
1

WalnutDSATM: A Quantum-Resistant Digital Signature

Algorithm

Iris Anshel, Derek Atkins, Dorian Goldfeld, and Paul E. Gunnells

SecureRF Corporation
100 Beard Sawmill Rd #350, Shelton, CT 06484

ianshel@securerf.com, datkins@securerf.com, dgoldfeld@securerf.com, pgunnells@securerf.com

Abstract. In 2005 I. Anshel, M. Anshel, D. Goldfeld, and S. Lemieux introduced E-MultiplicationTM ,
a quantum-resistant, group-theoretic, one-way function which can be used as a basis for many di�er-
ent cryptographic applications. This one-way function was specifcally designed for constrained devices,
running extremely quickly and requiring very little code.

This paper introduces WalnutDSA, a new E-Multiplication-based public-key method which provides eÿ-
cient verifcation, allowing low-power and constrained devices to quickly and inexpensively validate digital
signatures (e.g., a certifcate or authentication). It presents an in-depth discussion of the construction of
the digital signature algorithm, analyzes the security of the scheme, provides a proof of security under
EUF-CMA, and discusses the practical results from implementations on several constrained devices.

Keywords: Group Theoretic Cryptography, Digital Signature, E-Multiplication, Braids

Introduction

Digital signatures provide a means for one party to create a document that can be sent through
a second party and verifed for integrity by a third party. This method ensures that the frst
party created the document and that it was not modifed by the second party. Historically,
digital signatures have been constructed using various number-theoretic, public-key methods
like RSA, DSA, and ECDSA. However these methods are not very eÿcient in tiny devices like
16- or even 8-bit constrained devices (let alone some constrained 32-bit platforms), or systems
with limited space or energy.

Digital signatures based on hard problems in group theory are relatively new. In 2002, Ko,
Choi, Cho, and Lee [26] proposed a digital signature based on a variation of the conjugacy
problem in non-commutative groups. In 2009, Wang and Hu [39] introduced a digital signature
with security based upon the hardness of the root problem in braid groups. See also [24]. The
attacks introduced in [14], [15], [17], and [22] suggest that these schemes may not be practical
over braid groups in low-resource environments.

Previous Work

E-Multiplication [5] is a group-theoretic, one-way function frst introduced by I. Anshel, M. An-
shel, D. Goldfeld, and S. Lemieux in 2005 [5]. E-Multiplication uses a combination of braids,
matrices, and fnite felds to translate the non-abelian, infnite group into a computable sys-
tem. It has proven to be a very eÿcient, general-purpose, quantum-resistant one-way func-
tion; its use is broader than the original key-agreement construction. For example, using E-
Multiplication as the basic building block, Anshel, Atkins, Goldfeld, and Gunnells recently

mailto:pgunnells@securerf.com
mailto:dgoldfeld@securerf.com
mailto:datkins@securerf.com
mailto:ianshel@securerf.com

2

introduced a cryptographic hash function, AEHash [3], which has been implemented using
very little code space on a 16-bit platform [4].

Implementations of E-Multiplication in various instances have shown that code space is
small and runtime is extremely rapid, with constructions using E-Multiplication outperforming
competing methods, especially in small, constrained devices.

Our Contribution

This paper introduces a new quantum-resistant digital signature algorithm, WalnutDSATM .
Its security is based on the diÿculty of reversing E-Multiplication. Details are given in §9.
The latter is a hard problem in braid groups that is very di�erent from the Conjugacy Search
Problem (CSP), which formed the foundation of the earliest cryptographic systems based on
the braid group. In fact, WalnutDSA appears immune to all the types of attacks related to
the CSP given in [14], [15], [17], and [22], as well as the very recent work of of [21] (for a fuller
discussion see §9 below - Attacks on the underlying math). Likewise, attacks on the original
2005 key agreement construction noted in [7], [25], and [32], do not apply.

E-Multiplication is rapidly executable, even in the smallest of environments, and as a
result, WalnutDSA provides very fast signature verifcation. We have implemented and shown
WalnutDSA’s performance in various environments, and it outperformed ECDSA by orders of
magnitude in all cases we tried, using less code space and energy.

This paper proceeds as follows: First, it reviews the colored Burau representation of the
Braid Group and E-Multiplication; Second, it introduces the concept of a cloaking element
and shows the connection between braid groups, cloaking elements, and WalnutDSA; Third,
it shows WalnutDSA key generation; Fourth, it presents a practical implementation via a
message encoder algorithm as well as the signature generation and verifcation processes;
Fifth, it discusses and analyzes the security implications associated with WalnutDSA; Sixth,
it proposes a slightly modifed version of WalnutDSA and presents a security proof under
EUF-CMA that breaking this version will break the underlying hard problem; Seventh, it
discusses brute-force security and quantum resistance; and Eighth, it tests WalnutDSA’s size
and performance characteristics on several constrained devices.

Colored Burau Representation of the Braid Group

For, N ≥ 2, let BN denote the N -strand braid group with Artin generators {b1, b2, . . . , bN−1},
subject to the following relations:

bibi+1bi = bi+1bibi+1, (i = 1, . . . , N − 2), (1)

bibj = bj bi, (|i − j| ≥ 2). (2)

Thus any β ∈ BN can be expressed as a product of the form

bǫ1 bǫkβ = bǫ2 · · · , (3) i1 i2 ik

where ij ∈ {1, . . . , N − 1}, and ǫj ∈ {±1}. Note that β is not unique; there are an infnite
number of equivalent expressions as you apply (1) and (2).

2

Each braid β ∈ BN determines a permutation in SN (group of permutations of N letters)
as follows: For 1 ≤ i ≤ N − 1, let σi ∈ SN be the i

th simple transposition, which maps
i → i + 1, i + 1 → i, and leaves {1, . . . , i − 1, i + 2, . . . , N} fxed. Then σi is associated to
the Artin generator bi. Further, if β ∈ BN is written as in (3), we take β to be associated to
the permutation σβ = σi1 · · · σik . A braid is called pure if its underlying permutation is trivial
(i.e., the identity permutation).

Let Fq denote the fnite feld of q elements, and for variables t1, t2, . . . , tN , let

−1 −1
Fq[t1, t1 , . . . , tN , tN]

denote the ring of Laurent polynomials in t1, t2, . . . , tN with coeÿcients in Fq. Next, we intro-
duce the colored Burau representation

� �
−1 −1ΠCB : BN → GL N, Fq[t1, t1 , . . . , tN , tN] × SN .

First, we defne the N × N colored Burau matrix (denoted CB) of each Artin generator
as follows [30].

−t1 1 0 · · · 0

 . .
 0 1 0 · · · .

CB(b1) =

. . . 1

 , (4)

 . . .

1

For 2 ≤ i ≤ N − 1, the matrix CB(bi) is defned by

1

 . . .

CB(bi) = ti −ti 1 , (5)
 .
 . .

1

where the indicated variables appear in row i, and if i = 1 the leftmost t1 is omitted.
We similarly defne CB(b−i

1) by modifying (5) slightly:

1

 . .
 .

1 1
CB(b−1) = 1 − ,ti+1 ti+1i

 . .
 .

1

where again the indicated variables appear in row i, and if i = 1 the leftmost 1 is omitted.
Recall that each bi has an associated permutation σi. We may then associate to each

b−1braid generator bi (respectively, inverse generator i) a colored Burau/permutation pair

3

3

(CB(bi), σi) (resp., (CB(b−i
1), σi)). We now wish to defne a multiplication of such colored

Burau pairs. To accomplish this, we require the following observation. Given a Laurent poly-
nomial f(t1, . . . , tN) in N variables, a permutation in σ ∈ SN can act (on the left) by permuting
the indices of the variables. We denote this action by f 7→ σf :

σf(t1, t2, . . . , tN) = f(tσ(1), tσ(2), . . . , tσ(N)).

We extend this action to matrices over the ring of Laurent polynomials in the ti by acting
on each entry in the matrix, and denote the action by M 7→ σM . The general defnition
for multiplying two colored Burau pairs is now defned as follows: given b±

i , b
±
j , the colored

Burau/permutation pair associated with the product b±
i · b±

j is

� �
(CB(b±

i), σi) · (CB(b±
j), σj) = CB(b±

i) · (σi CB(b±
j)), σi · σj .

We extend this defnition to the braid group inductively: given any braid

bǫ1 bǫ2 bǫkβ = · · · ,i1 i2 ik

as in (3), we can defne a colored Burau pair (CB(β), σβ) by

(CB(β), σβ) =
σi1

σi1 ···σik−1 CB(bǫk(CB(bi
ǫ

1

1) · σi1 CB(bi
ǫ

2

2) · σi2 CB(bi
ǫ

3

3)) · · · σi2
ik
), σi1 σi2 · · · σik).

The colored Burau representation is then defned by

ΠCB(β) := (CB(β), σβ).

One checks that ΠCB satisfes the braid relations and hence defnes a representation of BN .

E-Multiplication

E-Multiplication was frst introduced in [5] as a one-way function used as a building block to
create multiple cryptographic constructions. We recall its defnition here.

An ordered list of entries in the fnite feld (named T-values) is defned to be a collection
of non-zero feld elements:

{τ1, τ2, . . . , τN } ⊂ F× . q

Given a set of T-values, we can evaluate any Laurent polynomial f(t1, t2, . . . , tN) to obtain an
element of Fq:

f(t1, t2, . . . , tN) ↓t-values := f(τ1, τ2, . . . , τN).

We extend this notation to matrices over Laurent polynomials in the obvious way.
With all these components in place, we can now defne E-Multiplication. By defnition,

E-Multiplication is an operation that takes as input two ordered pairs,

(M, σ0), (CB(β), σβ),

4

4

where β ∈ BN and σβ ∈ SN as before, and where M ∈ GL(N, Fq), and σ0 ∈ SN . We denote
E-Multiplication with a star: ⋆. The result of E-Multiplication, denoted

(M ′ , σ ′) = (M, σ0) ⋆ (CB(β), σβ),

will be another ordered pair (M ′ , σ ′) ∈ GL(N, Fq)× SN .
b±We defne E-Multiplication inductively. When the braid β = i is a single generator or its

inverse, we put
� �

� �
σ0
� �

(M, σ0) ⋆ i , σb) = M · CB(b±) ↓t-values, · σ ±CB(b±
± i σ0 b .
i i

bǫ1 bǫ2 bǫkIn the general case, when β = · · · , we put i1 i2 ik

(M, σ0) ⋆ (CB(β), σβ) = (M, σ0) ⋆ (CB(bǫi1
1), σbi1

) ⋆ (CB(bǫi2
2), σbi2

) ⋆ · · · ⋆ (CB(bǫik
k), σbik

), (6)

where we interpret the right of (6) by associating left-to-right. One can check that this is
independent of the expression of β in the Artin generators.

Convention: Let β ∈ BN with associated permutation σβ , ∈ SN . Let M ∈ GL(N, Fq) and
σ ∈ Sn. For ease of notation, we let (M, σ) ⋆ β := (M, σ) ⋆ (CB(β), σβ).

Cloaking Elements

The security of WalnutDSA is based on the existence of certain braid words which we term
cloaking elements. They are defned as follows.

Defnition 4.1 (Cloaking element) Let M ∈ GL(N, Fq) and σ ∈ SN . An element v in the
pure braid subgroup of BN is termed a cloaking element of (M, σ) if

(M, σ) ⋆ v = (M, σ).

Let Cloak(M,σ) denote the set of all such cloaking elements.

Thus a cloaking element is characterized by the property that it essentially disappears when
performing E-Multiplication. We remark that this notion depends on the T-values, which are
used in defning the operation ⋆.

It is not immediately obvious how to construct cloaking elements. The following proposition
provides one technique to build them:

Proposition 4.2 Fix integers N ≥ 2, and 1 < a < b < N. Assume that the T-values τa and
τb both equal 1. Let M ∈ GL(N, Fq) and σ ∈ SN . Then a cloaking element v of (M, σ) is
given by v = wbi

2w−1 where bi is any Artin generator (1 ≤ i < N), and where the permutation
corresponding to w ∈ BN satisfes

i 7−→ σ−1(a), i + 1 7−→ σ−1(b).

By defnition, any cloaking element of an ordered pair (M, σ) ∈ GL(N, Fq)× SN stabilizes
(M, σ) through the right action of the braid group via E-multiplication. Thus the following
proposition is immediate:

Proposition 4.3 The set Cloak(M,σ) forms a subgroup of BN .

5

5

6

Notation for cryptographic protocols

Let S be a set.

hSi denotes a unique encoding of S as a binary string.
$

s ←− S denotes the operation of randomly choosing s ∈ S.

Let A(∗ ; ρ) be a randomized algorithm with randomness based on a coin ρ.

A(y1, . . . yq; ρ) denotes the output of the algorithm A on inputs y1, . . . yq and coin ρ.

$
z ←− A(y1, . . . yq) means choose ρ at random and let z = A(y1, . . . yq; ρ).

Let β ∈ BN .

� �
P(β) := IdN , Id SN

⋆ β.

where IdN is the N × N identity matrix and Id
SN

is the identity permutation in SN .

Key Generation for WalnutDSA

WalnutDSA allows a signer with a fxed private-/public-key pair to create a digital signature
associated with a given message that can be validated by anyone who knows the public-key of
the signer and the verifcation protocol. We now describe the algorithms for private-/public-key
generation.

A central authority generates the system wide parameters denoted, par, via a parameter
$

generation algorithm, denoted Pg, where par ←− Pg. A signer S generates its own public and
private key pair, denoted (Pub(S), Priv(S)), via a key generation algorithm denoted Kg. In

$
other words, (Pub(S), Priv(S)) ←− Kg(par).

Public System Wide Parameters (par):

• An integer N ≥ 8 and associated braid group BN .

• A rewriting algorithm R : BN → BN such as [9] or [12].

• A fnite feld Fq of q ≥ 32 elements.

• Two integers 1 < a < b < N.

• T-values = {τ1, τ2, . . . , τN }, where each τi is an invertible element in Fq, and τa = τb = 1.

Signer’s Private Key:

The Signer’s Private Key consists of two random, freely-reduced braids:

• Priv(S) = (w, w ′) ∈ BN × BN .

′ ′ ′ Here the three braids w, w and w · w are not in the pure braid group. We assume w, w
are suÿciently long to provide the necessary resistance to brute-force searches for the desired
security level (see §11).

6

http:akeygenerationalgorithmdenotedKg.In
http:verificationprotocol.We

7

Signer’s Public Key:

The Signer’s Public Key consists of two matrix and permutation pairs, each of which is gen-
erated from the Private Keys of the signer via E-Multiplication:

� �
• Pub(S) = P(w), P(w ′)

Message Encoder Algorithm

In order to generate a secure signature and prevent certain types of merging attacks, one must
carefully convert the message to be signed into a braid word. Let m ∈ {0, 1}∗ be a message.
Let H : {0, 1}∗ → {0, 1}4κ denote a cryptographically secure hash function for κ ≥ 1. We now
present an encoding function E : {0, 1}4κ → CN,4, where CN,4 is a free 4 generator subgroup
of BN defned below. A free subgroup is where a reduced element (a word where the subwords
x · x−1, and x−1 · x do not appear) is never the identity.

In the case of the braid group, there are subsets of pure braids that generate free subgroups.
For WalnutDSA it is necessary for the permutation of the encoded message to be trivial, i.e.,
the encoded message must be a pure braid. In order to ensure that no two messages will be
encoded in the same way, we require the message be encoded as nontrivial, reduced elements
in a free subgroup of the pure braid group. This requirement ensures that unique messages
will result in unique encodings.

The encoding algorithm we present is based on the following classical observation: the
collection of pure braids given by

b2 g(N−1),N = N−1 (7)

· b−1 g(N−2),N = bN−1 · b2
N−2 N−1

· b2 · b−1 b−1 g(N−3),N = bN−1bN−2 N−3 N−2 N−1

· b−1 b−1 b−1 g(N−4),N = bN−1bN−2bN−3 · b2
N −4 N−3 N−2 N−1

. . .

b−1 b−1 g1,N = bN−1bN−2 · · · b2 · b12 · b2
−1

3 · · · N−1,

generate a free subgroup BN [8]. Since any subset of the above free generators will itself freely
generate a subgroup we can leverage the pure braids above and create an encoding mechanism
that maps an input message to a unique braid word.

Message Encoder Algorithm: Choose and fx a subset of four generators

{gk1,N , gk2,N , gk3,N , gk4,N } ⊂ {g1,N , g2,N , . . . , g(N−1),N },

and defne CN,4 to be the subgroup generated by these 4 generators. Each 4-bit block of
H(m) then specifes a unique power of one of these generators gk

i
µ,N with 1 ≤ i ≤ 4; the two

lowest bits determine the generator gkµ,N to use, and the two high bits determine the power
1 ≤ i ≤ 4 to raise the generator to. The output E(H(m)) of the message encoder is then the
freely reduced product of these κ powers of generators.

7

8

An astute reader will note that without the presence of the hash function, the encoding
function E would be homomorphic, i.e., E(m)E(m ′) = E(mm ′) for all messages m, m ′ . How-
ever, this is not a problem since the input to the encoder is the digest of a message. Indeed, for
a good cryptographic hash function H, we know that H(m)H(m ′) will never equal H(mm ′).
We also know it is unlikely to fnd two classes of hash functions H1, H2 such that the output
size of H1 is half the output size of H2, and then to further fnd three messages m, m ′ , and m ′′

such that H1(m) H1(m ′) results in the same output1 as H2(m ′′), and also get a signer to sign
both messages m and m ′ using H1. We also note that including a hash algorithm identifer in
the message after it is hashed would prevent this attack.

Signature Generation and Verifcation

Fix a hash function H as in §7. To sign a message m ∈ {0, 1}∗ the Signer performs the
following steps:

Digital Signature Generation:

1. Compute H(m).

2. Generate cloaking elements v, v1, and v2 (Defnition 4.1) such that

− v cloaks (IdN , IdSN),

− v1 cloaks P(w).
− v2 cloaks P(w ′).

3. Generate the encoded message E(H(m)).
�

−1 ′
�

4. Compute Sig = R v1 · w · v · E(H(m)) · w · v2 , which is a rewritten braid.

5. The fnal signature for the message m is the ordered pair (H(m), Sig).

As addressed earlier, the cloaking elements v, v1, v2 ∈ Bn contain a random product of pure
braid generators, and disappear when the signature is E-Multiplied by the public key Pub(S).

Signature Verifcation: The signature (m, Sig) is verifed as follows:

1. Generate the encoded message E(H(m)).

2. Evaluate P(E(H(m))).

3. Evaluate the E-Multiplication P(w) ⋆ Sig.

4. Test the equality
� � � � � �

Matrix P(w) ⋆ Sig
?
= Matrix P

�
E(H(m))

�
· Matrix P

�
w ′
�

, (8)

where Matrix denotes the matrix part of the ordered pair in question, and the multiplication
on the right is the usual matrix multiplication. The signature is valid if and only if (8) holds.

1 For a weak hash H1 and a strong hash H2, which has twice the output size of H1, an attacker would need to fnd
two messages m and m ′ that are preimages to the halves of H2 of the desired forgery and then get the signer to use
H1 and sign both m and m ′ . E.g. the attacker would need to take his or her desired forged message, hash it using
SHA2-256, fnd two preimages with MD5, get the signer to sign those MD5 preimages, and only then can he or she
compose a message that would verify with SHA2-256.

8

9 Preliminary Security Discussion

The security of WalnutDSA is based on the following highly non-linear problem that we
perceive to be computationally infeasible for suÿciently large key sizes.

The REM Problem (Reversing E-Multiplication is hard) Consider the braid group BN

and symmetric group SN with N ≥ 8. Let Fq be a fnite feld of q elements with q ≥ 32, and fx
a set of non-zero T -values {τ1, τ2, . . . , τN } in Fq. Suppose we are given a generic β ∈ BN and
the pair (M, σ) ∈ (GL(N, Fq), SN) where (M, σ) = P(β). Then it is infeasible to determine a
braid β ′ such that

(M, σ) = P(β ′),

if the expression for β in Birman-Ko-Lee canonical form [9] is suÿciently long as a word in
Artin generators.

If we consider β varying over BN , the entries of CB(β) are Laurent polynomials in N
variables of arbitrarily high degree. Thus computing CB(β) for long braids β becomes very
ineÿcient, even though the colored Burau matrices themselves are very simple. An attempt
to reverse E-Multiplication by evaluating products of CB matrices and then trying to solve
the multivariable equations that would emerge would rapidly become unmanageable. It is, in
fact, the rapid growth of these Laurent polynomial entries combined with the permutation of
their variables that leads us to the conjecture that E-Multiplication is hard to reverse.

Further strong support for the hardness of reversing E-Multiplication can be found in
[31] which studies the security of Zémor’s [41] hash function h : {0, 1}∗ → SL2(Fq), with
the property that h(u v) = h(u)h(v), where h(0), h(1) are fxed matrices in SL2(Fq) and uv
denotes concatenation of the bits u and v. For example a bit string {0, 1, 1, 0, 1} will hash
to h(0)h(1)h(1)h(0)h(1). Zémor’s hash function has not been broken since its inception in
1991. In [31] it is shown that feasible cryptanalysis for bit strings of length 256 can only be
applied for very special instances of h. Now E-Multiplication, though much more complex, is
structurally similar to a Zémor type scheme involving a large fnite number of fxed matrices
in SL2(Fq) instead of just two matrices h(0), h(1). This serves as an additional basis for the
assertion that E-Multiplication is a one-way function.

Attacks on the underlying math

The attack of Ben-Zvi–Blackburn–Tsaban [7], based on ideas in [25], does not seem to ap-
ply to WalnutDSA because the signature is a braid and the public key is coming from E-
Multiplication of the identity element with a braid that has very little algebraic structure. As
a result it does not seem possible to apply a linear algebraic attack as in [7] to solve the hard
problems (1) and (2) above, or to forge a signature. See also [2], which provides methods to
defeat the attack in [7], and [16] which shows how to defeat the attack in [25].

The more recent attack of Blackburn–Robshaw [10] seems completely irrelevant toWalnutDSA.
Their paper does not even break the original algebraic eraser key agreement protocol. See [1]
which provides a simple way to defeat the attack by simply adding a hash or MAC chal-
lenge/response to the authentication protocol. What Blackburn and Robshaw have found is
an invalid public key attack similar to the invalid elliptic curve attacks on ECC.

9

Finally, very recent work of Hart–Kim–Micheli–Perez–Petit–Quek [21] proposes a practical
universal forgery attack on WalnutDSA in the special case where the two private braids w and
w ′ are equal. The attack proceeds by taking a collection of signed messages (Mi, si) indexed
by a fnite set I and using them to produce a valid signature for a new message M . The
main idea underlying the attack is fnding a short expression in GL(N, Fq) for the element

� � � �
h = Matrix P(E(M)) in terms of elements gi := Matrix P(E(Mi) .. Namely, one seeks an

expression of the form
l

Y ǫijh = g , ij ∈ I, ǫij ∈ {±1}. (9) ij

j=1

Then the braid
l

Y ǫijs = sij

j=1

will be a valid signature for M .

Thus the attack relies on both the equality of w and w ′ and on fnding factorizations in
nonabelian groups: the former implies that one can appropriately multiply the signatures si
together in the fnal step to produce a signature for M , and the latter implies that one can fnd
the correct product of the si. This attack fails completely if w =6 w ′ , since one cannot multiply
the si together to produce a valid signature. We remark that even if w = w ′ (as pointed out
in [21]), the attack fails if the parameters N, q are moderately larger, since then it becomes
infeasible to produce the expression (9). The authors of [21] also point out that the forged
signatures produced by their method (in the case w = w ′) are many orders of magnitude
longer than the actual signatures produced by WalnutDSA.

10 Security Proof for WalnutDSA-I

We will now provide security proofs for a Schnorr/Brickell type model (see [27], [11]) of
WalnutDSA, denoted WalnutDSA-I which is defned below. Specifcally, we will prove that
WalnutDSA-I is existentially unforgeable under adaptive chosen-message attacks (EUF-CMA-
secure) in the random oracle model assuming a Forger has the ability to forge valid signatures
of a specifed type with non-negligible probability.

Keeping with the notation from §4, we defne the set Cloak as follows:
�n o
�

Cloak := (v, v1, v2) � v, v1, v2 ∈ BN , v ∈ CloakId, v1 ∈ CloakP(w), v2 ∈ CloakP(w ′) ,

where Id= (IdN , IdSN).
The system wide parameters and key generation algorithm for WalnutDSA-I is the same

as for WalnutDSA and is given by
$

par ←− Pg,
$

(Pub(S), Priv(S)) ←− Kg(par).

In WalnutDSA-I the signature of a message m ∈ {0, 1}∗ for the public Pub(S) is based on
two hash functions H, G : {0, 1}∗ → {0, 1}4κ and is generated by the following protocol.

10

$ �
1. (v, v1, v2)←− Cloak, V = (v, v1, v2) .

� � � �
2. Compute E H m || G (V) .

� � � � � �
3. Compute Sig = R v1 w

−1v · E H m || G (V) · w ′ v2 . The fnal signature is denoted
� �
m, H(m), G(V), Sig .

To validate the signature, one checks whether
� � � �

� � ? � � � � ��
Matrix P(w) ⋆ Sig = Matrix P E H m || G (V) · Matrix P(w ′) .

Note that all WalnutDSA-I signatures on a message m created by an honest signer lie in
the double coset

n � � � o
� � � � � �� �

�

DC := R X · P E H m || G (V) · Y
� X, Y ∈ BN , (10)

m,V,H,G

where X, Y depend only on the cloaking elements V chosen by the honest signer and do
not depend on the message m or the hash function H, G. Not every valid signature needs
to be of this form. This is due to the fact that the braid group BN is non-commutative and
E-Multiplication is a highly randomized function.

EUF-CMA Security Proof for WalnutDSA-I

We now assume the existence of a forger, denoted F , that on input Pub(S) and message m,
can produce a valid WalnutDSA-I signature lying in the double coset DC with non-

m,V,H,G

negligible probability. The assumption that the Forger only can produce possible signatures
lying in DC is restrictive. As pointed out by Koblitz and Menezes [27], although it is a

m,V,H,G

common approach in modern security proofs to restrict the capabilities of the adversary, it is
important to show that certain classes of attacks can be ruled out.

More precisely, we defne F to be a randomized algorithm which can make hash queries
to a random oracle and signature queries to a simulator that does not know Priv(S) but can
simulate an honest signer.

Hash Query: Let Oρ denote a random oracle, depending on a coin ρ, which evaluates the hash
of a string str ∈ {0, 1}∗ . A hash query is just a string str. The response to the query is the
hash of str, provided by Oρ.

Signature Query: A signature query is the message and the public key of the signer. The
response to the query is a valid signature.

The Forger F : Consider WalnutDSA-I with system wide parameters and public/private key
pair specifed by

$ $
par ←− Pg, (Pub(S), Priv(S)) ←− Kg(par).

We assume the hash function H is fxed and multi-collision-resistant while the hash function
G = Gρ is given by the oracle Oρ which depends on a coin ρ.

The Forger F is defned to be a randomized algorithm that on input a message m ∈ {0, 1}∗ ,
� �

a signers public key Pub(S), and a coin ρ, outputs a 4-tuple m, h, gρ, s , where h = H(m)

11

$ $
and gρ = Gρ(V) and V ←− Cloak, s ←− DC . It is assumed that the probability that

m,V,H,G
� �
m, h, gρ, s is a valid WalnutDSA-I signature is non-negligible.

Lemma 10.1 (Forking Lemma) Let F be run twice with inputs,

(m, Pub(S), ρ), (m, Pub(S), ρ ′),

then with non-negligible probability, F will output two valid signatures

� � � �
m, h, gρ, s , m,h, gρ ′ , s ′ ,

such that gρ 6 gρ ′ .=

Proof. This follows from [34], [6].

The forking lemma 10.1 can be used to show that under an EUF-CMA attack it is possible
for F to solve the REM problem (reversing E-multiplication is hard) with non-negligible
probability provided there is a polynomial time solution to the conjugacy search problem CSP
which is the problem of fnding X ∈ BN assuming that w ∈ BN and XwX−1 ∈ BN are known.
This is conjectured to be true by many people and it has been experimentally shown that if
X is chosen according to a standard uniform distribution then X can be found with high
probability in polynomial time [15], [17].

Theorem 10.2 Assume that CSP can be solved in polynomial time. Further, assume that two
WalnutDSA-I signatures

� � � �
m, H(m), Gρ(V), s , m,H(m), Gρ ′ (V), s ′ ,

with Gρ(V) 6 Gρ ′ (V) are known to an adversary. Then it is possible for the adversary to solve =
the REM problem in polynomial time with non-negligible probability.

Proof. Let

� �
� � � � �� � � � � ��

s = R X · E H m || Gρ (V) · Y = X · E H m || Gρ (V) · Y,
� �

� � � � �� � � � � ��
s ′ = R X · E H m || Gρ ′ (V) · Y = X · E H m || Gρ ′ (V) · Y,

be the two known signatures where “=” means equality in the braid group, and where X, Y
depend only on the choice of the cloaking elements V . It follows that

h i
� � � � �� � � � � ��−1

s · (s ′)−1 = X · E H m || Gρ (V) · E H m || Gρ ′ (V) · X−1 .

By our assumptions, it is possible to solve for X, and then also solve for Y . Note that X has
the property that P(w) = (IdN , IdSN) ⋆ X, and, hence, E-Multiplication has been reversed in
this case.

12

Strong existential forgery

Strong existential forgery is the situation when an attacker is able to forge a second signature
of a given message that is di�erent from a previously obtained signature of the same message.

WalnutDSA as presented above is, a priori, subject to strong existential forgery. The sig-
nature of a message M is of the form

�
−1 ′

�
Sig = R v1 · w · v · E(H(m)) · w · v2 . (11)

Clearly an attacker could augment the above signature by multiplying it (on the right) by an
additional cloaking element, thus obtaining a second signature of the same message. This does
not undermine WalnutDSA security if we require a forgery to be a message that was never
signed previously because of the non-repudiation property discussed previously.

11 Brute Force Attacks

We now discuss the brute force security levels of the individual secret components which
are used to create the digital signature of a message M. For accuracy we give the following
defnition of security level:

Defnition 11.1 (Security Level): A secret is said to have security level k over a fnite feld
F if the best known attack for obtaining the secret involves running an algorithm that requires
at least 2k elementary operations (addition, subtraction, multiplication, division) in the fnite
feld F.

Brute force security level for each Private Key:

In order to choose private keys of security level = SL that defeat a brute force attack, we
need to analyze the set of braids in BN of a given length ℓ and try to assess how large this
set is. Being as conservative as possible, at a minimum, the brute force security level for the
signer’s private key pair will be the brute force security level of a single private key. Letting
WN (ℓ) denote the number of distinct braid words of length ℓ in BN , the most basic estimate
for WN (ℓ) is given by

WN (ℓ) ≤ (2(n − 1))ℓ .

This trivial bound does not take into account the fact that the braid relations, particularly
the commuting relations, force many expressions to coincide. Furthermore, the commuting
relations bi bj = bj bi |i − j| ≥ 2, allow us to write products of generators far enough apart
in weighted form, i.e., given bi bj where |i − j| ≥ 2, we can assume i > j.

To start analyzing the situation we work in B5, we enumerate words of length 2 starting
b±1 b±1with a given generator: b1 2 , b1 b1, b2 b

±

3
1 , b2 b2, b2 b

±

1
1 , b3 b

±

4
1 , b3 b3, b3 2 , b3 b

±

1
1 ,

b±1b4 b4, b4 b
±1 , b4 , b4 b

±1 . Words of length 2 starting with inverses of the generators 3 2 1

are of course similar, and thus the number of distinct words of length ℓ = 2 in B5 taking the
commuting relations into account is 44 < (2(5− 1))2 = 64. In order to obtain a good bound

13

for WN (ℓ), which eliminates the redundancy arising from the commuting elements, we require
the following function:

1 k = k ′ ,

wk(k ′) = 2 k 6= k ′ and k ′ < N − 1,

0 k ′ > N − 1.

Using this notation, the number of words of length 2 in BN is given by

N−1 k1+1
X X

WN (2) = 2 wk1 (k2),
k1=1 k2=1

where the equality holds because the remaining braid relations are longer than length 2.
Moving to words of length ℓ, we have

N−1 k1+1 k2+1 kℓ−1+1
X X X X

WN (ℓ) ≤ 2 wk1 (k2) wk2 (k3) · · · wkℓ−1 (kℓ).
k1=1 k2=1 k3=1 kℓ=1

This is just an upper bound on the number of braids of length ℓ but it does represent what
an attacker would have to do to be certain that all possibilities are checked. At present, the
above method gives the best protocol known for generating braid words of length ℓ with the
least over counting. There is no closed formula for the number of distinct braids of length ℓ;
in fact the problem is NP hard [33].

Hence we are reduced to fnding a lower bound for the right hand side above, which can
be done as follows:

N−1 k1+1 k2+1 kℓ−1+1 N−1 k1+1 k2+1 kℓ−1+1
X X X X X X X X

2ℓ2 wk1 (k2) wk2 (k3) · · · wkℓ−1 (kℓ) ≥ · · · 1
k1=1 k2=1 k3=1 kℓ=1 k1=1 k2=1 k3=1 kℓ=1

k2 6 k3=k2 6=k1 6 kℓ=k1

N−1 k1 k2 kℓ−1 � �
X X X X 2ℓ ℓ − 2 +N

2ℓ = · · · 1 = · (N − 1) ,
ℓ N − 1

k1=1 k2=1 k3=1 kℓ=1

� �
ℓ−2+Nwhere N−1 denotes the binomial symbol.

Thus, in order to defeat the brute force search at a security level = SL, the signer’s private
key must be a braid word of length ℓ which satisfes:

� � ��
2ℓ ℓ − 2 +N

SL ≥ log2 · (N − 1) .
ℓ N − 1

Next, we may use Stirling’s asymptotic formula for the Gamma function to obtain a lower
� �
ℓ − 2 +N

bound for 2
ℓ · (N − 1) . The fnal result is
ℓ N − 1

� � · ℓ(N−1))(2ℓ/ℓ)
SL > log2 (N − 1)!

14

for fxed N as ℓ → ∞. To fnd the length ℓ associated to a given security level SL, one may
� �

apply Newton’s method to solve the equation: ℓ + (N − 2) log2(ℓ) = SL + log2 (N − 1)! .

Brute force security level of the Cloaking Elements, v, v1, v2:

The pure braid subgroup of BN is generated [20] by the set of N(N − 1)/2 braids given by

· b−1 b−1 b−1 gi,j = bj−1bj−2 · · · bi+1 · b2
i i+1 · · · j−2 j−1, 1 ≤ i < j ≤ N. (12)

The cloaking element v is defned to be a conjugate of some b2
i by a lift of a permutation

that moves i → a, i +1 → b times a random word in the pure braid subgroup of length at least
L. The cloaking element v1, is defned to be the conjugate of some b2

i by a lift of a permutation
that moves i → σw

−1(a), i + 1 → σw
−1(b) (where σw is the permutation associated to w) times

a random word in the pure braid subgroup of length at least L. Likewise, v2, is defned to be
the conjugate of some b2

j by a lift of a permutation that moves j → σw
−1(a), j + 1 → σw

−1(b)
times a random word in the pure braid subgroup of length at least L.

The number of words of length L in the above generators (12) of the pure braid subgroup
is bounded by

′ ′

� �L
N(N − 1) � �L

2 · = N(N − 1) .
2

Hence, a lower bound for the security level of the triple v, v1, v2 of the cloaking elements is
given by

� �
3 · L · log2 N(N − 1) ,

assuming an attacker does a brute force search of the set of all possible triples of such cloaking
elements.

One can compute L from the desired security level SL (in bits) by computing:

L = ⌈SL/(3 log2(N(N − 1)))⌉. (13)

For example, suppose 128-bit security is desired, and the braid group is B8, then

L = ⌈128/(3 log2(8 · 7))⌉ = 8.

Remarks: To date there is no good method known to eÿciently enumerate all distinct pure
braid elements of length L in the generators gij given in (12). Consequently, to perform the
above attack, an attacker must execute a brute force search of all possible words in the gen-
erators as described above.

Search space of each Public Key Pub(S):
� �

Recall that the signer’s public key is given by the pair: Pub(S) = P(w), P(w ′) . When this
is evaluated with the specifed choices of BN and Fq it results in two N × N matries each
with q possible elements for every entry. The last row, however, is all zeros (except for the
fnal element). Moreover, due to the fact that two T-values are set to 1, in practice there is

15

more duplication within the matrix which further reduces the number of potential states. A
conservative estimate is that there are

N(N−3) N2−3N q = q

possible choices for each of the matrices appearing in public keys. The search space for all such
matrices is again the square of this lower bound. At present, the only known way to determine
Priv(S) from Pub(S) is a brute-force search.

Quantum Resistance

We now quickly explore the quantum resistance of WalnutDSA. As shown in §9, the security
of WalnutDSA is based on the hard problems of reversing E-Multiplication. The math behind
these hard problems is intimately tied to the infnite non-abelian braid group that is not
directly connected to any fnite abelian group. We will show that this lends strong credibility
for the choice of WalnutDSA as a viable post-quantum digital signature protocol.

The Hidden Subgroup Problem on a group G asks to fnd an unknown subgroup H using
calls to a known function on G which is constant on the cosets of G/H and takes di�erent values
on distinct cosets. Shor’s [36] quantum attack breaking RSA and other public key protocols
such as ECC are essentially equivalent to the fact that there is a successful quantum attack
on the Hidden Subgroup Problem for fnite cyclic and other fnite abelian groups (see [28]).
Since the braid group does not contain any non-trivial fnite subgroups at all, there does not
seem to be any viable way to connect to connect CCSP with HSP.

Given an element
bǫ1 bǫ2 bǫkβ = i1 i2

· · · ik
∈ BN , (14)

where ij ∈ {1, . . . , N −1}, and ǫj ∈ {±1}, we can defne a function f : BN → GL(N, Fq) where
f(β) is given by the E-Multiplication (1, 1)⋆ (β, σβ) and σβ is the permutation associated to β.
Now E-Multiplication is a highly non-linear operation. As the length k of the word β increases,
the complexity of the Laurent polynomials occurring in the E-Multiplication defning f(β)
increases exponentially. It does not seem to be possible that the function f exhibits any type
of simple periodicity, so it is very unlikely that inverting f can be achieved with a polynomial
quantum algorithm.

Finally, we consider Grover’s quantum search algorithm [18] which can fnd an element
� √ �

in an unordered N element set in time O N . Grover’s quantum search algorithm can be
used to fnd the private key in a cryptosystem with a square root speed-up in running time.
Basically, this cuts the security in half and can be defeated by doubling the key size. This
is where E-Multiplication shines. When doubling the key size one only doubles the amount
of work as opposed to RSA, ECC, etc. where the amount of work is quadrupled. Note that
almost all of the running time of signature verifcation in WalnutDSA is taken by repeated
E-Multiplications.

12 Size and Performance Characteristics

To test WalnutDSA we wrote key and signature generation and validation software in C (and
on one platform implemented part of the verifcation engine in assembly). We ran the signature

16

http:assembly).We

generation on a Thinkpad T470p laptop running Fedora Linux to generate 500 keypairs, and
for each key generated 100 random 256-bit messages and the resulting signatures. For the
signature rewriting we used a combination of the Birman–Ko–Lee (BKL) [9] and Dehornoy [12]
algorithms to obscure the braids and shorten them to reasonable lengths.

For our testing we settled on the parameters:

• N = 8
• q = 32
• L = 15
• ℓ = 132

which yields a private key security level of at least 2128 against brute force attacks,2 with a
public keyspace of 2200 possible public keys.

Each of the public keys are always a fxed size. They need to include the T-Values, both
Matrices, and Permutation which requires

N log2(q) + 2(N(N − 1) + 1) log2(q) +N log2(N) = 40 + 2 ∗ 285 + 24 = 634 bits.

Private keys and signatures, however, are variable length. Recall that each private key has
two braids. In the 500 private keys (1000 braids), the braids varied in length from 94 generators
to 130 generators, with a mean of 113.37 and a standard deviation of 5.84. With our encoding,
this results in a private key storage of 752 to 1040 bits, and a theoretical maximum storage of
1056 bits.

Using those 500 keys we generated 50,000 signatures using random input messages of 256
bits (simulating SHA256 hash output), and then used BKL and Dehornoy as the rewriting
methods. Of these 50,000 signatures, their lengths varied from 770 to 1926 generators, with
a mean of 1298.12 and a standard deviation of 159.67. These signatures also require 4 bits
per generator, which results in signatures of length of 3080 to 7704 bits (with an average of
5192.48 bits).

Signature Validation

Where WalnutDSA shines is in signature validation, because E-Multiplication is rapidly com-
putable even in the tiniest of environments. To prove its viability we implemented theWalnutDSA
signature verifcation routines on several platforms: a Silicon Industries 8051 8-bit microcon-
troller, a Texas Instruments (TI) MSP430F5172 16-bit microcontroller, an ARM Cortex M3
(NXP LPC1768), and as a hardware accelerator for an Altera Cyclone V and a Microsemi
Smartfusion 2). The implementation on the MSP430 and ARM is fully in C but has not been
optimized in any way; on the 8051 we implemented the underlying E-Multiplication engine in
assembly.

To provide a common testing platform, we chose a single message with an above-average-
length signature of 1400 generators, which encodes into 700 bytes. Then we built our code on
the various platforms and measured the time to validate the signature.

2 Technically we only need L = 12 and ℓ = 105 for a 2128 security level; using L = 15 results in a theoretical security
level of 2161, but since the majority of the signature length is the encoded message, we increased L by 25% for safe
measure. Similarly, we increased ℓ due to braid generator cancellation.

17

http:of113.37

On the MSP430 we built with TI’s GCC compiler version 4.9.1 (20140707) using the -O3
compiler option. The compiled code took up only 3244 bytes of ROM and required only 236
bytes of RAM to process the signature. The signature verifcation required 370944 cycles.
At a clock speed of 8MHz this equates to 46ms. Compare this to ECC Curve25519, which
requires two seconds to compute an ECDSA validation (extrapolated from a one second ECDH
calculation in [13]), a 43x speed improvement. WalnutDSA does not require a 32-bit hardware
multiplier.

On the ARM Cortex M3 we compiled WalnutDSA using GCC version 4.9.3 (20150303)
also using the -O3 level of optimization. The code compiled down to only 2952 bytes of ROM
and ran in 272 bytes of RAM. The signature verifcation executed in 275563 cycles, which
at 48MHz took only 5.7ms. Compare this result to ECC, where [40] showed a full assembly
language implementation that required 7168 bytes of ROM and 540 bytes of RAM, but still
required 233ms to perform a point multiplication (recall that ECDSA verifcation requires
two). ARM itself produced a report [38] where they measured an ECDSA verifcation on the
same platform (and LPC1768) in 458ms. With these results, WalnutDSA in C is more than
40x faster than the assembly implementation (and requires less than half the ROM and RAM),
and 80x faster than ARM’s speed reports.

On the 8051 we used the Keil V9.54 compiler to build WalnutDSA, with the small memory
module and optimization set to OPTIMIZE(11,SPEED). We specifcally chose to use assembly
due to the poor mapping of the E-Multiplication C implementation to the 8051 platform. The
code compiled into 3370 bytes of ROM. The 8051 platform we chose is unique in the way it
handles RAM. Specifcally, it includes a “relocatable” section. When we ran WalnutDSA, it
required a total of 312 bytes of RAM (split into 251 bytes of “xdata,” 3 bytes of “data,” and
58 bytes of “relocatable data”). Verifying the signature required 864101 cycles; running at 24.5
MHz, this equates to 35.3ms.

Finally, we implemented WalnutDSA as a hardware coprocessor to tie into a CPU core
running on a Field Programmable Gate Array (FPGA). The devices we tested run the fabric
at a speed of 50 MHz, and devices can vary signifcantly in size and capabilities. In our case,
we included not just the raw processing time, but also the time required to transfer the data
(public keys, message, and signature) from the processor into the fabric. Specifcally, we need
to pass 161 words into the fabric; the time required varied and was dependent on the actual
platform.

The majority of the execution time was, indeed, the data transfer time. In total we per-
formed a signature validation in under 2500 cycles (depending on the platform) using only
1,720 Adaptive Logic Modules (ALM). This implies, at 50 MHz, an execution time of under
50µs!

Compare this to an ECDSA implementation, such as that in [23]. They implemented
ECDSA on a Xilinx Virtex 4 platform and computed a point multiplication would take 304µs
at 171.247MHz. When you normalize to a 50MHz fabric speed, this equates to 1041µs for a
point multiplication. Considering ECDSA verifcation requires two we can estimate a verifca-
tion at approximates 2.08ms, yielding a 41x improvement of WalnutDSA over ECDSA.

18

http:toOPTIMIZE(11,SPEED).We

13 Conclusion

This paper introduced WalnutDSA, a quantum-resistant Group Theoretic public-key signa-
ture scheme based on the E-Multiplication one-way function. Key generation is accomplished
by producing random T-values and a random braid of a specifc form, and then using E-
Multiplication to compute the public key. Signature generation involves creating the cloaking
elements, building the signature braid, and then running one of the many known braid rewrit-
ing algorithms to obscure the form and hide the private key.

At a 128-bit security level the public key is 634 bits and the private key length ranges from
752 to 1040 bits long (with a maximum theoretical length of 1056 bits). The signatures, after
using BKL and Dehornoy braid rewriting techniques, range from 3080 to 7704 bits in length.

In addition, WalnutDSA signature verifcation proves to be extremely fast. It is two E-
Multiplications, a matrix multiplication, and then a matrix compare. An initial, non-optimized
implementation on a 16-bit MSP430 verifes a 5232-bit length (128-bit strength) signature 43-
times faster than an ECC Curve25519 signature verifcation. Similar speed improvement is
seen on an 8051, ARM Cortex M, and within FPGA environments.

References

1. D. Atkins; D. Goldfeld, Addressing the algebraic eraser over the air protocol, https://eprint.iacr.org/2016/205.pdf
(2016).

2. I. Anshel; D. Atkins; D. Goldfeld; P. E. Gunnells, Defeating the Ben-Zvi, Blackburn, and Tsaban Attack on the
Algebraic Eraser, arXiv:1601.04780v1 [cs.CR].

3. I. Anshel; D. Atkins; D. Goldfeld; P. E. Gunnells, A Class of Hash Functions Based on the Algebraic Eraser, Groups
Complex. Cryptol. 8 (2016), no. 1, 1–7.

4. I. Anshel; D. Atkins; D. Goldfeld; P. E. Gunnells, Hickory HashTM: Implementing an Instance of an Algebraic
EraserTM Hash Function on an MSP430 Microcontroller, 2016, https://eprint.iacr.org/2016/1052.

5. I. Anshel; M. Anshel; D. Goldfeld; S. Lemieux, Key agreement, the Algebraic EraserTM , and Lightweight Cryptog-
raphy, Algebraic methods in cryptography, Contemp. Math., vol. 418, Amer. Math. Soc., Providence, RI, 2006, pp.
1–34.

6. M. Bellare; G. Neven, Multi-Signatures in the Plain Public-Key Model and a General Forking Lemma, Proceedings
of the 13th Association for Computing Machinery (ACM) Conference on Computer and Communications Security
(CCS), Alexandria, Virginia, (2006), pp. 390–399.

7. A. Ben-Zvi; S. R. Blackburn; B. Tsaban, A practical cryptanalysis of the Algebraic Eraser, CRYPTO 2016, Lecture
Notes in Computer Science 9814 (2016), 179–189.

8. J. Birman, Braids, Links and Mapping Class Groups, Annals of Mathematics Studies, Princeton University Press,
1974.

9. J. Birman; K. H. Ko; S. J. Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math.
139 (1998), no. 2, 322–353.

10. S. R. Blackburn; M.J.B. Robshaw, On the security of the Algebraic Eraser tag authentication protocol,
14th International Conference on Applied Cryptography and Network Security (ACNS 2016), to appear. See
http://eprint.iacr.org/2016/091.

11. E. Brickell; D. Pointcheval; S. Vaudenay; M. Yung, Design Validations for Discrete Logarithm Based Signature
Schemes. In Public Key Cryptography, Melbourne, Australia, Lectures Notes in Computer Science 1751, pp. 276–
292, Springer- Verlag, (2000).

12. P. Dehornoy, A fast method for comparing braids, Adv. Math. 125 (1997), no. 2, 200–235.

19

http://eprint.iacr.org/2016/091
https://eprint.iacr.org/2016/1052
http:arXiv:1601.04780v1[cs.CR
https://eprint.iacr.org/2016/205.pdf

13. M. Düll; B. Haase; G. Hinterwälder; M. Hutter; C. Paar; A. Sánchez; P. Schwab, High-speed Curve25519 on 8-bit,
16-bit, and 32-bit microcontrollers, https://eprint.iacr.org/2015/343.pdf (2015).

14. D. Garber; S. Kaplan; M. Teicher; B. Tsaban; U. Vishne, Length-based conjugacy search in the braid group, Algebraic
methods in cryptography, 75-87, Contemp. Math., 418, Amer. Math. Soc., Providence, RI, 2006.

15. V. Gebhardt, A new approach to the conjugacy problem in Garside groups, J. Algebra 292(1) (2005), 282–302.

16. D. Goldfeld and P. E. Gunnells, Defeating the Kalka-Teicher-Tsaban linear algebra attack on the Algebraic Eraser,
Arxiv eprint 1202.0598, February 2012.

17. A. Groch; D. Hofheinz; R. Steinwandt, A Practical Attack on the Root Problem in Braid Groups, Algebraic methods
in cryptography, 121-131, Contemp. Math., 418, Amer. Math. Soc., Providence, RI, 2006.

18. L.K. Grover, A fast quantum mechanical algorithm for database search, Proceedings, 28th Annual ACM Symposium
on the Theory of Computing, (May 1996) p. 212.

19. P. E. Gunnells, On the cryptanalysis of the generalized simultaneous conjugacy search problem and the security of
the Algebraic Eraser, arXiv:1105.1141v1 [cs.CR] .

20. V. Hansen, Braids and coverings: selected topics, With appendices by Lars Gæde and Hugh R. Morton, London
Mathematical Society Student Texts, 18, Cambridge University Press, Cambridge, (1989).

21. D. Hart; D. Kim; G. Micheli; G. Pascual Perez; C. Petit; Y. Quek, A Practical Cryptanalysis of WalnutDSA,
preprint 2017. 1

22. D. Hofheinz; R. Steinwandt, A practical attack on some braid group based cryptographic primitives, Public Key
Cryptography, Proceedings of PKC 2003 (Yvo Desmedt, ed.), Lecture Notes in Computer Science, no. 2567, Springer-
Verlag, 2002, pp. 187-198.

23. J. Huang; H. Li; P. Sweany, An FPGA Implementation of Elliptic Curve Cryptography for Future Secure Web
Transaction, Proceedings of the ISCA 20th International Conference on Parallel and Distributed Computing Systems,
September 24-26, 2007.

24. D. Kahrobaei; C, Koupparis, Non-commutative digital signatures, Groups Complexity Cryptography, Volume 4,
Issue 2 (Dec 2012), 377-384.

25. A. Kalka, M. Teicher and B. Tsaban, Short expressions of permutations as products and cryptanalysis of the
Algebraic Eraser, Advances in Applied Mathematics 49 (2012), 57-76.

26. K. Ko, D. Choi, M. Cho, and J. Lee, New signature scheme using conjugacy problem, Cryptology ePrint Archive:
Report 2002/168 (2002).

27. N. Koblitz; A. Menezes, Another look at “provable security,” J. Cryptol. 20, 3–37 (2007).

28. C. Lomont, The hidden subgroup problem - review and open problems, 2004, arXiv:0411037

29. W. Magnus; A. Karrass; D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators
and relations, Interscience Publishers (John Wiley & Sons, Inc.), New York-London-Sydney (1966).

30. H.R. Morton, The multivariable Alexander polynomial for a closed braid, Low-dimensional topology, (Funchal,
1998), 167–172, Contemp. Math., 233, Amer. Math. Soc., Providence, RI, 1999.

31. C. Mulland; B. Tsaban; SL2 homomorphic hash functions: Worst case to average case reduction and short collision
search, arXiv:1306.5646v3 [cs.CR] (2015).

32. A. D. Myasnikov; A. Ushakov, Cryptanalysis of the Anshel-Anshel-Goldfeld-Lemieux key agreement protocol, Groups
Complex. Cryptol. 1 (2009), no. 1, 63-75.

33. M.S. Paterson; A.A. Razborov, The Set of Minimal Braids is co-NP-Complete, J. Algorithms,12, (1991), 393–408.

34. D. Pointcheval; J. Stern, Security arguments for digital signatures and blind signatures, Journal of Cryptology,
13(3):361–396, (2000).

35. G. Seroussi, Table of low-weight binary irreducible polynomials, Technical Report HP-98-135, Computer Systems
Laboratory, Hewlett–Packard, 1998.

36. P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM
J. on Computing, (1997) 1484–1509.

37. J. Stern; D. Pointcheval; J. Malone-Lee; N. P. Smart, Flaws in Applying Proof Methodologies to Signature Schemes,
Advances in Cryptology - Proceedings of CRYPTO 2002 (18 - 22 August 2002, Santa Barbara, California, USA) M.
Yung Ed. Springer-Verlag, LNCS 2442, pages 93-110.

20

http:arXiv:1105.1141v1[cs.CR
https://eprint.iacr.org/2015/343.pdf(2015

38. H. Tschofenig; M. Pégourié-Gonnard, Crypto Performance on ARM Cortex-M Processors, IETF-92, Dallas, TX,
March, 2015.

39. B.C. Wang; Y.P. Hu, Signature scheme based on the root extraction problem over braid groups, IET Information
Security 3 (2009), 53-59.

40. E. Wenger; T. Unterluggauer; M. Werner, 8/16/32 Shades of Elliptic Curve Cryptography on Embedded Processors.
Progress in Cryptology - INDOCRYPT 2013, volume 8250 of Lecture Notes in Computer Science, pages 244-261.
Springer, 2013.

41. G. Zémor; Hash functions and graphs with large girths, Eurocrypt ’91, Lecture Notes in Computer Science 547
(1991), 508–511.

21

A Performance Matrix

Table 1. Raw WalnutDSA Performance Data

Platform Clock WalnutDSA ECDSA Improvement
ROM RAM Cycles Time (ms) ROM RAM Cycles Time (ms) over ECDSA

8051 (8b) 24.5 3370 312 864101 35.3 ? ? ? ? ?
MSP430 (16b) 8 3244 236 370944 46 ? ? ? 2000 43x

ARM Cortex M3 (32b) 48 2952 272 275563 5.7 7168 540 ? 233 40x
FPGA 50 1720(ALM) 2500 0.05 ? ? ? 2.08 41x

Note that a ’ ?’ in Table 1 implies that this data was not made available.

B Example Data

The following sections detail an example of an actual WalnutDSA transaction. This is all
based on N = 8, q = 25 = 32, L = 15, and ℓ = 132. We construct the fnite feld F32 as
F2[x]/(f), where f is the irreducible polynomial x5 +x2 +1 (cf. [35]). Elements of F32 are then
represented as 5-bit numbers: the fnite feld element a4x

4 +a3x
3 + · · · +a0 mod f is converted

to the bitstring a4a3 · · · a0 (note that the coeÿcients of high degree monomials become the
high-order bits in the bitstring).

For ease of encoding here we represent each Artin generator as a positive or negative
integer. For example b1 is represented as 1, and b

−

4
1 is represented as −4.

Private/Public Key Pair

The private data:

• a = 1

• b = 2

• Priv(S): -2 5 7 6 1 7 5 1 -2 4 3 4 -5 -5 3 6 -7 5 2 1 -3 -7 4 -3 7 7 1 7 -2 4
-5 7 -1 2 4 7 6 1 -5 2 -6 1 4 4 -5 2 -4 7 4 4 -6 3 -4 -4 7 -1 6 3 -7 3 3 -6
-5 4 4 -2 6 -1 2 6 -4 3 1 5 3 -6 3 -5 4 1 -2 7 -5 -5 4 -7 1 -6 -2 4 -3 4 3 -7
1 -3 7 3 -7 -4 3 -5 -5 3 -5 -3 -2 -1 4 3 -2 -1 -1 -2

• Priv(S’): -2 -3 -7 -3 -6 3 -1 -3 -5 6 -2 -5 -1 5 -2 7 6 2 -3 1 -3 -5 3 6 -5 -2
3 6 3 6 6 3 7 -3 -1 3 4 -3 -2 -4 -7 1 6 -1 5 7 2 -7 -6 -2 3 4 4 -1 2 7 -2 7
7 -4 6 5 6 5 5 -2 -4 3 3 3 2 7 5 7 -3 -1 -5 1 4 4 2 -7 -1 -7 4 -5 -4 -1 -4 -7
-3 -4 -4 -4 -1 -1 -5 1 -2 6 2 1 -4 3 3 -5 -3 6 3 5 -6 3

The public data:

• T-values: 1 1 6 9 19 14 29 30

22

• Pub(S): • Pub(S’):
– Matrix: – Matrix:

30 30 0 0 0 0 0 0 0 0 0 0 0 6 6 0

30 30 0 0 31 31 0 0 0 30 30 0 0 6 6 0

 2 22 11 21 29 5 30 4 14 15 8 24 16 21 7 24

 27 14 15 16 10 7 11 30 25 5 20 11 17 1 15 6

 6 24 3 4 2 13 25 17 14 5 19 28 19 23 3 22

 14 14 26 23 3 25 9 18 24 18 22 31 4 23 27 17

15 15 31 29 31 23 23 4 2 6 24 29 17 1 16 3

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

– Permutation: 4 1 8 5 7 2 6 3 – Permutation: 6 4 2 7 5 8 1 3

An astute observer will notice there are a lot of zeros, specifcally in the frst, second, and
last rows of this matrix. This is to be expected, and is taken into account for our level-of-
security calculation. When a T-value is set to 1 there is a signifcant amount of duplication
between that row and the row before. So when a = 1, the frst row will roughly duplicate the
“previous row”, which of course is all zeros. Similarly, with b = 2, the second row will roughly
duplicate the frst row, which is mostly zeros, resulting in a second row with lots of zeros.
Finally, the last row is always all zeros except for the last element. On average we expect there
to be approximately 3N zeros in the N × N matrix, resulting in qN(N−3) possible states. For
N = 8 and q = 32, this results in 2200 possible states, well greater than the expected 2128

security level.

Example Message

For the following signature and verfcation examples we chose the following random 256-bit
string which we treat as the output of a 256-bit hash:
21 a4 b8 e3 d4 92 31 6a cd 27 1d ac 6e 59 62 05
14 f2 5d 77 c6 b6 02 c8 c0 94 8d a6 84 89 7d 95

Example Signature and Verifcation

For this example we use the generators g1,8, g3,8, g5,8, g7,8 from (7) for encoding. After free re-
duction, we fnd that the message becomes the following braid E(M):
7 6 5 5 5 4 3 3 -4 5 5 5 5 5 5 4 3 2 1 1 1 1 -2 -3 -4 -5 -6 7 7 7 7 7 7 6 5 4 3
2 1 1 1 1 1 1 -2 -3 -4 5 5 5 5 5 5 5 -6 7 7 6 5 4 3 3 3 3 3 3 3 3 3 2 1 1 1 1 -2
3 3 3 3 3 -4 5 -6 7 7 6 5 4 3 3 -4 5 5 5 5 5 5 5 5 5 5 4 3 2 1 1 1 1 1 1 1 1 -2
3 3 3 3 3 3 3 -4 5 -6 7 7 7 7 6 5 4 3 3 3 3 3 3 3 3 3 3 -4 5 5 5 5 5 5 4 3 2 1
1 1 1 1 1 1 1 -2 -3 -4 5 5 5 5 5 5 5 5 5 5 5 5 4 3 3 3 3 3 3 3 3 3 3 -4 5 5 5 5
5 5 4 3 2 1 1 -2 3 3 3 3 3 3 2 1 1 1 1 -2 -3 -4 -5 -6 7 7 7 7 7 7 7 7 6 5 5 5 4
3 3 3 3 3 3 3 3 3 3 3 3 -4 -5 -6 7 7 7 7 7 7 7 7 6 5 4 3 2 1 1 1 1 1 1 1 1 -2 -3
-4 5 5 5 -6 7 7 7 7 7 7 6 5 5 5 5 5 4 3 2 1 1 -2 -3 -4 5 5 4 3 2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 3 3 3 3 3 3 2 1 1 1 1 1 1 1 1 1 1 -2 3 3 3
3 3 3 3 -4 5 5 5 5 5 5 5 5 5 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 3 3 3 3
3 -4 -5 -6 7 7 7 7 6 5 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 -4 -5 -6 -7

23

http:element.On

Notice the long runs of the generators 1, 3, 5, 7. These occur because we take the gk,N ,
where k = 1, 3, 5, 7 to nontrivial powers during the encoding process, and because cancellations
occur upon performing the free reduction.

After generating cloaking elements, we formed the raw signature (v2Priv(S)
−1vE(M)Priv(S ′)v1):

-2 -3 -4 -3 1 2 -3 2 1 4 -5 6 -7 6 5 -4 -4 5 -6 -5 -4 -6 -6 -6 -6 5 5 7 6 6 -7
-5 -5 7 7 4 3 2 1 1 -2 -3 -4 3 2 2 3 5 4 4 -5 -7 6 5 4 3 2 2 -3 -4 -5 -6 -7 3 2
1 1 1 1 -2 -3 -6 -6 5 5 6 6 3 2 -1 -1 -1 -1 -2 -3 7 6 5 4 3 -2 -2 -3 -4 -5 -6 7
5 -4 -4 -5 -3 -2 -2 -3 4 3 2 -1 -1 -2 -3 -4 -7 -7 5 5 7 -6 -6 -7 -5 -5 6 6 6 6
4 5 6 -5 4 4 -5 -6 7 -6 5 -4 -1 -2 3 -2 -1 3 4 3 2 2 1 1 2 -3 -4 1 2 3 5 -3 5 5
-3 4 7 -3 -7 3 -1 7 -3 -4 3 -4 2 6 -1 7 -4 5 5 -7 2 -1 -4 5 -3 6 -3 -5 -1 -3 4
-6 -2 1 -6 2 -4 -4 5 6 -3 -3 7 -3 -6 1 -7 4 4 -3 6 -4 -4 -7 4 -2 5 -4 -4 -1 6 -2
5 -1 -6 -7 -4 -2 1 -7 5 -4 2 -7 -1 -7 -7 3 -4 7 3 -1 -2 -5 7 -6 -3 5 5 -4 -3 -4
2 -1 -5 -7 -1 -6 -7 -5 2 4 -5 -6 -5 -4 -5 6 -5 1 2 -3 -4 5 -4 3 2 -1 -2 -3 4 5
4 3 -2 3 4 5 -4 3 -6 -7 -6 4 -3 -3 -4 -7 -7 6 -5 -5 -6 -7 -6 -6 -7 6 5 5 -6 5 4
3 -2 -2 -3 4 -5 -3 -3 7 6 5 4 4 -5 -6 -7 6 5 5 -6 4 4 -7 -7 -4 -4 7 6 6 -7 2 2
7 -6 -6 -7 4 4 7 7 -4 -4 6 -5 -5 -6 7 6 5 -4 -4 -5 -6 -7 3 3 5 -4 3 2 2 -3 -4 -5
6 -5 -5 -6 7 6 6 7 6 5 5 -6 7 7 4 3 3 -4 6 7 6 -3 4 -5 -4 -3 2 -3 -4 -5 -4 3 2
1 -2 -3 4 -5 4 3 -2 -1 5 -6 5 4 5 6 5 -4 7 6 5 5 5 4 3 3 -4 5 5 5 5 5 5 4 3 2 1
1 1 1 -2 -3 -4 -5 -6 7 7 7 7 7 7 6 5 4 3 2 1 1 1 1 1 1 -2 -3 -4 5 5 5 5 5 5 5 -6
7 7 6 5 4 3 3 3 3 3 3 3 3 3 2 1 1 1 1 -2 3 3 3 3 3 -4 5 -6 7 7 6 5 4 3 3 -4 5 5
5 5 5 5 5 5 5 5 4 3 2 1 1 1 1 1 1 1 1 -2 3 3 3 3 3 3 3 -4 5 -6 7 7 7 7 6 5 4 3
3 3 3 3 3 3 3 3 3 -4 5 5 5 5 5 5 4 3 2 1 1 1 1 1 1 1 1 -2 -3 -4 5 5 5 5 5 5 5 5
5 5 5 5 4 3 3 3 3 3 3 3 3 3 3 -4 5 5 5 5 5 5 4 3 2 1 1 -2 3 3 3 3 3 3 2 1 1 1 1
-2 -3 -4 -5 -6 7 7 7 7 7 7 7 7 6 5 5 5 4 3 3 3 3 3 3 3 3 3 3 3 3 -4 -5 -6 7 7 7
7 7 7 7 7 6 5 4 3 2 1 1 1 1 1 1 1 1 -2 -3 -4 5 5 5 -6 7 7 7 7 7 7 6 5 5 5 5 5 4
3 2 1 1 -2 -3 -4 5 5 4 3 2 1 -2 3
3 3 3 3 3 2 1 1 1 1 1 1 1 1 1 1 -2 3 3 3 3 3 3 3 -4 5 5 5 5 5 5 5 5 5 5 4 3 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 3 3 3 3 3 -4 -5 -6 7 7 7 7 6 5 4 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 -4 -5 -6 -7 -2 -3 -7 -3 -6 3 -1 -3 -5 6 -2 -5 -1 5 -2 7 6
2 -3 1 -3 -5 3 6 -5 -2 3 6 3 6 6 3 7 -3 -1 3 4 -3 -2 -4 -7 1 6 -1 5 7 2 -7 -6 -2
3 4 4 -1 2 7 -2 7 7 -4 6 5 6 5 5 -2 -4 3 3 3 2 7 5 7 -3 -1 -5 1 4 4 2 -7 -1 -7
4 -5 -4 -1 -4 -7 -3 -4 -4 -4 -1 -1 -5 1 -2 6 2 1 -4 3 3 -5 -3 6 3 5 -6 3 -2 3 -4
-3 2 -3 -4 -3 -1 2 3 -4 5 6 7 -6 -5 -4 -3 -2 -1 6 7 -6 -7 -4 5 6 -7 -6 5 4 7 6
6 -7 6 5 5 -6 -5 4 3 3 -4 -5 7 6 -5 -5 -6 -7 4 4 6 6 -2 -2 7 7 2 -1 -1 -2 4 3 2
2 -3 -4 7 7 6 6 7 6 -5 -5 -6 -7 6 5 -4 -4 -5 -6 4 4 6 5 4 4 -5 -6 7 6 5 5 -6 -7
-6 -6 -7 -7 4 3 -2 -2 -3 -4 2 1 1 -2 -7 -7 2 2 -6 -6 -4 -4 7 6 5 5 -6 -7 5 4 -3
-3 -4 5 6 -5 -5 -6 7 -6 -6 -7 -4 -5 6 7 -6 -5 4 7 6 -7 -6 1 2 3 4 5 6 -7 -6 -5
4 -3 -2 1 3 4 3 -2 3 4 -3 2

After running the raw signature through both BKL Normal Form and then Dehornoy re-
duction we obtain the following 1298-generator braid:
-4 -3 -3 -2 -3 6 5 -4 -3 -2 7 6 -4 -5 7 -6 -7 -3 -4 -5 -6 -2 1 2 -3 1 -2 -2 -2
-3 1 2 3 -4 -5 1 2 -3 -3 -3 -4 1 -2 1 -2 1 -2 -2 1 2 -3 -4 1 -2 -2 -3 -4 1 2 2
3 4 6 5 7 6 -7 3 4 5 -6 2 3 2 1 4 -5 3 -4 2 -3 2 -3 -4 -5 -6 -7 1 -2 -3 -4 -5 -6
-2 1 2 -3 1 -2 -2 1 2 -3 -4 1 -2 -2 -3 -4 -5 -4 1 2 -3 1 2 4 3 -4 -6 -7 -7 -6 -6

24

-7 1 2 -3 1 -2 -2 1 2 -3 1 -2 -2 -2 1 2 -3 1 -2 1 -2 1 2 -3 1 -2 -2 5 4 3 6 5 4
3 4 4 7 6 -7 5 -6 -7 1 2 3 4 -5 -6 7 1 2 3 -4 -5 2 -3 -4 1 -2 -3 -2 -3 -4 -5 -2
-3 -4 1 2 -3 -5 -6 -5 4 -7 -6 5 6 7 1 -2 1 3 2 4 3 5 4 -5 3 -4 2 -3 1 -2 -2 -2
1 2 -3 -4 6 5 -6 -3 4 -5 1 2 3 -4 2 -3 1 -2 1 1 -2 -3 -4 1 1 -2 -3 -5 4 -6 -5 4
-5 6 -7 1 -2 1 3 2 4 3 5 4 -5 2 1 3 -4 2 -3 -3 -3 -4 -4 -4 -5 -6 1 -2 -3 1 -2 -3
-3 -3 -3 -2 -3 -4 1 2 -3 4 -5 1 -2 1 3 -4 2 -3 -4 1 -2 -3 -3 -5 1 -2 -2 -2 1 -6
-3 -4 2 -3 1 -2 -2 -5 4 3 -2 1 -7 -7 -7 -7 -6 5 4 -3 -2 6 5 4 -5 3 -4 5 -6 1 2
-3 4 -5 6 7 1 -2 -2 3 -4 5 -6 5 1 2 -3 -3 -3 1 -2 1 -2 -3 -4 1 -2 1 1 -7 -6 7 -5
6 -4 5 5 3 -2 1 2 4 3 -4 2 -3 1 -2 1 -2 5 4 3 -4 1 2 3 -7 6 -5 4 5 -6 4 -5 3 -4
2 -3 1 -2 -2 -3 -4 -5 -3 -4 -5 7 6 -7 -2 -3 -4 5 -6 1 2 3 4 -5 1 2 3 -4 2 -3 1
-2 -2 -3 -4 1 6 -5 7 -6 -7 2 -3 -3 1 -2 -2 -2 1 -2 1 2 -3 1 -2 -2 4 3 5 4 -5 -6
1 2 3 -4 -5 1 2 -3 -3 -4 2 1 2 -3 1 -2 1 3 2 -3 1 -2 -2 -2 1 4 -3 2 5 -4 3 4 -5
3 -4 2 -3 1 -2 -2 -3 -4 1 2 3 1 2 4 -5 3 -4 -4 2 -3 1 -2 -2 -3 1 2 6 5 -6 -4 3
4 -5 2 3 -4 2 -3 1 -2 -2 -3 -4 -2 1 2 -3 1 -2 -2 3 -2 1 1 7 6 -5 2 -3 4 5 -6 -7
1 -2 -2 3 1 1 1 2 3 4 -5 -6 7 1 2 3 -4 -5 -5 6 -4 2 -3 1 -2 -2 -3 -4 1 -2 -3 -3
4 7 1 -2 -2 -3 -4 -5 -4 -3 -2 -3 -5 -4 -3 -2 1 7 -6 -7 -5 -6 -4 -5 -3 2 3 -4 5
2 -3 1 -2 1 4 3 2 2 -3 -4 1 1 1 1 1 -2 1 1 1 -2 1 2 -3 1 -2 1 1 1 1 -2 -3 -2 1
1 1 1 -2 -3 -4 1 1 1 1 1 1 1 2 2 -3 1 -2 1 1 1 1 1 1 1 4 3 2 2 2 2 -3 -4 1 1 1
1 1 -2 -3 -2 -3 -2 -3 -4 1 2 2 2 2 2 2 2 2 2 2 -3 1 -2 1 1 1 1 1 1 -2 -3 -4 1 1
1 1 1 1 1 2 3 3 3 3 4 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2
2 2 2 2 2 2 2 2 3 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 4 2 1 1 1 1 1 1 2 2 2 2 2 3
3 3 3 3 3 3 3 3 4 4 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 1 2 3 1 1 1 1 1 1 1 1 2 3 3
3 3 3 3 3 3 2 2 2 1 1 1 1 1 1 2 2 2 2 2 3 3 4 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 2 2 2 2 2 2
2 2 2 2 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 1 2 3 3 3 3 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 1 2 3 4 2 3 2 1 4 3 2 1 4 6 5 -6 3 4 -5 2 3 -4 2 -3 1 -2
-2 -3 -4 1 2 1 2 -3 -7 6 1 -2 -5 -5 6 -5 3 -2 1 -6 2 -3 1 -2 1 1 4 3 2 -3 5 4 -5
2 2 2 1 1 3 -4 2 -3 1 -2 -7 6 5 4 3 -2 -3 1 -2 7 6 5 5 5 -4 -5 -3 4 -3 7 -6 -7
5 5 5 5 5 5 -4 -5 -3 -4 5 -2 -3 5 -6 -4 -4 -3 -2 1 -4 -5 -3 -4 2 -3 2 -7 -5 4 -3
-7 -6 5 6 -4 5 -4 -3 7 -6 5 -7 -6 4 -5 -3 -4 2 -3 1 -2 -2 -3 -2 -2 1 -5 -4 3 2
1 1 2 -3 1 -2 3 -2 -5 4 3 -4 1 -2 -3 1 -2 1 -6 7 -5 4 4 5 3 -2 -3 -3 -3 4 4 1 1
1 2 2 2 2 1 -6 -6 -7 -7 -6 -5 4 4 5 -3 4 -2 1 -3 -2 1 -2 3 -2 -3 -2 1 -4 -3 -2
-4 3 4 -2 -2 -2 3 -2 -2 -3 -2 1 -5 -4 -3 -2 -2 -5 -4 3 -5 4 5 6 7 7 6 6 -2 -2 3
4 1 1 2 -3 2 3 1 -5 -4 -4 5 3 -2 -2 -4 5 -3 1 2 1 -3 4 5 -2 3 4 1 2 6 5 7 6 -7
-7 4 5 3 4 2 3 5 1 -4 3 4 2 6 2 3 1 5 7 6 4 7 4 3 3 2 -3 4

Notice that one sees runs of the generators 1, . . . , 4 after this process. This again refects
the structure of the message encoding algorithm. In particular, the Dehornoy reduction algo-
rithm works by replacing certain subwords of the form ±i, . . . , i with new words, and that
ultimately words of the form ±j, . . . , ±j with j < i tend to survive to the end. This explains
the appearance of these generators in the obscured signature. We remark that even though
these runs resemble those seen in the encoded message E(M), they are not part of E(M),
and thus no hidden information from the raw signature is revealed.

To validate this signature, one frst needs to compute the E-Multiplication (IdN , IdSN) ⋆
E(M) which results in the following matrix:

25

5 0 0 0 0 0 0 0

 4 1 0 0 0 0 0 0

 3 27 26 5 5 29 4 25

27 29 29 9 8 14 1 15

 19 22 22 7 6 23 12 27

 9 26 26 15 15 21 2 22

19 31 31 31 31 28 20 9

0 0 0 0 0 0 0 1

Note the zeros in the frst, second, and last rows. This, too, is expected because of the
choices of a = 1, b = 2 and the resulting duplication from the previous rows while performing
E-Multiplication. Due to this duplication we expect to see approximately 3N zeros in the
matrix. See the previous discussion about the public key.

Next, one multiplies that matrix by the matrix part of Pub(S’), which results in the fol-
lowing matrix:

0 0 0 0 0 30 30 0

 0 30 30 0 0 30 30 0

 1 28 7 1 3 1 23 3

 1 26 12 4 14 4 11 27

 29 5 1 12 27 22 8 0

 17 18 17 4 27 25 22 11

31 0 30 26 17 16 4 28

0 0 0 0 0 0 0 1

Finally, one computes the E-Multiplication Pub(S) ⋆ Sig, which results in the following
matrix:

0 0 0 0 0 30 30 0

 0 30 30 0 0 30 30 0

 1 28 7 1 3 1 23 3

 1 26 12 4 14 4 11 27

 29 5 1 12 27 22 8 0

 17 18 17 4 27 25 22 11

31 0 30 26 17 16 4 28

0 0 0 0 0 0 0 1

which is obviously equal to the previous matrix by inspection. Again, we expect there to be
N(N−3) approximately 3N zeros in the resulting matrix, yielding q = 2200 possible matrices. An

astute reader will notice there are only 19 zeros, which is less than the expected 24.

26

	Structure Bookmarks
	WalnutDSA: A Quantum-Resistant Digital Signature
	TM

	Algorithm
	Algorithm
	Iris Anshel, Derek Atkins, Dorian Goldfeld, and Paul E. Gunnells
	SecureRF Corporation 100 Beard Sawmill Rd #350, Shelton, CT 06484
	ianshel@securerf.com
	ianshel@securerf.com
	, datkins@securerf.com, dgoldfeld@securerf.com, pgunnells@securerf.com

	Abstract. In 2005 I. Anshel, M. Anshel, D. Goldfeld, and S. Lemieux introduced E-Multiplication, a quantum-resistant, group-theoretic, one-way function which can be used as a basis for many di.erent cryptographic applications. This one-way function was specifcally designed for constrained devices, running extremely quickly and requiring very little code.
	TM
	-

	ThispaperintroducesWalnutDSA, a newE-Multiplication-basedpublic-key method whichprovides eÿcient verifcation,allowinglow-powerand constraineddevicesto quickly andinexpensively validatedigital signatures(e.g., a certifcate or authentication).Itpresents anin-depthdiscussion ofthe construction of the digital signature algorithm, analyzes the security of the scheme, provides a proof of security under EUF-CMA, and discusses the practical results from implementations on several constrained devices.
	-

	Keywords: Group Theoretic Cryptography, Digital Signature, E-Multiplication, Braids
	Introduction
	Introduction
	Digitalsignaturesprovide a meansfor oneparty to create adocumentthat canbe sent through a second party and verifed for integrity by a third party. This method ensures that the frst party created the document and that it was not modifed by the second party. Historically, digital signatures have been constructed using various number-theoretic, public-key methods like RSA, DSA, and ECDSA. However these methods are not very eÿcient in tiny devices like 16-or even8-bit constraineddevices(let alone some constrain
	Digital signaturesbased on hardproblems ingroup theory are relatively new. In 2002, Ko, Choi,Cho, andLee[26] proposed adigital signaturebased on a variation ofthe conjugacy probleminnon-commutativegroups.In2009,Wangand Hu[39]introduced adigital signature with security based uponthehardness of the rootprobleminbraidgroups.See also[24].The attacksintroducedin[14],[15],[17], and[22] suggestthatthese schemes may notbepractical over braid groups in low-resource environments.
	Previous Work
	E-Multiplication[5]isagroup-theoretic,one-wayfunction frstintroducedbyI. Anshel,M. Anshel,D.Goldfeld, andS.Lemieuxin2005[5].E-Multiplication uses a combination ofbraids, matrices, and fnite felds to translate the non-abelian, infnite group into a computable system. It has proven to be a very eÿcient, general-purpose, quantum-resistant one-way function; its use is broader than the original key-agreement construction. For example, using E-Multiplication as the basic building block, Anshel, Atkins, Goldfeld, a
	E-Multiplication[5]isagroup-theoretic,one-wayfunction frstintroducedbyI. Anshel,M. Anshel,D.Goldfeld, andS.Lemieuxin2005[5].E-Multiplication uses a combination ofbraids, matrices, and fnite felds to translate the non-abelian, infnite group into a computable system. It has proven to be a very eÿcient, general-purpose, quantum-resistant one-way function; its use is broader than the original key-agreement construction. For example, using E-Multiplication as the basic building block, Anshel, Atkins, Goldfeld, a
	-
	-
	-

	introduced a cryptographic hash function, AEHash [3], which has been implemented using very little code space on a16-bitplatform[4].

	Implementations of E-Multiplication in various instances have shown that code space is small and runtimeis extremely rapid, with constructions usingE-Multiplication outperforming competing methods, especially in small, constrained devices.
	Our Contribution
	This paper introduces a new quantum-resistant digital signature algorithm, WalnutDSA. Its security is based on the diÿculty of reversing E-Multiplication. Details are given in §9. Thelatteris ahardprobleminbraidgroupsthatis very di.erentfromthe Conjugacy Search Problem (CSP), which formed the foundation of the earliest cryptographic systems basedon the braid group. In fact, WalnutDSA appears immune to all the types of attacks related to theCSPgivenin[14],[15],[17],and[22],as well asthevery recent work of of
	TM

	E-Multiplication is rapidly executable, even in the smallest of environments, and as a result,WalnutDSAprovidesveryfast signatureverifcation.Wehaveimplemented and shown WalnutDSA’sperformance in various environments, andit outperformed ECDSA by orders of magnitude in all cases we tried, using less code space and energy.
	This paper proceeds as follows: First, it reviews the colored Burau representation of the Braid Group and E-Multiplication; Second, it introduces the concept of a cloaking element and shows the connection between braid groups, cloaking elements, and WalnutDSA; Third, it shows WalnutDSA key generation; Fourth, it presents a practical implementation via a message encoder algorithm as well as the signature generation and verifcation processes; Fifth, it discusses and analyzes the security implications associat

	Colored Burau Representation of the Braid Group
	Colored Burau Representation of the Braid Group
	For, N ≥ 2, let BN denote the N-strandbraidgroup with Artingenerators {b1,b2,...,bN−1}, subject to the following relations:
	bibi+1bi = bi+1bibi+1, (i =1,...,N − 2), (1) bibj = bj bi, (|i − j|≥ 2). (2)
	Thus any β ∈ BN can be expressed as a product of the form
	1 k
	b
	ǫ
	b
	ǫ

	β = b··· , (3)
	ǫ
	2

	i1 i2 ik
	where ij ∈{1,...,N − 1}, and ǫj ∈ {±1}. Note that β is not unique; there are an infnite number of equivalent expressions asyou apply(1) and(2).
	Each braid β ∈ BN determines a permutation in SN (groupof permutations of N letters) as follows: For 1 ≤ i ≤ N − 1, let σi ∈ SN be the isimple transposition, which maps i → i +1,i +1 → i, and leaves {1,...,i − 1,i +2,...,N} fxed. Then σi is associated to the Artin generator bi. Further, if β ∈ BN is written asin(3), wetake β to be associated to thepermutation σβ = σi··· σi.Abraidis calledpureifits underlyingpermutationistrivial (i.e., the identity permutation).
	th
	1
	k

	Let Fq denote the fnite feld of q elements, and for variables t1,t2,...,tN , let
	−1 −1
	Fq[t1,t,...,tN ,t]
	1
	N

	denotethe ring ofLaurentpolynomialsin t1,t2,...,tN with coeÿcients in Fq. Next, we introduce the colored Burau representation
	-

	
	−1 −1
	ΠCB : BN → GL N, Fq[t1,t,...,tN ,t] × SN .
	1
	N

	First, we defne the N × N coloredBurau matrix(denoted CB)of each Artin generator as follows[30].
	
	−t1 10··· 0 .
	.
	 0 10··· .
	CB(b1)=
	CB(b1)=
	CB(b1)=
	. . .
	1 ,
	(4)

	
	
	.. .

	TR
	1

	For 2 ≤ i ≤ N − 1, the matrix CB(bi)is defned by
	
	1 .
	.
	.
	.

	
	
	CB(bi)= ti −ti 1 , (5)
	
	.
	 .
	. 1
	where the indicated variables appear in row i, and if i =1 the leftmost t1 is omitted. We similarly defne CB(b)by modifying(5) slightly:
	−
	i
	1

	
	1 .
	.
	 .
	
	11

	CB(b)= 1 − ,
	−1
	
	

	ti+1 ti+1
	i
	 .
	.
	 . 1
	where again the indicated variables appear in row i, and if i =1 the leftmost 1 is omitted. Recall that each bi has an associated permutation σi. We may then associate to each
	−1
	b

	braid generator bi (respectively, inverse generator) a colored Burau/permutation pair
	braid generator bi (respectively, inverse generator) a colored Burau/permutation pair
	i

	(CB(bi),σi) (resp., (CB(b),σi)). We now wish to defne a multiplication of such colored Burau pairs. To accomplish this, we require the following observation. Given a Laurent polynomial f(t1,...,tN)inN variables, apermutationin σ ∈ SN can act(ontheleft)bypermuting the indices of the variables. We denote this action by f → f:
	−
	i
	1
	-
	σ

	f(t1,t2,...,tN)= f(tσ(1),tσ(2),...,tσ(N)).
	σ

	We extend this action to matrices over the ring of Laurent polynomials in the ti by acting on each entry in the matrix, and denote the action by M → M. The general defnition for multiplying two colored Burau pairs is now defned as follows: given b,b, the colored Burau/permutation pair associated with the product b· bis
	σ
	±
	i
	±
	j
	±
	i
	±
	j

	
	(CB(b),σi)· (CB(b),σj)= CB(b)· (CB(b)),σi · σj .
	±
	i
	±
	j
	±
	i
	σ
	i
	±
	j

	We extend this defnition to the braid group inductively: given any braid
	ǫ1 ǫ2 k
	b
	b
	b
	ǫ

	β = ··· ,
	i1 i2 ik
	asin(3), we candefne a coloredBuraupair(CB(β),σβ)by
	(CB(β),σβ)= σiσi···σiǫk
	1
	1
	k−1
	CB(b

	(CB(b)· 1 CB(b)· 2 CB(b)) ···),σiσi··· σi).
	i
	ǫ
	1
	1
	σ
	i
	i
	ǫ
	2
	2
	σ
	i
	i
	ǫ
	3
	3
	σ
	i
	2
	i
	k
	1
	2
	k

	The colored Burau representation is then defned by
	ΠCB(β):= (CB(β),σβ).
	One checks that ΠCB satisfes the braid relations and hence defnes a representation of BN .

	E-Multiplication
	E-Multiplication
	E-Multiplicationwas frstintroducedin[5] asaone-way functionused asabuilding block to create multiple cryptographic constructions. We recall its defnition here.
	Anorderedlistof entriesinthe fnite feld(namedT-values) isdefnedtobeacollection of non-zero feld elements:
	{τ1,τ2,...,τN }⊂ F.
	×

	q
	Givena set ofT-values, wecan evaluate anyLaurentpolynomial f(t1,t2,...,tN)to obtain an element of Fq:
	f(t1,t2,...,tN)↓t-values := f(τ1,τ2,...,τN).
	We extend this notation to matrices over Laurent polynomials in the obvious way.
	With all these components in place, we can now defne E-Multiplication. By defnition, E-Multiplication is an operation that takes as input two ordered pairs,
	(M, σ0), (CB(β),σβ),
	where β ∈ BN and σβ ∈ SN as before, and where M ∈ GL(N, Fq), andσ0 ∈ SN . We denote E-Multiplication with a star: ⋆. The result of E-Multiplication, denoted
	(M ,σ)=(M, σ0)⋆ (CB(β),σβ),
	′
	′

	willbe another orderedpair(M ,σ)∈ GL(N, Fq)× SN .
	′
	′

	b
	b
	±

	We defne E-Multiplication inductively. When the braid β = is a singlegenerator orits inverse, we put
	i

	
	
	σ
	0

	(M, σ0)⋆ ,σ)= M · CB(b)↓t-values, · σ±
	i
	b
	±

	CB(b± σ0 .
	±
	i
	b

	ii
	ǫ1 ǫ2 k
	b
	b
	b
	ǫ

	In the general case, when β = ··· , we put
	i1 i2 ik
	(M, σ0)⋆ (CB(β),σβ)=(M, σ0)⋆ (CB(b),σb)⋆ (CB(b),σb)⋆ ··· ⋆ (CB(b),σb), (6)
	ǫ
	i
	1
	1
	i
	1
	ǫ
	i
	2
	2
	i
	2
	ǫ
	i
	k
	k
	i
	k

	where we interpret the right of (6) by associating left-to-right. One can check that this is independent of the expression of β in the Artin generators.
	Convention: Let β ∈ BN with associated permutation σβ , ∈ SN . Let M ∈ GL(N, Fq) and σ ∈ Sn. For ease of notation, welet(M, σ)⋆β := (M, σ)⋆ (CB(β),σβ).

	Cloaking Elements
	Cloaking Elements
	The security of WalnutDSA is based on the existence of certain braid words which we term cloaking elements. They are defned as follows.
	Defnition 4.1 (Cloaking element) Let M ∈ GL(N, Fq)and σ ∈ SN . An element v in the pure braid subgroup of BN is termed a cloaking element of (M, σ)if
	(M, σ)⋆v =(M, σ).
	Let Cloak(M,σ) denote the set of all such cloaking elements.
	Thus a cloakingelementis characterizedbythepropertythatit essentiallydisappears when performing E-Multiplication. We remark that this notion depends on the T-values, which are used in defning the operation ⋆.
	Itis notimmediatelyobvioushowto construct cloaking elements.Thefollowingproposition provides one technique to build them:
	Proposition 4.2 Fix integers N ≥ 2, and 1 < a < b < N. Assume that the T-values τa and τb both equal 1. Let M ∈ GL(N, Fq) and σ ∈ SN . Then a cloaking element v of (M, σ) is given by v = wbwwhere bi is any Artin generator (1≤ i<N), and where the permutation corresponding to w ∈ BN satisfes
	i
	2
	−1

	i −→ σ(a),i +1 −→ σ(b).
	−1
	−1

	By defnition, any cloaking element of an orderedpair(M, σ)∈ GL(N, Fq)× SN stabilizes (M, σ) through the right action of the braid group via E-multiplication. Thus the following proposition is immediate:
	Proposition 4.3 The set Cloak(M,σ) forms a subgroup of BN .

	Notation for cryptographic protocols
	Notation for cryptographic protocols
	Let S be a set.
	S denotes a unique encoding of S as a binary string.
	$
	s ←− S denotes the operation of randomly choosing s ∈ S.
	Let A(∗ ;ρ)be a randomized algorithm with randomness based on a coin ρ.
	A(y1,...yq;ρ)denotes the output of the algorithm A on inputs y1,...yq and coin ρ. $
	z ←− A(y1,...yq)means choose ρ at random and let z = A(y1,...yq;ρ).
	Let β ∈ BN .
	Let β ∈ BN .

	
	P(β):= IdN , Id ⋆ β. where IdN is the N × N identity matrix and Idis the identity permutation in SN .
	S
	N
	S
	N

	Key Generation for WalnutDSA
	Key Generation for WalnutDSA
	WalnutDSA allows a signer with a fxed private-/public-key pair to create a digital signature associated with agivenmessagethat canbe validatedby anyone whoknowsthepublic-key of generation.
	the signer andthe verifcationprotocol.We nowdescribethe algorithmsforprivate-/public-key

	A central authority generates the system wide parameters denoted, par, via a parameter
	$
	generation algorithm, denoted Pg, where par ←− Pg. A signerSgeneratesits ownpublic and
	privatekeypair,denoted(Pub(S),Priv(S)),via akeygenerationalgorithmdenotedKg.In

	$
	other words,(Pub(S),Priv(S)) ←− Kg(par).
	Public System Wide Parameters(par):
	•
	•
	•
	An integer N ≥ 8 and associated braid group BN .

	•
	•
	A rewriting algorithm R : BN → BN such as[9] or[12].

	•
	•
	A fnite feld Fq of q ≥ 32 elements.

	•
	•
	Two integers 1 < a < b < N.

	•
	•
	T-values = {τ1,τ2,...,τN }, where each τi is an invertible element in Fq, and τa = τb =1.

	Signer’s Private Key:
	The Signer’s Private Key consists of two random, freely-reduced braids:
	• Priv(S) =(w, w)∈ BN × BN .
	′

	′′ ′
	Here the three braids w, w and w · w are not in the pure braid group. We assume w, w are suÿciently long toprovidethe necessary resistancetobrute-force searchesforthedesired security level(see §11).
	Signer’s Public Key:
	The Signer’s Public Key consists of two matrix and permutation pairs, each of which is generated from the Private Keys of the signer via E-Multiplication:
	-

	
	• Pub(S) = P(w), P(w)
	′

	Message Encoder Algorithm
	Message Encoder Algorithm
	In order togenerate a secure signature andprevent certain types of merging attacks, one must carefully convert the message to be signed into a braid word. Let m ∈{0, 1}be a message. Let H : {0, 1}→{0, 1}denote a cryptographically secure hash function for κ ≥ 1. We now present an encoding function E : {0, 1}→ CN,4, where CN,4 is a free 4 generator subgroup of BN defnedbelow.Afreesubgroupiswhere areduced element(aword wherethesubwords x · x, and x· x do not appear) is never the identity.
	∗
	∗
	4κ
	4κ
	−1
	−1

	Inthe case ofthebraidgroup, there are subsets ofpurebraidsthatgeneratefree subgroups. For WalnutDSA it is necessary for the permutation of the encoded message to be trivial, i.e., the encoded message must be a pure braid. In order to ensure that no two messages will be encoded in the same way, we require the message be encoded as nontrivial, reduced elements in a free subgroup of the pure braid group. This requirement ensures that unique messages will result in unique encodings.
	The encoding algorithm we present is based on the following classical observation: the collection of pure braids given by
	b
	b
	2

	g(N−1),N = N−1 (7)
	· b
	−1

	g(N−2),N = bN−1 · b
	2

	N−2 N−1 · b· bb
	2
	−1
	−1

	g(N−3),N = bN−1bN−2 N−3 N−2N−1
	· b
	−1
	b
	−1
	b
	−1

	g(N−4),N = bN−1bN−2bN−3 · b
	2

	N −4 N−3N−2N−1
	.
	.
	.
	−1 −1
	b
	b

	g1,N = bN−1bN−2 ··· b2 · b· b··· ,
	1
	2
	2
	−1
	3
	N−1

	generate a free subgroup BN [8]. Since anysubset of the above freegenerators will itself freely generate a subgroupwe canleverage thepurebraids above and create an encoding mechanism that maps an input message to a unique braid word.
	Message Encoder Algorithm: Choose and fx a subset of four generators
	{gk,N ,gk,N ,gk,N ,gk,N }⊂{g1,N ,g2,N , ... ,g(N−1),N },
	1
	2
	3
	4

	and defne CN,4 to be the subgroup generated by these 4 generators. Each 4-bit block of H(m)then specifes a unique power of one of these generators gwith 1 ≤ i ≤ 4; the two lowest bits determine the generator gk,N to use, and the two high bits determine the power 1 ≤ i ≤ 4 to raise the generator to. The output E(H(m))of the message encoder is then the freely reduced product of these κ powers of generators.
	k
	i
	µ
	,N
	µ

	An astute reader will note that without the presence of the hash function, the encoding function E would be homomorphic, i.e., E(m)E(m)= E(mm)for all messages m, m . However, thisis not aproblem since theinput to the encoderis the digest of a message.Indeed,for a good cryptographic hash function H, we know that H(m)H(m)will never equal H(mm). We also know it is unlikely to fnd two classes of hash functions H1, H2 such that the output size of H1 is half the output size of H2, and then to further fnd thre
	′
	′
	′
	-
	′
	′
	′
	′′
	′
	1
	′′
	′

	For a weak hash H1 and a strong hash H2, which has twice the output size of H1, an attacker would need to fnd two messages m and m that are preimages to the halves of H2 of the desired forgery and then get the signer to use H1 and sign both m and m . E.g. the attacker would need to take his or her desired forged message, hash it using SHA2-256, fnd two preimages with MD5, get the signer to sign those MD5 preimages, and only then can he or she compose a message that would verify with SHA2-256.
	For a weak hash H1 and a strong hash H2, which has twice the output size of H1, an attacker would need to fnd two messages m and m that are preimages to the halves of H2 of the desired forgery and then get the signer to use H1 and sign both m and m . E.g. the attacker would need to take his or her desired forged message, hash it using SHA2-256, fnd two preimages with MD5, get the signer to sign those MD5 preimages, and only then can he or she compose a message that would verify with SHA2-256.
	1
	′
	′

	Signature Generation and Verifcation
	Signature Generation and Verifcation
	Fix a hash function H as in §7. To sign a message m ∈{0, 1}the Signer performs the following steps:
	∗

	Digital Signature Generation:
	1.
	1.
	1.
	Compute H(m).

	2.
	2.
	Generate cloaking elements v, v1, and v2 (Defnition 4.1)such that − v cloaks(IdN , IdS), − v1 cloaks P(w). − v2 cloaks P(w).
	N
	′

	3.
	3.
	3.
	Generate the encoded message E(H(m)).

	 −1 ′
	

	4.
	4.
	Compute Sig = R v1 · w· v · E(H(m))· w · v2 , which is a rewritten braid.

	5.
	5.
	The fnal signature for the message m isthe orderedpair(H(m), Sig).

	As addressed earlier, the cloaking elements v, v1,v2 ∈ Bn contain a random product of pure braidgenerators, anddisappear when the signatureisE-Multipliedby thepublickeyPub(S). Signature Verifcation: The signature(m, Sig) is verifed as follows:
	1.
	1.
	1.
	Generate the encoded message E(H(m)).

	2.
	2.
	Evaluate P(E(H(m))).

	3.
	3.
	Evaluate the E-Multiplication P(w)⋆ Sig.

	4. Test the equality
	4. Test the equality
	4. Test the equality

	
	
	
	
	
	
	

	Matrix
	Matrix
	P(w)⋆ Sig
	? =
	Matrix
	P E(H(m))
	· Matrix
	P w ′
	,
	(8)

	where Matrix denotes the matrix part of the ordered pair in question, and the multiplication onthe rightisthe usual matrix multiplication.The signatureis validif and only if(8) holds.

	Preliminary Security Discussion
	Preliminary Security Discussion
	The security of WalnutDSA is based on the following highly non-linear problem that we perceive to be computationally infeasible for suÿciently large key sizes.
	The REM Problem(Reversing E-Multiplication is hard) Consider the braidgroup BN and symmetricgroup SN with N ≥ 8. Let Fq be a fnite feld of q elements with q ≥ 32, and fx a set of non-zero T -values {τ1,τ2,...,τN } in Fq. Suppose we are given a generic β ∈ BN and the pair (M, σ)∈ (GL(N, Fq),SN)where (M, σ)= P(β). Then it is infeasible to determine a braid β such that
	′

	(M, σ)= P(β),
	′

	if the expression for β inBirman-Ko-Lee canonicalform[9] is suÿcientlylong as a wordin Artin generators.
	If we consider β varying over BN , the entries of CB(β) are Laurent polynomials in N variables of arbitrarily high degree. Thus computing CB(β) for long braids β becomes very ineÿcient, even though the colored Burau matrices themselves are very simple. An attempt to reverse E-Multiplication by evaluating products of CB matrices and then trying to solve the multivariable equations that would emerge would rapidly become unmanageable. It is, in fact, the rapid growth of these Laurent polynomial entries combine
	Further strong support for the hardness of reversing E-Multiplication can be found in
	[31] which studies the security of Z´emor’s [41] hash function h : {0, 1}→ SL2(Fq), with the property that h(uv)= h(u)h(v), where h(0),h(1) are fxed matrices in SL2(Fq) and uv denotes concatenation of the bits u and v. For example a bit string {0, 1, 1, 0, 1} will hash to h(0)h(1)h(1)h(0)h(1). Z´emor’s hash function has not been broken since its inception in 1991.In[31] itis shown thatfeasible cryptanalysisforbit strings oflength256 can onlybe applied for very special instances of h. Now E-Multiplication, t
	∗

	Attacks on the underlying math
	The attack of Ben-Zvi–Blackburn–Tsaban [7], based on ideas in [25], does not seem to apply to WalnutDSA because the signature is a braid and the public key is coming from E-Multiplication of the identity element with a braid that has very little algebraic structure. As a resultitdoes not seempossibleto apply alinear algebraic attack asin[7] to solvethehard problems(1) and(2) above, or toforge a signature.See also[2], whichprovides methodsto defeatthe attackin[7], and[16] which showshowtodefeatthe attackin[2
	-

	The more recentattack ofBlackburn–Robshaw[10] seems completelyirrelevanttoWalnutDSA. Theirpaperdoes not evenbreak the original algebraic eraserkey agreementprotocol.See[1] which provides a simple way to defeat the attack by simply adding a hash or MAC challenge/response to the authentication protocol. What Blackburn and Robshaw have found is an invalid public key attack similar to the invalid elliptic curve attacks on ECC.
	-

	Finally,very recent work of Hart–Kim–Micheli–Perez–Petit–Quek[21]proposesapractical universalforgery attack onWalnutDSAin the special case where the twoprivatebraids w and w are equal.The attackproceedsby taking a collection of signed messages(Mi,si)indexed by a fnite set I and using them to produce a valid signature for a new message M. The main idea underlying the attack is fnding a short expression in GL(N, Fq) for the element
	′

	
	h =Matrix P(E(M)) in terms of elements gi := Matrix P(E(Mi) .. Namely, one seeks an expression of the form
	l
	
	ǫ
	i
	j

	h = g, ij ∈ I,ǫi∈ {±1}. (9)
	j

	ij j=1
	Then the braid
	l
	
	ǫ
	i
	j

	s = s
	ij j=1
	will be a valid signature for M.
	Thus the attack relies on both the equality of w and w and on fnding factorizations in nonabelian groups: the former implies that one can appropriately multiply the signatures si togetherinthe fnal step toproduceasignaturefor M,and thelatterimpliesthat onecan fnd the correctproduct of the si.This attackfails completely if w =w , since one cannot multiply the si together to produce a valid signature. We remark that even if w = w (as pointedout in[21]), the attackfailsif theparameters N, q are moderately larg
	′
	′
	′
	′

	10 Security Proof for WalnutDSA-I
	10 Security Proof for WalnutDSA-I
	We will now provide security proofs for a Schnorr/Brickell type model (see [27], [11]) of WalnutDSA, denoted WalnutDSA-I which is defned below. Specifcally, we will prove that WalnutDSA-Iis existentially unforgeable under adaptive chosen-message attacks(EUF-CMAsecure)in the random oracle model assuming a Forger has the ability to forge valid signatures of a specifed type with non-negligible probability.
	-

	Keeping with the notation from §4, we defne the set Cloak as follows:
	P
	
	P
	Cloak := (v, v1,v2) v, v1,v2 ∈ BN ,v ∈ CloakId,v1 ∈ CloakP(w),v2 ∈ CloakP(w ′) ,
	where Id= (IdN , IdS).
	N

	The system wide parameters and key generation algorithm for WalnutDSA-I is the same as for WalnutDSA and is given by
	$
	par ←− Pg,
	$
	(Pub(S), Priv(S)) ←− Kg(par).
	In WalnutDSA-I the signature of a message m ∈{0, 1}for the public Pub(S) is based on two hash functions H, G : {0, 1}→{0, 1}and is generated by the following protocol.
	∗
	∗
	4κ

	
	$

	1. (v, v1,v2)←− Cloak,V =(v, v1,v2) .
	
	2. Compute E Hm || G (V).
	
	3. Compute Sig = R v1 wv · E Hm || G (V) · w v2 . The fnal signature is denoted
	−1
	′

	
	m, H(m),G(V), Sig .
	To validate the signature, one checks whether
	
	
	?

	Matrix P(w)⋆ Sig = Matrix P E Hm || G (V) · Matrix P(w) .
	′

	Note that all WalnutDSA-I signatures on a message m created by an honest signer lie in the double coset
	
	
	P
	DC:= R X ·P E Hm || G (V) · Y X, Y ∈ BN , (10)
	m,V,H,G
	where X, Y depend only on the cloaking elements V chosen by the honest signer and do not depend on the message m or the hash function H, G. Not every valid signature needs to be of this form. This is due to the fact that the braid group BN is non-commutative and E-Multiplication is a highly randomized function.
	EUF-CMA Security Proof for WalnutDSA-I
	We now assume the existence of a forger, denoted F, that on input Pub(S) and message m, can produce a valid WalnutDSA-I signature lying in the double coset DCwith non-
	m,V,H,G
	negligible probability. The assumption that the Forger only can produce possible signatures lying inDCisrestrictive.Aspointed outby KoblitzandMenezes[27],althoughitisa
	m,V,H,G
	common approach in modern security proofs to restrict the capabilities of the adversary, it is important to show that certain classes of attacks can be ruled out.
	More precisely, we defne F to be a randomized algorithm which can make hash queries to a random oracle and signature queries to a simulator that does not know Priv(S)but can simulate an honest signer.
	Let Oρ denote a random oracle, depending on a coin ρ, which evaluates the hash of a string str ∈{0, 1}. Ahashqueryisjust a string str. The response to the query is the hash of str, provided by Oρ.
	HashQuery:
	∗

	A signaturequeryisthe message andthepublickey ofthe signer. The response to the query is a valid signature.
	SignatureQuery:

	Consider WalnutDSA-I with system wide parameters and public/private key pair specifed by
	The Forger F:

	$$
	par ←− Pg, (Pub(S), Priv(S)) ←− Kg(par).
	We assume the hash function H is fxed and multi-collision-resistant while the hash function G = Gρ is given by the oracle Oρ which depends on a coin ρ.
	TheForgerF isdefnedtobe a randomized algorithm that oninput a message m ∈{0, 1},
	∗

	
	a signers public key Pub(S), and a coin ρ, outputs a 4-tuple m, h, gρ,s , where h = H(m)
	$$
	and gρ = Gρ(V)and V ←− Cloak,s ←− DC. It is assumed that the probability that
	m,V,H,G
	
	m, h, gρ,s is a valid WalnutDSA-I signature is non-negligible.
	Lemma 10.1 (Forking Lemma) Let F be run twice with inputs,
	(m, Pub(S),ρ), (m, Pub(S),ρ),
	′

	then with non-negligible probability, F will output two valid signatures
	
	m, h, gρ,s , m,h,gρ ′ ,s ,
	′

	such that gρ gρ ′ .
	=
	Proof. This follows from[34],[6].
	Theforkinglemma10.1 can be used to show that under anEUF-CMA attackitispossible for F to solve the REM problem (reversing E-multiplication is hard) with non-negligible probabilityprovidedthereis apolynomial time solution to the conjugacy searchproblemCSP whichistheproblemof fnding X ∈ BN assuming that w ∈ BN and XwX∈ BN areknown. This is conjectured to be true by many people and it has been experimentally shown that if X is chosen according to a standard uniform distribution then X can be found with high pr
	−1

	Theorem 10.2 AssumethatCSP canbe solvedinpolynomial time.Further, assumethattwo WalnutDSA-I signatures
	
	m, H(m),Gρ(V),s , m,H(m),Gρ ′ (V),s ,
	′

	with Gρ(V)Gρ ′ (V)areknownto an adversary.Thenitispossibleforthe adversary to solve
	=
	the REM problem in polynomial time with non-negligible probability.
	Proof. Let
	
	
	s = R X · E Hm || Gρ (V) · Y = X · E Hm || Gρ (V) · Y,
	
	
	s = R X · E Hm || Gρ ′ (V) · Y = X · E Hm || Gρ ′ (V) · Y,
	′

	be the two known signatures where “=” means equality in the braid group, and where X, Y depend only on the choice of the cloaking elements V . It follows that
	
	 −1
	s · (s)= X · E Hm || Gρ (V) · E Hm || Gρ ′ (V) · X.
	′
	−1
	−1

	By our assumptions, it is possible to solve for X, and then also solve for Y . Note that X has theproperty that P(w) = (IdN , IdS)⋆ X, and, hence, E-Multiplication has been reversed in this case.
	N

	Strong existential forgery
	Strong existential forgery is the situation when an attacker is able to forge a second signature of agiven messagethatisdi.erentfrom apreviously obtained signature of the samemessage.
	WalnutDSA as presented above is, a priori, subject to strong existential forgery. The signature of a message M is of the form
	-

	 −1 ′
	

	Sig = R v1 · w · v · E(H(m))· w · v2 . (11)
	Clearly an attacker could augmentthe above signatureby multiplying it(onthe right) by an additional cloaking element, thus obtaining a second signature of the same message.Thisdoes not undermine WalnutDSA security if we require a forgery to be a message that was never signed previously because of the non-repudiation property discussed previously.

	11 Brute Force Attacks
	11 Brute Force Attacks
	We now discuss the brute force security levels of the individual secret components which are used to create the digital signature of a message M. For accuracy we give the following defnition of security level:
	Defnition 11.1 (Security Level): A secret is said to have security level k over a fnite feld F if the best known attack for obtaining the secret involves running an algorithm that requires at least 2elementary operations(addition,subtraction,multiplication,division) inthe fnite feld F.
	k

	Brute force security level for each Private Key:
	In order to choose private keys of security level = SL that defeat a brute force attack, we need to analyze the set of braids in BN of a given length ℓ and try to assess how large this set is. Being as conservative as possible, at a minimum, the brute force security level for the signer’s private key pair will be the brute force security level of a single private key. Letting WN (ℓ)denote the number of distinct braid words of length ℓ in BN , the most basic estimate for WN (ℓ)is given by
	WN (ℓ) ≤ (2(n − 1)).
	ℓ

	This trivial bound does not take into account the fact that the braid relations, particularly the commuting relations, force many expressions to coincide. Furthermore, the commuting relations bi bj = bj bi |i − j|≥ 2, allow us to write products of generators far enough apart in weighted form, i.e., given bi bj where |i − j|≥ 2, we can assume i>j.
	To start analyzing the situation we work in B5, we enumerate words of length 2 starting ±1 ±1
	b
	b

	with a given generator: b1,b1 b1, b2 b,b2 b2,b2 b, b3 b,b3 b3,b3,b3 b, ±1
	2
	±
	3
	1
	±
	1
	1
	±
	4
	1
	2
	±
	1
	1
	b

	b4 b4,b4 b,b4 ,b4 b. Words of length 2 starting with inverses of the generators
	±1
	±1

	321 are of course similar, and thus the number of distinct words of length ℓ = 2 in B5 taking the commuting relations into account is 44 < (2(5− 1))= 64. In order to obtain a good bound
	2

	for WN (ℓ), whicheliminates the redundancy arising from the commuting elements, we require the following function:
	
	1 k = k ,
	′

	
	wk(k) =2 k = k and k <N − 1,
	′
	′
	′

	
	
	0 k >N − 1.
	′

	Using this notation, the number of words of length 2 in BN is given by
	N−1 k1+1
	
	WN (2) =2 wk(k2),
	1

	k1=1 k2=1
	where the equality holds because the remaining braid relations are longer than length 2. Moving to words of length ℓ, we have
	N−1 k1+1 k2+1 kℓ−1+1
	
	WN (ℓ) ≤ 2 wk(k2) wk(k3)··· wk(kℓ).
	1
	2
	ℓ−1

	k1=1 k2=1 k3=1 kℓ=1
	Thisisjust an upperbound on the number ofbraids oflength ℓ butit does represent what an attacker would have to do to be certain that all possibilities are checked. At present, the above method gives the best protocol known for generating braid words of length ℓ with the least over counting. There is no closed formula for the number of distinct braids of length ℓ; infacttheproblemis NPhard[33].
	Hence we are reduced to fnding a lower bound for the right hand side above, which can be done as follows:
	N−1 k1+1 k2+1 kℓ−1+1 N−1 k1+1 k2+1 kℓ−1+1
	
	2
	2
	ℓ

	2 wk(k2) wk(k3)··· wk(kℓ) ≥ ··· 1
	1
	2
	ℓ−1

	k1=1 k2=1 k3=1 kℓ=1 k1=1 k2=1 k3=1 kℓ=1 k2k3=k2
	=k1 k=k1
	ℓ

	N−1 kkkℓ−1
	1
	2

	 ℓ
	2

	ℓ − 2+N
	2
	2
	ℓ

	= ··· 1= · (N − 1) ,
	ℓN − 1
	k1=1 k2=1 k3=1 kℓ=1
	
	ℓ−2+N
	where denotes the binomial symbol.
	N−1

	Thus,inordertodefeatthebruteforcesearch at asecuritylevel =SL,thesigner’sprivate key must be a braid word of length ℓ which satisfes:
	
	2
	2
	ℓ

	ℓ − 2+N
	SL ≥ log· (N − 1) .
	2

	ℓN − 1
	Next, we may use Stirling’s asymptotic formula for the Gamma function to obtain a lower
	
	ℓ − 2+N
	bound for · (N − 1) . The fnal result is
	2
	ℓ

	N − 1
	ℓ

	
	(N−1)
	· ℓ
)

	(2/ℓ)
	ℓ

	SL > log
	2

	(N − 1)!
	for fxed N as ℓ →∞. To fnd the length ℓ associated to a given security level SL, one may
	
	apply Newton’s method to solve the equation: ℓ +(N − 2)log(ℓ)= SL +log(N − 1)! .
	2
	2

	Brute force security level of the Cloaking Elements, v, v1,v2:
	The pure braid subgroup of BN isgenerated[20] by the set of N(N − 1)/2 braids given by
	· b
	· b
	−1
	b
	−1
	b
	−1

	gi,j = bj−1bj−2 ··· bi+1 · b··· , 1 ≤ i<j ≤ N. (12)
	2
	i
	i+1
	j−2j−1

	The cloaking element v is defned to be a conjugate of some bby a lift of a permutation that moves i → a, i +1 → b times a random wordin thepurebraid subgroup oflength atleast
	2
	i

	L.The cloaking element v1,isdefned tobe the conjugate of some bby alift of apermutation that moves i → σ(a),i +1 → σ(b)(whereσw is the permutation associated to w)times a random word in the pure braid subgroup of length at least L. Likewise, v2, is defned to be
	2
	i
	w
	−1
	w
	−1

	the conjugate of some bby a lift of a permutation that moves j → σ(a), j +1 → σ(b) times a random word in the pure braid subgroup of length at least L.
	2
	j
	w
	−1
	w
	−1

	The number of words of length L inthe abovegenerators(12) of thepurebraid subgroup is bounded by
	′′
	L
	N(N − 1) L
	2· = N(N − 1) .
	2
	Hence, a lower bound for the security level of the triple v, v1,v2 of the cloaking elements is given by
	
	3· L · logN(N − 1) ,
	2

	assuming an attackerdoes abruteforce search of the set of allpossible triples of such cloaking elements.
	One can compute L fromthedesired security levelSL(inbits) by computing:
	L = ⌈SL/(3log(N(N − 1)))⌉. (13)
	2

	For example, suppose 128-bit security is desired, and the braid group is B8, then
	L = ⌈128/(3log(8· 7))⌉ =8.
	2

	Remarks: To date there is no good method known to eÿciently enumerate all distinct pure braid elements of length L in the generators gij givenin(12).Consequently, toperform the above attack, an attacker must execute a brute force search of all possible words in the generators as described above.
	-

	Search space of each Public Key Pub(S):
	
	Recall that the signer’s public key is given by the pair: Pub(S) = P(w), P(w) . When this is evaluated with the specifed choices of BN and Fq it results in two N × N matries each with q possible elementsfor every entry. Thelast row,however,is all zeros(exceptforthe fnal element). Moreover, due to the fact that two T-values are set to 1, in practice there is
	Recall that the signer’s public key is given by the pair: Pub(S) = P(w), P(w) . When this is evaluated with the specifed choices of BN and Fq it results in two N × N matries each with q possible elementsfor every entry. Thelast row,however,is all zeros(exceptforthe fnal element). Moreover, due to the fact that two T-values are set to 1, in practice there is
	′

	more duplication within the matrix which further reduces the number of potential states. A conservative estimate is that there are

	N(N−3) N−3N
	2

	q = q
	possible choicesfor eachof the matrices appearinginpublickeys.The search spacefor all such matricesis again the square of thislowerbound.Atpresent, the onlyknown way todetermine Priv(S) from Pub(S) is a brute-force search.
	Quantum Resistance
	We now quickly explore the quantum resistance of WalnutDSA. As shown in §9, the security ofWalnutDSAisbased onthehardproblems of reversing E-Multiplication.The mathbehind these hard problems is intimately tied to the infnite non-abelian braid group that is not directly connected to any fnite abelian group. We will show that this lends strong credibility for the choice of WalnutDSA as a viable post-quantum digital signature protocol.
	The Hidden Subgroup Problem on a group G asks to fnd an unknown subgroup H using callsto aknownfunction on G whichis constant onthe cosets of G/H andtakesdi.erent values ondistinct cosets.Shor’s[36] quantum attackbreakingRSA and otherpublickeyprotocols such as ECC are essentially equivalent to the fact that there is a successful quantum attack onthe HiddenSubgroupProblemfor fnitecyclicand other fniteabeliangroups(see[28]). Since the braid group does not contain any non-trivial fnite subgroups at all, there
	Given an element
	ǫ1 ǫ2 k
	b
	b
	b
	ǫ

	β = ··· ∈ BN , (14)
	i
	1
	i
	2
	i
	k

	where ij ∈{1,...,N −1}, and ǫj ∈ {±1}, we candefne afunction f : BN → GL(N, Fq)where f(β)isgivenbytheE-Multiplication(1, 1)⋆(β, σβ)and σβ is thepermutation associated to β. NowE-Multiplicationisahighly non-linearoperation. Asthelength k of the word β increases, the complexity of the Laurent polynomials occurring in the E-Multiplication defning f(β) increases exponentially. It does not seem to be possible that the function f exhibits any type of simpleperiodicity, soitis very unlikely thatinverting f canbe a
	Finally, we consider Grover’s quantum search algorithm [18] which can fnd an element
	 √
	in an unordered N element set in time O N . Grover’s quantum search algorithm can be used to fnd the private key in a cryptosystem with a square root speed-up in running time. Basically, this cuts the security in half and can be defeated by doubling the key size. This is where E-Multiplication shines. When doubling the key size one only doubles the amount of work as opposed to RSA, ECC, etc. where the amount of work is quadrupled. Note that almost all of the running time of signature verifcation in WalnutDS

	12 Size and Performance Characteristics
	12 Size and Performance Characteristics
	TotestWalnutDSA we wrotekey and signaturegeneration and validation softwareinC(and on oneplatformimplementedpart of
	TotestWalnutDSA we wrotekey and signaturegeneration and validation softwareinC(and on oneplatformimplementedpart of
	the verifcation enginein assembly).We ran the signature

	generation on a Thinkpad T470p laptop running Fedora Linux to generate 500 keypairs, and for each key generated 100 random 256-bit messages and the resulting signatures. For the signature rewriting we used a combination of theBirman–Ko–Lee(BKL)[9] andDehornoy[12] algorithms to obscure the braids and shorten them to reasonable lengths.

	For our testing we settled on the parameters:
	•
	•
	•
	N =8

	•
	•
	q =32

	•
	•
	L =15

	•
	•
	ℓ =132

	which yields a private key security level of at least 2against brute force attacks,with a public keyspace of 2possible public keys.
	128
	2
	200

	Each of the public keys are always a fxed size. They need to include the T-Values, both Matrices, and Permutation which requires
	N log(q)+2(N(N − 1)+1)log(q)+N log(N)=40+2∗ 285+24 =634bits.
	2
	2
	2

	Privatekeys and signatures,however, are variablelength.Recall that eachprivatekey has twobraids.Inthe500privatekeys(1000braids),thebraids variedinlengthfrom94generators to130generators, with and a standarddeviation of5.84.With our encoding, this resultsin aprivatekey storage of752 to1040bits, and atheoretical maximum storage of 1056 bits.
	a mean of113.37

	Using those 500 keys we generated 50,000 signatures using random input messages of 256 bits(simulatingSHA256hash output), andthen usedBKL andDehornoy asthe rewriting methods. Of these 50,000 signatures, their lengths varied from 770 to 1926 generators, with a mean of 1298.12 and a standard deviation of 159.67. These signatures also require 4 bits pergenerator, which resultsin signatures oflength of3080 to7704bits(with an average of 5192.48 bits).
	Signature Validation
	Where WalnutDSA shines is in signature validation, because E-Multiplication is rapidly computable eveninthetiniestof environments.Toproveits viability weimplementedtheWalnutDSA signature verifcation routines on several platforms: a Silicon Industries 8051 8-bit microcontroller,aTexasInstruments(TI) MSP430F517216-bitmicrocontroller,an ARMCortexM3 (NXP LPC1768), and as a hardware accelerator for an Altera Cyclone V and a Microsemi Smartfusion 2). The implementation on the MSP430 and ARM is fully in C but has
	-
	-

	To provide a common testing platform, we chose a single message with an above-averagelength signature of1400generators, which encodesinto700bytes.Then webuilt our code on the various platforms and measured the time to validate the signature.
	-

	level of 2, but since the majority of the signature length is the encoded message, we increased L by 25% for safe
	161

	measure. Similarly, we increased ℓ due to braid generator cancellation.
	OntheMSP430 webuiltwithTI’sGCC compilerversion4.9.1(20140707) using the -O3 compiler option. The compiled code took up only 3244 bytes of ROM and required only 236 bytes of RAM to process the signature. The signature verifcation required 370944 cycles. At a clock speed of 8MHz this equates to 46ms. Compare this to ECC Curve25519, which requirestwo secondsto compute anECDSA validation(extrapolatedfrom a one secondECDH calculation in[13]), a 43x speed improvement. WalnutDSA does not require a32-bit hardware m
	On the ARM Cortex M3 we compiled WalnutDSA using GCC version 4.9.3 (20150303) also using the -O3 level of optimization. The code compiled down to only 2952 bytes of ROM and ran in 272 bytes of RAM. The signature verifcation executed in 275563 cycles, which at48MHz took only5.7ms.Compare this result toECC, where[40] showed afull assembly language implementation that required 7168 bytes of ROM and 540 bytes of RAM, but still required 233ms to perform a point multiplication (recall that ECDSA verifcation requi
	Onthe8051 weused theKeil V9.54 compilertobuildWalnutDSA,with thesmall memory module and chose to use assembly due to thepoor mapping of the E-Multiplication C implementation to the 8051platform. The code compiled into 3370 bytes of ROM. The 8051 platform we chose is unique in the way it handles RAM. Specifcally, it includes a “relocatable” section. When we ran WalnutDSA, it required atotal of312bytesofRAM(splitinto251bytesof “xdata,” 3bytesof “data,” and 58bytesof “relocatabledata”).Verifying thesignaturere
	optimization set toOPTIMIZE(11,SPEED).We specifcally

	Finally, we implemented WalnutDSA as a hardware coprocessor to tie into a CPU core running onaFieldProgrammableGate Array(FPGA).Thedeviceswetested runthefabric at a speed of 50 MHz, and devices can vary signifcantly in size and capabilities. In our case, weincluded notjustthe rawprocessing time,but alsothetime requiredtotransferthedata (publickeys, message, andsignature) fromtheprocessorintothefabric.Specifcally, we need to pass 161 words into the fabric; the time required varied and was dependent on the ac
	The majority of the execution time was, indeed, the data transfer time. In total we performed a signature validation in under 2500 cycles (depending on the platform) using only 1,720 AdaptiveLogicModules(ALM).Thisimplies,at50MHz,anexecutiontimeof under 50µs!
	-

	Compare this to an ECDSA implementation, such as that in [23]. They implemented ECDSA ona Xilinx Virtex4platformand computed apointmultiplicationwould take304µs at 171.247MHz. When you normalize to a 50MHz fabric speed, this equates to 1041µs for a point multiplication. Considering ECDSA verifcation requires two we can estimate a verifcation at approximates 2.08ms, yielding a 41x improvement of WalnutDSA over ECDSA.
	-

	Technically we only need L = 12 and ℓ =105for a2security level; using L =15 results in a theoretical security
	Technically we only need L = 12 and ℓ =105for a2security level; using L =15 results in a theoretical security
	2
	128

	13 Conclusion
	13 Conclusion
	This paper introduced WalnutDSA, a quantum-resistant Group Theoretic public-key signature scheme based on the E-Multiplication one-way function. Key generation is accomplished by producing random T-values and a random braid of a specifc form, and then using E-Multiplicationto computethepublickey.Signaturegenerationinvolves creating the cloaking elements, building the signature braid, and then running one of the manyknown braid rewriting algorithms to obscure the form and hide the private key.
	-
	-

	At a128-bit securitylevel thepublickeyis634bits and theprivatekeylength rangesfrom 752 to1040bitslong(with a maximumtheoreticallength of1056bits).The signatures, after using BKL and Dehornoy braid rewriting techniques, range from 3080 to 7704 bits in length.
	In addition, WalnutDSA signature verifcation proves to be extremely fast. It is two EMultiplications,amatrixmultiplication,andthenamatrixcompare. Aninitial,non-optimized implementationona16-bitMSP430 verifesa5232-bitlength(128-bit strength) signature43times faster than an ECC Curve25519 signature verifcation. Similar speed improvement is seen on an 8051, ARM Cortex M, and within FPGA environments.
	-
	-

	References
	1.
	1.
	1.
	D. Atkins; D. Goldfeld, Addressing (2016).
	the algebraic eraser over the air protocol, https://eprint.iacr.org/2016/205.pdf

	2.
	2.
	I. Anshel; D. Atkins; D. Goldfeld; P. E. Gunnells, Defeating the Ben-Zvi, Blackburn, and Tsaban Attack on the Algebraic Eraser
	, arXiv:1601.04780v1[cs.CR].

	3.
	3.
	I. Anshel; D. Atkins; D. Goldfeld; P. E. Gunnells, A Class of Hash Functions Based on the Algebraic Eraser, Groups Complex.Cryptol.8(2016), no.1,1–7.

	4.
	4.
	I. Anshel; D. Atkins; D. Goldfeld; P. E. Gunnells, Hickory Hash: Implementing an Instance of an Algebraic EraserHash Function on an MSP430 Microcontroller,
	TM
	TM
	2016, https://eprint.iacr.org/2016/1052.

	5.
	5.
	I. Anshel; M. Anshel; D. Goldfeld; S. Lemieux, Key agreement, the Algebraic Eraser, and Lightweight Cryptography, Algebraic methods in cryptography, Contemp. Math., vol. 418, Amer. Math. Soc., Providence, RI, 2006, pp. 1–34.
	TM
	-

	6.
	6.
	M. Bellare; G. Neven, Multi-Signatures in the Plain Public-Key Model and a General Forking Lemma, Proceedings of the13thAssociationforComputingMachinery(ACM) Conference onComputer andCommunicationsSecurity (CCS), Alexandria, Virginia,(2006), pp. 390–399.

	7.
	7.
	A. Ben-Zvi; S. R. Blackburn; B. Tsaban, A practical cryptanalysis of the Algebraic Eraser, CRYPTO 2016, Lecture Notes in Computer Science 9814(2016), 179–189.

	8.
	8.
	J. Birman, Braids, Links and Mapping Class Groups, Annals of Mathematics Studies, Princeton University Press, 1974.

	9.
	9.
	J. Birman; K. H. Ko; S. J. Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139(1998), no.2,322–353.

	10.
	10.
	S. R. Blackburn; M.J.B. Robshaw, On the security of the Algebraic Eraser tag authentication protocol, 14th International Conference on Applied Cryptography and Network Security (ACNS 2016), to appear. See .
	http://eprint.iacr.org/2016/091

	11.
	11.
	E. Brickell; D. Pointcheval; S. Vaudenay; M. Yung, Design Validations for Discrete Logarithm Based Signature Schemes. In Public Key Cryptography, Melbourne, Australia, Lectures Notes in Computer Science 1751, pp. 276– 292, Springer-Verlag,(2000).

	12.
	12.
	P. Dehornoy, A fast method for comparing braids, Adv.Math.125(1997), no.2,200–235.

	13.
	13.
	M. D¨ull; B. Haase; G. Hinterw¨alder; M. Hutter; C. Paar; A. S´anchez; P. Schwab, High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers,).
	https://eprint.iacr.org/2015/343.pdf(2015

	14.
	14.
	D. Garber;S. Kaplan;M.Teicher;B.Tsaban;U.Vishne,Length-based conjugacy search in the braid group, Algebraic methods in cryptography, 75-87, Contemp. Math., 418, Amer. Math. Soc., Providence, RI, 2006.

	15.
	15.
	V. Gebhardt, A new approach to the conjugacy problem in Garside groups, J. Algebra 292(1)(2005), 282–302.

	16.
	16.
	D. Goldfeld and P. E. Gunnells, Defeating the Kalka-Teicher-Tsaban linear algebra attack on the Algebraic Eraser, Arxiv eprint 1202.0598, February 2012.

	17.
	17.
	A. Groch;D.Hofheinz;R.Steinwandt, A Practical Attack on the Root Problem in Braid Groups, Algebraic methods in cryptography, 121-131, Contemp. Math., 418, Amer. Math. Soc., Providence, RI, 2006.

	18.
	18.
	L.K. Grover, A fast quantum mechanical algorithm for database search, Proceedings,28thAnnualACMSymposium ontheTheory ofComputing,(May1996) p.212.

	19.
	19.
	P. E. Gunnells, On the cryptanalysis of the generalized simultaneous conjugacy search problem and the security of the Algebraic Eraser,].
	arXiv:1105.1141v1[cs.CR

	20.
	20.
	V. Hansen, Braids and coverings: selected topics, With appendices by Lars Gæde and Hugh R. Morton, London Mathematical Society Student Texts, 18, Cambridge University Press, Cambridge,(1989).

	21.
	21.
	D. Hart; D. Kim; G. Micheli; G. Pascual Perez; C. Petit; Y. Quek, A Practical Cryptanalysis of WalnutDSA, preprint 2017. 1

	22.
	22.
	D. Hofheinz; R. Steinwandt, A practical attack on some braid group based cryptographic primitives, Public Key Cryptography,Proceedings ofPKC2003(YvoDesmedt, ed.),LectureNotesinComputerScience, no.2567,Springer-Verlag, 2002, pp. 187-198.

	23.
	23.
	J. Huang; H. Li; P. Sweany, An FPGA Implementation of Elliptic Curve Cryptography for Future Secure Web Transaction,Proceedings oftheISCA20thInternationalConference onParallel andDistributedComputingSystems, September 24-26, 2007.

	24.
	24.
	D. Kahrobaei; C, Koupparis, Non-commutative digital signatures, Groups Complexity Cryptography, Volume 4, Issue 2(Dec 2012), 377-384.

	25.
	25.
	A. Kalka, M. Teicher and B. Tsaban, Short expressions of permutations as products and cryptanalysis of the Algebraic Eraser, Advances in Applied Mathematics 49(2012), 57-76.

	26.
	26.
	K. Ko, D. Choi, M. Cho, and J. Lee, New signature scheme using conjugacy problem, Cryptology ePrint Archive: Report 2002/168(2002).

	27.
	27.
	N. Koblitz; A. Menezes, Another look at “provable security,” J. Cryptol. 20, 3–37(2007).

	28.
	28.
	C. Lomont, The hidden subgroup problem -review and open problems, 2004, arXiv:0411037

	29.
	29.
	W. Magnus; A. Karrass; D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, IntersciencePublishers(John Wiley &Sons,Inc.),NewYork-London-Sydney(1966).

	30.
	30.
	H.R. Morton, The multivariable Alexander polynomial for a closed braid, Low-dimensional topology, (Funchal, 1998), 167–172, Contemp. Math., 233, Amer. Math. Soc., Providence, RI, 1999.

	31.
	31.
	C. Mulland; B. Tsaban; SL2 homomorphic hash functions: Worst case to average case reduction and short collision search, arXiv:1306.5646v3[cs.CR](2015).

	32.
	32.
	A.D.Myasnikov;A.Ushakov,Cryptanalysis of the Anshel-Anshel-Goldfeld-Lemieux key agreement protocol, Groups Complex.Cryptol.1(2009), no.1,63-75.

	33.
	33.
	M.S. Paterson; A.A. Razborov, The Set of Minimal Braids is co-NP-Complete, J. Algorithms,12,(1991), 393–408.

	34.
	34.
	D. Pointcheval; J. Stern, Security arguments for digital signatures and blind signatures, Journal of Cryptology, 13(3):361–396,(2000).

	35.
	35.
	G. Seroussi, Table of low-weight binary irreducible polynomials, Technical Report HP-98-135, Computer Systems Laboratory, Hewlett–Packard, 1998.

	36.
	36.
	36.
	P.Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM

	J. onComputing,(1997) 1484–1509.

	37.
	37.
	J.Stern;D.Pointcheval;J.Malone-Lee;N.P.Smart, Flaws in Applying Proof Methodologies to Signature Schemes, AdvancesinCryptology -ProceedingsofCRYPTO2002(18 -22August2002,SantaBarbara,California,USA) M. Yung Ed. Springer-Verlag, LNCS 2442, pages 93-110.

	38. H. Tschofenig; M. P´egouri´e-Gonnard, Crypto Performance on ARM Cortex-M Processors, IETF-92, Dallas, TX, March, 2015.
	39. B.C. Wang; Y.P. Hu, Signature scheme based on the root extraction problem over braid groups, IET Information Security 3(2009), 53-59.
	40. E.Wenger; T.Unterluggauer;M.Werner, 8/16/32 Shades of Elliptic Curve Cryptography on Embedded Processors. Progress in Cryptology -INDOCRYPT 2013, volume 8250 of Lecture Notes in Computer Science, pages 244-261. Springer, 2013.
	41. G. Z´emor; Hash functions and graphs with large girths, Eurocrypt ’91, Lecture Notes in Computer Science 547 (1991), 508–511.
	A Performance Matrix
	A Performance Matrix
	Table 1. Raw WalnutDSA Performance Data
	Platform
	Clock
	WalnutDSA
	ECDSA
	Improvement
	ROM
	RAM
	Cycles
	Time (ms)
	ROM
	RAM
	Cycles
	Time (ms)
	over ECDSA
	8051(8b)
	24.5
	3370
	312
	864101
	35.3
	?
	?
	?
	?
	?
	MSP430(16b)
	8
	3244
	236
	370944
	46
	?
	?
	?
	2000
	43x
	ARM Cortex M3(32b)
	48
	2952
	272
	275563
	5.7
	7168
	540
	?
	233
	40x
	FPGA
	50
	1720(ALM)
	2500
	0.05
	?
	?
	?
	2.08
	41x
	Note that a ’?’ in Table 1 implies that this data was not made available.

	B Example Data
	B Example Data
	The following sections detail an example of an actual WalnutDSA transaction. This is all based on N = 8, q =2= 32, L = 15, and ℓ = 132. We construct the fnite feld F32 as F2[x]/(f), wheref is the irreduciblepolynomial x+x+1(cf.[35]). Elements of F32 are then represented as 5-bit numbers: the fnite feld element a4x+a3x+··· +a0 mod f is converted to the bitstring a4a3 ··· a0 (note that the coeÿcients of high degree monomials become the high-order bits in the bitstring).
	5
	5
	2
	4
	3

	For ease of encoding here we represent each Artin generator as a positive or negative integer. For example b1 is represented as 1, and bis represented as −4.
	−
	4
	1

	Private/Public Key Pair
	The private data:
	•
	•
	•
	a =1

	•
	•
	b =2

	•
	•
	Priv(S):-2 5 7 6 1 7 5 1 -2 4 3 4 -5 -5 3 6 -7 5 2 1 -3 -7 4 -3 7 7 1 7 -2 4 -5 7 -1 2 4 7 6 1 -5 2 -6 1 4 4 -5 2 -4 7 4 4 -6 3 -4 -4 7 -1 6 3 -7 3 3 -6 -5 4 4 -2 6 -1 2 6 -4 3 1 5 3 -6 3 -5 4 1 -2 7 -5 -5 4 -7 1 -6 -2 4 -3 4 3 -7 1 -3 7 3 -7 -4 3 -5 -5 3 -5 -3 -2 -1 4 3 -2 -1 -1 -2

	•
	•
	Priv(S’):-2 -3 -7 -3 -6 3 -1 -3 -5 6 -2 -5 -1 5 -2 7 6 2 -3 1 -3 -5 3 6 -5 -2 3 6 3 6 6 3 7 -3 -1 3 4 -3 -2 -4 -7 1 6 -1 5 7 2 -7 -6 -2 3 4 4 -1 2 7 -2 7 7 -4 6 5 6 5 5 -2 -4 3 3 3 2 7 5 7 -3 -1 -5 1 4 4 2 -7 -1 -7 4 -5 -4 -1 -4 -7 -3 -4 -4 -4 -1 -1 -5 1 -2 6 2 1 -4 3 3 -5 -3 6 3 5 -6 3

	The public data:
	• T-values: 1 1 6 9 19 14 29 30
	• Pub(S): • Pub(S’):
	– Matrix: – Matrix:
	
	3030000000 00000660 30300 031310 0 030300 0 6 6 0
	
	2 22112129 5 30 4 1415 8 241621 7 24
	
	
	

	
	
	2714151610 7 1130 25 5 201117 1 15 6
	
	
	6 24 3 4 2 132517 14 5 19281923 3 22
	
	
	14142623 3 25 9 18 24182231 4 232717
	
	15153129312323 4 2 6 242917 1 16 3 00000001 00000001
	– Permutation: 41857263 – Permutation: 64275813
	An astute observer will notice there are a lot of zeros, specifcally in the frst, second, and last rows of this matrix. This is to be expected, and is taken into account for our level-ofsecurity calculation. When a T-value is set to 1 there is a signifcant amount of duplication between that row and the row before. So when a =1, the frst row will roughly duplicate the “previous row”, which of course is all zeros. Similarly, with b =2, the second row will roughly duplicate the frst row, which is mostly zeros,
	-
	element.On average we expect there
	N(N−3)
	200
	128

	Example Message
	For the following signature and verfcation examples we chose the following random 256-bit string which we treat as the output of a 256-bit hash:
	21 a4 b8 e3 d4 92 31 6a cd 27 1d ac 6e 59 62 05 14 f2 5d 77 c6 b6 02 c8 c0 94 8d a6 84 89 7d 95
	Example Signature and Verifcation
	For this example we use the generators g1,8,g3,8,g5,8,g7,8 from(7) forencoding. Afterfreereduction, we fnd that the message becomes the following braid E(M):
	-

	7 6 5 5 5 4 3 3 -4 5 5 5 5 5 5 4 3 2 1 1 1 1 -2 -3 -4 -5 -6 7 7 7 7 7 7 6 5 4 3 2 1 1 1 1 1 1 -2 -3 -4 5 5 5 5 5 5 5 -6 7 7 6 5 4 3 3 3 3 3 3 3 3 3 2 1 1 1 1 -2 3 3 3 3 3 -4 5 -6 7 7 6 5 4 3 3 -4 5 5 5 5 5 5 5 5 5 5 4 3 2 1 1 1 1 1 1 1 1 -2 3 3 3 3 3 3 3 -4 5 -6 7 7 7 7 6 5 4 3 3 3 3 3 3 3 3 3 3 -4 5 5 5 5 5 5 4 3 2 1 1 1 1 1 1 1 1 -2 -3 -4 5 5 5 5 5 5 5 5 5 5 5 5 4 3 3 3 3 3 3 3 3 3 3 -4 5 5 5 5 5 5 4 3 2 1 1 -2 3 3 3 3 3 3 2 1 1 1 1 -2 -3 -4 -5 -6 7 7 7 7 7 7 7 7 6 5 5 5 4 3 3 3 3 3 3 3 3 3 3 3 3 -4 -5 -6
	Notice the long runs of the generators 1, 3, 5, 7. These occur because we take the gk,N , where k =1, 3, 5, 7to nontrivialpowersduringthe encodingprocess, andbecause cancellations occur upon performing the free reduction.
	Aftergenerating cloaking elements, weformedthe raw signature(v2Priv(S)vE(M)Priv(S)v1):
	−1
	′

	-2 -3 -4 -3 1 2 -3 2 1 4 -5 6 -7 6 5 -4 -4 5 -6 -5 -4 -6 -6 -6 -6 5 5 7 6 6 -7 -5 -5 7 7 4 3 2 1 1 -2 -3 -4 3 2 2 3 5 4 4 -5 -7 6 5 4 3 2 2 -3 -4 -5 -6 -7 3 2 1 1 1 1 -2 -3 -6 -6 5 5 6 6 3 2 -1 -1 -1 -1 -2 -3 7 6 5 4 3 -2 -2 -3 -4 -5 -6 7 5 -4 -4 -5 -3 -2 -2 -3 4 3 2 -1 -1 -2 -3 -4 -7 -7 5 5 7 -6 -6 -7 -5 -5 6 6 6 6 4 5 6 -5 4 4 -5 -6 7 -6 5 -4 -1 -2 3 -2 -1 3 4 3 2 2 1 1 2 -3 -4 1 2 3 5 -3 5 5 -3 4 7 -3 -7 3 -1 7 -3 -4 3 -4 2 6 -1 7 -4 5 5 -7 2 -1 -4 5 -3 6 -3 -5 -1 -3 4 -6 -2 1 -6 2 -4 -4 5 6 -3 -3 7 -3 -
	After running the raw signature through both BKL Normal Form and then Dehornoy reduction we obtain the following 1298-generator braid:
	-

	-4 -3 -3 -2 -3 6 5 -4 -3 -2 7 6 -4 -5 7 -6 -7 -3 -4 -5 -6 -2 1 2 -3 1 -2 -2 -2 -3 1 2 3 -4 -5 1 2 -3 -3 -3 -4 1 -2 1 -2 1 -2 -2 1 2 -3 -4 1 -2 -2 -3 -4 1 2 2 3 4 6 5 7 6 -7 3 4 5 -6 2 3 2 1 4 -5 3 -4 2 -3 2 -3 -4 -5 -6 -7 1 -2 -3 -4 -5 -6 -2 1 2 -3 1 -2 -2 1 2 -3 -4 1 -2 -2 -3 -4 -5 -4 1 2 -3 1 2 4 3 -4 -6 -7 -7 -6 -6
	-7 1 2 -3 1 -2 -2 1 2 -3 1 -2 -2 -2 1 2 -3 1 -2 1 -2 1 2 -3 1 -2 -2 5 4 3 6 5 4 3 4 4 7 6 -7 5 -6 -7 1 2 3 4 -5 -6 7 1 2 3 -4 -5 2 -3 -4 1 -2 -3 -2 -3 -4 -5 -2 -3 -4 1 2 -3 -5 -6 -5 4 -7 -6 5 6 7 1 -2 1 3 2 4 3 5 4 -5 3 -4 2 -3 1 -2 -2 -2 1 2 -3 -4 6 5 -6 -3 4 -5 1 2 3 -4 2 -3 1 -2 1 1 -2 -3 -4 1 1 -2 -3 -5 4 -6 -5 4 -5 6 -7 1 -2 1 3 2 4 3 5 4 -5 2 1 3 -4 2 -3 -3 -3 -4 -4 -4 -5 -6 1 -2 -3 1 -2 -3 -3 -3 -3 -2 -3 -4 1 2 -3 4 -5 1 -2 1 3 -4 2 -3 -4 1 -2 -3 -3 -5 1 -2 -2 -2 1 -6 -3 -4 2 -3 1 -2 -2 -5 4 3 -2 1 -
	Notice that one sees runs of the generators 1, ..., 4 after this process. This again refects the structure of the message encoding algorithm. In particular, the Dehornoy reduction algorithm works by replacing certain subwords of the form ±i,..., ∓i with new words, and that ultimately words of the form ±j,..., ±j with j < i tend to survive to the end. This explains the appearance of these generators in the obscured signature. We remark that even though these runs resemble those seen in the encoded message E(
	-

	Tovalidatethissignature,one frstneedstocomputetheE-Multiplication(IdN ,IdS)⋆ E(M)which results in the following matrix:
	N

	
	50000000 41000000
	
	327265 529425
	
	

	
	2729299 814115
	
	

	
	
	192222 7 6 231227
	
	
	9 2626151521 2 22
	
	19313131312820 9 00000001
	Note the zeros in the frst, second, and last rows. This, too, is expected because of the choices of a =1,b =2 and the resulting duplication from the previous rows while performing E-Multiplication. Due to this duplication we expect to see approximately 3N zeros in the matrix. See the previous discussion about the public key.
	Next, one multiplies that matrix by the matrix part of Pub(S’), which results in the following matrix:
	-

	
	0 0 0 0 030300 0 3030 0 0 3030 0
	
	1287 1 3 1233
	
	

	
	1 2612 4 14 4 1127
	
	

	
	
	295 11227228 0
	
	
	171817 4 27252211
	
	31 0 30261716 4 28 00000001
	
	

	Finally, one computes the E-Multiplication Pub(S) ⋆ Sig, which results in the following matrix:
	
	0 0 0 0 030300 0 3030 0 0 3030 0
	
	1287 1 3 1233
	
	

	
	
	1 2612 4 14 4 1127
	
	
	295 11227228 0
	
	
	171817 4 27252211
	
	31 0 30261716 4 28 00000001
	which is obviously equal to the previous matrix by inspection. Again, we expect there to be
	N(N−3)
	approximately 3N zerosinthe resulting matrix,yielding q=2possible matrices. An astute reader will notice there are only 19 zeros, which is less than the expected 24.
	200

