrupted message by
using Theorem 2.1.1 below (recalling Definition 1.1.5).
Theorem 2.1.1 ([26]). A linear code with minimum distance d0 can correct
(decode) up to ⌊d0−1

2 ⌋ errors.

Thus, a necessary condition for a ciphertext to be properly decoded is that
the weight t of the error vector is at most ⌊d0−1

2 ⌋. The intuition here is

that so long as not more than ⌊d0−1
2 ⌋ bits are flipped during the encoding

process then the correct vector is still the closest codeword. Moreover, if the
computed syndrome is 0, then we are guaranteed that we have found that
correct vector.

In general, calculating the minimum distance of a binary code is NP-hard
[48]. Hence, one runs into a problem when performing parameter selection,
namely, how does one select a secure value t ≤ ⌊d0−1

2 ⌋? It turns out that
there are some reliable heuristic techniques one can employ for this purpose.
One option is to work from Gallager’s own analysis from [14] to establish an
upper bound on the error correction capability of the code. Alternatively,
it is possible to estimate this value instead in terms of the decoding failure
rate (DFR) of the code; which can itself be estimated reliably by running
the algorithm many times.

How does the concept of a parity-check equation translate in terms of matrix
multiplication? Recall that fi and cj are adjacent if and only if the jth entry
in the ith row of H is 1. Hence, the parity check equation

⊕

ℓ ciℓ
= 0 for

check node fi can equivalently be called the parity-check equation for row
i, and expressed as Ric

T = 0, where Ri is the ith row of H. Hence, all

12

parity-check equations are embedded in the equation HcT = 0. In other
words, non-zero coordinates in the syndrome of the ciphertext correspond to
unsatisfied parity-check equations.

This document does not propose any particular decoding algorithm for
standardization. This is because a standardized decoding algorithm is not
required for interoperability and is hence left as a decision to be made on an
implementation basis.

13

3. Security of the QC-MDPC McEliece

Encryption Scheme

This chapter gives a rather complete analysis of the security of the QC-
MDPC McEliece encryption scheme. We begin the chapter by presenting
and discussing the theoretical proof of security for the scheme in Section 3.1.
In Section 3.2 we move on to the more concrete security considerations
of the scheme; including in-depth analyses of the various known attacks
against the encryption scheme. We conclude this chapter in Section 3.3
by giving a collection of suggested parameter sets, as well as by giving a
simple and general method for computing parameter sets providing s-bits of
security.

3.1 Theoretical Security Analysis

Misoczki et. al. in [34] give a theoretical proof of security for the QC-MDPC
McEliece encryption scheme. We restate the result here, but refer the reader
to the source material for a more complete proof.

First we give some notation, then define three “hard problems”.

• Fn,r,w is a t-error correcting family of (n, r, w)-QC-MDPC codes.

• Kn,r,w is the key space of Fn,r,w .

• Hn,r is the set of all full-rank, circulant block matrices in Fr×n
2 . Note

that necessarily Kn,r,w (Hn,r.

• Sn(0, t) is the n-dimensional sphere centered around 0 with radius t.

The Code Distinguishing Problem: Given parameters Hn,r,Kn,r,w, and a
problem instance H ∈ Hn,r, decide if H ∈ Kn,r,w.

Codeword Existence Problem: Given parameters Hn,r and w ∈ Z+ and a
problem instance H ∈ Hn,r, decide if there exists a codeword of weight at

14

most w in the code generated by H.

The Computational Syndrome Decoding Problem: Given parameters Hn,r

and t ∈ Z+ and a problem instance (H, s) ∈ Hn,r × Fr
2, produce a vector

e ∈ Sn(0, t) such that eHT = s.

We state the following result from [34, Section 5].
Proposition 3.1.1. For parameters Hn,r, and Kn,r,w and assuming that
solving the code distinguishing problem for these parameter is not easier
than solving the codeword existence problem for parameters Hn,r and w then
breaking the QC-MDPC McEliece encryption scheme is not easier than solving
the computational syndrome decoding problem for a random quasi-cyclic linear
code.

3.2 Analysis Against Known Attacks

This section describes and discusses the known attacks against the QC-
MDPC McEliece encryption scheme. This of course includes a variety of
classical attacks, quantum attacks, and side-channel attacks. Included in
this section is discussions on the complexity and efficacy of these attacks as
well as methods to prevent the attacks or reduce their effects. We begin this
crucial discussion by giving a quick review of Grover’s algorithm [18] and its
generalized variant [7].

3.2.1 Grover’s Algorithm

There are several possible interpretations of the problem which Grover’s
algorithm solves. The most general one may be computing a black-box
Boolean function; meaning an unstructured search. This is equivalent to
computing the root of a particular function if such a root exists. More
formally, suppose one has an oracle f : {0, 1}n → {0, 1}m (also called a black-
box function) and an image y∗ with the promise that there exists one input
x such that f(x) = y∗. The problem is to find the solution x. We can
reformulate the problem using a predicate P (x):

P (x) =

{

1 if f(x) = y∗

0 otherwise

Let N = 2n be the size of the search space or domain. Classically, there is no
better strategy to find this x than trying distinct inputs at random until an
x is found such that f(x) = y∗. This requires trying N/2 inputs on average

15

and N − 1 in the worst case. However, Grover’s algorithm [18] optimally
solves this problem in

O(
√

N)

quantum queries to f with bounded-error probability O(1/N). A query
refers to the evaluation of f on some input. Therefore, Grover’s algorithm
is provably more efficient than any classical algorithm for search problems
modelled as a black-box.

When the problem has s solutions, then a generalized version of Grover’s
algorithm can find a solution in

O(
√

N/s)

queries to the black-box function. This variant is essential in this work.
Again, this is optimal [7]. Readers interested in more details are referred to
[23, 41, 21].
Theorem 3.2.1 (Quadratic speed-up with known p [7]). Let A be any
quantum algorithm that uses no measurements, and let f : Z → {0, 1} be any
Boolean function. Let p > 0 denote the initial success probability of A. Then
there exists a quantum algorithm that finds a solution with certainty using a
number of applications of A and A−1 which is in Θ(1/

√
p).

3.2.2 Information Set Decoding

There are two main approaches for attacking code-based cryptosystems:
(1) private-key recovery; and (2) message recovery from the ciphertext without
the private key. The best algorithm currently known for all these attacks is
Information Set Decoding (ISD), which was originally proposed by Prange
[39]. Next, we explain in detail how this algorithm works by applying it to
QC-MDPC McEliece.

Consider an (n, k, t)-linear code, and let c = mG+e be a given n-bit ciphertext.
Let I = {i1, i2, . . . , ik} be a k-subset of {1, 2, ..., n}. Let vI = vi1

vi2
. . . vik

be the vector consisting of the k components of a vector v ∈ Fn
2 indexed

by I, and π1 : Fn
2 → Fk

2 the projection that performs this operation. Let
GI = Gi1

Gi2
. . . Gik

be the submatrix consisting of the k columns i1, i2, . . . , ik

of G. Finally, π2 denotes the projections that sends G to GI . Since c = mG+e

16

is equivalent to the system of equations

c1 = mG1 + e1 = m1g11 + m2g21 + · · ·+ mkgk1 + e1

c2 = mG2 + e2 = m1g12 + m2g22 + · · ·+ mkgk2 + e2

...
...

...

cn = mGn + en = m1g1n + m2g2n + · · ·+ mkgkn + en

we can write
cI = mGI + eI .

The crucial observation is that if all the k components of eI are zeros and GI

is invertible, then cI = mGI and one can conditionally recover the plaintext
using:

m = cIG−1
I .

At this level we have all the material to explain the ISD algorithm. The idea
of ISD is to repeatedly select k bits at random from c to form a k-bit vector
cI where hopefully none of the selected bits has an error. More precisely, the
adversary runs the following function (ISD Algorithm):

1. Select a random k-subset I = {i1, i2, . . . , ik} ⊂ {1, 2, ..., n};
2. Choose k bits from c according to I to form cI = ci1

ci2
. . . cik

= π1(c);

3. Choose k columns from G according to I to form a matrix GI = π2(G);

4. Compute G−1
I the inverse of GI if it exists, otherwise Go to Step 1;

5. Compute m = cIG−1
I ;

6. Compute e = c + mG;

7. If the weight of e is greater than t, then Go to Step 1;

8. Return m as the correct plaintext.

The required computational work is calculated as follows [30, 40, 2]. The
error vector consists of t ones and n− t zeros. The probability of choosing k
zeros from e is

(n−t
k

)

/
(n

k

)

. The probability of choosing a uniformly random
matrix from the set of k × k binary matrices is about 0.288 [8], and may
be smaller in the case of GI . To be conservative, assume it is about 1/2.
Actually, this little advantage will disappear in the quantum case. In this case,
the total success probability is p ≈

(n−t
k

)

/2
(n

k

)

. On average, an adversary A
has to make 1/p attempts (iterations) to recover the plaintext, and for each
iteration only a few k × k matrix operations are required. Assuming matrix

17

inversion takes kγ operations, for 2 < γ < 3, the total work factor of the
(classical) basic ISD is

WFisd ≈ kγ/p ≈ 2kγ

(

n

k

)

/

(

n− t

k

)

.

An approximation formula shows that the total work factor can be written
as

WFisd ≈ 2(α(R,W)+o(1))n

where α(R, W) is a positive function, and R = k/n and W = t/n are
positive constants that represent the code rate and error fraction of the code,
respectively. This upper bound arises from an asymptotic binomial coefficient
optimization:

log

(

n

k

)

= (1 + o(1))nH

(

k

n

)

where H(p) = −p log p−(1−p) log(1−p) is the binary entropy. See [37, 4, 20]
for more details on this upper bound.

The following formula allows to compute α to high precision for any (R, W):

α(R, W) = (1−R−W) log(1−R−W)−(1−R) log(1−R)−(1−W) log(1−W).

There have been many improvements [24, 46, 10, 29, 4] over the basic ISD
[39]. However, all efforts have only managed to slightly decrease the exponent
α(R, W) in such a way that the asymptotic cost is still exponential in α(R, W).
Note that these variants are faster than the original ISD, and used to assess the
classical security. However, it’s difficult to design their quantum counterparts,
if there are any. One of the reasons for this is memory constraints [20]. It
turned out that Grover’s algorithm combined with the basic ISD is sufficient
to assess the quantum security of code-based cryptosystems.
Remark 3.2.1. There are a few methods to verify whether the value m =
cIG−1

I is indeed the true plaintext. One method requires a lot of redundancy
in the plaintext [40]. A more practical solution is the “systematic method”
used in Step 7, which was introduced in [24]. It works because G generates a
code of minimum distance larger than 2t.

3.2.3 Quantum Information Set Decoding

The QISD algorithm is a quantum version of the ISD algorithm. There are
several conceivable QISD algorithms, depending on the ISD variant and also
on the quantum search tool (Grover’s algorithm, quantum walks [43]). Here
we consider the original ISD along with Grover’s algorithm [6]. The other

18

variants essentially provide the same asymptotic complexity. They all reduce
the classical work factor from 2(α(R,W)+o(1))n to 2(α(R,W)+o(1))n/2. Before
presenting QISD, we need to define the crucial classical function that should
be converted into a quantum oracle for Grover’s algorithm.

Given a k-subset I ⊂ {1, 2, ..., n} and possibly other inputs, consider the fol-
lowing boolean function f assumed to be available as a classical oracle:

1. Compute cI by applying on c the projection π1 : Fn
2 → Fk

2;

2. Compute GI by applying on G the projection π2 : Fk×n
2 → Fk×k

2 ;

3. Compute the inverse G−1
I if it is invertible, otherwise return 0;

4. Compute m = cIGI
−1;

5. Compute e = c + mG;

6. If the Hamming weight of e is greater than t, then return 0;

7. Return 1 (True).

More concisely, the function f can be written as:

f(I) =

{

1 if GI is invertible and weight of e ≤ t
0 otherwise

Let Uf be the quantum unitary, also called quantum oracle, that implements
the function f in the standard way:

Uf : |x, b〉 → |x, b⊕ f(x)〉

for all input x and Boolean b. This convenient notation in the quantum
field simply says that (x, b) is mapped to (x, b⊕ f(x)). The input is kept to
make the circuit reversible, which is a fundamental requirement in quantum
computing. Note that if f is efficient, then Uf is efficient (See Remark
3.2.2).
Remark 3.2.2. All calculations performed efficiently on classical computers
can also be performed efficiently on quantum computers [21]. One essentially
has to replace classical gates with reversible gates and bits with qubits, adding
extra qubits needed for reversibility.

A quantum algorithm needs at least two quantum registers (collection of
qubits), an index (or subset) register RI and an answer or oracle register
Rq, neglecting the working register for simplicity. The QISD algorithm have
the following steps:

1. Prepare a register RI in superposition of all possible k-subsets of integers
I, that is, I = {i1, i2, . . . , ik} ⊂ {1, 2, ..., n};

19

2. Compute f for all possible inputs I by applying Uf on the register RI ;
the corresponding oracle values will appear in the entangled register
Rq;

3. Perform Grover’s iteration (efficient quantum transformations);

4. Repeat steps 1 through 3 approximately π
4

√

1/p times;

5. Read (measure) the result, and if the value of Rq is not 1, then restart.

The analysis of this algorithm is exactly the same as ISD except that the
required number of iterations is approximately π

4

√

1/p thanks to Grover’s
algorithm, or more generally, amplitude amplification (see Theorem 3.2.1).
Each iteration consists of evaluating the quantum oracle and takes time in
the order of kγ qubit operations, with γ < 3, since it is dominated by matrix
operations. Thus, the total quantum work factor is

QWFqisd ≈ kγ/
√

p ≈ 2(α(R,W)+o(1))n/2. (3.1)

Accordingly, there is a quadratic speed-up over known classical attacks.
However, this doesn’t necessarily translate into doubling the public key size
in order to maintain the security level.

Application: Consider for instance McEliece using Goppa codes where the
public key is a k×n matrix. Protecting against this attack requires replacing
n by (2 + o(1))n. This essentially quadruples the McEliece key size because
k ≥ n − t log(n), thus we have to double both k and n. For QC-MDPC
McEliece, there is no need to quadruple the public key size.

3.2.4 Asymptotic Quantum Security

The goal of this section is to analyze the quantum security of the QC-MDPC
McEliece cryptosystem using the original ISD combined with generalized
Grover’s algorithm in a slightly more general way than in [6] because of the
additional structure of this scheme. We first start with a summary of the
classical security from [34].

Consider the system as an instantiation of the McEliece (or Niederreiter)
scheme using an (n, r, w)-QC-MDPC code with capability of correcting t
errors. The claim is that the best attacks are:

• Key distinguishing attack: distinguish the public key from a random
matrix, which invalidates the security reduction.

• Key-recovery attack: Recover the secret decoder (private key)

20

• Decoding attack: recover the plaintext from the ciphertext without
using the private key, i.e. decode t errors in (n, r)-linear code.

ISD work factor is the standard approach to estimate the practical security
of code-based schemes. However, the cryptanalysis of QC-MDPC McEliece
is subtle. The problem of finding a single low weight codeword in an MDPC
code may admit many solutions, making ISD faster. The DOOM attack
[44] in the classical setting can decrease the work factor when the problem
has multiple solutions and the attack is considered successful when a single
solution is found. When the problem has N solutions, the probability of
finding a solution increases by a factor of N . In the quantum case, this
probability increases by a factor of

√
N . Accordingly, we have to use Grover’s

algorithm considering many solutions to the problem in order to provide an
accurate security assessment.

Let WFisd(n, r, t) denote the classical work factor of decoding t errors in an
(n, r)-binary linear code of length n and co-dimension r, when there is a
single solution to the problem. It is also the cost of finding a codeword of
weight t. Let WF′

isd(n, t, t) be the cost of WFisd(n, r, t) without oracle calls;
it is the classical number of iterations. Let kγ be the cost of each quantum
oracle call with γ < 3. The following shows the quantum work factors of the
attacks mentioned at the beginning of this section, currently considered to
be the most efficient attacks on QC-MDPC McEliece.

1. Key distinguishing attack: Produce one word of weight w in the dual
code by applying ISD to the all-zero syndrome. This problem has r
solutions (the r rows of the sparse parity-check matrix). Assuming there
is “no obvious speed-up” in the quasi-cyclic case [34], the work factor
of this attack in the quasi-cyclic and non-cyclic cases are the same.
Therefore, using Grover’s algorithm with r solutions, the quantum work
factor of key distinguishing attack is

QWFQC
dist(n, r, w) ≈ QWFdist(n, r, w) ≈ kγ

√

WF′
isd(n, n− r, w)

r
.

2. Key recovery attack: Finding one codeword in the basis of the dual
code is sufficient to recover the entire private key, and there are r such
codewords. Therefore, applying Grover’s algorithm with r solutions,
the quantum work factor of this attack in the quasi-cyclic case is the
same as QWFQC

dist(n, r, w):

QWFQC
reco(n, r, w) ≈ kγ

√

WF′
isd(n, n− r, w)

r
.

21

3. Decoding attack: Correct t errors in a random linear code of length n
with co-dimension r. The classical work factor of this attack is

WFdec(n, r, t) = WFisd(n, r, t).

When the code is quasi-cyclic, any cyclic shift of the target syndrome
provides a new instance whose solution is equal to the one of the original
syndrome, up to a block-wise cyclic shift. The number of solutions
(and instances) is r. However, Grover’s algorithm is only running on
one instance (not parallel). Therefore, the quantum work factor of
decoding attack in the quasi-cyclic case is

QWFQC
dec(n, r, t) ≈ kγ

√

WFisd(n, r, t)

Typically, the work factor of decoding attack is different from that of key
recovery attack. Therefore, the least work factor determines the security
level. See more numeric details in the following section.

3.2.5 Practical Quantum Security

The formulae in the previous section provide a good measure about the
asymptotic quantum security of QC-MDPC. In practice, concrete parameters
are needed.

Given parameter sets for QC-MDPC McEliece classical security, this sec-
tion shows their quantum security by applying the general formulae given
previously. First of all, we emphasize the approach to achieve our goal.

Recall that the total quantum work factor is approximately 2(α(R,W)+o(1))n/2

(see eq. (3.1)). First, we compute the required number of iterations, which is
about 2(α(R,W))n/2. Second, we approximate the o(1) factor essentially based
on matrix operations. Our approach is fairly conservative. For instance, we
consider a potential speed-up in the QISD algorithm and do not consider
the cost of a fault-tolerant quantum implementation of the oracle, which
increases the work factor of the attack [3, 17].

Now we give an example of evaluating the security using existing parameters.
Table 3.1 shows parameter sets selected from [34]. Note that we only consider
the case n0 = 2 for reasons to be discussed in Section 3.3.1. Consider the
parameter set (n, r, w, t) = (65542, 32771, 274, 264) which provides approxi-
mately 256-bits of classical security. We compute the corresponding quantum
security level of this parameter set.

The key distinguish/recovery attack is slightly more efficient than the decoding
attack in this case. More precisely, given the number of solutions k = r ≈ 216,

22

Classical security n0 n = n0r r w t Key size

2 9602 4801 90 84 4801
80 3 10779 3593 153 53 7186

4 12316 3079 220 42 9237

2 19714 9857 142 134 9857
128 3 22299 7433 243 85 14866

4 27212 6803 340 68 20409

2 65542 32771 274 264 32771
256 3 67593 22531 465 167 45062

4 81932 20483 644 137 61449

Table 3.1: Suggested parameter sets for classical security.

considering the quadratic speed-up from QISD, and adding the contribution
of the o(1) factor, the total quantum work factor is

QWFQC
reco(n, r, w) ≈ 2154.

We conclude that this parameter set provides at least 154-bit quantum
security. Table 3.2 shows the results of similar calculations for the other
security levels.

Quantum security n0 n = n0r r w t Key size

58 2 9602 4801 90 84 4801
86 2 19714 9857 142 134 9857

154 2 65542 32771 274 264 32771

Table 3.2: Suggested parameter sets for quantum security.

Remark 3.2.3. The mitigation of the quadratic advantage due to quantum
algorithms is not by simply doubling the public key size. This depends on
the parameter set of the actual security level. More precisely, maintaining
128-bit quantum security requires tripling the public key size if we keep the
same code rate (9857 vs 32771 bits).

3.2.6 Other quantum attacks

The first attempt of using quantum algorithms to speed-up ISD appeared
in [35]. The method of applying Grover’s algorithm did not give significant
speed-up over classical ISD algorithms. Bernstein [6] then showed that it
is possible to obtain much better speed-ups with Grover’s and Prange’s

23

algorithms, which brings down the exponent by a factor of two. Using
quantum walks and the MMT algorithm [29], the authors of [20] slightly
decreased this exponent. However, their approach did not yield any new
significant improvements. See Table 3.3.

Author Strategy Alpha

Bernstein [6] Prange + Grover’s algorithm 0.06035
KacTil17 [20] MMT + Quantum walks 0.05869

Table 3.3: Summary of the-state-of-the-art quantum attacks

Although they essentially have the same cost, there are several reasons for
which we preferred ISD with Grover’s algorithm over those using quantum
walks. We mention (1) Ease of implementation from the engineering point
of view. The second approach requires (classical) memory that has to be
accessed in superposition, making it much harder to implement; (2) Ease of
adaptation and analysis.

3.3 Parameter Selection

In this section, we discuss the speed/key size trade-off involved in selecting a
value for n0. We also give a general method for computing parameter sets
for a desired level of security.

3.3.1 Deciding the value of n0

General formulae are necessary to compute adequate parameter sets. However,
in the case of QC-MDPC McEliece, other information is still important in
order to compute parameter sets more accurately. Indeed, for the same
security level, there are many parameter sets depending on the code rate, or
equivalently n0 (see Table 3.1 showing classical parameter sets). This section
discusses strategies to choose optimal trade-off parameters in general, and
the reason for which we recommend using n0 = 2 (or R = 1/2). First the
work factor of decoding attack is less than that of the other attacks, and it is
in turn much less in the cases of n0 = 3, 4. This is what we call unbalanced
work factors of attacks, and is mainly due to the difference between (or ratio
of) w and t. Second the public key size is much larger, which harms the
main achievement of the scheme. For n0 = 4 for instance, the public key size
becomes 61449 bits instead of 32771 bits. The advantage of choosing n0 = 3, 4
is that the code rate is better, and key generation, encryption, and decryption

24

can be faster. Considering that security and public key size are the main
concerns in this scheme, this document recommends using n0 = 2.

3.3.2 Suggested Parameter Sets and Expected Security

The following table is essentially a combination of those from Section 3.2.5.
For each suggested parameter set, we describe the security one should expect
that set to provide. For reasons discussed in Section 3.3.1 only parameter
sets using n0 = 2 are detailed here. We reiterate that this document does
not propose QC-MDPC McEliece encryption itself for NIST standardization,
but rather an associated KEM. Thus, the following discussion is included for
completeness.

Security

Classical Quantum n0 n = n0r r w t Key size

80 58 2 9602 4801 90 84 4801
128 86 2 19714 9857 142 134 9857
256 154 2 65542 32771 274 264 32771

Table 3.4: Suggested parameter sets for classical and quantum security.

We can pair up these parameter sets rather naturally by tuples of the
form (C, Q), where C is the number of classical bits of security provided,
and Q is the number of quantum bits of security provided. Using this
notation, parameter sets (80, 58) and (128, 86) both offer less security than
the weakest security strength category defined by NIST [1, Section 4.A].
As such, this document proposes neither of them for general usage. The
(256, 154) parameter set meets the requirements for level 3 security.

3.3.3 Computing other parameter sets

Based on [33, Section 6.6], the following iterative procedure allows for the com-
putation of parameter sets for s bits of quantum security. The inputs are the
code rate R, the security parameter s, and a decoding failure threshold.

25

Algorithm 4 Computing Parameter Sets

Input: Code length n, dimension k, and desired security level s.
Output: Parameter set (n, k, w, t).

1: Compute the minimum t such that QWFQC
dec(n, r, t) > 2s.

2: Compute the minimum w such that QWFQC
reco(n, r, w) > 2s.

3: if messages with t errors can be decoded with the decoding failure
threshold then

4: return (n, k, w, t).
5: else

6: return ⊥.
7: end if

26

4. The QC-MDPC McEliece KEM

4.1 KEM Specification

This section fully describes the QC-MDPC McEliece Key Encapsulation
Mechanism. Each algorithm is described in a fairly generic way so as to
facilitate their understanding. Optimizations and speedups are briefly dis-
cussed for each of the provided algorithms. For a more complete description
of possible optimizations, see the accompanying optimized implementation
included in this submission.

4.1.1 Key Generation

QC-MDPC KEM key generation is exactly the same as QC-MDPC key
generation (Algorithm 1).

4.1.2 Encapsulation

Key encapsulation and decapsulation requires the use of a deterministic error
vector derivation function which we identify with the notation ν(·). Such a
function is required to have the following three characteristics.

• The function must be pseudorandom,

• The function must be one-way, and

• The function must be “reasonably fast”.

This document suggests the following construction for ν(·), but in general any
function that generates a uniformly random weight w bit array will suffice.
Denote by bℓ the string consisting of ℓ copies of bit b.

In Algorithm 5 above, the subroutine FY(seed, string) is the “inside-out”

27

Algorithm 5 Error vector derivation

Input: A random seed s ∈ Fk
2, and a weight t ∈ N.

Output: An error vector e of length n and weight t.

1: Set e← 1t‖0n−t.
2: Shuffle e as, e← FY(s, e).
3: return e.

variant of the Durstenfeld implementation[11] of the Fisher-Yates Shuf-
fle [13].

In addition to the above, the KEM also requires the use of two key-derivation
algorithms: KDF1 : {0, 1}∗ → {0, 1}k, and KDF2 : {0, 1}∗ → {0, 1}m+n,
where m is the length of the key to be encapsulated.

Next, we specify the encapsulation algorithm as Algorithm 6 below.

Algorithm 6 QCMDPC.Encap

Input: Public key G, and random seed s ∈ Fk
2.

Output: Symmetric key K ∈ {0, 1}m
Output: Ciphertext C = (C1, C2) ∈ Fn

2 × Fn
2 .

1: e← ν(s) ⊲ Compute n-bit error vector
2: y ← KDF1(e) ⊲ Compute k-bit masking value
3: x← s⊕ y ⊲ Obtain k-bit plain text
4: C1 ← QCMDPC.Encrypt(G, x, e)
5: C2||K ← KDF2(s)
6: return (K, C = C1||C2)

4.1.3 Decapsulation

The decapsulation algorithm is presented as Algorithm 7 below.

28

Algorithm 7 QCMDPC.Decap

Input: Secret key H, ciphertext (C1, C2) ∈ Fn
2 × Fn

2 , and dimension k.
Output: Symmetric key K ∈ {0, 1}m or a decapsulation failure ⊥.

1: ((x, e), derr)← QCMDPC.Decrypt(H, C1).
2: y ← KDF1(e) ⊲ Compute k-bit masking value.
3: s← x⊕ y ⊲ Recover seed.
4: e′ ← ν(s). ⊲ Derive Error Vector
5: C ′

2||K ← KDF2(s). ⊲ Derive Key and confirmation hash.
6: if e′ = e and C ′

2 = C2 and derr = False then

7: return K
8: else

9: return ⊥
10: end if

4.2 Ephemeral use of the QC-MDPC McEliece KEM

To completely negate the so-called GJS attack [19], the QC-MDPC KEM can
be used ephemerally. Consequently, the protocol becomes 2-pass; between
the initiator and responder. To establish a shared ephemeral key the initiator
must first generate a QC-MDPC key pair and send the public-key G to
the responder. The responder then selects a random seed s ∈ Fk

2 and runs
QCMDPC.Encap(s, G). Next, the responder sends (C1, C2) to the initiator.
Finally, the initiator runs QCMDPC.Decap(C1, C2) to recover the encapsu-
lated key. If all algorithms run successfully, then the initiator and responder
will share a secret key K (which they might use as a seed to derive further
keys). If any algorithms fail, then the process is terminated and restarted.
This process is summarized in Figure 4.1 below.

Initiator Responder

(G, H)← KeyGen(n, r, w, t)
G−−−−−−−−−→

(C1, C2, K)← Encap(s, G)
(C1,C2)←−−−−−−−−−

K/ ⊥:= Decap(C1, C2)

Figure 4.1: Ephemeral Key Establishment

The above protocol is an unauthenticated key establishment protocol. This
protocol can easily be modified into either a one-way or a two-way authenti-

29

cated key establishment protocol by following the SIGMA protocol design [22].
However, those details are outside the scope of this document.

4.3 Static Use of the QC-MDPC McEliece KEM

In some cases, an individual may wish to use the QC-MDPC KEM in a static
key setting. This is useful because, it allows one-pass key transport with
the KEM. However, extreme caution must be taken when using the KEM
with a static generator matrix, as it opens up a new class of attacks, and in
particular, the GJS attack [19] (see Section 4.3.1).

The GJS attack makes use of the fact that decoding failures occasionally
occur in the QC-MDPC decryption process. While the attack requires a
large number of decoding failures to have happened to recover the parity
check matrix, it is not known if the attack can be improved greatly more,
or if another attack is possible if even a small number of decoding failures
occur.

However, as long as a decoding error does not occur, the scheme is secure in
a static-key context. Therefore the scheme can be thought to be resistant
to accidental key reuse. In the event that a generator matrix and parity
check matrix are reused for multiple sessions, this does not result in a
security vulnerability as long as a decoding error does not occur in further
sessions.

4.3.1 A Key Recovery Attack

On occasion the decoding algorithm fails to recover the error vector used
in encryption. This is known as a decoding error. For our main parameter
set, with uniformly random errors, decoding errors occur at a rate of roughly
10−7.

The GJS attack [19] is a key recovery attack based on the observation that
there exists some correlation between the error vectors used in encryption
that result in decoding failures, and the secret key H. Specifically, when
the distances between pairs of 1’s in the error vector match the distances
between pairs of 1’s in the secret key, a decoding failure is less likely to occur;
these are simply referred to as distances below. It is important to note that
the plaintext x never has an impact on whether a decoding error occurs; only
the error vector does.

The set-up for the GJS attack is roughly summarized as Algorithm 8 below.

30

For each possible distance in an error vector, the algorithm counts how many
times that distance was present in error vectors that resulted in a decoding
error.

Algorithm 8 GJS

Input: M ∈ N.
Output: do : Frequency array of distances observed.
Output: de : Frequency array of errors when distance was observed.

1: for i = 1, 2 . . . , M do

2: (mG, e)← Random Encryption.
3: Send mG⊕ e to the target.
4: Receive Success or Decoding Error from target.
5: for all d ∈ distance-spectrum(e) do

6: do[e]← do[e] + 1
7: if Decoding error occurred then

8: de[e]← de[e] + 1
9: end if

10: end for

11: end for

12: return (do, de)

After a large number of submitted ciphertexts, the adversary can calculate
what the decoding failure rate was when a particular distance was present in
the error vector. The authors of [19] noted that when the decoding failure
rate for when a given distance is in the error is calculated this way, it follows
an approximately normal distribution with mean mmult(d). Here, mult(d)
(the multiplicity of d) is the number of times d is observed in the secret
key. mmult(d) is a mean that is the same for all distances with the same
multiplicity.

This allows one to figure out how often a distance appears between all the
pairs of 1’s in a secret key. In [19] the authors additionally show how a secret
key can be computed by knowing how often each distance appears between
the 1’s in that secret key.

The attack requires that for each possible distance one can make an accurate
guess about which mean mmult(d) the decoding failure rate should be associ-
ated with. As mentioned above, the attack allows one to make a sample of
the decoding failure rate according to a normal distribution. Therefore the
effectiveness of the attack depends on two crucial properties:

1. How many samples M are made.

31

2. The distance between the means mmult(d) for different multiplicities.

3. How quickly the variance of the decoding failure rate decreases with
M .

Experimental evidence suggests for the 256-bit parameter set, the normal
distribution can be modelled as a limit of a binomial distribution. With
this assumption, one can calculate how the variance changes with M , and in
particular, how large M should be in order to have the standard deviation
small enough to be able to accurately tell the multiplicity of a distance in
the secret key from this sample. Initial experiments and estimates indicate
that for the 256-bit parameter set, this corresponds to around 3.5 trillion
ciphertext queries.

While allowing for 3.5 trillion cipher text operations may be more than
suitable for many purposes (such as S/MIME) it should be noted that this
estimate only considers the effectiveness of the attack with no improvements
whatsoever. In particular, even small improvements such as generating slightly
non-uniform error vectors (through hash sampling) could dramatically reduce
the attack requirements. Therefore, while it is not known if the parity check
matrix of the KEM can be recovered when the key is reused thousands
or even millions times, it should be considered highly insecure, and is not
recommended for more general static key establishment.

4.3.2 Constant Time Decoders

In [19], the attack took advantage of careful calculation of the decoding
failure rate for different classifications of error vectors. For most decoding
procedures, a decoding failure error occurs when it takes more than a certain
number of rounds. Because of this, a similar attack can be performed if an
adversary is able to know the number of rounds it took for the decoding
algorithm to succeed. This means that the GJS attack can be reformulated
as a very strong side-channel attack when the decoding algorithm is not
constant time.

While this attack is not at all relevant when the KEM is used ephemerally, it
is still certainly best cryptographic practice to make sure that the decoder
is constant time. This also ensures that if the generator matrix and parity
check matrix are accidentally reused, a security vulnerability in the scheme
only occurs if a decoding failure occurs.

32

4.4 Design Rationale

Design requirements: To establish an IND-CPA secure code-based ephemeral
key encapsulation mechanism that has reasonable speeds and efficiency, while
using compact public keys.

Design rational and important decisions: The QC-MDPC KEM is based on
the design from Table 4 of [9]. The design allows for the masking of the
plaintext x (which is normally revealed), and limits an attacker’s control over
the choice of error vector e. However, the QC-MDPC McEliece encryption
scheme is not perfectly compatible with the framework from [9] due to both
the non-deterministic nature of the scheme and the looming threat of the
GJS attack. As such, we designed the scheme to be a secure and efficient
ephemeral KEM that is resistant to the GJS attack under “accidental key
reuse”.

33

5. Security of the QC-MDPC McEliece

KEM

5.1 Theoretical Security Analysis

5.1.1 Game Definitions

Game 1 (IND-CPA).

1. B generates a public/private key pair (G, H)← QCMDPC.KeyGen(n, w, r, t)
and sends the public key G to A.

2. B Generates a challenge by running (K0, C)← KEM.Encap(G, s) for a
uniformly random seed s. They then generate a uniformly random K1

and a uniformly random bit b
$←− {0, 1}. B sends (Kb, C) to A.

3. A outputs a guess b′ for b.

A wins Game 1 if b = b′.
Game 2 (OW-CPA).

1. C generates a public/private key pair (G, H)← QCMDPC.KeyGen(n, w, r, t)
and sends G to B.

2. C chooses a uniform x ← {0, 1}k and a random error vector e, and
computes and sends c = QCMDPC.Encrypt(G, x, e) to B.

3. B performs some computation, then submits a (x′, e′) as a guess for a
decryption of c.

B wins Game 2 if QCMDPC.Encrypt(x′, e′) = c.

34

5.1.2 Reduction

We now define the reduction algorithm, B. B plays Game 2, OW-CPA with
a challenger C. The reduction B uses an adversary A as a subroutine. They
will simulate Game 1 with A.
Game 3 (IND-CPA to OW-CPA reduction).

1. B receives a public key G from C. B forwards this public key to A as
the public key for the KEM.

2. B receives a target cipher text, c∗ from C. They generate a uniformly
random K ∈ {0, 1}n, and a uniformly random C2 ∈ {0, 1}n. B then
sends ((c∗, C2), K) to A as the challenge for Game 1.

3. B will monitor queries made by A to the random oracle KDF1. When-
ever a query is made with the input e′, B checks to see if e is the error
vector used to encrypt c. If so, B computes the corresponding plain text
x′ and outputs (x′, e′) to C as their guess for the decryption of C.

4. If A submits a bit b′ as a guess for the bit b, B simply aborts and outputs
⊥.

In what follows, qKDF1
and qν are the number of queries B makes to KDF1,

and ν respectively.
Theorem 5.1.1. If an adversary A can win Game 1 with probability 1

2 + ǫ,
then the reduction B wins Game 2 with probability ǫ− (qKDF1

+ qν)/2k.

Proof. Note that for any C1 there is at most one (x, e) such that

QCMDPC.Encrypt(pk, x, e) = C1.

This follows from the fact that the weight of the errors is chosen to make
encryption injective. Then note that for any (x, e) there is at most one k-bit
string s such that (s⊕ KDF1(ν(s)), ν(s)) = (x, e). This is because if we have
s, s′ that both map to the same (x, e), then ν(s) = ν(s′), and so KDF1(ν(s)) =
KDF1(ν(s′)), which means s = x⊕ KDF1(ν(s)) = x⊕ KDF1(ν(s′)) = s′.

In Game 3, the challenge is prepared differently than how it is prepared in
Game 1, and so we must establish that the adversary A cannot tell that the
challenge they are sent is not correctly formatted.

The distribution of the challenge is entirely characterized by the joint dis-
tribution of four variables — (x, e, C2, Kb). First note that the marginal
distribution of each of these variables (i.e. in isolation) is uniform in both
Game 1 and 3. In Game 3 these variables are entirely independent - each
is generated uniformly and independent of each other. In Game 1 however,

35

these variables do have a dependence determined by KDF1, KDF2, and ν.
Specifically, for any (x, e, C2) corresponding to a challenge, it is the case that:

• ν(KDF1(e)⊕ x) = e

• KDF2(KDF1(e)⊕ x) = C2||K.

Notice that these dependencies can only be checked by querying s = KDF1(e)⊕
x to ν or KDF2. Certainly these dependencies might be checked by finding
(x.e) and calculating s = KDF1(e)⊕ x. However in this case, the reduction
will be completed, as the adversary has queried the corresponding error e to
KDF1, allowing B to win Game 2. However we also need to consider the pos-
sibility of A obtaining a copy of s = KDF1(e)⊕ x without actually querying
KDF1 with e. To be specific, we need to upper bound the adversaries ability
to query KDF2 or ν with s = KDF1(e) ⊕ x without first querying KDF1(e).
Without having queried KDF1(e), the adversary has no information about
s, and so the only thing they can do is guess it by querying random strings.
Therefore the probability that they query s to either oracle is bounded by
δ = (qKDF1

+ qν)/2k.

The last thing we need to establish to finish the proof is that the adversary’s
advantage in winning Game 1 exactly corresponds to the ability of B to
decrypt c∗. In other words, it corresponds to A querying the e associated
with c∗ to KDF1. As established before, there is a unique s associated with
c∗ and KDF1. The only way for an adversary to determine if the K given
to them with the challenge cipher text is the correct decapsulation or not
is to query that exact s to KDF2. Without doing this, the adversary has
no information, and so their probability of winning is at most 1/2. So, the
quantity ǫ corresponds precisely to the event that they are able to recover
the unique s associated with c∗, given by the equation s← x⊕ KDF1(e).

Since we have already considered the probability that the adversary can
query s to KDF2 or ν without having first queried KDF1(e), this s can only
be generated by calculating x⊕ KDF1(e) for the (x, e) corresponding to c∗.
So the advantage is equal to the probability that the adversary queries KDF1

with e. As this is how B will decrypt c∗, we have that

Pr
Game 3

[B wins] ≥ ǫ− qKDF1
+ qν

2k
(5.1)

36

5.2 Analysis Against Known Attacks

There are no additional attacks to those described in Section 3.2 which this
document need consider.

5.3 Parameter Selection and Expected Security

The suggested parameter sets are exactly those proposed in Section 3.3. In
fact, assuming secure primitives, one can show that an adversary who can
break the QC-MDPC KEM can break the QC-MDPC McEliece encryption
scheme. Hence, the expected security level(s) of the KEM are no less than
those proposed in Section 3.3.

37

6. Performance of the QC-MDPC

McEliece KEM

6.1 Performance Analysis

The following are for the r = 32771 parameter set (see Section 3.3).

6.1.1 Platform

Benchmarks were run using “supercop-20170904” with a “Dual core Intel
Core i7-7500U” CPU. Turbo Boost was disabled.

6.1.2 Time

Data obtained from SUPERCOP:

keypair_cycles - 131540379 129644053 131038872 131051885

enc_cycles - 20180017 20263392 19861833 20045657

dec_cycles - 229002269 227912081 230032997 230389473

Approximately 131 million cycles for key generation, 20 million cycles for
encapsulation, and 230 million cycles for decapsulation.

6.1.3 Space

The public key is 4097 bytes this can be calculated straightforwardly by
rounding the r parameter (which is in bits) up to the nearest byte. The
encapsulated message is 8226 bytes which is twice the size of the public key
plus the size of the confirmation hash. The sparse private is 548 bytes since
it uses two bytes to store the location of each set bit and has weight w.

38

6.2 Advantages and Limitations

The QC-MDPC McEliece KEM has the advantages of having relatively
compact keys and being built on a strong, well studied foundation. However,
there are also disadvantages to this KEM. For example, the protocol may
not be fast enough for certain applications, and given the current level of
analysis of the GJS attack, the KEM does not seem to be suitable for static
key establishment in a general setting.

39

Bibliography

[1] Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process, December 2016.
URL http://csrc.nist.gov/groups/ST/post-quantum-crypto/

documents/call-for-proposals-final-dec-2016.pdf.

[2] Carlisle M. Adams and Henk Meijer. Security-Related Comments Re-
garding McEliece’s Public-Key Cryptosystem, pages 224–228. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1988. ISBN 978-3-540-48184-3.
doi: 10.1007/3-540-48184-2 20. URL http://dx.doi.org/10.1007/

3-540-48184-2_20.

[3] Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex
Parent, and John Schanck. Estimating the cost of generic quantum pre-
image attacks on SHA-2 and SHA-3. arXiv preprint arXiv:1603.09383,
2016.

[4] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer.
Decoding random binary linear codes in 2n/20: How 1 + 1 = 0 improves
information set decoding. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 520–536.
Springer, 2012.

[5] Elwyn Berlekamp, Robert McEliece, and Henk Van Tilborg. On the
inherent intractability of certain coding problems (corresp.). IEEE
Transactions on Information Theory, 24(3):384–386, 1978.

[6] Daniel J. Bernstein. Grover vs. McEliece, pages 73–80. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-12929-
2. doi: 10.1007/978-3-642-12929-2 6. URL http://dx.doi.org/10.

1007/978-3-642-12929-2_6.

[7] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight
Bounds on Quantum Searching. Fortschritte Der Physik, 46:493–505,
1998.

40

[8] A. Carleial and M. Hellman. A note on wyner’s wiretap channel (corresp.).
IEEE Trans. Inf. Theor., 23(3):387–390, September 2006. ISSN 0018-
9448. doi: 10.1109/TIT.1977.1055721. URL http://dx.doi.org/10.

1109/TIT.1977.1055721.

[9] Alexander W Dent. A designer’s guide to KEMs. Lecture notes in
computer science, pages 133–151, 2003.

[10] Ilya Dumer. On minimum distance decoding of linear codes. In Workshop
Info. Theory, volume 1, pages 50–52, 1991.

[11] Richard Durstenfeld. Algorithm 235: random permutation. Communi-
cations of the ACM, 7(7):420, 1964.

[12] Cédric Faure and Lorenz Minder. Cryptanalysis of the mceliece cryp-
tosystem over hyperelliptic codes. In Proceedings of the 11th interna-
tional workshop on Algebraic and Combinatorial Coding Theory, ACCT,
volume 2008, pages 99–107, 2008.

[13] Ronald Aylmer Fisher, Frank Yates, et al. Statistical tables for biological,
agricultural and medical research. pages 26–27, 1938.

[14] Robert Gallager. Low-density parity-check codes. IRE Transactions on
information theory, 8(1):21–28, 1962.

[15] JK Gibson. Severely denting the gabidulin version of the mceliece public
key cryptosystem. Designs, Codes and Cryptography, 6(1):37–45, 1995.

[16] Keith Gibson. The security of the gabidulin public key cryptosystem.
In Advances in CryptologyâĂŤEUROCRYPTâĂŹ96, pages 212–223.
Springer, 1996.

[17] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer
Steinwandt. Applying Grover’s algorithm to AES: quantum resource
estimates. In International Workshop on Post-Quantum Cryptography,
pages 29–43. Springer, 2016.

[18] Lov K. Grover. Quantum Mechanics Helps in Searching for a Needle in
a Haystack. Phys. Rev. Lett., 79(2):325–328, 1997.

[19] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recov-
ery attack on MDPC with CCA security using decoding errors, 2016.
Cryptology ePrint Archive, Report 2016/858.

[20] Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set
decoding algorithms. Cryptology ePrint Archive, Report 2017/213, 2017.
http://eprint.iacr.org/2017/213.

41

[21] Phillip Kaye, Raymond Laflamme, and Michele Mosca. An Introduction
to Quantum Computing. Oxford, 2007.

[22] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ approach to authen-
ticated diffie-hellman and its use in the IKE protocols. In Annual
International Cryptology Conference, pages 400–425. Springer, 2003.

[23] C. Lavor, L. R. U. Manssur, and R. Portugal. Grover’s Algorithm:
Quantum Database Search, 2003. arXiv:quant-ph/0301079v1.

[24] P. J. Lee and E. F. Brickell. An Observation on the Security of McEliece’s
Public-Key Cryptosystem, pages 275–280. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1988.

[25] Bernhard MJ Leiner. LDPC codes–a brief tutorial. Apr, 8:1–9, 2005.

[26] Florence Jessie MacWilliams and Neil James Alexander Sloane. The
theory of error-correcting codes. Elsevier, 1977.

[27] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynominal-
tuples for efficient signature-verification and message-encryption. In
Eurocrypt, volume 88, pages 419–453. Springer, 1988.

[28] Ingo Von Maurich, Tobias Oder, and Tim Güneysu. Implementing QC-
MDPC mceliece encryption. ACM Transactions on Embedded Computing
Systems (TECS), 14(3):44, 2015.

[29] Alexander May, Alexander Meurer, and Enrico Thomae. Decod-
ing Random Linear Codes in, pages 107–124. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-25385-0. doi:
10.1007/978-3-642-25385-0 6. URL http://dx.doi.org/10.1007/

978-3-642-25385-0_6.

[30] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding
Theory, 1978.

[31] Robert McEliece. The theory of information and coding, volume 3.
Cambridge University Press, 2002.

[32] Lorenz Minder and Amin Shokrollahi. Cryptanalysis of the sidelnikov
cryptosystem. Advances in Cryptology-EUROCRYPT 2007, pages 347–
360, 2007.

[33] Rafael Misoczki. Two Approaches for Achieving Efficient Code-
Based Cryptosystems. Theses, Université Pierre et Marie Curie -
Paris VI, November 2013. URL https://tel.archives-ouvertes.

fr/tel-00931811.

42

[34] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S.
L. M. Barreto. MDPC-McEliece: New McEliece Variants from Moderate
Density Parity-Check Codes, 2012. Cryptology ePrint Archive, Report
2012/409.

[35] Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In
Post-quantum cryptography, pages 95–145. Springer, 2009.

[36] Jacques Patarin. Cryptanalysis of the matsumoto and imai public key
scheme of eurocrypt’88. In Crypto, volume 95, pages 248–261. Springer,
1995.

[37] Christiane Peters. Curves, Codes, and Cryptography. PhD thesis,
Technische Universiteit Eindhoven, the Netherlands, 2011. http:

//alexandria.tue.nl/extra2/711052.pdf.

[38] Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buchmann. Se-
lecting parameters for the rainbow signature scheme. Post-Quantum
Cryptography, pages 218–240, 2010.

[39] E. Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, September 1962. ISSN
0096-1000. doi: 10.1109/TIT.1962.1057777.

[40] T. R. N. Rao and Kil-Hyun Nam. Private-Key Algebraic-Coded Cryp-
tosystems, pages 35–48. Springer Berlin Heidelberg, Berlin, Heidelberg,
1987. ISBN 978-3-540-47721-1. doi: 10.1007/3-540-47721-7 3. URL
http://dx.doi.org/10.1007/3-540-47721-7_3.

[41] Eleanor G. Rieffel and Wolfgang Polak. An Introduction to Quantum
Computing for Non-Physicists. ACM Comput. Surv., 32(3):300–335,
2000.

[42] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communica-
tions of the ACM, 21(2):120–126, 1978.

[43] Miklós Sántha. Quantum walk based search algorithms. In Proceedings
of the 5th international conference on Theory and applications of models
of computation, (TAMC’08), pages 31–46, 2008.

[44] Nicolas Sendrier. Decoding One Out of Many. Cryptology ePrint Archive,
Report 2011/367, 2011. URL http://eprint.iacr.org/2011/367.

[45] Vladimir M Sidelnikov and Sergey O Shestakov. On insecurity of cryp-
tosystems based on generalized reed-solomon codes. Discrete Mathemat-
ics and Applications, 2(4):439–444, 1992.

43

[46] Jacques Stern. A method for finding codewords of small weight. In Pro-
ceedings of the 3rd International Colloquium on Coding Theory and Appli-
cations, pages 106–113, London, UK, UK, 1989. Springer-Verlag. ISBN
3-540-51643-3. URL http://dl.acm.org/citation.cfm?id=646721.

702702.

[47] Robert M. Tanner. A recursive approach to low complexity codes. IEEE
Transactions on information theory, 27(5):533–547, 1981.

[48] Alexander Vardy. The intractability of computing the minimum distance
of a code. IEEE Transactions on Information Theory, 43(6):1757–1766,
1997.

44

A. KEM Options

This appendix describes some optional features of the QC-MDPC KEM
which, if used, allow for additional flexibility. These options are fairly simple
and can improve the KEM performance, improve security properties, or make
it more suitable for use in certain contexts.

A.1 Key Confirmation Value C2

The value C2 is used to ensure the authenticity of the ciphertext. It should
be noted that the error vector also performs this function — as part of
decapsulation, ν(s) is checked against e. It is not clear if this check with C2

is needed in all contexts for full security. It is possible that this check can be
omitted to save on communication (and simplify the scheme). The KEM’s
proof of IND-CPA security still works if C2 is removed. However, the proof
is in the random oracle model and not the quantum random oracle model.
In the quantum random oracle model, proofs of security in strong models
such as IND-CPA or IND-CCA2 security have thus far typically required an
‘additional hash’, which C2 could possibly serve as. The most conservative
approach for post-quantum security is likely to leave it, but as research into
conditions of IND security in the quantum random oracle model develops, it
may be seen as redundant.

A.2 Appending Additonal Hash Information

The QC-MDPC KEM makes use of two external functions: the error generator
function ν and the key derivation function KDF. Additionally, the KDF is
used in two ‘modes’ depending on context and desired output length, KDF1

and KDF2. This can be achieved in several ways, the most natural of which
is to simply append some information (for example an encoding of 1 or 2) in
order to have two distinct KDF functions. This section describes how else

45

to modify the usage of the KEM by adding additional information to these
functions; thereby impacting security and performance.

One technique is to append the public key to the input of these functions;
when querying ν, KDF1, or KDF2, one can also concatenate the receiver’s
public key pk to the end of the input. This provides some generic advantages,
as any attacks on the scheme related to these functions must now ‘restart’ in
some sense for each user.

For example, consider the GJS attack as launched against the KEM. The
attack is somewhat mitigated by the fact that the error vector must be
generated by running a seed through the pseudo-random function ν. While a
malicious adversary cannot choose an error to send as part of the encapsula-
tion, they may be able to use post-selection in order to generate an error that
is far from uniformly random. By requiring the additional concatenation of
the public key in ν, an adversary attempting to attack users in this way must
‘relaunch’ the attack in some sense for each user.

By concatenating pk for the ν and KDF1 functions, but not KDF2, one
could use this KEM for broadcast encryption. This would allow a user to
encapsulate a single key, but send it to multiple people with independent
encapsulation ciphertexts.

Concatenating information can also be used to eliminate the GJS attack
and allow for IND-CCA2 secure static key use. We call this variant of the
KEM ParQ. By repeatedly encapsulating a key through multiple encryptions,
one can reduce the decoding failure rate to a level negligible in the security
parameter. This removes the possibility of performing the GJS attack, or any
possible improvement that takes advantage of decoding failures. Furthermore,
this does not alter the parameters of the underlying QC-MDPC encryption
scheme.

The key generation algorithm is the same as just QCMDPC.KeyGen.

Algorithm 9 ParQ Encapsulation

Input: Public key pk, a seed s ∈ {0, 1}r.
Output: Session key K, key encapsulation C = (C1, . . . , CP).

1: for i = 1 to P do

2: Let ei = ν(s||i).
3: Compute xi = s⊕ KDF1(ei||i).
4: Compute Ci = QCMDPC.Encrypt(pk, xi, ei).
5: end for

6: Compute K = KDF2(s).
7: Return session key K, key encapsulation C = (C1, . . . , CP).

46

Algorithm 10 ParQ Decapsulation

Input: Secret key sk, public key pk, and encapsulation C =
(C1, C2, . . . , CP).

Output: Session key K, or decapsulation failure symbol ⊥.

1: Set i = 1.
2: Run (xi, ei)← QCMDPC.Decrypt(sk, Ci).
3: if QCMDPC.Decrypt resulted in a decoding failure then

4: Increment i and return to step 2. If i = P , return ⊥.
5: end if

6: Compute s = xi ⊕ KDF1(ei||i).
7: Compute K, C ′ = (C ′

1, C ′
2, . . . , C ′

P) from ParQ Encapsulation with seed
s and public key pk.

8: if Ci = C ′
i for all i ∈ {1, . . . , P} then

9: Return K.
10: else

11: Return decapsulation failure ⊥.
12: end if

The impact of decoding failures can be eliminated with this KEM. A decap-
sulation failure only happens if a decoding failure occurs for each separate
ciphertext. Given that the base error rate is on the order of 10−7, a decap-
sulation failure only happens with probability 10−7P . For values of P as
low as 12, this reduces the error rate to a level negligible in the security
parameter.

This KEM achieves full IND-CCA2 security. The proof of this is to be
published soon. The proof is shown in a model that fully considers decoding
failures, so that no attack on the KEM may take advantage of these decoding
failures. It reduces the security of the ParQ KEM to the OW-CPA security
of QC-MDPC McEliece.

This KEM does not change the key sizes at all, only encapsulation sizes.
Encapsulation sizes do increase by a factor of P , but it allows for static-key
usage without concern for the GJS attack.

47

	Abstract
	Table of Contents
	Preliminaries
	Definitions and Notation

	The QC-MDPC McEliece Encryption Scheme
	Encryption Scheme Specification
	Key Generation
	Encryption
	Decryption
	Decoding

	Security of the QC-MDPC McEliece Encryption Scheme
	Theoretical Security Analysis
	Analysis Against Known Attacks
	Grover's Algorithm
	Information Set Decoding
	Quantum Information Set Decoding
	Asymptotic Quantum Security
	Practical Quantum Security
	Other quantum attacks

	Parameter Selection
	Deciding the value of n0
	Suggested Parameter Sets and Expected Security
	Computing other parameter sets

	The QC-MDPC McEliece KEM
	KEM Specification
	Key Generation
	Encapsulation
	Decapsulation

	Ephemeral use of the QC-MDPC McEliece KEM
	Static Use of the QC-MDPC McEliece KEM
	A Key Recovery Attack
	Constant Time Decoders

	Design Rationale

	Security of the QC-MDPC McEliece KEM
	Theoretical Security Analysis
	Game Definitions
	Reduction

	Analysis Against Known Attacks
	Parameter Selection and Expected Security

	Performance of the QC-MDPC McEliece KEM
	Performance Analysis
	Platform
	Time
	Space

	Advantages and Limitations

	Appendix KEM Options
	Key Confirmation Value C2
	Appending Additonal Hash Information

