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Abstract. This document specifes the Walnut Digital Signature Algorithm (WalnutDSA), a submission 
to the NIST Post-Quantum Cryptography standardization process. WalnutDSA is a group-theoretic sig-
nature system based on non-abelian group theory combined with matrices, permutations, and arithmetic 
over fnite felds. The computation imbalance has signature verifcation signifcantly more eÿcient than 
signature generation, allowing fast verifcation even on constrained 16- and 8-bit processors. Key and 
signature sizes are comparable to eÿcient non-quantum-resistant methods, and are much smaller than 
most other quantum-resistant methods. 
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1 Introduction 

The Walnut Digital Signature Algorithm (WalnutDSA) was introduced in 2016 [1] based on 
research for a lightweight signature method useful for constrained and embedded devices. The 
foundation of WalnutDSA is E-Multiplication, a one-way function published in 2005, which 
combines infnite group theory in a non-abelian group, matrices, permutation, lookups, and 
fnite feld arithmetic. Specifcally, the group used by WalnutDSA is the Braid group. See [1] 
for a full security evaluation and additional references, including a proof of security under 
EUF-CMA. 

In WalnutDSA a private key and a signature are braids, and a public key is a pair of 
matrices and permutations, and an ordered list of entries in the fnite feld called T-values. To 
generate a signature one takes the message to be signed, hashes it, converts the hash output 
to a braid, and then builds the signature. To verify a signature one performs the same hashing 
and braid-converstion of the message, then two sets of E-Multiplication operations, one matrix 
multiplication, and then compares the results. 

E-Multiplication is extremely lightweight, easily implemented, and runs very eÿciently 
even in small environments. This makes signature validation very eÿcient even on small, 16-
and 8-bit processors. In lightweight hardware an E-Multiplication can occur in a single clock 
cycle. 

This document specifes how to implement WalnutDSA including key generation, signature 
generation, and signature validation. It also includes the necessary statements to meet the 
requirements of the NIST Post-Quantum Standardization Process section 2.B, modulo the 
attached references (e.g., [1]). 

2 Defnitions 

– BN : The braid group on N strands. 
– Braid: A confguration of N woven strands. The braid group is denoted BN . 
– Braid Generators: The braid group BN has N −1 Artin generators labeled b1, b2, . . . , bN−1 

which, along with their inverses (b−i 
1) can be used to defne any braid. 

– CB Matrix: A colored Burau matrix. c.f. [7]. 
– Cloaking Element: A braid of a special form that disappears during E-Multiplication. 

A cloaking element v is said to cloak for a permutation σ when (m, σ) ? v = (m, σ). 
– E-Multiplication: An action on a matrix, permutation, and braid resulting in a new 

matrix and permutation. The action is denoted by the symbol ?. 
– FFFq: A fnite feld with q elements. In the case of a binary feld, the polynomial elements of 

the feld are translated directly into the binary integer representation. 
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– Matrix: An N × N grouping of elements. Herein these elements are computed over a fnite 
feld Fq. 

– Permutation: A one-to-one function from a set onto itself. 
– Purebraid: A non-trivial braid whose corresponding permutation is trivial. 
– R: A braid rewriting function that maps a braid to another equivalent braid, used to 

obfuscate the structure. 
– σw: A permutation of the braid word w. 
– T-values: An array of N nonzero elements {τ1, τ2, . . . , τN } in the fnite feld Fq. 

3 Design Rationale 

During the construction of WalnutDSA we encountered several decision points. The following 
are potential questions about WalnutDSA that may arise and the answers as to why the 
choices were made. Note that understanding these issues may require reading to the end and 
then returning to this section. 
• Why are cloaking elements needed? 
Cloaking elements exist to prevent WalnutDSA from being susceptible to the Conjugacy 

Search Problem. 
The general goal was to produce a group element, using the signer’s private key and the 

message, so that extracting the signer’s private key would be algorithmically hard. The second 
goal was to use E-Multiplication for the verifcation step. The third goal was that the public 
key of the signer and some other readily available data facilitates one side of the verifcation. 
In order to bring the message into the signature, a hash function is applied and then a method 
for encoding the hash output into the braid group is performed. Since simply conjugating the 
encoded message by the signer’s private key would not be suÿcient to keep the private key 
secure, additional braids are inserted into the conjugate to obscure the private key. In order to 
facilitate (eÿcient) verifcation, these additional braids must not be too long and must satisfy 
the cloaking property. 
• Why do we set τ1 and τ2 = 1? 
In order to produce cloaking elements which are reasonably short, we need two of the 

T-values to be = 1. Signifcant testing showed that when a specifc T-value (τi) is = 1, then 
the ith row of the public key and verifcation matrices signifcantly duplicates the values from 
the row before. Additional testing demonstrates that, by choosing the frst two T-values to 
be = 1, the matrix produced in the public key and verifcation steps of the method will have 
fewer repeated entries, at the expense of additional zeros in the top-right corner of the matrix. 
We take these zeros into account in our analysis of the security level. 
• Why are hashed messages encoded into a free subgroup of the pure braid subgroup? 
We need to ensure that two distinct hashes of messages encode in distinct ways, i.e., yield 

di˙erent braids. We do this by associating with each possible block of bits in a hash value with 
a positive power of a braid which is a generator of a free subgroup of the braid group. Such 
expressions are necessarily distinct. 
• Why are N ≥ 8 and q ≥ 32? 
We need to ensure that a brute force attack on the method is ine˙ective. By choosing 

N ≥ 8 and q ≥ 32, we ensure there are suÿciently many public keys, and that the underlying 
algorithmically hard problems are robust. 
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4 Key Generation 

First generate the private key: 

1. Choose an integer N ≥ 8 and associated braid group BN . 
2. Choose a fnite feld Fq of q ≥ 32 elements. 
3. Compute the value L from the security level, which determines the minimal length of 

certain random braid words. L = dSecurity Level/2 log2(N(N − 1))e. 
4. Compute the value ̀  from the security level, which determines the minimal length of the 

private key. To compute ̀  you need to solve the equation: � � 
` − 2 + N 

` = Security Level + log2(`) − log2(N − 1) − log2( )
N − 1 

Note that these four items are pre-defned by the security level parameters in Section 11 
so in general nothing must be done to “choose” N , q, L, or ̀ . 

5. Choose a random set of T-values = {τ1, τ2, . . . , τN }, where each τi is an invertible element 
in Fq (τi 6= 0, 1), and then set τ1 = τ2 = 1. 

6. Generate a random braid of length ̀  (see section 9). This braid must not be a purebraid, 
so regenerate if the permutation is trivial. 

7. Freely reduce this braid (see section 5.1). 
8. Generate a second random braid of length ̀  and freely reduce it. This braid must not be a 

purebraid, and must not have the same permutation as the frst braid, so regenerate if the 
permutation is trivial or matches the permutation of the frst braid. 

9. Priv(S) is the frst freely reduced braid, which has permutation σP rivS , and Priv(S’) is the 
second freely reduced braid, which has permutation σP rivS0 . 

Next, compute the public key by E-Multiplication (?): � � 
1. Pub(S) = IdN , IdSN 

? Priv(S), where IdN is the N × N identity matrix and Id
SN 

is the 
identity permutation in SN . See section 7 for more information on E-Multiplication.� � 

2. Pub(S’) = IdN , IdSN 
? Priv(S’) 

3. Publish the public key with the following data: 
– N 
– q 
– T-values 
– Pub(S) 
– Matrix Part of Pub(S’) 

5 Signature Generation 

The WalnutDSA method requires the full message to be hashed before being passed into the 
signature function. An appropriate hash method should be used and the output passed to the 
signature generator as the message M. Suggested hash functions are denoted in the appropri-
ate parameter selections (see Section 11). 

To generate a signature: 
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1. Generate the encoded message E(M) as per section 5.1. 
2. Generate cloaking elements v1, v2, v3 as defned in section 5.2, where v1 cloaks for the 

identity, v2 cloaks for σP rivS0 , and v3 cloaks for σP rivS .� � 
3. Compute the signature Sig = R v3 · Priv(S)−1 · v1 · E(M) · Priv(S0) · v2 , a braid rewritten 

as per 5.3. 

5.1 Message Encoding 

The original input gets hashed and the output of the hash is the input the WalnutDSA Message 
Encoder. We assume the hash output M is 4` bits long. 

The encoding method utilizes the collection of pure braid generators given by the following 
equations [2]: 

= b2 x1 = g(N−1),N N−1 

· b2 · b−1 x2 = g(N−2),N = bN−1 N−2 N−1 

· b2 · b−1 b−1 x3 = g(N−3),N = bN−1bN−2 N−3 N −2 N−1 

· b2 · b−1 b−1 b−1 x4 = g(N−4),N = bN−1bN−2bN−3 N−4 N−3 N−2 N−1 

. . . 
· b2 · b−1b−1 b−1 xN−1 = g1,N = bN−1bN−2 · · · b2 1 2 3 · · · N−1 

For this specifcation we use the generators xN−1, xN−3, xN −5, and xN−7, which we call 
g1, g2, g3, and g4. 

The message encoder proceeds as follows: 

1. Break the message M into ̀  4-bit blocks. 
2. For each block: 

(a) The low two (2) bits determine the generator gi (1 ≤ i ≤ 4). 
(b) The high two (2) bits determine the power 1 ≤ e ≤ 4. 

e(c) Compute the braid gi corresponding to this block. 
For example, the hex hash output 0x1234 results in the output g2 g3 g4 g1

2 

3. The encoded message E(M) is the freely reduced product of these ̀  block results. 

Free reduction is a rewriting process that removes certain pairs of elements in the braid 
– namely, a generator bi followed immediately by its inverse b−i 

1, or an inverse generator b−i 
1 

followed by the generator bi. Any such pair of consecutive elements may be erased from the 
braid. For example, the free reduction of the braid b1b2b−2

1b3 is b1b3. 

5.2 Cloaking Elements 

A cloaking element is a braid of a special form that disappears during E-Multiplication (see 
section 7). A cloaking element v is said to cloak for a permutation σ when (m, σ) ? v = (m, σ). 

To generate a cloaking element that cloaks permutation σ: 

1. Pick a random integer 2 ≤ i ≤ N − 1. 
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2. Compute the permutation preimages (a, b) for 1 and 2 in σ, i.e., a is the value σ takes to 
1, and b is the value σ takes to 2: a = σ−1(1), b = σ−1(2). 

3. Choose a random permutation σw of high order that moves i → a, i + 1 → b (see section 
8). 

4. Generate a random braid using permutation σw (see section 9) and invert it (so the result 
has permutation σw), calling the result w. 

5. Extend w with L pure braids. 
6. Compute the cloaking element v = w · b2 

i · w−1 . 

5.3 Rewriting 

The signature braid must be rewritten to hide the form and protect the private key. There 
are an infnite number of equivalent braids which means it is computationally infeasible to 
determine the original from of the rewritten version. We specify two methods to rewrite the 
signature (BKL Normal Form and Stochastic Rewriting), plus a third option that may be used 
to reduce the fnal length (Dehornoy Reduction). 

5.3.1 BKL Normal Form 

Birman–Ko–Lee (BKL) Normal Form was introduced in 1998 [3] as a canonical form for a 
braid. Every braid can be converted to BKL Normal Form, and every equivalent braid will 
result in the same BKL output. For example, the braids b1 b2 b1 and b2 b1 b2 would result in 
the same output after running through BKL. 

Please reference Section 4 of [3] for the algorithm description. 

5.3.2 Stochastic Rewriting 

Stochastic Rewriting is a new method which is useful for smaller processors because it just 
involves random rewriting from lookup tables. The process is: 

1. Freely reduce the braid if it has not already been reduced. 
2. Convert the braid to “Y generators” and freely reduce the result. 
3. Partition the braid into chunks of random sizes between 5-10 generators each1: 

(a) Generate random numbers between the minimum (5) and the maximum (10) inclusive, 
and subtract each from the initial total until the running drops below the minimum. 

(b) If the running total is zero then the partition has been found. 
(c) Otherwise (running total is not zero), jump back to the position in the list where the 

running total was greater than minimum * maximum (50) and set the running total to 
this value. 

(d) Repeat until the running total becomes zero. 
4. For each partition, choose a random o˙set into the partition (from the frst to second-last). 
5. Take the o˙set and o˙set+1 generators and look up a relation in the relation table (see 

Appendix A). 
1 Note that there are 2W −1 possible partitions of a word of length W if partitions could be of any size. Limiting to 

blocks of size 5-10 reduces that number. Still, reversing the process is hard. 

6 



6. Replace those two generators with the relation (if one is found) using the Pair Replacement 
method described below; otherwise, do nothing for this partition. 

7. Once you reach the last partition, freely reduce and then return to step 3 in order to repeat 
the process 3 times. 

8. After the third repetition, convert back to Artin generators and freely reduce. 

Convert Artin to Y Generators 
Use the following process to convert a single Artin generator bk ∈ BN to Y generators 

using the partition p of N − 1. If the Artin generator is an inverse, then invert the Y result. 
Converting a full word just involves iteration of this method. Note that the partition here is 
a static partition of N − 1. 

// Create an array the same length as the number of partitions of N-1 
r := array[length_of(p)+1] 

// Initialize this array with the sum of the partitions 
r[1] = 1 
for i in (2..length_of(p)+1): 

r[i] = r[i-1] + p[i-1] 

// Determine which partition contains k 
j = 1 
while(r[j] <= k): 

j++ 
j--; 

// Build the response 
u = k - r[j] 
if (u < p[j] - 1): 

answer = {{r[j]+u, 1}, {r[j]+u+1, -1}} 
else: 

answer = {{r[j]+u, 1}} 

return answer 

Convert Y to Artin Generators 
Use the following process to convert a single Y generator yk ∈ BN to Artin generators 

using the partition p of N − 1. If the Y generator is an inverse, then invert the Artin result. 
Converting a full word just involves iteration of this method. Note that the partition here is 
a static partition of N − 1. 

// Create an array the same length as the number of partitions of N-1 
r := array[length_of(p)+1] 

// Initialize this array with the sum of the partitions 
r[1] = 1 
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for i in (2..length_of(p)+1): 
r[i] = r[i-1] + p[i-1] 

// Determine which partition contains k 
j = 1 
while(r[j] <= k): 

j++ 
j--; 

// Build the response 
u = k - r[j] 
answer = {} 
for i in (0..p[j]-u-1): 

answer = answer + {r[j]+u+i, 1} 

return answer 

Integer Partitions 
A partition of an integer is an ordered list of integers that sum to the desired total. For 

example, the integer 20 can be partitioned into {10,10}, or {5,5,5,5}, or {7,8,5}, or {7,5,8}, or 
any other random split. 

Pair Replacement 
The partitioning of N − 1 not only defnes the Artin to Y generator mappings but also the 

set of relations between pairs of generators. This list of relations is enumerated in Appendix 
A. Given a Y-word of length two, the process searches through the list of relations until a 
match is found (i.e, it fnds a relation that contains the length-two word). Note that not all 
pairs of generators have relations, so there may not be a match. 

Once a relation is found, the replacement is made by replacing the original pair with the 
inverse of the surrounding relation by inverting the part of the relation to the left of the 
subword, and then the part to the right of the subword. For example, if one is searching for 
the subword {1,1}{2,1} and the relation that was found is {3,1}{2,1}{1,1}{2,1}{3,1}. The left 
part is {3,1}{2,1} and the right part is {3,1}. Once you invert and concatenate these parts, 
then the replacement would be {2,-1}{3,-1}{3,-1}. 

Note that if there are multiple matches for the pair within the relation then randomly 
choose one of the matches. 

5.3.3 Dehornoy Reduction 

Dehornoy Reduction is a method to reduce the size of a braid by fnding and removing complex 
cancelations beyond single free reduction [4]. While solving the shortest word problem in the 
braid group is known to be NP-Hard, Dehornoy is the best-known method to reduce a braid 
to a minimal length. Applying Dehornoy is recommended; however, it may be applied “later”. 
For example, a lightweight processor may generate a signature and use Stochastic Rewriting, 
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and then send that (long) signature to another, more powerful device, which can then run 
Dehornoy. 

Please reference Section 4 of [4] for the algorithm description. 

6 Signature Verifcation 

Signature verifcation depends on frst hashing the input using the same hash method as the 
signature generation to generate the hash output M. Then to verify the signature: 

1. Compute E(M) as per section 5.1. 
2. Evaluate (M1, σ1) = (IdN , IdSN ) ?E(M), where IdN is the N × N identity matrix and Id

SN 

is the identity permutation in SN . 
3. Evaluate (M2, σ2) = Pub(S) ? Sig. 
4. Compute the matrix multiplication M3 = M1 · MatrixPart(Pub(S’)). 
5. Compare M2 and M3 for equality. If M2 = M3, then the signature is valid. 

7 E-Multiplication 

The one-way function E-Multiplication is an action that starts with a matrix and permutation, 
a braid, and results in a new matrix and permutation. E-Multiplication is iterative, and by 
defnition is applied one braid generator at a time. One can fnd closed formula for applying 
certain longer braid words. 

The best way to explain the process is via pseudo-code. To compute a single E-Multiplication 
starting with a matrix m, permutation p, and braid generator bei : 

// compute the multiplication values for this generator based 
// on the T-values, strand, and whether the generator is inverted 
if e == 1: 

a = T[p[i]] 
b = -a 
c = 1 

else: // e == -1 
a = 1 
b = -Inverse(T[p[i+1]]) 
c = -b 

// iterate down columns and matrix-multiply each value 
if i != 0: 

for j in (1..N): 
m[j][i-1] += m[j][i] * a 

for j in (1..N): 
m[j][i+1] += m[j][i] * c 

for j in (1..N): 
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m[j][i] *= b 

// swap permutation based on the generator 
temp = p[i] 
p[i] = p[i+1] 
p[i+1] = temp 

To compute the E-Multiplication of a longer braid, one just iterates this process over the 
whole braid, reading from left to right. 

8 Permutations 

To generate a random permutation use the Fisher-Yates Shu˜e [5]: 

1. Start with the identity permutation of n elements. 
2. Start with the last (1-indexed) o˙set, i = n. 
3. Choose a random number 1 ≤ j ≤ i. 
4. Swap permutation elements i and j. 
5. Iterate i down to 1. 

If the desired permutation has additional constraints, those constraints can be applied after 
this process is complete. For example, if one needs to move i → a, then one takes a randomly 
constructed permutation and modifes it by the following: 

1. Find the permutation preimage of a. This is the o˙set o where the permutation value is a. 
2. Swap the entries at o and i. 

Note that all o˙sets and values are 1-indexed in this defnition. 

9 Braids 

To generate a random braid word of length l: 

1. Choose a random braid generator bi, where 1 ≤ i < N . 
2. Choose a random power, � = {−1, 1}. 
3. Append b�i to the braid word. 
4. Iterate l times. 
5. Freely reduce the result. 

To generate a random braid b(σ) from permutation σ: 

1. Convert the permutation σ to a product of transpositions t1 · · · tr: 
(a) First write σ as a product of disjoint cycles C1 · · · Cs where the last element of each Ci 

is the smallest number in the cycle. 
(b) Order the cycles such that the last element of each Ci is in ascending order. 
(c) Convert each cycle to a product of transpositions: if Ci = (a1, . . . , ak), then Ci = 

(a1, a2)(a1, a3) · · · (a1, ak). 
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(d) Replace each Ci with its corresponding product of transpositions and fatten the list. 
2. For each transposition ti, generate a random braid b(ti) that produces it: 

(a) Find the smallest element m and largest element M exchanged by the transposition t, 
i.e., t = (m, M). 

(b) Set b(ti) to be the identity braid. 
(c) For k = m to M − 1, replace b(ti) with b(ti) · b� , where � = {−1, 1} is randomly chosen. k

b�(d) For k = 2 to M − m, replace b(ti) with b(ti) · , where again � = {−1, 1} is randomly M−k
chosen. 

3. The result2 b(σ) is the product b(t1) · · · b(tr). 

To meet specifc security constraints, the braid can be augmented with pure braids. Specifcally, 
it is the freely reduced product of L pure braid generators. The pure braid subgroup of BN is 
generated [6] by the set of (N)(N − 1)/2 braids given by: 

· b2 · b−1 b−1 b−1 gi,j = bj−1bj−2 · · · bi+1 i i+1 · · · j−2 j−1, 1 ≤ i < j ≤ N. 

To create a pure braid generator of BN : 

1. Choose random numbers i, j: 1 ≤ i < j ≤ N . 
2. Choose a random exponent � = {−1, 1}. 
3. Iterate 0 ≤ k < j − i − 1 and append bj−k−1. 
4. Append b2i � . 
5. Iterate 0 ≤ k < j − i − 1 and append b−1 

i+k+1. 

10 Object Encodings 

Throughout this document, indices are often 1-indexed. For example, in BN the generators 
are labeled b1, b2, . . . . However, computers are better with 0-indexed numbers, arrays, and 
matrices, so the encodings are 0-indexed. 

For all encodings, multi-byte numbers are encoded in network byte order (i.e., most signif-
icant byte frst). For example, the decimal number 255 is encoded in hex as 00 FF, decimal 
256 as 01 00. 

Larger data objects like matrices, permutations, and braids are “bit packed” to reduce the 
e˙ective transmission size. Bit packing also uses most-signifcant-bit frst. When packing a 
matrix, the entries are encoded from 0 to q − 1 and packed across each row sequentially. The 
permutation is packed as a series of entries from 0 to N − 1. 

Braids get encoded frst with a 2-byte length (which is the number of generators)3, and 
then each generator is encoded with one bit for the sign and additional bits for the strand. 
For example, in B8 packing each braid generator requires 4 bits. In B8, encoding the braid 

b−1b1 b
−
2
1 b3 b4 5 b6 b

−
7
1 would result in the hex 00 07 09 23 C5 E0. 

2 Note that this process generates a braid that has permutation σ−1 which is why it is inverted in Section 5.2. 
3 In all testing to date, signature braids have never exceeded 10,000 generators. 
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10.1 Public Key 

The public key contains the following data: 

– N: an 8-bit unsigned integer. 
– q: a 16-bit unsigned integer. 
– T-values: a packed array of N entries in Fq. This results in N log2(q) bits, which gets 

rounded up to the nearest byte (padded with 0-7 bits of zeros). 
– Pub(S) Matrix: a packed matrix of N × (N − 1) + 1 entries in Fq. We know the last row 

of the matrix is always 0, except for the last entry of the last row, so those N − 1 entries 
are elided from the packing. This results in (N2 − N + 1) log2(q) bits which gets rounded 
up to the nearest byte (padded with 0-7 bits of zeros). 

– Pub(S) Permutation: a packed array of N entries from 0 to N − 1. This results in 
N log2(N) bits, which gets rounded up to the nearest byte (padded with 0-7 bits of zeros). 

– Pub(S’) Matrix: a packed matrix of N × (N − 1) + 1 entries in Fq. We know the last row 
of the matrix is always 0, except for the last entry of the last row, so those N − 1 entries 
are elided from the packing. This results in (N2 − N + 1) log2(q) bits which gets rounded 
up to the nearest byte (padded with 0-7 bits of zeros). 

10.2 Signature 

A signature is just a braid, so it is encoded as a single packed braid as detailed at the start 
of this section. It has a 2-byte (16-bit) integer length (the number of generators) followed 
by the packed list of generators. Because each generator encodes into 4 bits, you can ft two 
generators into every byte. If you have an odd number of generators then the fnal byte is 
padded with zeros. 

It does not matter which reduction method is used; in all cases the signature is converted 
to and encoded in Artin generators. Moreover, the 2-byte length feld is suÿcient because in 
all cases the maximum length seen experimentally is well below 65,000 generators. A long 
signature could be the result of an attempted attack and must be considered invalid. 

11 Parameter Specifcations 

11.1 Security Level: 128 

For a classical security level of 2128 (which, subject to Grover, results in a quantum-safe security 
level of 264), use the following parameters: 

– N = 8 
– q = 32 (using polynomial x5 + x2 + 1) 
– L = 15 
– ` = 132 
– Hash function: SHA2-256 

This results in a 256-bit message size, at least 2200 possible public keys that would need to 
be searched, as well as at least 2128 possible secret keys and cloaking elements. The public key 
is 664 bits (including the N/q values). The private key is variable length and has a maximum 
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length of 1056 bits (not including any markers as to N , individual braid lengths, or the security 
level). 

Signatures are variable length, and the actual resulting length also depends on which rewrit-
ing method gets used. Experimentally we can determine the expected minimum, maximum, 
and average lengths (see Table 1). 

Rewriting Method Minimum Mean Maximum 
BKL + Dehornoy 3080 5172.5 7704 
Stochastic + Dehornoy 3056 5134.6 7616 
Stochastic w/o Dehornoy 8944 11331.6 13968 

Table 1: Experimentally determined 128-bit signature lengths (in bits) 

11.2 Security Level: 256 

For a classical security level of 2256 (which, subject to Grover, results in a quantum-safe security 
level of 2128), use the following parameters: 

– N = 8 
– q = 256 (using polynomial x8 + x4 + x3 + x + 1) 
– L = 30 
– ` = 287 
– Hash function: SHA2-512 

This results in a 512-bit message size, at least 2320 possible public keys that would need to 
be searched, as well as at least 2256 possible secret keys and cloaking elements. The public key 
is 1024 bits (including the N/q values). The private key is variable length with a maximum of 
2296 bits (not including any markers as to N , individual braid lengths, or the security level). 

Signatures are variable length, and the actual resulting length also depends on which rewrit-
ing method gets used. Experimentally we can determine the expected minimum, maximum, 
and average lengths (see Table 2). 

Rewriting Method Minimum Mean Maximum 
BKL + Dehornoy 6784 9981.6 13880 
Stochastic + Dehornoy 6768 9932.4 13552 
Stochastic w/o Dehornoy 17552 21556.6 25240 

Table 2: Experimentally determined 256-bit signature lengths (in bits) 

11.3 Security Level: 40 – For Testing Purposes 

In order to test an insecure version of WalnutDSA, we suggest a smaller version at a classical 
security level of 240 by using the following parameters: 
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– N = 8 
– q = 16 
– L = 4 
– ` = 25 
– Hash function: SHA1 

This results in a 160-bit message size, at least 2160 possible public keys that would need to 
be searched, as well as at least 240 possible secret keys and cloaking elements. The public key 
is 544 bits (including the N/q values). The private key is variable length with a maximum of 
200 bits (not including any markers as to N or the security level). 
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A Stochastic Rewriting “Y” Generator Relations 

The following is a list of 1-indexed Y relations in B8 with partition {4,3} for use in the 
Stochastic Rewriting process. This list is created by enumerating all braid relations available 
in Artin generators (e.g., b1 b2 b1 = b2 b1 b2, etc, and b1 b3 = b3 b1, etc) and converting them 
to Y generators, and also the additional relations that are available due to the change over to 
Y generators. Note that not every possible pair of yi yj is in the list. This list is then sorted 
by length, which results in the following list: 

{4,1}{7,1}{4,-1}{7,-1} 
{7,-1}{4,1}{7,1}{4,-1} 
{7,1}{4,1}{7,-1}{4,-1} 
{2,1}{1,1}{4,1}{1,-1}{1,-1} 
{3,1}{2,1}{4,1}{2,-1}{2,-1} 
{6,1}{5,1}{7,1}{5,-1}{5,-1} 
{7,1}{6,1}{7,1}{6,-1}{6,-1} 
{1,-1}{2,1}{1,1}{4,1}{1,-1} 
{2,-1}{3,1}{2,1}{4,1}{2,-1} 
{5,-1}{6,1}{5,1}{7,1}{5,-1} 
{6,-1}{7,1}{6,1}{7,1}{6,-1} 
{1,1}{1,1}{4,-1}{1,-1}{2,-1} 
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{2,1}{2,1}{4,-1}{2,-1}{3,-1} 
{5,1}{5,1}{7,-1}{5,-1}{6,-1} 
{6,1}{6,1}{7,-1}{6,-1}{7,-1} 
{2,-1}{1,1}{1,1}{4,-1}{1,-1} 
{3,-1}{2,1}{2,1}{4,-1}{2,-1} 
{6,-1}{5,1}{5,1}{7,-1}{5,-1} 
{7,-1}{6,1}{6,1}{7,-1}{6,-1} 
{3,1}{3,1}{4,-1}{3,-1}{4,-1} 
{6,1}{6,1}{7,-1}{6,-1}{7,-1} 
{4,-1}{3,1}{3,1}{4,-1}{3,-1} 
{7,-1}{6,1}{6,1}{7,-1}{6,-1} 
{4,1}{3,1}{4,1}{3,-1}{3,-1} 
{7,1}{6,1}{7,1}{6,-1}{6,-1} 
{1,1}{2,-1}{4,1}{2,1}{1,-1}{4,-1} 
{2,1}{3,-1}{4,1}{3,1}{2,-1}{4,-1} 
{4,1}{6,1}{7,-1}{4,-1}{7,1}{6,-1} 
{1,1}{2,-1}{7,1}{2,1}{1,-1}{7,-1} 
{2,1}{3,-1}{7,1}{3,1}{2,-1}{7,-1} 
{3,1}{4,-1}{7,1}{4,1}{3,-1}{7,-1} 
{5,1}{6,-1}{7,1}{6,1}{5,-1}{7,-1} 
{4,-1}{1,1}{2,-1}{4,1}{2,1}{1,-1} 
{4,-1}{2,1}{3,-1}{4,1}{3,1}{2,-1} 
{6,-1}{4,1}{6,1}{7,-1}{4,-1}{7,1} 
{7,-1}{1,1}{2,-1}{7,1}{2,1}{1,-1} 
{7,-1}{2,1}{3,-1}{7,1}{3,1}{2,-1} 
{7,-1}{3,1}{4,-1}{7,1}{4,1}{3,-1} 
{7,-1}{5,1}{6,-1}{7,1}{6,1}{5,-1} 
{4,1}{1,1}{2,-1}{4,-1}{2,1}{1,-1} 
{4,1}{2,1}{3,-1}{4,-1}{3,1}{2,-1} 
{6,1}{7,-1}{4,1}{7,1}{6,-1}{4,-1} 
{7,1}{1,1}{2,-1}{7,-1}{2,1}{1,-1} 
{7,1}{2,1}{3,-1}{7,-1}{3,1}{2,-1} 
{7,1}{3,1}{4,-1}{7,-1}{4,1}{3,-1} 
{7,1}{5,1}{6,-1}{7,-1}{6,1}{5,-1} 
{1,1}{3,-1}{1,1}{2,-1}{3,1}{1,-1}{3,1}{2,-1} 
{2,1}{4,-1}{2,1}{3,-1}{4,1}{2,-1}{4,1}{3,-1} 
{5,1}{7,-1}{5,1}{6,-1}{7,1}{5,-1}{7,1}{6,-1} 
{2,-1}{1,1}{3,-1}{1,1}{2,-1}{3,1}{1,-1}{3,1} 
{3,-1}{2,1}{4,-1}{2,1}{3,-1}{4,1}{2,-1}{4,1} 
{6,-1}{5,1}{7,-1}{5,1}{6,-1}{7,1}{5,-1}{7,1} 
{2,1}{3,-1}{1,1}{3,-1}{2,1}{1,-1}{3,1}{1,-1} 
{3,1}{4,-1}{2,1}{4,-1}{3,1}{2,-1}{4,1}{2,-1} 
{6,1}{7,-1}{5,1}{7,-1}{6,1}{5,-1}{7,1}{5,-1} 
{1,1}{2,-1}{3,1}{4,-1}{2,1}{1,-1}{4,1}{3,-1} 
{1,1}{2,-1}{5,1}{6,-1}{2,1}{1,-1}{6,1}{5,-1} 
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{2,1}{3,-1}{5,1}{6,-1}{3,1}{2,-1}{6,1}{5,-1} 
{3,1}{4,-1}{5,1}{6,-1}{4,1}{3,-1}{6,1}{5,-1} 
{1,1}{2,-1}{6,1}{7,-1}{2,1}{1,-1}{7,1}{6,-1} 
{2,1}{3,-1}{6,1}{7,-1}{3,1}{2,-1}{7,1}{6,-1} 
{3,1}{4,-1}{6,1}{7,-1}{4,1}{3,-1}{7,1}{6,-1} 
{3,-1}{1,1}{2,-1}{3,1}{4,-1}{2,1}{1,-1}{4,1} 
{5,-1}{1,1}{2,-1}{5,1}{6,-1}{2,1}{1,-1}{6,1} 
{5,-1}{2,1}{3,-1}{5,1}{6,-1}{3,1}{2,-1}{6,1} 
{5,-1}{3,1}{4,-1}{5,1}{6,-1}{4,1}{3,-1}{6,1} 
{6,-1}{1,1}{2,-1}{6,1}{7,-1}{2,1}{1,-1}{7,1} 
{6,-1}{2,1}{3,-1}{6,1}{7,-1}{3,1}{2,-1}{7,1} 
{6,-1}{3,1}{4,-1}{6,1}{7,-1}{4,1}{3,-1}{7,1} 
{3,1}{4,-1}{1,1}{2,-1}{4,1}{3,-1}{2,1}{1,-1} 
{5,1}{6,-1}{1,1}{2,-1}{6,1}{5,-1}{2,1}{1,-1} 
{5,1}{6,-1}{2,1}{3,-1}{6,1}{5,-1}{3,1}{2,-1} 
{5,1}{6,-1}{3,1}{4,-1}{6,1}{5,-1}{4,1}{3,-1} 
{6,1}{7,-1}{1,1}{2,-1}{7,1}{6,-1}{2,1}{1,-1} 
{6,1}{7,-1}{2,1}{3,-1}{7,1}{6,-1}{3,1}{2,-1} 
{6,1}{7,-1}{3,1}{4,-1}{7,1}{6,-1}{4,1}{3,-1} 
{4,1}{5,1}{6,-1}{4,1}{6,1}{5,-1}{4,-1}{6,1}{5,-1} 
{5,-1}{4,1}{5,1}{6,-1}{4,1}{6,1}{5,-1}{4,-1}{6,1} 
{5,1}{6,-1}{4,1}{5,1}{6,-1}{4,-1}{6,1}{5,-1}{4,-1} 

B Expected Computational Eÿciency and Performance 

When analyzing the computational eÿciency of WalnutDSA, one must look at four distinct 
processes: key-pair generation, raw signature generation, signature rewriting, and signature 
validation. 

A note on notation: when declaring the expected computation eÿciency of the various 
subprocesses of WalnutDSA, the basis of the order is explicitly used when available. For 
example, using “ O(N)” implies a linear operation in N , which is the number of strands of the 
braid in BN , whereas using “O(n)” is a generic linear operation. 

Performance was tested on a Linux server confgured with 8 cores of Intel Xeon X5355 
at 2.66GHz running at 2660237000 cycles per second and 32 GB RAM. The test code was 
compiled using: gcc -march=native -mtune=native -O3 -fomit-frame-pointer -fwrapv 
-msse2. 

B.1 Key-Pair Generation 

Key-pair generation is straightforward. The private key is purely a randomly generated braid, 
which takes O(`) operations to create and freely reduce. Generating the T-values is also an 
O(N) operation (but N is small). Finally, computing the public key via E-Multiplication 
requires N multiplies and 2N additions repeated ̀  times, so it is still O(N`) (remembering 
that N is fxed, so really O(`)). We expect this to take fractions of a millisecond on the target 
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Fig. 1: Timing for generating 128-bit keys Fig. 2: Timing for generting 256-bit keys 

platform. We also expect this function to be fast even on small processors because it is purely 
a function of the speed of the random number generator. 

As shown in Figures 1 and 2, key generation on our test platform takes between 0.34-0.43ms 
for a 128-bit key and 0.85-1ms for a 256-bit key. This equates to 2325-2941 and 1000-1176 keys 
generated per second. 

B.2 Raw Signature Generation 

Raw signature generation is the process of taking the hash of the input message, converting 
the hash to a braid, generating cloaking elements, and putting the “raw” signature together 
prior to rewriting. We separate this from the rewriting portion because there are multiple 
rewriting methods proposed with di˙erent performance profles. 

Hashing the message is an O(n) operation in the length of the input message and is out of 
the control of WalnutDSA. We expect a good implementation of SHA2-256 or SHA2-512 to 
behave appropriately. 

After hashing, we convert the hash output to a braid (this is an O(n) operation in the size 
of the hash output), and generate the three sets of cloaking elements (each an O(L) operation). 
Finally, we invert the private key (O(`)) and put it all together (O(n)). Of all these operations, 
the hash function is the most computationally intensive. The rest of the operations are purely 
limited on the speed of the random number generator. We expect this operation to be fast 
even on tiny devices. 

B.3 Signature Rewriting 

Rewriting the signature is the most computationally intensive operation in WalnutDSA, al-
though it is required for signature security. There are three rewriting options: 

1. BKL + Dehornoy 
2. Stochastic Rewriting 
3. Stochastic Rewriting + Dehornoy 

The BKL algorithm, which outputs the canonical form of any braid, runs in O(n2) time 
in the length of the input braid. BKL will convert any equivalent braid into the exact same 
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output braid, making it easy to detect “sameness.” Of course the canonical form of a braid is 
often much longer than the original. 

Enter Dehornoy, which takes a braid and shortens it by fnding ways to manipulate the 
braid to remove inverses, even if they are not adjacent. The Dehornoy algorithm also runs in 
O(n2) time in the length of the input braid. 

Fig. 3: SUPERCOP output for generating 128-bit signa-
tures with BKL and Dehornoy 

Fig. 4: SUPERCOP output for generating 256-bit signa-
tures with BKL and Dehornoy 

However, both BKL and Dehnory run in statistical time, not fxed time. Depending on 
the inputs they can complete very quickly or run somewhat longer. Moreover, the output 
is variable in length based on the inputs, which implies that WalnutDSA signatures are not 
constant length. 

Running our implementation through SUPERCOP, we generated three sets of keys and 
then for each key ran 32 runs for each of 48 di˙erent message sizes (see Figure 3). At 128-bit 
security the signature generation took between 64-84ms. The variabiliy in execution time is 
due to the varying lengths of signatures across di˙erent inputs, how the hash output gets 
converted into varying lengths of braids, and how that interacts with the random cloaking 
elements. 

For 256-bit security (see Figure 4), the execution time increased to 238-295ms. 

Fig. 5: SUPERCOP output for generating 128-bit signa-
tures with Stochastic Rewriting and Dehornoy 

Fig. 6: SUPERCOP output for generating 256-bit signa-
tures with Stochastic Rewriting and Dehornoy 
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The Stochastic Rewriting method is a mostly-linear operation that randomly replaces sec-
tions of a braid using a known set of braid relations. Its running time is slightly greater than 
linear, because the length of the braid increases on every round. The exact complexity is 
greater than O(n) but less than O(n log(n)). 

Fig. 7: SUPERCOP output for generating 128-bit signa-
tures with Stochastic Rewriting without Dehornoy 

Fig. 8: SUPERCOP output for generating 256-bit signa-
tures with Stochastic Rewriting without Dehornoy 

As shown in Figures 5 and 6, replacing BKL with Stochastic Rewriting provides a signifcant 
speed increase. With the three keys randomly chosen at the 128-bit security level, signatures 
generated in 19-24ms. 

At the 256-bit security level speed is also increased. Those keys signed messages in 64-79ms. 
Using Stochastic Rewriting shows a 3-4x speed improvement over BKL. 

Moreover, it’s likely that Stochastic Rewriting could be implemented on an embedded de-
vice. However in this case it’s more likely that the embedded device would only run Stochastic 
Rewriting, then send the signature over to a more powerful device (trading of signature size 
and transmission time for computation capability). The larger device could run Dehornoy and 
reduce the signature for storage. 

When you remove Dehornoy, our test system was able to generate a 128-bit signature in 
18-22ms (see Figure 7), and a 256-bit signature in 60-74ms (see Figure 8). The complexity 
reduction is such that an embedded device may be suÿcient; however, the resulting signature 
is longer. 

B.4 Signature Validation 

Validating a signature requires hashing the message, converting the hash output to a braid 
(O(n)), two sets of E-Multiplication (O(n) in the length of the signature and the length of 
the converted hash output), one matrix multiplication (O(N3)), and one matrix comparison 
(O(N2)). 

Figure 9 shows clearly that for smaller messages the mathematical computation domi-
nates, but the hash computation starts to dominate once input messages reach about 8000 
bytes. Specifcally, looking at Table 3, it appears that the run time starts to increase once 
messages reach somewhere between 1500-4000 bytes, and the hash function dominates, more 
than doubling the execution time, between 6000-10000 bytes. A signifcantly optimized hash 
implementation is clearly a requirement. 
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Fig. 9: SUPERCOP output for verifying 128-bit signatures 
Fig. 10: SUPERCOP output for verifying 256-bit signa-with BKL and Dehornoy 
tures with BKL and Dehornoy 

Fig. 11: SUPERCOP output for verifying 128-bit signa-
tures with Stochastic Rewriting and Dehornoy 

Fig. 12: SUPERCOP output for verifying 256-bit signa-
tures with Stochastic Rewriting and Dehornoy 

Fig. 13: SUPERCOP output for verifying 128-bit signa-
tures with Stochastic Rewriting, without Dehornoy 

Fig. 14: SUPERCOP output for verifying 256-bit signa-
tures with Stochastic Rewriting, without Dehornoy 

Message Size (B) 567 709 887 1109 1387 1734 2168 2711 3389 4237 5297 6622 
Cycles 116928 124848 111208 122656 123960 132096 135232 140480 155616 172328 201080 214144 

Message Size (B) 8278 10348 12936 16171 20214 25268 31586 39483 49354 61693 77117 96397 
Cycles 244896 290880 332376 392016 475392 567856 679272 828904 1010096 1235120 1519880 1881312 

Table 3: SUPERCOP cycle counts for signature verifcation 

The same pattern, where message size a˙ects verifcation speed, can also be seen for 256-bit 
signatures in Figure 10. Similarly, Figures 11, 12, 13, and 14 all exhibit the same structure. 
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The main di˙erence between them all is the baseline computation time. The graphs show 
that Dehornoy vs non-Dehornoy is the main component to speed (which is to be expected, 
considering validation computation time is linear in the length of the signature, and Dehornoy 
reduces the signature size). Still, without Dehornoy the base verifcation time is just under 
0.1ms for 128-bit signatures and about 0.17ms for 256-bit signatures, and when Dehornoy is 
applied those times are reduced to 0.05ms and 0.1ms. 

In addition to working on the target platform with SUPERCOP, we also took an average-
length signature at 128-bit security level and ran the verifcation computation on various 
embedded processors used on devices associated with the Internet of Things. See Table 4 for 
the raw data. 

Platform Bits Clock (MHz) ROM RAM Cycles Time (ms) 
8051 8 24.5 3370 312 864101 35.3 

MSP430 16 8 3244 236 370944 46 
ARM Cortex M3 32 48 2952 272 275563 5.7 

FPGA 50 1720(ALM) 2500 0.05 

Table 4: Raw WalnutDSA performance data for verifying 128-bit signatures 

C Expected Security Strength 

At this time the best-known attack against WalnutDSA is a brute force search. See [1] for a 
full security analysis. The summary is that for a given security level (SL): 

1. A public key is a pair of N × N matrices of elements in Fq, which implies there are a 
maximum of qN2 potential options per matrix. However, due to the construction, this is 
reduced to a minimum of qN(N−3) potential matrices. We have chosen N and q such that 
this value exceeds 2SL possible public keys. 

2. A secret key is a pair of braidwords in BN of length ̀ . The number ̀  is chosen such that 
there are at least 2SL unique braids when randomly creating a braid of length ̀  (prior to 
free reduction). 

3. Cloaking elements are chosen in words of length L of the pure braid generators. The value 
of L is chosen such that there are at least 2SL possible words. 

4. Reversing the rewriting schemes is also a brute-force problem which far exceeds 2SL oper-
ations to reverse. 

We have increased our values for L and ̀  by 25% beyond the minimum required to meet 
the desired security level, both for 128- and 256-bit (conventional) security. This increase is 
purely for future proofng against minor errors or miscalculations in the number of possible 
braid or braidwords or improvements in enumeration techniques. 

We believe that WalnutDSA is subject to Grover so we expect that the quantum security 
is half of the conventional security. 

21 



D Advantages and Limitations 

The main advantages of WalnutDSA are that key generation and signature validation are 
extremely fast, even on small, constrained devices. These functions can be implemented in 
very little code and compile down to very small targets. Indeed, the raw signature validation 
on a 48MHz ARM Cortex M3 can complete in 5.7ms in compiled C software. Due to its nature, 
signature validation can easily be computed even on 16- or 8-bit processors with limited RAM 
and ROM and decent performance. 

The main limitation of WalnutDSA is that signature generation is more expensive because 
the known braid rewriting techniques are more computationally intensive. 

E Known Attacks 

If Priv(S) = Priv(S’) then there is a factoring attack that can potentially create a valid 
signature by combining multiple signatures to create new words. However, the signatures 
generated by this attack are orders of magnitude longer than a valid WalnutDSA signature 
(estimated at a length 232 or longer), and this attack is completely defeated by ensuring that 
Priv(S) 6 Priv(S’). See [1] for an analysis of this attack. = 

The next best-known attack against WalnutDSA is a brute force search. See [1] for a full 
security analysis, including a proof of security under EUF-CMA. 

There are no known other attacks against WalnuntDSA as of this writing. 
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	1 Introduction 
	1 Introduction 
	The Walnut Digital Signature Algorithm (WalnutDSA) was introduced in 2016 [1] based on researchfora lightweight signature methoduseful for constrained and embeddeddevices. The foundation of WalnutDSA is E-Multiplication, a one-way function published in 2005, which combines infnite group theory in a non-abelian group, matrices,permutation, lookups, and fnite feld arithmetic.Specifcally,the group usedbyWalnutDSAisthe Braid group.See[1] for a full security evaluation and additional references, including a proo
	In WalnutDSA a private key and a signature are braids, and a public key is a pair of matrices andpermutations, andan ordered list of entries in the fnite feld called generatea signature one takes the message tobe signed, hashes it, converts the hash output toa braid, and then builds the signature.Toverifya signatureoneperforms the same hashing and braid-converstionof themessage, thentwo setsof E-Multiplication operations, one matrix multiplication, and then compares the results. 
	T-values.To 

	E-Multiplication is extremely lightweight, easily implemented, and runs very eÿciently even in small environments. This makes signature validation very eÿcient even on small, 16and 8-bit processors. In lightweight hardware anE-Multiplication canoccurina single clock cycle. 
	-

	Thisdocumentspecifeshowto implementWalnutDSA includingkey generation, signature generation, and signature validation. It also includes the necessary statements to meet the requirements of the NISTPost-Quantum Standardization Process section 2.B, modulo the attached references (e.g., [1]). 

	2 Defnitions 
	2 Defnitions 
	– 
	– 
	– 
	BN : The braid group on N strands. 

	– 
	– 
	Braid:A confguration of N woven strands. Thebraid group is denoted BN . 

	– 
	– 
	Braid Generators:The braid groupBN has N −1 Artin generators labeled b1,b2,...,bN−1 which, along with their inverses(b)canbe usedto defne anybraid. 
	−
	i 
	1


	– 
	– 
	CB Matrix:A colored Burau matrix. c.f. [7]. 

	– 
	– 
	Cloaking Element: A braid of a special form that disappears during E-Multiplication. A cloaking elementv is said to cloak forapermutation σ when (m, σ) ?v =(m, σ). 

	– 
	– 
	E-Multiplication: An action on a matrix, permutation, and braid resulting in a new matrix andpermutation. The actionis denotedbythe symbol ?. 

	– q:Afnite feld with q the caseofabinary feld, thepolynomial elementsof the feld are translated directly into the binary integer representation. 
	– q:Afnite feld with q the caseofabinary feld, thepolynomial elementsof the feld are translated directly into the binary integer representation. 
	FFF
	elements.In 


	– 
	– 
	Matrix:AnN × N grouping of elements. Herein these elements are computed over a fnite feld Fq. 

	– 
	– 
	Permutation:A one-to-one function from a set onto itself. 

	– 
	– 
	Purebraid:A non-trivial braid whose correspondingpermutation is trivial. 

	– 
	– 
	R: A braid rewriting function that maps a braid to another equivalent braid, used to obfuscate the structure. 

	– 
	– 
	σw:Apermutationof the braidword w. 

	– 
	– 
	T-values: An arrayof N nonzero elements {τ1,τ2,...,τN } in the fnite feld Fq. 



	3 Design Rationale 
	3 Design Rationale 
	Duringthe constructionofWalnutDSAweencountered several decisionpoints.Thefollowing are potential questions about WalnutDSA that may arise and the answers as to why the choices were made. Note that understanding these issues mayrequire reading to the end and then returning to this section. 
	• Why are cloaking elements needed? Cloaking elements exist to prevent WalnutDSA from being susceptible to the Conjugacy Search Problem. 
	The general goal was to produce a group element, using the signer’s private key and the message, so that extracting the signer’s privatekeywouldbe algorithmically hard. The second goalwas to useE-Multiplication fortheverifcation step. The third goalwas that the public key of the signer and some other readily available data facilitates one side of the verifcation. In order to bring the message into the signature, a hash function is applied and then a method for encoding the hash output into the braid group i
	• Whydo we set τ1 and τ2 =1? 
	In order to produce cloaking elements which are reasonably short, we need two of the T-values tobe =1. Signifcant testing showed that whenaspecifc T-value(τi)is=1, then the irowof the publickey andverifcation matrices signifcantlyduplicates thevalues from the row before. Additional testing demonstrates that, by choosing the frst two T-values to be =1, the matrix producedin the publickey andverifcation stepsof the methodwillhave fewer repeated entries, at the expense of additional zeros in the top-right corn
	th 

	• Why are hashed messages encoded into a free subgroup of the pure braid subgroup? 
	We needto ensure that two distinct hashes of messages encode in distinct ways, i.e., yield di˙erentbraids.Wedo thisby associating with eachpossibleblockof bitsina hashvalue with apositivepowerofa braid whichisa generatorofa free subgroupofthe braid group. Such expressions are necessarily distinct. 
	• Why are N ≥ 8 and q ≥ 32? 
	We need to ensure that a brute force attack on the method is ine˙ective. By choosing N ≥ 8 and q ≥ 32,we ensure there are suÿciently manypublickeys, and that the underlying algorithmically hard problems are robust. 

	4 Key Generation 
	4 Key Generation 
	First generate the privatekey: 
	1. 
	1. 
	1. 
	N ≥ 8 BN . 
	Choose an integer 
	and associated braid group 


	2. 
	2. 
	Choose a fnite feld Fq of q ≥ 32 elements. 

	3. 
	3. 
	Compute the value L from the security level, which determines the minimal length of certain random braid words. L = dSecurityLevel/2 log(N(N − 1))e. 
	2


	4. 
	4. 
	Compute the value ` from the security level, whichdetermines the minimal length of the ` you need to solve the equation: 
	privatekey.To compute 



	.. 
	` − 2+ N 
	` = SecurityLevel + log(`) − log(N − 1) − log()
	2
	2
	2

	N − 1 
	Note that these four items are pre-defned by the security level parameters in Section 11 soin general nothingmustbe doneto“choose” N, q, L, or `. 
	5. 
	5. 
	5. 
	Choose a random set of T-values = {τ1,τ2,...,τN }, where each τi is an invertible element in Fq (τi 6=0, 1), and then set τ1 = τ2 =1. 

	6. 
	6. 
	Generate a random braid of length ` (seesection 9). This braidmust notbeapurebraid, so regenerate if thepermutation is trivial. 

	7. 
	7. 
	Freely reduce this braid (see section 5.1). 

	8. 
	8. 
	Generate a second random braid of length ` and freely reduce it. This braidmust notbea purebraid,and mustnothavethe samepermutationasthefrstbraid,so regenerateifthe permutation is trivial or matches thepermutation of the frst braid. 

	9. 
	9. 
	σP rivS , and Priv(S’) is the σP rivS0 . 
	Priv(S) is the frst freely reduced braid, whichhaspermutation 
	second freely reduced braid, whichhaspermutation 



	Next, compute the publickeyby E-Multiplication(?): 
	Ł. 
	1. IdN , Id? Priv(S), where IdN is the N × N identitymatrix and Idis the SN . See section7for more information on E-Multiplication.
	Pub(S) = 
	S
	N 
	S
	N 
	identitypermutation in 

	Ł. 
	2. 
	2. 
	2. 
	IdN , Id? Priv(S’) 
	Pub(S’) = 
	S
	N 


	3. 
	3. 
	3. 
	Publish the publickey with the following data: 

	– 
	– 
	– 
	N 

	– 
	– 
	q 

	– 
	– 
	T-values 

	– 
	– 
	Pub(S) 

	– 
	– 
	MatrixPart of Pub(S’) 





	5 Signature Generation 
	5 Signature Generation 
	TheWalnutDSA method requires the full message tobe hashedbeforebeing passed into the signature function. An appropriate hash methodshouldbe used and the output passed to the signature generator as the message M. Suggestedhashfunctions are denoted in the appropriate parameter selections (see Section 11). 
	-

	To generate a signature: 
	1. 
	1. 
	1. 
	Generate the encoded message E(M) asper section 5.1. 

	2. 
	2. 
	Generate cloaking elements v1,v2,v3 as defned in section 5.2, where v1 cloaks for the v2 cloaks for σP rivS0 , and v3 cloaks for σP rivS .
	identity, 



	Ł. 
	3. Sig = R v3 · Priv(S)· v1 · E(M) · Priv(S) · v2 , a braid rewritten asper 5.3. 
	Compute the signature 
	−1 
	0

	5.1 Message Encoding 
	5.1 Message Encoding 
	The originalinputgets hashedandtheoutputofthehashistheinputtheWalnutDSAMessage M is 4` bits long. 
	Encoder.We assume the hash output 

	The encoding methodutilizesthe collectionofpure braid generatorsgivenbythe following equations [2]: 
	= b
	2 

	x1 = g(N−1),N N−1 · b· b
	2 
	−1 

	x2 = g(N−2),N = bN−1 N−2 N−1 · b· bb
	2 
	−1 
	−1 

	x3 = g(N−3),N = bN−1bN−2 N−3 N −2N−1 · b· bbb
	2 
	−1 
	−1 
	−1 

	x4 = g(N−4),N = bN−1bN−2bN−3 N−4 N−3N−2N−1 
	. 
	. 
	. 
	· b· bbb
	2 
	−1
	−1 
	−1 

	xN−1 = g1,N = bN−1bN−2 ··· b2 ··· 
	1 23 
	N−1 

	xN−1,xN−3,xN −5, and xN−7, which we call g1,g2,g3, and g4. 
	For this specifcation we use the generators 

	The message encoder proceeds as follows: 
	1. 
	1. 
	1. 
	Break the message M into ` 4-bit blocks. 

	2. 
	2. 
	2. 
	For eachblock: 

	(a) 
	(a) 
	(a) 
	gi (1 ≤ i ≤ 4). 
	Thelowtwo(2) bitsdetermine the generator 


	(b) 
	(b) 
	The hightwo(2)bits determine thepower 1 ≤ e ≤ 4. 




	e
	(c) Compute the braid gcorresponding to this block. 2 g3 g4 g
	i 
	For example, the hex hash output
	0x1234 
	results in the output 
	g
	1
	2 

	3. The encoded message E(M) is the freely reduced product of these ` blockresults. 
	Free reduction is a rewriting process that removes certain pairs of elements in the braid 
	– namely, a generator bi followed immediatelyby its inverse b, or an inversegenerator bbi. Any such pair of consecutive elements may be erased from the b1b2bb3 is b1b3. 
	−
	i 
	1
	−
	i 
	1 
	followed by the generator 
	braid.For example, the free reduction of the braid 
	−
	2
	1


	5.2 Cloaking Elements 
	5.2 Cloaking Elements 
	A cloaking elementisa braidofaspecial form that disappears during E-Multiplication (see section 7).Acloaking element v is saidto cloakforapermutation σ when (m, σ) ?v =(m, σ). 
	To generatea cloaking elementthat cloakspermutationσ: 
	1. 
	1. 
	1. 
	Pick a random integer 2 ≤ i ≤ N − 1. 

	2. 
	2. 
	Compute thepermutation preimages(a, b)for1 and 2 in σ,i.e., a is the value σ takes to 1, and b is the value σ takes to 2: a = σ(1),b = σ(2). 
	−1
	−1


	3. 
	3. 
	σw of high order that moves i → a, i +1 → b (see section 8). 
	Choosea randompermutation 


	4. 
	4. 
	σw (see section 9) and invert it (so the result σw), calling the result w. 
	Generatea random braid usingpermutation 
	haspermutation 


	5. 
	5. 
	Extend w with L pure braids. 

	6. 
	6. 
	Compute the cloaking element v = w · b· w. 
	2 
	i 
	−1 




	5.3 Rewriting 
	5.3 Rewriting 
	The signature braid must be rewritten to hide the form and protect the private key. There are an infnite number of equivalent braids which means it is computationally infeasible to determine the original fromof the rewritten version.Wespecifytwo methodsto rewrite the signature(BKL NormalFormandStochastic Rewriting),plusathirdoptionthatmaybeused to reduce the fnal length (DehornoyReduction). 
	5.3.1 BKL Normal Form 
	5.3.1 BKL Normal Form 
	Birman–Ko–Lee (BKL) Normal Form was introduced in 1998 [3] as a canonical form for a braid. Every braid can be converted to BKL Normal Form, and every equivalent braid will b1 b2 b1 and b2 b1 b2 would result in the same output after running through BKL. 
	result in the same BKL output.For example, the braids 

	Please reference Section4of [3] for the algorithm description. 

	5.3.2 Stochastic Rewriting 
	5.3.2 Stochastic Rewriting 
	Stochastic Rewritingisa new method whichis useful for smaller processors because it just involves random rewriting from lookup tables. The process is: 
	1.Freely reduce the braidifit has not alreadybeen reduced. 
	2. Convert the braid to “Y generators” and freely reduce the result. 
	3.Partition the braidintochunksof random sizesbetween 5-10 generators each: 
	1

	(a)Generate randomnumbersbetweenthe minimum(5)andthe maximum(10) inclusive, and subtract each from the initial total until the running dropsbelow the minimum. 
	(b) 
	(b) 
	(b) 
	If the running total is zero then the partition hasbeen found. 

	(c) 
	(c) 
	Otherwise (running total is not zero), jump back to theposition in the list where the running total was greater than minimum * maximum (50) and set the running total to this value. 

	(d) 
	(d) 
	Repeat until the running totalbecomes zero. 


	4. 
	4. 
	4. 
	For eachpartition, choose a random o˙set into the partition (from the frst to second-last). 

	5. 
	5. 
	Take the o˙set and o˙set+1 generators and look up a relation in the relation table (see Appendix A). 


	6. 
	6. 
	6. 
	Replacethosetwo generatorswiththe relation(ifoneisfound)usingthePair Replacement methoddescribedbelow; otherwise, do nothing for this partition. 

	7. 
	7. 
	Onceyou reachthe last partition, freely reduceand then returntostep3inordertorepeat the process3times. 

	8. 
	8. 
	After the third repetition, convert back to Artin generators and freely reduce. 


	Convert Artin to Y Generators 
	bk ∈ BN to Y generators using the partition p of N − 1. If the Artin generator is aninverse, then invert theY result. Converting a full word just involves iteration of this method. Note that the partition here is a static partition of N − 1. 
	Use the following process to convert a single Artin generator 

	// Create an array the same length as the number of partitions of N-1 r := array[length_of(p)+1] 
	// Initialize this array with the sum of the partitions r[1] = 1 for i in (2..length_of(p)+1): 
	r[i] = r[i-1] + p[i-1] 
	// Determine which partition contains k j=1 while(r[j] <= k): 
	j++ j--; 
	// Build the response u = k -r[j] if (u < p[j] -1): 
	answer = {{r[j]+u, 1}, {r[j]+u+1, -1}} else: 
	answer = {{r[j]+u, 1}} 
	return answer 
	Convert Y to Artin Generators 
	yk ∈ BN to Artin generators using the partition p of N − 1. If theY generator is an inverse, then invert the Artin result. Converting a full word just involves iteration of this method. Note that the partition here is a static partition of N − 1. 
	Use the following process to converta singleY generator 

	// Create an array the same length as the number of partitions of N-1 r := array[length_of(p)+1] 
	// Initialize this array with the sum of the partitions r[1] = 1 
	for i in (2..length_of(p)+1): r[i] = r[i-1] + p[i-1] 
	// Determine which partition contains k j=1 while(r[j] <= k): 
	j++ j--; 
	// Build the response u = k -r[j] answer = {} for i in (0..p[j]-u-1): 
	answer = answer + {r[j]+u+i, 1} 
	return answer 
	Integer Partitions 
	A partition of an integer is an ordered list of integers that sum to the desired total. For example, the integer 20 canbe partitioned into {10,10}, or {5,5,5,5}, or {7,8,5}, or {7,5,8}, or anyother random split. 
	Pair Replacement 
	The partitioning of N − 1 not only defnes the Artin toYgenerator mappings but also the set of relationsbetween pairs of generators. This list of relations is enumerated in Appendix 
	A. Givena Y-wordof lengthtwo, the process searches through the listof relations untila match is found (i.e, it fnds a relation that contains the length-two word). Note that not all pairsof generatorshave relations, so there may notbea match. 
	Oncea relationis found, the replacementis madebyreplacing the original pair with the inverse of the surrounding relation by inverting the part of the relation to the left of the subword, and then the part to the right of the subword.For example, if one is searching for thesubword {1,1}{2,1}andthe relation thatwas foundis{3,1}{2,1}{1,1}{2,1}{3,1}.The left part is {3,1}{2,1} and the right part is {3,1}. Onceyou invert and concatenate these parts, then the replacement wouldbe {2,-1}{3,-1}{3,-1}. 
	Note that if there are multiple matches for the pair within the relation then randomly choose one of the matches. 
	here are 2possible partitions of a word of length W if partitions could be of any size. Limiting to blocksof size 5-10 reduces thatnumber. Still, reversingthe processis hard. 
	here are 2possible partitions of a word of length W if partitions could be of any size. Limiting to blocksof size 5-10 reduces thatnumber. Still, reversingthe processis hard. 
	1 
	Note that t
	W −1 



	5.3.3 Dehornoy Reduction 
	5.3.3 Dehornoy Reduction 
	DehornoyReductionisamethodto reducethesizeofabraidbyfndingand removingcomplex cancelationsbeyond single free reduction[4]. While solving the shortestword problemin the braid groupisknowntobe NP-Hard, Dehornoyisthebest-known method to reducea braid toa minimal length. Applying Dehornoyis recommended;however,itmaybe applied “later”. For example,a lightweight processor maygeneratea signature and useStochastic Rewriting, 
	DehornoyReductionisamethodto reducethesizeofabraidbyfndingand removingcomplex cancelationsbeyond single free reduction[4]. While solving the shortestword problemin the braid groupisknowntobe NP-Hard, Dehornoyisthebest-known method to reducea braid toa minimal length. Applying Dehornoyis recommended;however,itmaybe applied “later”. For example,a lightweight processor maygeneratea signature and useStochastic Rewriting, 
	and then send that (long) signature to another, more powerful device, which can then run Dehornoy. 

	Please reference Section4of [4] for the algorithm description. 
	6 Signature Verifcation 
	Signature verifcation depends on frst hashing the input using the same hash method as the signature generation to generate the hash output M. Then to verify the signature: 
	1. 
	1. 
	1. 
	Compute E(M) asper section 5.1. 

	2. 
	2. 
	Evaluate (M1,σ1) = (IdN , IdS) ?E(M), where IdN is the N × N identitymatrix and IdSN . 
	N 
	S
	N 
	is the identitypermutation in 


	3. 
	3. 
	Evaluate (M2,σ2)= Pub(S) ? Sig. 

	4. 
	4. 
	M3 = M1 · MatrixPart(Pub(S’)). 
	Compute the matrix multiplication 


	5. 
	5. 
	M2 and M3 for equality. If M2 = M3, then the signature is valid. 
	Compare 





	7 E-Multiplication 
	7 E-Multiplication 
	The one-wayfunction E-Multiplicationisan actionthatstartswitha matrixandpermutation, a braid, and resultsina newmatrix andpermutation. E-Multiplication is iterative, and by defnition is applied one braid generator at a time. One can fnd closed formula for applying certain longer braid words. 
	Thebestwayto explaintheprocessisvia pseudo-code.Tocomputea single E-Multiplication starting with a matrix m,permutation p, and braid generator b: 
	e
	i 

	// compute the multiplication values for this generator based // on the T-values, strand, and whether the generator is inverted if e == 1: 
	a = T[p[i]] 
	b = -a 
	c=1 else: // e == -1 
	a=1 
	b = -Inverse(T[p[i+1]]) 
	c = -b 
	// iterate down columns and matrix-multiply each value if i != 0: for j in (1..N): m[j][i-1] += m[j][i] * a 
	for j in (1..N): m[j][i+1] += m[j][i] * c 
	for j in (1..N): 
	m[j][i] *= b 
	// swap permutation based on the generator temp = p[i] p[i] = p[i+1] p[i+1] = temp 
	To compute the E-Multiplication of a longer braid, one just iterates this process over the whole braid, reading from left to right. 
	8 Permutations 
	To generatea randompermutation use theFisher-YatesShu˜e [5]: 
	1. 
	1. 
	1. 
	Start with the identitypermutation of n elements. 

	2. 
	2. 
	Start with the last (1-indexed) o˙set, i = n. 

	3. 
	3. 
	Choose a random number 1 ≤ j ≤ i. 

	4. 
	4. 
	Swappermutation elements i and j. 

	5. 
	5. 
	Iterate i down to 1. 


	If the desiredpermutation has additional constraints, those constraints canbe applied after this process is complete.For example, if one needs to move i → a, then one takes a randomly constructedpermutation and modifes itbythe following: 
	1. 
	1. 
	1. 
	Find thepermutation preimage of a. This is the o˙set o where thepermutationvalueis a. 

	2. 
	2. 
	Swap the entries at o and i. 


	Note that all o˙sets and values are 1-indexed in this defnition. 
	9 Braids 
	To generatea randombraidwordof lengthl: 
	1. 
	1. 
	1. 
	bi, where 1 ≤ i<N. 
	Choose a random braid generator 


	2. 
	2. 
	Choosea randompower, . = {−1, 1}. 

	3. 
	3. 
	Append bto the braid word. 
	.
	i 


	4. 
	4. 
	Iterate l times. 

	5. 
	5. 
	Freely reduce the result. 


	To generatea randombraidb(σ) frompermutation σ: 
	1. σ t1 ··· tr: 
	Convert thepermutation 
	to a product of transpositions 

	(a) 
	(a) 
	(a) 
	σ C1 ··· Cs where the last element of each Ci is the smallest number in the cycle. 
	First write 
	as a product of disjoint cycles 


	(b) 
	(b) 
	Ci is in ascending order. 
	Order the cycles such that the last element of each 


	(c) 
	(c) 
	Ci =(a1,...,ak), then Ci = (a1,a2)(a1,a3) ··· (a1,ak). 
	Convert each cycle to a product of transpositions: if 


	(d) 
	(d) 
	Ci with its corresponding product of transpositions and fatten the list. 
	Replace each 



	2.For ti, generate a random braid b(ti) that produces it: 
	eachtransposition 

	(a) 
	(a) 
	(a) 
	Find the smallest element m and largest element M exchangedbythe transposition t, i.e., t =(m, M). 

	(b) 
	(b) 
	b(ti) tobe the identitybraid. 
	Set 


	(c) 
	(c) 
	k = m M − 1b(ti) with b(ti) · b, where . = {−1, 1} is randomly chosen. 
	For 
	to 
	, replace 
	. 



	k
	b
	.

	(d) k =2 M − mb(ti) with b(ti) · , where again . = {−1, 1} is randomly 
	For 
	to 
	, replace 

	M−k
	chosen. 
	3. The resultb(σ) is the product b(t1) ··· b(tr). 
	2 

	Tomeetspecifc securityconstraints,thebraidcanbeaugmentedwithpure braids.Specifcally, L BN is generated [6]bythe set of (N)(N − 1)/2 braids givenby: 
	it is the freely reduced product of 
	pure braid generators. The pure braid subgroup of 

	· b· bbb
	2 
	−1 
	−1 
	−1 

	gi,j = bj−1bj−2 ··· bi+1 ··· , 1 ≤ i<j ≤ N. 
	i
	i+1 
	j−2j−1

	BN : 
	To create a pure braid generator of

	1. 
	1. 
	1. 
	Choose random numbers i, j: 1 ≤ i<j ≤ N. 

	2. 
	2. 
	Choosea random exponent . = {−1, 1}. 

	3. 
	3. 
	Iterate 0 ≤ k<j − i − 1 and append bj−k−1. 

	4. 
	4. 
	Append b. 
	2
	i
	. 


	5. 
	5. 
	Iterate 0 ≤ k<j − i − 1 and append b
	−1 



	i+k+1
	. 

	10 Object Encodings 
	BN the generators are labeled b1,b2,.... However, computers arebetter with 0-indexed numbers, arrays, and matrices, so the encodings are 0-indexed. 
	Throughout this document, indices are often 1-indexed.For example, in 

	Forall encodings,multi-bytenumbers are encodedin networkbyte order (i.e., mostsignificant byte frst). For example, the decimal number 255 is encoded in hex as 00 FF, decimal 256 as 01 00. 
	-

	Larger data objects like matrices,permutations, andbraids are “bit packed” to reduce the e˙ective transmission size. Bit packing also uses most-signifcant-bit frst. When packing a matrix, the entries are encoded from0 to q − 1 and packed across each row sequentially. The permutationispackedasa seriesofentries from0to N − 1. 
	Braids get encoded frst with a 2-byte length (which is the number of generators), and then each generator is encoded with one bit for the sign and additional bits for the strand. B8 packing each braid generator requires 4 bits. In B8, encoding the braid 
	3
	For example, in 

	−1
	b

	b1 bb3 b4b6 bwould result in the hex 00 07 09 23 C5 E0. 
	−
	2
	1 
	5 
	−
	7
	1 

	10.1 Public Key 
	The publickey contains the following data: 
	– 
	– 
	– 
	N: an 8-bit unsigned integer. 

	– 
	– 
	q: a 16-bit unsigned integer. 

	– 
	– 
	T-values: a packed array of N entries in Fq. This results in N log(q) bits, which gets roundeduptothe nearestbyte (padded with0-7 bitsofzeros). 
	2


	– 
	– 
	Pub(S) Matrix: a packed matrix of N × (N − 1) + 1 entries in Fq.We know the last row of the matrix is always 0, except for the last entry of the last row, so those N − 1 entries are elided from the packing. This results in (N− N + 1) log(q) bits which gets rounded up to the nearestbyte (padded with 0-7bits of zeros). 
	2 
	2


	– 
	– 
	Pub(S) Permutation: a packed array of N entries from 0 to N − 1. This results in N log(N) bits, whichgets rounded up to the nearestbyte (padded with 0-7 bits of zeros). 
	2


	– 
	– 
	Pub(S’) Matrix: a packed matrix of N × (N − 1) + 1 entries in Fq.We know the last row of the matrix is always 0, except for the last entry of the last row, so those N − 1 entries are elided from the packing. This results in (N− N + 1) log(q) bits which gets rounded up to the nearestbyte (padded with 0-7 bits of zeros). 
	2 
	2



	10.2 Signature 
	A signature is just a braid, so it is encoded as a single packed braid as detailed at the start of this section. It has a 2-byte (16-bit) integer length (the number of generators) followed by the packed listof generators. Because each generator encodesinto4 bits,you can fttwo generators into every byte. If you have an odd number of generators then the fnal byte is padded with zeros. 
	It does not matter which reduction methodis used; in all cases the signature is converted to and encoded in Artin generators. Moreover, the 2-byte length feld is suÿcientbecause in all cases the maximum length seen experimentallyiswellbelow65,000 generators.A long signature couldbe the resultof anattempted attackandmustbe consideredinvalid. 
	11 ParameterSpecifcations 
	11.1 Security Level: 128 
	Fora classical securitylevelof2(which,subjecttoGrover, resultsinaquantum-safe security level of 2), use the following parameters: 
	128 
	64

	– 
	– 
	– 
	N =8 

	– 
	– 
	q= 32 (usingpolynomial x+ x+1) 
	5 
	2 


	– 
	– 
	L =15 

	– 
	– 
	` = 132 

	– 
	– 
	Hash function: SHA2-256 


	This results in a 256-bit message size, at least 2possiblepublickeys thatwould needto be searched, as well as at least2possible secretkeys and cloaking elements. The publickey is 664 bits (including the N/q values).Theprivatekeyisvariable lengthandhasa maximum 
	This results in a 256-bit message size, at least 2possiblepublickeys thatwould needto be searched, as well as at least2possible secretkeys and cloaking elements. The publickey is 664 bits (including the N/q values).Theprivatekeyisvariable lengthandhasa maximum 
	200 
	128 

	length of 1056 bits (not including anymarkers as to N, individual braid lengths, or the security level). 

	Signatures arevariable length,andthe actual resultinglength alsodependson whichrewriting method gets used. Experimentally we can determine the expected minimum, maximum, andaverage lengths (seeTable1). 
	-

	Rewriting Method 
	Rewriting Method 
	Rewriting Method 
	Minimum 
	Mean 
	Maximum 

	BKL + Dehornoy 
	BKL + Dehornoy 
	3080 
	5172.5 
	7704 

	Stochastic + Dehornoy 
	Stochastic + Dehornoy 
	3056 
	5134.6 
	7616 

	Stochastic w/o Dehornoy 
	Stochastic w/o Dehornoy 
	8944 
	11331.6 
	13968 


	Table 1: Experimentally determined 128-bit signature lengths (inbits) 
	11.2 Security Level: 256 
	Fora classical securitylevelof2(which,subjecttoGrover, resultsinaquantum-safe security level of 2), use the following parameters: 
	256 
	128

	– 
	– 
	– 
	N =8 

	– 
	– 
	q= 256 (usingpolynomial x+ x+ x+ x +1) 
	8 
	4 
	3 


	– 
	– 
	L =30 

	– 
	– 
	` = 287 

	– 
	– 
	Hash function: SHA2-512 


	This results in a 512-bit message size, at least 2possiblepublickeys thatwould needto be searched, as well as at least2possible secretkeys and cloaking elements. The publickey is 1024 bits (including the N/q values).Theprivatekeyisvariablelengthwitha maximumof 2296 bits (not including anymarkers as to N, individual braid lengths, or the securitylevel). 
	320 
	256 

	Signatures arevariable length,andthe actual resultinglength alsodependson whichrewriting method gets used. Experimentally we can determine the expected minimum, maximum, andaverage lengths (seeTable2). 
	-

	Rewriting Method 
	Rewriting Method 
	Rewriting Method 
	Minimum 
	Mean 
	Maximum 

	BKL + Dehornoy 
	BKL + Dehornoy 
	6784 
	9981.6 
	13880 

	Stochastic + Dehornoy 
	Stochastic + Dehornoy 
	6768 
	9932.4 
	13552 

	Stochastic w/o Dehornoy 
	Stochastic w/o Dehornoy 
	17552 
	21556.6 
	25240 


	Table 2: Experimentally determined 256-bit signature lengths (inbits) 
	11.3 Security Level: 40 – ForTesting Purposes 
	In orderto testan insecureversionofWalnutDSA,we suggesta smallerversionata classical securitylevel of 2byusing the following parameters: 
	40 

	– 
	– 
	– 
	N =8 

	– 
	– 
	q=16 

	– 
	– 
	L =4 

	– 
	– 
	` = 25 

	– 
	– 
	Hash function: SHA1 


	This results in a 160-bit message size, at least 2possiblepublickeys thatwould needto be searched, as well as at least2possible secretkeys and cloaking elements. The publickey is 544 bits (including the N/q values). The privatekeyisvariable length witha maximumof 200 bits (not including anymarkers as to N or the securitylevel). 
	160 
	40 
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	A Stochastic Rewriting “Y” Generator Relations 
	B8 with partition {4,3} for use in the Stochastic Rewriting process. This listis createdby enumerating all braid relations available b1 b2 b1 = b2 b1 b2, etc, and b1 b3 = b3 b1, etc) and converting them toYgenerators, and also the additional relations that areavailable due to thechangeover to yi yj is in the list. This list is then sorted bylength, which results in the following list: 
	The following is a list of 1-indexed Y relations in 
	in Artin generators (e.g., 
	Y generators. Note that not everypossible pair of 

	{4,1}{7,1}{4,-1}{7,-1} {7,-1}{4,1}{7,1}{4,-1} {7,1}{4,1}{7,-1}{4,-1} {2,1}{1,1}{4,1}{1,-1}{1,-1} {3,1}{2,1}{4,1}{2,-1}{2,-1} {6,1}{5,1}{7,1}{5,-1}{5,-1} {7,1}{6,1}{7,1}{6,-1}{6,-1} {1,-1}{2,1}{1,1}{4,1}{1,-1} {2,-1}{3,1}{2,1}{4,1}{2,-1} {5,-1}{6,1}{5,1}{7,1}{5,-1} {6,-1}{7,1}{6,1}{7,1}{6,-1} {1,1}{1,1}{4,-1}{1,-1}{2,-1} 
	{4,1}{7,1}{4,-1}{7,-1} {7,-1}{4,1}{7,1}{4,-1} {7,1}{4,1}{7,-1}{4,-1} {2,1}{1,1}{4,1}{1,-1}{1,-1} {3,1}{2,1}{4,1}{2,-1}{2,-1} {6,1}{5,1}{7,1}{5,-1}{5,-1} {7,1}{6,1}{7,1}{6,-1}{6,-1} {1,-1}{2,1}{1,1}{4,1}{1,-1} {2,-1}{3,1}{2,1}{4,1}{2,-1} {5,-1}{6,1}{5,1}{7,1}{5,-1} {6,-1}{7,1}{6,1}{7,1}{6,-1} {1,1}{1,1}{4,-1}{1,-1}{2,-1} 
	{4,1}{7,1}{4,-1}{7,-1} {7,-1}{4,1}{7,1}{4,-1} {7,1}{4,1}{7,-1}{4,-1} {2,1}{1,1}{4,1}{1,-1}{1,-1} {3,1}{2,1}{4,1}{2,-1}{2,-1} {6,1}{5,1}{7,1}{5,-1}{5,-1} {7,1}{6,1}{7,1}{6,-1}{6,-1} {1,-1}{2,1}{1,1}{4,1}{1,-1} {2,-1}{3,1}{2,1}{4,1}{2,-1} {5,-1}{6,1}{5,1}{7,1}{5,-1} {6,-1}{7,1}{6,1}{7,1}{6,-1} {1,1}{1,1}{4,-1}{1,-1}{2,-1} 
	{2,1}{2,1}{4,-1}{2,-1}{3,-1} {5,1}{5,1}{7,-1}{5,-1}{6,-1} {6,1}{6,1}{7,-1}{6,-1}{7,-1} {2,-1}{1,1}{1,1}{4,-1}{1,-1} {3,-1}{2,1}{2,1}{4,-1}{2,-1} {6,-1}{5,1}{5,1}{7,-1}{5,-1} {7,-1}{6,1}{6,1}{7,-1}{6,-1} {3,1}{3,1}{4,-1}{3,-1}{4,-1} {6,1}{6,1}{7,-1}{6,-1}{7,-1} {4,-1}{3,1}{3,1}{4,-1}{3,-1} {7,-1}{6,1}{6,1}{7,-1}{6,-1} {4,1}{3,1}{4,1}{3,-1}{3,-1} {7,1}{6,1}{7,1}{6,-1}{6,-1} {1,1}{2,-1}{4,1}{2,1}{1,-1}{4,-1} {2,1}{3,-1}{4,1}{3,1}{2,-1}{4,-1} {4,1}{6,1}{7,-1}{4,-1}{7,1}{6,-1} {1,1}{2,-1}{7,1}{2,1}{1,-1}{7,-1} {

	{2,1}{3,-1}{5,1}{6,-1}{3,1}{2,-1}{6,1}{5,-1} {3,1}{4,-1}{5,1}{6,-1}{4,1}{3,-1}{6,1}{5,-1} {1,1}{2,-1}{6,1}{7,-1}{2,1}{1,-1}{7,1}{6,-1} {2,1}{3,-1}{6,1}{7,-1}{3,1}{2,-1}{7,1}{6,-1} {3,1}{4,-1}{6,1}{7,-1}{4,1}{3,-1}{7,1}{6,-1} {3,-1}{1,1}{2,-1}{3,1}{4,-1}{2,1}{1,-1}{4,1} {5,-1}{1,1}{2,-1}{5,1}{6,-1}{2,1}{1,-1}{6,1} {5,-1}{2,1}{3,-1}{5,1}{6,-1}{3,1}{2,-1}{6,1} {5,-1}{3,1}{4,-1}{5,1}{6,-1}{4,1}{3,-1}{6,1} {6,-1}{1,1}{2,-1}{6,1}{7,-1}{2,1}{1,-1}{7,1} {6,-1}{2,1}{3,-1}{6,1}{7,-1}{3,1}{2,-1}{7,1} {6,-1}{3,1}{4,-1}

	B Expected Computational Eÿciency and Performance 
	When analyzing the computational eÿciency of WalnutDSA, one must look at four distinct processes: key-pair generation, raw signature generation, signature rewriting, and signature validation. 
	A note on notation: when declaring the expected computation eÿciency of the various subprocesses ofWalnutDSA, the basis of the order is explicitly used when available. For example, using “ O(N)” impliesa linearoperationin N, whichis the number of strands of the braid in BN , whereas using “O(n)”isa generic linearoperation. 
	Performance was tested on a Linux server confgured with 8 cores of Intel Xeon X5355 at 2.66GHz running at 2660237000 cycles per second and 32 GB RAM. The test code was compiled using: gcc -march=native -mtune=native -O3 -fomit-frame-pointer -fwrapv -msse2. 
	B.1 Key-Pair Generation 
	Key-pair generationis straightforward.Theprivatekeyispurelya randomly generated braid, which takes O(`) operations to create and freely reduce. Generating the T-values is also an O(N) operation (but N is small). Finally, computing the public key via E-Multiplication requires N multiplies and 2N additions repeated ` times, so it is still O(N`) (remembering that N is fxed, so really O(`)).Weexpectthistotake fractionsofa millisecondonthe target 
	Figure
	Fig.1: Timing for generating 128-bitkeys Fig.2: Timing for generting 256-bitkeys 
	a function of the speed of the random number generator. 
	platform.We also expect this function tobe fast even on small processorsbecause it is purely 

	Asshownin Figures1and2,key generationon our test platformtakesbetween 0.34-0.43ms fora 128-bitkeyand 0.85-1msfora 256-bitkey.This equatesto 2325-2941and 1000-1176keys generatedper second. 
	B.2 Raw Signature Generation 
	Raw signature generation is the process of taking the hash of the input message, converting the hash to a braid, generating cloaking elements, and putting the “raw” signature together there aremultiple rewriting methods proposed with di˙erentperformance profles. 
	prior to rewriting.We separate this from the rewritingportionbecause 

	Hashing the message is an O(n) operation in the length of the input message and is out of the control of WalnutDSA. We expect a good implementation of SHA2-256 or SHA2-512 to behave appropriately. 
	After hashing, we convert the hash output to a braid (this is an O(n) operation in the size of the hash output), andgenerate the three sets of cloaking elements (each an O(L) operation). Finally, weinvert the privatekey(O(`))andputitall together(O(n)).Ofall theseoperations, the hash function is the most computationally intensive. The rest of the operations are purely limited on the speed of the random number generator. We expect this operation to be fast even on tinydevices. 
	B.3 Signature Rewriting 
	Rewriting the signature is the most computationally intensive operation in WalnutDSA, although it is required for signature security. There are three rewriting options: 
	-

	1. 
	1. 
	1. 
	BKL + Dehornoy 

	2. 
	2. 
	Stochastic Rewriting 

	3. 
	3. 
	Stochastic Rewriting + Dehornoy 


	The BKL algorithm, which outputs the canonical form of any braid, runs in O(n) time in the length of the input braid. BKL will convert any equivalent braid into the exact same 
	The BKL algorithm, which outputs the canonical form of any braid, runs in O(n) time in the length of the input braid. BKL will convert any equivalent braid into the exact same 
	2

	outputbraid,makingiteasyto detect “sameness.”Of course the canonicalformofabraidis often much longer than the original. 

	Enter Dehornoy, which takes a braid and shortens it by fnding ways to manipulate the braid to remove inverses, even if they are not adjacent. The Dehornoyalgorithm also runs in O(n) time in the length of the inputbraid. 
	2

	Figure
	Fig.3: SUPERCOP output for generating 128-bit signa-tures with BKL and Dehornoy 
	Fig.3: SUPERCOP output for generating 128-bit signa-tures with BKL and Dehornoy 


	Figure
	Fig.4: SUPERCOP output forgenerating 256-bit signa-tures with BKL and Dehornoy 
	Fig.4: SUPERCOP output forgenerating 256-bit signa-tures with BKL and Dehornoy 


	However, both BKL and Dehnory run in statistical time, not fxed time. Depending on the inputs they can complete very quickly or run somewhat longer. Moreover, the output is variable in length based on the inputs, which implies that WalnutDSA signatures are not constant length. 
	Running our implementation through SUPERCOP, we generated three sets of keys and then for eachkey ran 32 runs for each of 48di˙erent message sizes (see Figure 3).At 128-bit security the signature generation took between 64-84ms. The variabiliy in execution time is due to the varying lengths of signatures across di˙erent inputs, how the hash output gets converted into varying lengths of braids, and how that interacts with the random cloaking elements. 
	For 256-bit security(see Figure 4), the execution time increased to238-295ms. 
	Figure
	Fig.5: SUPERCOP output for generating 128-bit signa-tures with Stochastic Rewriting and Dehornoy 
	Fig.5: SUPERCOP output for generating 128-bit signa-tures with Stochastic Rewriting and Dehornoy 


	Figure
	Fig.6: SUPERCOP output forgenerating 256-bit signa-tures with Stochastic Rewriting and Dehornoy 
	Fig.6: SUPERCOP output forgenerating 256-bit signa-tures with Stochastic Rewriting and Dehornoy 


	The Stochastic Rewriting methodisa mostly-linearoperation that randomly replaces sectionsofa braid usinga known setofbraidrelations. Its running timeis slightly greater than linear,because the lengthof the braid increases onevery round. The exact complexityis greater than O(n) but less than O(n log(n)). 
	-

	Figure
	Fig.7: SUPERCOP output for generating 128-bit signa-tures with Stochastic Rewriting without Dehornoy 
	Fig.7: SUPERCOP output for generating 128-bit signa-tures with Stochastic Rewriting without Dehornoy 


	Figure
	Fig.8: SUPERCOP output forgenerating 256-bit signa-tures with Stochastic Rewriting without Dehornoy 
	Fig.8: SUPERCOP output forgenerating 256-bit signa-tures with Stochastic Rewriting without Dehornoy 


	AsshowninFigures5and6, replacingBKLwithStochastic Rewritingprovidesasignifcant speed increase. With the threekeys randomlychosen at the 128-bit securitylevel, signatures generated in 19-24ms. 
	Atthe 256-bit securitylevelspeedis also increased.Thosekeys signed messagesin 64-79ms. Using Stochastic Rewriting shows a 3-4x speed improvement over BKL. 
	Moreover, it’s likely that Stochastic Rewriting couldbe implemented on an embedded device. However in this case it’s more likely that the embedded device would only run Stochastic Rewriting, then send the signature overtoa morepowerful device (tradingof signature size and transmission time for computation capability). The larger device could run Dehornoyand reduce the signature for storage. 
	-

	Whenyou remove Dehornoy, our test systemwas ableto generate a 128-bit signaturein 18-22ms (see Figure 7), and a 256-bit signature in 60-74ms (see Figure 8). The complexity reductionissuchthatanembedded devicemaybesuÿcient;however,the resultingsignature is longer. 
	B.4 Signature Validation 
	Validating a signature requires hashing the message, converting the hash output to a braid (O(n)), two sets of E-Multiplication(O(n) in the length of the signature and the length of the converted hash output), one matrixmultiplication(O(N)), and one matrix comparison (O(N)). 
	3
	2

	Figure 9 shows clearly that for smaller messages the mathematical computation dominates, but the hash computation starts to dominate once input messages reach about 8000 bytes. Specifcally, looking at Table 3, it appears that the run time starts to increase once messages reach somewherebetween 1500-4000bytes, and the hash function dominates, more thandoubling the execution time,between 6000-10000bytes.A signifcantly optimized hash implementation is clearly a requirement. 
	-

	Figure
	Fig. 10: SUPERCOP output for verifying 256-bit signa
	Fig. 10: SUPERCOP output for verifying 256-bit signa
	-



	Fig.9: SUPERCOP output forverifying 128-bit signatures 
	with BKL and Dehornoy 
	tures with BKL and Dehornoy 
	Figure
	Fig. 11: SUPERCOP output for verifying 128-bit signa-tures with Stochastic Rewriting and Dehornoy 
	Fig. 11: SUPERCOP output for verifying 128-bit signa-tures with Stochastic Rewriting and Dehornoy 


	Figure
	Fig. 12: SUPERCOP output for verifying 256-bit signa-tures with Stochastic Rewriting and Dehornoy 
	Fig. 12: SUPERCOP output for verifying 256-bit signa-tures with Stochastic Rewriting and Dehornoy 


	Figure
	Fig. 13: SUPERCOP output for verifying 128-bit signa-tures with Stochastic Rewriting, without Dehornoy 
	Fig. 13: SUPERCOP output for verifying 128-bit signa-tures with Stochastic Rewriting, without Dehornoy 


	Figure
	Fig. 14: SUPERCOP output for verifying 256-bit signa-tures with Stochastic Rewriting, without Dehornoy 
	Fig. 14: SUPERCOP output for verifying 256-bit signa-tures with Stochastic Rewriting, without Dehornoy 


	Message Size (B) 
	Message Size (B) 
	Message Size (B) 
	567 
	709 
	887 
	1109 
	1387 
	1734 
	2168 
	2711 
	3389 
	4237 
	5297 
	6622 

	Cycles 
	Cycles 
	116928 
	124848 
	111208 
	122656 
	123960 
	132096 
	135232 
	140480 
	155616 
	172328 
	201080 
	214144 

	Message Size (B) 
	Message Size (B) 
	8278 
	10348 
	12936 
	16171 
	20214 
	25268 
	31586 
	39483 
	49354 
	61693 
	77117 
	96397 

	Cycles 
	Cycles 
	244896 
	290880 
	332376 
	392016 
	475392 
	567856 
	679272 
	828904 
	1010096 
	1235120 
	1519880 
	1881312 


	Table 3: SUPERCOP cycle counts for signature verifcation 
	The same pattern, where message sizea˙ectsverifcationspeed, can alsobe seen for256-bit signatures in Figure 10. Similarly, Figures 11, 12, 13, and 14 all exhibit the same structure. 
	The main di˙erence between them all is the baseline computation time. The graphs show that Dehornoy vs non-Dehornoy isthemaincomponenttospeed(whichistobeexpected, considering validation computation time is linear in the length of the signature, andDehornoy reduces the signature size). Still, without Dehornoy the base verifcation time is just under 0.1ms for 128-bit signatures and about 0.17ms for 256-bit signatures, and when Dehornoyis applied those times are reduced to 0.05ms and 0.1ms. 
	In addition to working on the target platform with SUPERCOP, we also took an average-length signature at 128-bit security level and ran the verifcation computation on various embedded processors used on devices associated with the Internet of Things.SeeTable4 for the raw data. 
	Platform 
	Platform 
	Platform 
	Bits 
	Clock (MHz) 
	ROM 
	RAM 
	Cycles 
	Time (ms) 

	8051 
	8051 
	8 
	24.5 
	3370 
	312 
	864101 
	35.3 

	MSP430 
	MSP430 
	16 
	8 
	3244 
	236 
	370944 
	46 

	ARM Cortex M3 
	ARM Cortex M3 
	32 
	48 
	2952 
	272 
	275563 
	5.7 

	FPGA 
	FPGA 
	50 
	1720(ALM) 
	2500 
	0.05 


	Table4:RawWalnutDSAperformance data forverifying128-bit signatures 
	C Expected Security Strength 
	At this timethebest-known attack againstWalnutDSAisa brute force search.See[1]fora full security analysis. The summary is that for a given securitylevel (SL): 
	1. N × N Fq, which implies there are a maximum of qpotential optionsper matrix. However, due to the construction, this is reduced to a minimum of qpotential matrices.WehavechosenN and q such that this value exceeds 2possible publickeys. 
	A public key is a pair of 
	matrices of elements in 
	N
	2 
	N(N−3) 
	SL 

	2.A secretkeyisa pairof braidwordsin BN of length `. The number ` is chosen such that there are at least 2unique braids when randomly creating a braid of length ` (prior to free reduction). 
	SL 

	3. 
	3. 
	3. 
	Cloakingelements are chosen in words of length L of the pure braid generators. The value of L is chosen suchthat there are at least 2possible words. 
	SL 


	4. 
	4. 
	Reversing the rewriting schemes is also a brute-force problem which far exceeds 2operations to reverse. 
	SL 
	-



	We have increased our values for L and ` by25%beyond the minimum required to meet the desired security level, both for 128-and 256-bit (conventional) security. This increase is purely for future proofng against minor errors or miscalculations in the number ofpossible braid or braidwords or improvements in enumeration techniques. 
	WebelievethatWalnutDSAissubjecttoGroversoweexpectthatthequantum security is half of the conventional security. 
	D Advantages and Limitations 
	The main advantages of WalnutDSA are that key generation and signature validation are extremely fast, even on small, constrained devices. These functions can be implemented in very little code and compile down to very small targets. Indeed, the raw signature validation ona48MHzARM CortexM3can completein5.7msincompiledCsoftware.Duetoits nature, signaturevalidation caneasilybe computed even on 16-or 8-bit processors with limited RAM andROM and decentperformance. 
	The main limitation ofWalnutDSA is that signature generation is more expensivebecause the knownbraid rewriting techniques are more computationally intensive. 
	E Known Attacks 
	If Priv(S) = Priv(S’) then there is a factoring attack that can potentially create a valid signature by combining multiple signatures to create new words. However, the signatures generated by this attack are orders of magnitude longer than a valid WalnutDSA signature (estimated at a length 2or longer), and this attack is completely defeatedbyensuring that Priv(S) 6Priv(S’). See [1] for an analysis of this attack. 
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	The nextbest-known attack againstWalnutDSAisa brute force search.See[1]fora full securityanalysis, including a proof of securityunder EUF-CMA. 
	There are no known other attacks againstWalnuntDSA as of this writing. 
	hisprocess generatesa braid that haspermutation σwhich is whyit is inverted in Section 5.2. In all testing to date, signature braids have never exceeded 10,000 generators. 
	hisprocess generatesa braid that haspermutation σwhich is whyit is inverted in Section 5.2. In all testing to date, signature braids have never exceeded 10,000 generators. 
	hisprocess generatesa braid that haspermutation σwhich is whyit is inverted in Section 5.2. In all testing to date, signature braids have never exceeded 10,000 generators. 
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