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1 Introduction

This document presents a detailed specification of qTESLA, a post-quantum signature
scheme based on the hardness of the decisional ring learning with errors (R-LWE) problem.
In contrast to other alternatives, qTESLA is a conservative yet efficient signature scheme
that has been instantiated according to the provided security reduction. That is, qTESLA
instantiations are provably secure in the (quantum) random oracle model. To this end, the
scheme comes accompanied by a non-tight reduction in the random oracle model, and a
tight reduction in the quantum random oracle model from R-LWE.

Concretely, qTESLA is designed to target three security levels:

• qTESLA-128: NIST’s security category 1.

• qTESLA-192: NIST’s security category 3.

• qTESLA-256: NIST’s security category 5.

Despite the aforementioned security assurances in its parameter selection, qTESLA still
achieves good performance with a competitive memory footprint. Furthermore, design
decisions have been made towards enabling simple, easy-to-protect implementations.

In the remainder of this section, we describe previous works related to the proposed signa-
ture scheme qTESLA. In Section 2, we give the specification details of the scheme, including
a basic and a formal algorithmic description, the functions that are required for its imple-
mentation, and the proposed parameter sets. In Section 3, we analyze the performance of
our implementations. Section 4 includes the details of our known answer values. Then, we
discuss the (provable) security of our proposal in Section 5, including an analysis of the
concrete security level and the security against implementation attacks. Section 6 ends
this document with a summary of the advantages and limitations of qTESLA.

1.1 Related work

The signature scheme proposed in this submission is the result of a long line of research.
The first work in this line is the signature scheme proposed by Bai and Galbraith [14]
which is based on the Fiat-Shamir construction of Lyubashevsky [50]. The scheme by Bai
and Galbraith is constructed over standard lattices and comes with a (non-tight) security
reduction from the learning with errors (LWE) and the short integer solution problem
(SIS) in the random oracle model. Dagdelen et al. presented improvements and the first
implementation of the Bai-Galbraith scheme [27]. The scheme was subsequently studied
under the name TESLA by Alkim, Bindel, Buchmann, Dagdelen, Eaton, Gutoski, Krämer,
and Pawlega [9], who provided an alternate security reduction from the LWE problem in
the quantum random oracle model.
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A variant of TESLA over ideal lattices was derived under the name ring-TESLA [1] by Ak-
leylek, Bindel, Buchmann, Krämer, and Marson. Since then, subsequent works [16,41] have
been presented. Most notably, a version of the scheme ring-TESLA called TESLA# [16]
by Barreto, Longa, Naehrig, Ricardini, and Zanon included several implementation im-
provements. Moreover, there exist several works [19, 20, 36] concerned with the analysis
of ring-TESLA with respect to implementation attacks, i.e., fault and side-channel at-
tacks.

The signature scheme presented in the following assembles the advantages acquired in the
prior works resulting in the quantum-secure signature scheme qTESLA.
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2 Specification

Next, we give an informal description of the basic scheme that is used to specify qTESLA.
A formal specification of qTESLA’s key generation, signing and verification algorithms
then follows in Section 2.2. The correctness of the scheme is discussed in Section 2.3.
We describe the implementation of the functions required by qTESLA in Section 2.4, and
explain all the system parameters and the proposed parameter sets in Section 2.5.

2.1 Basic signature scheme

Informal descriptions of the algorithms that give rise to the signature scheme qTESLA are
shown in Algorithms 1, 2 and 3. Below, we first define two basic terms that are required
by the algorithms, namely, B-short and well-rounded.

An integer polynomial y is B-short if each coefficient is at most B in absolute value. We
call an integer polynomial w well-rounded if w is (bq/2c−LE)-short and [w]L is (2d−LE)-
short, where [·]L is the value represented by the d least significant bits of w. Similarly,
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Algorithm 1 Informal description of the key generation

Require: -
Ensure: Secret key sk = (s, e, a), public key pk = (a, t)

1: a← Rq invertible ring element
2: Choose s, e ∈ R with entries from Dσ.
3: If the h largest entries of e sum to LE then sample new e and retry at step 2.
4: If the h largest entries of s sum to LS then sample new s and retry at step 2.
5: t = as+ e ∈ Rq.
6: Return secret key sk = (s, e) and public key pk = (a, t).

Algorithm 2 Informal description of the signature generation

Require: Message m, secret key sk = (s, e, a),
Ensure: Signature (z, c).

1: Choose y uniformly at random among B-short polynomials in Rq.
2: c← H([ay]M ,m).
3: z ← y + sc.
4: If z is not (B − LS)-short then retry at step 1.
5: If ay − ec is not well-rounded then retry at step 1.
6: Return signature (z, c).

Algorithm 3 Informal description of the verification

Require: Message m, public key pk = (a, t), purported signature (z, c)
Ensure: “Accept” or “reject”.

1: If z is not (B − LS)-short then return reject.
2: w ← az − tc mod q
3: If H([w]M ,m) 6= c then return reject.
4: Return accept.

[·]M is the value represented by the corresponding most significant bits. For simplicity
we assume that the hash oracle H(·) maps from {0, 1}∗ to H, where H denotes the set of
polynomials c ∈ R with coefficients in {−1, 0, 1} with exactly h nonzero entries, i.e., we
ignore the encoding function F introduced in Section 2.2.

As can be seen, the description in Algorithm 2 implies that the signature scheme is non-
deterministic, i.e., that different randomness is required for each signing operation, even if
the message is the same. Specifically, this feature is fixed by the random generation of the
polynomial y in Step 1 of Algorithm 2.

In Section 2.2, we discuss how the scheme can be converted to deterministic. Deterministic
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signatures have the advantage that different randomness is used for different messages with
very high probability and that sampling can be implemented more easily since access to
a source of high-quality randomness is not needed. We discuss the (dis-)advantages of
deterministic vs. probabilistic signatures in more detail in Section 5.4.

2.2 Formal description of qTESLA

Below, we define all the necessary functions, sets, and system parameters in qTESLA.

The description of the scheme depends on the following system parameters: λ, κ, n, q,
σ, LE , LS , B, d, and h. Let Zq = Z/qZ, R = Z[x]/〈xn + 1〉, Rq = Zq[x]/〈xn + 1〉,
Rq,[I] = {f ∈ Rq | f =

∑n−1
i=0 fix

i, fi ∈ [−I, I]}, and Hn,h = {f ∈ Rq | f =
∑n−1

i=0 fix
i, fi ∈

{−1, 0, 1},
∑n−1

i=0 |fi| = h}. Let R be a ring then we denote the inverse elements in this
ring by R×. Let f =

∑n−1
i=0 fix

i ∈ R. Then we define the reduction (f mod q) of f
modulo q to be (f mod q) =

∑n−1
i=0 (fi mod q)xi ∈ Rq. Let d ∈ N and c ∈ Z. We denote

by [c]L the unique integer in (−2d−1, 2d−1] ⊂ Z such that c = [c]L modulo 2d. Let [·]M
be the function [·]M : Z→ Z, c 7→ (c− [c]L)/2d. Furthermore, let f =

∑n−1
i=0 fix

i ∈ Rq,
then [f ]L =

∑n−1
i=0 [fi]L x

i and [f ]M =
∑n−1

i=0 [fi]M xi. Let f ∈ Rq be a polynomial with
coefficients being ordered (without losing any generality) as |f1| ≥ |f2| ≥ ... ≥ |fn|. Then
we define maxi(f) = fi.

The centered discrete Gaussian distribution for x ∈ Z with standard deviation σ is defined
to be Dσ = ρσ(x)/ρσ(Z), where σ > 0, ρσ(x) = exp(−x

2

2σ2 ), and ρσ(Z) = 1 + 2
∑∞

x=1 ρσ(x).
We write c ←σ Z to denote sampling a value c with distribution Dσ. For a polynomial
c ∈ R, we write c←σ R to denote sampling each coefficient of c with distribution Dσ. For
a finite set S, we denote sampling the element s uniformly from S with s←$ S.

We define the following functions (refer to the specified sections for explicit details about
their implementation):

• The generation of the polynomial a as GenA : {0, 1}κ → R×q (cf. Section 2.4.3),

• an encoding function to encode hash values to polynomials Enc : {0, 1}κ → Hn,h (cf.
Section 2.4.4),

• the two pseudo random functions PRF1 : {0, 1}κ × {0, 1}∗ → {0, 1}κ and PRF2 :
{0, 1}κ × Z→ Rq,[B] (cf. Section 2.4.5), and

• a hash function H : {0, 1}∗ → {0, 1}κ (cf. Section 2.4.5).

The details of qTESLA’s key generation, signing and signature verification are given in
Algorithms 6, 7, and 8, respectively. The two subroutines checkE and checkS that are
called during key generation are depicted in Algorithms 4 and 5, respectively.
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Algorithm 4 Subroutine checkE to ensure
correctness of the scheme; checkE ensures
that ‖ec‖∞ ≤ LE
Require: e ∈ R
Ensure: {0, 1} . false, true

1: if
∑h

i=1 maxi(e) > LE then
2: return 0
3: end if
4: return 1

Algorithm 5 Subroutine checkS to sim-
plify the security reduction; checkS ensures
that ‖sc‖∞ ≤ LS
Require: s ∈ R
Ensure: {0, 1} . false, true

1: if
∑h

i=1 maxi(s) > LS then
2: return 0
3: end if
4: return 1

Algorithm 6 qTESLA’s key generation

Require: -
Ensure: sk = (s, e, seedy, seeda), pk = (seeda, t)

1: seeda, seedy ←$ {0, 1}κ
2: a← GenA(seeda)
3: s←σ R
4: if checkS(s) = 0 then
5: Restart at step 3
6: end if
7: e←σ R
8: if checkE(e) = 0 then
9: Restart at step 7

10: end if
11: t = as+ e mod q
12: sk ← (s, e, seedy, seeda)
13: pk ← (seeda, t)
14: return sk, pk

Remark 1. We note that the description of our scheme can be easily generalized to
use more than one sample of the ring learning with errors problem. In particular, that
would mean that the public key consist of seeda1 , ..., seedak (corresponding to a1, ..., ak) and
t1, ..., tk, and that the secret key consist of the polynomials s, e1, ..., ek, seedy. Our analysis
of the expected security also holds for a generalization with k > 1. However, the description
and implementation of the scheme are substantially simpler for k = 1.

2.3 Correctness of the scheme

According to Algorithms 6 and 7, the following holds for an honestly generated signature
(c′, z) with c = Enc(c′) and elements from the key generation a, t, s, e:
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Algorithm 7 qTESLA’s signature generation

Require: m, sk = (s, e, seedy, seeda)
Ensure: c′, z

1: a← GenA(seeda)
2: counter← 0
3: rand← PRF1(seedy,m)
4: y ← PRF2(rand, counter)
5: v = ay mod q
6: c′ ← H([v]M ,m)
7: c← Enc(c′)
8: z ← y + sc
9: if z /∈ Rq,[B−LS ] then

10: counter + +
11: Restart at step 4
12: end if
13: w ← v − ec mod q
14: if ‖[w]L‖∞ > 2d − LE ∨ ‖w‖∞ > bq/2c − LE then
15: counter + +
16: Restart at step 4
17: end if
18: return (c′, z)

Algorithm 8 qTESLA’s signature verification

Require: m, (c′, z), pk = (seeda, t)
Ensure: {0, 1} . reject, accept

1: c← Enc(c′)
2: a← GenA(seeda)
3: w ← az − tc mod q
4: if z ∈ Rq,[B−LS ] ∧ c = H([w]M ,m) then
5: return 1
6: end if
7: return 0

z ∈ Rq,[B−U ], ‖sc‖∞ ≤ LS , ‖ec‖∞ ≤ LE , ‖[ay − ec]L‖∞ ≤ 2d − LE , and ‖ay − ec‖∞ ≤
bq/2c − LE . In order for the verification algorithm to accept a signature it has to hold
that: (i) z ∈ Rq,[B−U ], which holds trivially, and (ii) [ay]M = [az − tc]M , which we argue
next.
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We know that

[az − tc]M = [ay + asc− asc− ec]M (1)

= [ay − ec]M (2)

=
ay − ec− [ay − ec]L

2d
. (3)

We know that ‖[ay − ec]L‖∞ < 2d−LE and ‖ay− ec‖∞ ≤ bq/2c−LE . Hence, ‖ay− ec−
[ay − ec]L‖∞ < q/2, and thus, no wrap-around occurs. Furthermore, since ‖ec‖∞ ≤ LE
and ‖[ay − ec]L‖∞ ≤ 2d − LE , we know that −ec − [ay − ec]L = [−ec− (ay − ec)]L and
hence,

ay − ec− [ay − ec]L
2d

=
ay − [ay]L

2d
= [ay]M . (4)

2.4 Implementation details of the required functions

2.4.1 Gaussian sampling

One of the advantages of qTESLA is that Gaussian sampling is only required during key
generation to sample s and e (see Alg. 6). Nevertheless, certain applications might re-
quire an efficient and secure implementation of key generation and that, in particular, be
protected against timing and cache attacks. In the following, we adopt the Gaussian sam-
pler proposed in [16], which is an improvement upon the sampler proposed by Ducas et
al. [29, Section 6].

The basic idea of the Gaussian sampler by Ducas et al. [29, Algorithms 10–12] is to start
from a distribution that approximates the desired Gaussian distribution. From there, a
high-quality Gaussian is obtained by rejection sampling guided by Bernoulli distributions
Bρ with parameters ρ related to the standard deviation σ of the desired Gaussian distri-
bution. Ducas et al. implement those Bernoulli distributions by decomposing them into `
certain base distributions (Bρ0 ,Bρ1 , . . . ,Bρ`−1

) where the ρ constants are precomputed to
the desired accuracy, and then sampling from those base distributions to that accuracy.
Even though this Bernoulli decomposition is reportedly quite efficient, its running time
highly depends on the private bits. Besides that, each Bcρ must be sampled to the same
precision as the target distribution, which is why the total amount of entropy needed to
obtain one Gaussian sample is much higher than theoretically necessary, roughly O(`λ)
bits rather than O(λ) for security level λ.

However, because qTESLA only needs a basic Gaussian sampler for key generation, it
is possible to obtain a much simpler construction [16]. In particular, only one Bernoulli
distribution Bρ is needed, instead of ` base distributions (Bρ0 ,Bρ, . . . ,Bρ`−1

). Thus, the bias
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is simply computed by ρ = exp(−t/2σ2) using well-known exponentiation techniques. The
value ρ is an approximation of a real number in the interval [0, 1] to the desired precision.
For more details, refer to [16] and [29, Section 6].

2.4.2 Deterministic random bit generation

qTESLA requires the deterministic generation of random bits to produce seeds from ran-
dom pre-seed values. Specifically, the key generation algorithm requires the generation of
seeds seeda and seedy in Step 1 (Alg. 6). This is done with the SHA-3 derived extendable
output function cSHAKE. The format to call this function is given by cSHAKE(X,L, “ ”, S)
for an input bit string X and a domain separator S [45] (note that the function-name bit
string is left empty). The function returns a bit string of L bits as output.

2.4.3 Generation of a: GenA

In qTESLA, a polynomial a is freshly generated per secret/public keypair using a seed
seeda. This seed is then stored as part of the public key so that the signing and verification
operations can regenerate a.

The approach above permits to save bandwidth since we only need κ bits to store seeda
instead of the ndlog(q)e bits that are required to represent the full polynomial. Moreover,
the use of a fresh a per keypair makes more difficult the introduction of backdoors and
reduces drastically the scope of all-for-the-price-of-one attacks [10,16].

The procedure to generate a is as follows. First, a pre-seed is obtained from the system
RNG. This pre-seed is then hashed using cSHAKE to obtain seeda, as described in Sec-
tion 2.4.2. Finally, to generate a via the expansion of seeda, we use cSHAKE [45] such that
the output size is enough to fill out all the coefficients of the polynomial. Moreover, the
output of cSHAKE is filtered to make sure that a belongs to the correct ring. Note that,
as a precaution, we avoid exposing directly the output of the system RNG through seeda,
and use a hashed value instead.

2.4.4 Encoding function

The encoding function Enc takes the output of the hash function H and maps it to a
vector with entries in {−1, 0, 1} of length n and weight h (representing a polynomial of
degree n − 1). In the signature generation we need to map the hash input ([v]M ,m) to
a polynomial c ∈ Hn,h ⊂ Rq (cf. line 6 and 7 of Algorithm 7). We break this up into
Enc(H([v]M ,m)) = Enc(c′) = c to obtain smaller signatures (c′, z) ∈ {0, 1}κ ×Rq.
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We implement the encoding function Enc as in [1] and as depicted in Algorithm 9. The
elements r1, ..., rh are chosen randomly by a PRF, given c′ ← H([v]M ,m) as input. The
value cpos is the (pos)-th element of the vector c ∈ Hn,h, which is initialized as a zero
vector. This algorithm is an extension of an algorithm originally proposed in [32, Section
4.4] which in turn relies on [29].

Algorithm 9 Encoding function Enc

Require: c′ ∈ {0, 1}κ
Ensure: c ∈ Hn,h

1: r1, ..., rh−1, rh ← PRF(c′)
2: for i = 1, ..., h: do
3: pos← (ri � 8) ∨ (ri+1)
4: if ri+2 mod 2 = 1 then
5: cpos ← −1
6: else
7: cpos ← 1
8: end if
9: end for

10: return c

2.4.5 Hash and pseudo-random functions

qTESLA’s signing procedure requires the hash function H as well as the pseudo-random
functions PRF1 and PRF2. We adopt SHA-3 [33] for function H, and cSHAKE [45] for
functions PRF1 and PRF2.

PRF1 takes as input the seed seedy and the message m and maps it to a byte array, i.e.,
PRF1 : {0, 1}κ×{0, 1}∗ → {0, 1}κ (cf. line 3 of Algorithm 7). To do this we use the output
of cSHAKE.

PRF2 takes as input the values rand and counter and maps them to a ring element, i.e.,
PRF2 : {0, 1}κ × Z → Rq,[B] (cf. line 4 of Algorithm 7). To do this we use the output
of cSHAKE and split it into n chunks representing the coefficients of the polynomial y in
Rq,[B].

It is worth noting that we take the hash output size κ to be larger or equal to the security
level λ. This is consistent with the use of the hash in a Fiat-Shamir style signature scheme
such as qTESLA. In the Fiat-Shamir paradigm for signatures, preimage resistance is rele-
vant while collision resistance is much less, given that we take the hash size to be enough
to resist preimage attacks1.

1We chose the hash size aiming for security of Category 5, according to NIST’s categories of security
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2.5 System parameters and parameter selection

In this section, we describe qTESLA’s system parameters and our choice of parameter sets.
We summarize all bounds and our concrete parameter sets in Table 1. We explain how we
estimate the bit security of our signature scheme in Section 5.2.

Herein, we propose three parameter sets that we classify according to NIST’s categories of
security as follows:

qTESLA-128: NIST’s security category 1,
qTESLA-192: NIST’s security category 3,
qTESLA-256: NIST’s security category 5.

Our parameters are chosen according to the security reduction provided in Theorem 6,
Section 5.1. This implies the following: suppose that parameters are constructed for a
certain security level. By virtue of our security reduction these parameters correspond
to an instance of the R-LWE problem. Since our parameters are chosen according to the
provided security reduction, this reduction provably guarantees that our scheme has the
selected security level as long as the corresponding R-LWE instance is intractable. In
other words, hardness statements for R-LWE instances have a provable consequence for
the security levels of our scheme.

Since the presented reduction is tight, the tightness gap of our reduction is equal to 1 for
our choice of parameters and, hence, the concrete bit security of our signature scheme is
essentially the same as the bit hardness of the underlying R-LWE instance. We make our
sage script used to choose parameters available. It is called parameterchoice.sage and
can be found in the submission folder “Script to choose parameters”.

Let λ be the security parameter, i.e., the targeted bit security of the instantiation is λ. Let
n ∈ Z>0 be the dimension, i.e., n− 1 is the polynomial degree. To use efficient polynomial
multiplication, i.e., the number theoretic transform (NTT) in the ring Rq, we restrict
ourselves to a polynomial degree of a power of two, i.e, n = 2l for l ∈ N. Let σ be the
standard deviation of the centered discrete Gaussian distribution that is used to sample
the coefficients of the secret and error polynomials. To use the fast Gaussian sampler
as described in Section 2.4.1, we choose σ = ξ√

2 ln 2
for some ξ ∈ Z>0. The parameter

κ defines the output (resp., input) length of random functions described in Section 2.4.5.
The parameter h defines the encoding function described in Section 2.4.4. More concretely,
it defines the number of non-zero elements of the output of the encoding function.

The values LE and LS are used to bound the coefficients in the error and secret polynomials

for preimage resistance. In a scenario that excludes Groover’a algorithm a hash function with an output
length of λ is expected to have preimage resistance of 2λ. When considering the quadratic acceleration of
Groover’s algorithm, the preimage resistance is only ≈ 2λ/2. In such a case, the hash output length should
be 2λ for an aspired security level of λ.
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Table 1: Description and bounds of the parameters according to the tight security reduction
in the quantum random oracle model with qh = 2128 and qs = 264; we choose M = 0.3; we
write parameters used in the implementation in bold

Param. Description Requirement qTesla-128 qTesla-192 qTesla-256

λ security parameter - 128 192 256
n dimension (n− 1 is the poly. degree) power-of-two 1 024 2 048 2 048

σ, ξ standard deviation of centered dis-
crete Gaussian distribution

σ = ξ√
2 ln 2

8.5, 10

q modulus q = 1 mod 2n, 8 058 881 12 681 217 27 627 521
qn ≥ |∆S| · |∆L| · |∆H|, ≤ 223 ≤ 224 ≤ 225

qn ≥ 24λ+n(d+1)3q3
s(qs+qh)2

h # of non-zero entries of output ele-
ments of Enc

2h ·
(
n
h

)
≥ 22λ 36 50 72

κ output length hash function H and
input length GenA, PRF1, PRF2,
Enc

κ ≥ λ 256

LE, ηE bound in checkE ηE · h · σ 798, 2.48 1 117, 2.68 1 534, 2.48
LS, ηS bound in checkS ηS · h · σ 758, 2.61 1 138, 2.63 1 516, 2.51

B determines the interval the random-
ness is chosen in during sign

B ≥
n√M+2LS−1

2(1− n√M)
, 220 − 1 221 − 1 222 − 1

near to power-of-two

d number of rounded bits
(

1− 2·LE+1
2d

)n
≥ 0.3, 21 22 23

d > log2(B)

|∆H|
see definition below in the text

∑h
j=0

∑h−j
i=0

(
n′

2i

)
22i
(
n′−2i
j

)
2j ≈ 2447 ≈ 2675 ≈ 2898

|∆S| (4(B − LS) + 1)n ≈ 222526 ≈ 247102 ≈ 249150

|∆L| (2d+1 + 1) 222 + 1 223 + 1 224 + 1

δw acc. prob. of w in line 19 during sign experimentally 0.50 0.33 0.33
δz acc. prob. z in line 19 during sign experimentally 0.50 0.25 1.00

δkeygen acc. prob. of key pairs experimentally 1.00

sig size theoretical size signature [byte] κ+ n(dlog2(B − LS)e+ 1) 2 720 5 664 5 920
pk size theoretical size public key [byte] n(dlog2(q)e) + κ 2 976 6 176 6 432
sk size theoretical size secret key [byte] 2n(dlog2(t · σ + 1)e) + 2κ

with t = 13.4, 16.4, or 18.9
1 856 4 160 4 128

during checkE and checkS, respectively. However, since the rejection probability of key
pairs during the key generation is close to zero for our parameter sets (as determined
experimentally) the key space is not restricted noticeably. Both bounds, LE and LS , impact
the rejection probability during the signature generation, as follows. Larger the values of
LE and LS will increase the acceptance probability during the key generation. But they
will also decrease acceptance probability in the signature generation line 14 and line 9,
respectively. We determine the best trade-off between those two acceptance probabilities
experimentally. We start choosing LE = ηE ·h ·σ (resp., LS = ηS ·h ·σ) with ηE = ηS = 2.8

13



and try different values for ηE , ηS ∈ [2.0, 3.0]. Let M = 0.3 be a value of our choosing that
determines (together with LS and B) the acceptance probability of the rejection sampling
in line 9 Algorithm 7. The parameter B defines the interval of the random polynomial y (cf.
line 4 of Algorithm 7) and it is determined by M and the parameter LS as follows:(

2B − 2LS + 1

2B + 1

)n
≥M ⇔ B ≥

n
√
M + 2LS − 1

2(1− n
√
M)

.

We select the rounding value d to be larger than log2(B) and such that the acceptance
probability of the check ‖[w]L‖∞ > 2d−LE in Line 14 of Algorithm 7 is upper bounded by
0.7 when using the sage script to choose parameters. Changing the value LE as described
above, impacts the rejection probability of w as well. We determine the acceptance prob-
ability δz of z and δw of w during sign and the acceptance probability of key pairs δkeygen
experimentally and summarize the result in Table 1.

The parameter q is chosen to fulfill several bounds and assumptions that are motivated by
the security reduction or efficient implementation requirements. To simplify our statement
in the security reduction we ensure that qn ≥ |∆S| · |∆L| · |∆H| with the following definition
of sets: S is the set of polynomials z ∈ Rq,[B−LS ] and ∆S = {z − z′ : z, z′ ∈ S}, H is the set
of polynomials c ∈ Rq,[1] with exactly h nonzero coefficients and ∆H = {c− c′ : c, c′ ∈ H},
and ∆L = {x − x′ : x, x′ ∈ R and [x]M = [x′]M ∈ Rq,[2d−1]}. To choose parameters ac-
cording to the security reduction the following equation (cf. Theorem 6) has to hold:

23λ+n(d+1) · 3 · q3
s(qs + qh)2

qn
≤ 2−λ ⇔ q ≥

(
24λ+n(d+1) · 3 · q3

s(qs + qh)2
)1/n

.

To be able to use fast polynomial multiplication we choose q to be a prime integer such
that q mod 2n = 1.

As stated in the NIST call for proposals (Section 4.A.4), we choose the number of classical
queries to the sign oracle to be qs = 264 for all our parameter sets. Moreover, we choose
the number of queries of a hash function to be qh = 2128.

Key and signature sizes Given all parameters as explained above, we determine the
key and signature sizes as follows. The theoretical length of the signature in bits is given
by κ+ n · (dlog2(B − LS)e+ 1) and the public key is represented by n · (dlog2(q)e) + κ
bits. To determine the size of the secret key we note that for t > 0 it holds that
Prx←σZ [|x| > tσ] ≤ 2e−t

2/2. For example for t = 13.4, t = 16.4, and t = 18.9 the proba-
bility Prx←σZ [|x| > tσ] is less or equal 2−128, 2−192, and 2−256, respectively. Therefore, the
theoretical size of the secret key is given by n · (dlog2(14σ + 1)e) + n · (dlog2(t · σ + 1)e) + 2κ
bits with t = 13.4, t = 16.4, and t = 18.9 for qTesla-128, qTesla-192, and qTesla-256, re-
spectively.
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Table 2: Different key and signature sizes of our proposed parameter sets; we abbreviate
theoretical sizes with TS and sizes as used in the implementations with IS; sizes are given
in bytes.

Parameter set TS/IS public key secret key signature

qTesla-128
TS 2 976 1 856 2 720
IS 4 128 2 112 3 104

qTesla-192
TS 6 176 4 160 5 664
IS 8 224 8 256 6 176

qTesla-256
TS 6 432 4 128 5 920
IS 8 224 8 256 6 176

We determined the key and signature sizes in our reference implementation as smallest
suitable data type which can hold max((dlog2(14σ+ 1)e), (dlog2(t ·σ+ 1)e)), which is byte
for qTesla-128, and 16 bit integer for qTesla-192, and qTesla-256. Table 2 shows key and
signature sizes according to the theoretical sizes and sizes as in the implementations for
our three proposed parameter sets in comparison.

3 Performance analysis

The submission package includes a simple yet efficient reference implementation written
exclusively in C.

To evaluate the performance of the provided implementation, we ran our benchmarking
suite on a machine powered by a 2.40 GHz Intel Core i5-6300U (Skylake) processor, running
Ubuntu 16.04.3 LTS. As is standard practice, TurboBoost was disabled during the tests.
For compilation we used clang version 3.8.0 with the command clang -O3. See Table 3
for the results.

Scheme keygen sign verify
total

(sign + verify)

qTESLA-128 3 402 2 495 520 3 015

qTESLA-192 5 875 9 686 1 065 10 751

qTESLA-256 12 433 26 063 1 310 38 496

Table 3: Performance (in thousands of cycles) of qTESLA on a 2.40 GHz Intel Core i5-
6300U (Skylake) processor. Cycle counts are rounded to the nearest 103 cycles.

The results in Table 3 correspond to a relatively simple implementation of qTESLA. Nev-
ertheless, they demonstrate that the scheme is practical for most applications. We expect
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significant improvements in the future with a fully optimized implementation.

4 Known answer values

The submission includes KAT values with tuples that contain message size (mlen), message
(msg), public key (pk), secret key (sk), signature size (smlen) and signature (sm) values for
all the proposed security levels. The KAT files can be found in the media folder: \KAT\

PQCsignKAT_qTesla-128.rsp, \KAT\PQCsignKAT_qTesla-192.rsp, and \KAT\PQCsignKAT_

qTesla-256.rsp for qTESLA-128, qTESLA-192 and qTESLA-256, respectively.

5 Expected security strength

It this section we discuss the expected security strength of and possible attacks against
qTESLA. This includes two statements about the theoretical security and the parameter
choices depending on them. To this end we first define the hardness assumptions qTESLA
is based on.

We define the ring short integer solution problem (R-SIS) similar to [30].
Definition 2 (Ring short integer solution problem R − SISn,k,q,β). Given a1, ..., ak ←$

Rq. Then the ring short integer solution problem R − SISn,k,q,β is to find solutions
u1, ..., uk, uk+1 ∈ Rq, ui 6= 0 for at least one i, such that (a1, ..., ak, 1) · (u1, ..., uk+1)T =
a1u1 + ...+ akuk + uk+1 = 0 mod q and ‖u1‖, ..., ‖uk+1‖ ≤ β.

We define the learning with errors distribution and the ring learning with errors problem
(LWE) in the following.
Definition 3 (Learning with Errors Distribution). Let n, q > 0 be integers, s ∈ R, and χ be
a distribution over R. We define by Ds,χ the LWE distribution which outputs (a, 〈a, s〉+e) ∈
Rq ×Rq, where a←$ Rq and e← χ.

Since our signature scheme is based on the decisional learning with errors problem, we
omit the definition of the search version and state only the decisional learning with errors
problem.
Definition 4 (Ring Learning with Errors Problem R − LWEn,m,q,χ). Let n, q > 0 be
integers and χ be a distribution over R. Moreover, let s ∈ R and Ds,χ be the learning
with errors distribution. Given m tuples (a1, t1), ..., (am, tm), the decisional ring learning
with errors problem R − LWEn,m,q,χ is to distinguish whether (ai, ti) ← U(Rq × Rq) or
(ai, ti)← Ds,χ for all i.
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5.1 Provable security in the (quantum) random oracle model

The security of our scheme qTESLA is supported by two statements reducing the hard-
ness of lattice-based assumptions to the security of our proposed signature scheme in the
(quantum) random oracle model. In this subsection we give the two statements but we do
not give formal security proofs since they are very close to the original results as explained
below.

The first reduction (cf. Theorem 5) follows the approach proposed by Bai and Galbraith [14]
closely and gives a non-tight reduction from R-LWE and R-SIS to the existentially unforge-
ability under chosen-message attack (EUF-CMA) of qTESLA in the random oracle model.

Theorem 5. Let 2n ·
(
n
h

)
≥ 2λ, (2R+1)2 ≥ qn2κ, and q > 4B. If there exists an adversary

A that forges a signature of the signature scheme qTESLA described in Section 2.2 in time
tΣ and with success probability εΣ, then there exists a reduction R that solves either

• the R− LWEn,m,q,σ with m = 1 problem in time tLWE ≈ tΣ with εLWE ≥ εΣ/2, or

• the R−SISn,k,q,β problem with β = max{k2d−1, 2(B−U)}+2hR in time tSIS ≈ 2tΣ

with εSIS ≥ 1
2(εΣ − 1

2κ )
(

(εΣ− 1
2κ

)

qh
− 1

2κ

)
+ εΣ/2 with our choice of parameters.

The second security reduction (cf. Theorem 6) gives a tight reduction in the quantum
random oracle model from R-LWE to EUF-CMA of qTESLA. In our opinion the second
theorem is much stronger since it shows security against adversaries that have quantum
access to a quantum random oracle and we will therefore always refer to Theorem 6 when
we talk about the security of the scheme. We emphasize that Theorem 6 gives a reduc-
tion from the decisional ring learning with errors problem where in Theorem 5 also the
decisional ring SIS problem is used. Currently, Theorem 6 holds assuming a conjecture as
stated and explained below.

Theorem 6. Let the parameters be as in Table 1. Furthermore, assume that Conjec-
ture 7 holds. If there exists an adversary A that forges a signature of the signature scheme
qTESLA described in Section 2.2 in time tΣ and with success probability εΣ, then there
exists a reduction R that solves the R−LWEn,m,q,σ problem with m = 1 in time tLWE ≈ tΣ
with εΣ ≤ 23λ+(d+1) ·3·q3

s(qs+qh)2

q + 2qh+5
2λ

+ εLWE with our choice of parameters.

The proof follows the approach proposed in [9] except for the computation of the two
probabilities coll(a, e) and nwr(a, e) that we explain in the following. For simplicity we
assume that the randomness is sampled uniformly random in Rq,[B] as in Algorithm 2. We
define ∆L to be the set {x − x′ : x, x′ ∈ R and [x]M = [x′]M ∈ Rq,[2d−1]}. Furthermore,
we call a polynomial w well-rounded if w is in Rq,[bq/2c−L] and [w] ∈ Rq,[(2d−L)]. We define
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the following quantities for keys (a, t), (s, e)

nwr(a, e)
def
= Pr

(y,c)∈Y×H
[ay − ec not well-rounded ] (5)

coll(a, e)
def
= max

(w)∈W

{
Pr

(y,c)∈Y×H
[[ay − ec]M = w]

}
. (6)

Informally speaking nwr(a, e) refers to the probability over random (y, c) that ay − ec is
not well-rounded. This quantity varies as a function of a, e. In contrast to [9], we cannot
upper bound this in general in the ring setting. Hence, we first assume that nwr(a, e) < 2

3
and afterwards check experimentally that this holds true. As our acceptance probability
of w in line 19 of Algorithm 7 (signature generation) is at least 0.34 for all parameter sets
(cf. δw in Table 1), the bound nwr(a, e) < 2

3 holds.

Secondly, we need to bound the probability coll(a, e). In [9, Lemma 4] the corresponding
probability coll(A,E) for standard lattices is upper bounded. Unfortunately, we were
not able to transfer the proof to the ring setting for the following reason. In the proof
of [9, Lemma 4], it is used that if the randomness y is not equal to 0 the vector Ay
is uniformly random distributed over Zq and hence also Ay − Ec is uniformly random
distributed over Zq. This does not necessarily hold if the polynomial y is chosen uniformly
in Rq,[B]. Moreover, in Equation (99) in [9], ψ denotes the probability that a random vector
x ∈ Zmq is in ∆L:

ψ
def
= Pr

x∈Zmq
[x ∈ ∆L] ≤

(
2d+1

q

)m
. (7)

The quantity ψ is a function of the TESLA parameters q,m, d. It is negligibly small.

We cannot prove a similar statement for the signature scheme qTESLA over ideals. In-
stead, we need to conjecture the following.

Conjecture 7. Let I be a non-zero ideal in Rq and let r ∈ Rq be a fixed choice of ring
elements. Then it holds that the probability over a uniformly distributed element x ←$ I
that x+ r ∈ ∆L is negligibly small.

The intuition behind our conjecture is as follows. Let ψI denote the probability that a
random element from the ideal I lands in ∆L. We know that ψI is small when the ideal
I = Rq, i.e., a negligibly small fraction of elements from Rq are in ∆L. Furthermore, the
set ∆L appears to have no relationship with the ideal structure of the ring, so it seems
reasonable to view each ideal as a ”random” subset of Rq in the following sense: No larger
or smaller portion of elements in the ideal I is in ∆L than that portion of elements of Rq
that is in ∆L.

Hence, the corresponding statement described above and needed in [9, Lemma 4] translates
for qTESLA to the following. If y 6= 0 then ay is a uniformly random element of some non-
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zero ideal I. The polynomial c is fixed and the polynomial e is independent of the polynomial
a, and y. Hence, by our conjecture (with x = ay and r = ec) it holds that the probability
of Equation (107) in [9] is negligibly small. Thus, assuming that our conjecture holds
true, [9, Lemma 4] and hence the security reduction in [9] holds for qTESLA as well.

5.2 Bit security of our proposed parameter sets

In the following we describe how we estimate the concrete security of our proposed parame-
ters. To this end, we first describe how the security of our scheme depends on the hardness
of R-LWE and afterwards we describe how we derive the bit hardness of the underlying
R-LWE instance. We classify our three parameter sets according to NIST’s categories of
security in Section 2.5.

5.2.1 Correspondence between security and hardness

The security reduction given in Section 5.1, Theorem 6 provides a reduction from the
hardness of the decisional ring learning with errors problem and bounds explicitly the
forging probability with the success probability of the reduction. More formally, let εΣ
and tΣ denote the success probability and the run time of a forger against our signature
scheme and let εLWE and tLWE denote analogous quantities for the reduction presented
in the proof of Theorem 6. We say that R-LWE is η-bit hard if tLWE/εLWE ≥ 2η; and we
say that the signature scheme is λ-bit secure if tΣ/εΣ ≥ 2λ.

Since we choose parameters such that εLWE ≈ εΣ and tΣ ≈ tLWE , the bit hardness of the
R-LWE instance is the same as the bit security of our signature scheme.

5.2.2 Estimation of the hardness of R-LWE

Since the introduction of the learning with errors problem over rings [52], it is an open
question whether the R-LWE problem is as hard as the LWE problem. Several results exist
that exploit the ideal structure of some ideal lattices [23, 26, 35, 37]. However, up to now,
these results are not known to be applicable to R-LWE. In particular, the found weaknesses
do not apply to our instances. Consequently, we estimate the hardness of R-LWE using
state-of-the-art attacks against LWE.

Albrecht, Player, and Scott [8] presented the LWE-Estimator, a software to estimate the
hardness of LWE given the matrix dimension n, the modulus q, the relative error rate

α =
√

2πσ
q , and the number of given LWE samples. The LWE-Estimator estimates the

hardness against the fastest LWE solvers currently known, i.e., it outputs an upper (conser-
vative) bound on the number of operations an attack needs to break a given LWE instance.
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In particular, the following attacks are considered in the LWE-Estimator : The meet-in-
the-middle exhaustive search, the coded Blum-Kalai-Wassermann algorithm [42], the dual
lattice recently published [3], the enumeration approach by Linder and Peikert [49], the
primal attack described in [6,15], and the Arora-Ge algorithm [11] using Gröbner bases [4].
Moreover, the latest analysis to compute the block sizes used in the lattice basis reduction
BKZ published recently by Albrecht et al. [2] are implemented.

Furthermore, quantum speed-ups for the sieving algorithm used in BKZ [47, 48] are con-
sidered. Another recent quantum attack, called quantum hybrid attack, by Göpfert, van
Vredendaal, and Wunderer [40] is not considered in our analysis (and the LWE-Estimator).
The hybrid attack is most efficient on the learning with errors problem with very small
secret and error, e.g., binary or ternary. Since the coefficients of the secret and error of
qTESLA are chosen Gaussian distributed, the attack is not efficiently applicable on our
instances.

The LWE-Estimator is the result of many different contributions and contributors. It is
open source and hence easily checked and maintained by the community. Hence, we find
the LWE-Estimator to be a suitable tool to estimate the hardness of our chosen LWE
instances. We integrated the LWE-Estimator with commit-id 9302d42 on 2017-09-27 in
our sage script.

In the following we describe very briefly the most efficient LWE solvers for our instances, i.e.,
the decoding attack and the embedding approach, following closely the description of [18].
The Blum-Kalai-Wasserman algorithm [5, 46] is omitted since it requires exponentially
many samples.

The embedding attack. The standard embedding attack solves LWE via reduction to
the unique shortest vector problem (uSVP). During the reduction an m + 1-dimensional
lattice that contains the error vector e is created. Since e is very short for typical LWE
instances, this results in a uSVP instance that is usually solved by applying basis reduc-
tion.

Let (A, c = As+ e mod q) and t be the distance dist(c, L(A)) = ‖c− x‖ where x ∈ L(A),
such that ‖c−x‖ is minimized. Then the lattice L(A) can be embedded in the lattice L(A′),

with A′ =

(
A c
0 t

)
. If t < λ1(L(A))

2γ , the higher-dimensional lattice L(A′) has a unique

shortest vector c′ = (−e, t) ∈ Zm+1
q with length ‖c′‖ =

√
mα2q2/(2π) + |t|2 [27,51]. In the

LWE-Estimator t = 1 is used. Therefore, e can be extracted from c′, As is known, and s
can be solved for. Based on Albrecht et al. [7], Göpfert shows [39, Section 3.1.3] that the

standard embedding attack succeeds with non-negligible probability if δ0 ≤

(
q1− nm

√
1
e

ταq

) 1
m

,
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where m is the number of LWE samples. The value τ is experimentally determined to be
τ ≤ 0.4 for a success probability of ε = 0.1 [7].

The efficiency of the embedding attack highly depends on the number of samples. In
case of LWE instances with limited number of samples, the lattice Λ⊥q (Ao) = {v ∈
Zm+n+1|Ao · v = 0 mod q} with Ao =[A|I|b] can be used as the embedding lattice.

The decoding attack. The decoding attack treats an LWE instance as an instance
of the bounded distance decoding problem (BDD). The attack can be divided into two
phases: Basis reduction and finding closest vector to target vector. In the first phase,
basis reduction algorithms like BKZ [55] are applied. Afterwards, in the second phase, the
nearest plane algorithm [13] (or variants) are applied to find the closest vector to As and
thereby eliminate the error vector e of the LWE instance. Now, the secret can be accessed,
as the closest vector equals an LWE instance’s As.

5.3 Resistance to implementation attacks

Recently, the scheme ring-TESLA [1] was analyzed with respect to cache side channels
with the software tool CacheAudit [20]. It was the first time that a post-quantum scheme
was analyzed with program analysis. The authors found potential cache side channels, pro-
posed countermeasures, and showed the effectiveness of their mitigations with CacheAudit.
Since the implementation of ring-TESLA is similar to our implementation of qTESLA, we
implemented all countermeasures proposed in [20] to secure our scheme against bit leakage
via cache side channels.

The implementation of ring-TESLA was also analyzed regarding fault attacks [19,36] and
it was found that ring-TESLA is vulnerable to fewer fault attacks then, e.g., the signature
scheme BLISS [29]. Due to the similarities of the implementations of ring-TESLA and
qTESLA, the results from [19] are transferable to qTESLA. Another possible fault attack
is described in Section 5.4.

5.4 Deterministic vs. probabilistic signature scheme

The following discussion is about how to generate the randomness y in Algorithm 7, line
4-6, and how different approaches prevent or enable different attacks.

In the current description in Algorithm 7, signatures are generated deterministically, i.e.,
for the same message always the same signature is generated. To this end an additional
secret seedy is part of the secret key. The value seedy is used to generate a randomness rand
and afterwards, rand is used to generate the polynomial y. The advantage of this approach
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is that a different randomness is used for different messages with very high probability.
Hence, attacks that exploit a fixed randomness, such as done for Sony’s playstation 3 [22],
are prevented. Another advantage is that no access to a source of high-quality randomness
is needed.

Our approach, however, might open a vulnerability to a fault attack proposed in [53] and
briefly described in the following: Assume a signature (z, c) is generated for message m.
Afterwards, a signature for the same message m is asked again. However, during the
generation of the second signature a fault is injected on the hash value c yielding the
value cfaulted, hence the second signature is (zfaulted, cfaulted). Computing z − zfaulted =
sc − scfaulted = s(c − cfaulted), gives the s since c − cfaulted is known to the attacker. The
authors of [53] argue that the attack is rather realistic and that it is applicable to all
deterministic Schnorr-like signatures. To prevent the fault attack but to still get new
randomness for every message one could use weak randomness as input for the PRF. For
example, instead of using the same seedy from the secret key, seedy ←$ {0, 1}κ could be
sampled freshly every time. This would yield again a probabilistic signature scheme. Hence,
we decided to stick to our proposal. Furthermore, in [53] the attack is only described against
ECDSA and EdDSA signatures. Due to the rejection sampling and other correctness checks
during the signature generation, this fault attack might not be as successful on our signature
scheme as it is on ECDSA and EdDSA signatures.

6 Advantages and limitations

In this section we summarize the advantages and limitations of our proposed signature
scheme qTESLA. Within that we compare our scheme with other post-quantum and clas-
sical signatures.

Security of our signature scheme. Our signature scheme is provably EUF-CMA se-
cure: a security reduction from the hardness of the decisional ring learning with errors
problem to EUF-CMA security of our scheme is given. Our security reduction (cf. Theo-
rem 6) is given in the quantum random oracle model, i.e., a quantum adversary is allowed
to ask the random oracle in super position. Our security reduction is based on a variant of
our scheme over standard lattices [9]. To port the reduction given in [9], we use a heuristic
argument as explained in Section 5.1. Our security reduction is explicit, i.e., we can ex-
plicitly give the relation between the success probabilities of solving the R-LWE problem
and to forge signatures of qTESLA. Our security reduction is tight which is a desirable
property because when choosing the scheme’s parameters according to security reductions,
tight reductions lead to smaller parameters and hence better performance.
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Choice of parameters. Parameters can be chosen either heuristically or according to
existing security reductions. The heuristic approach identifies the security level of an
instantiation of a scheme by a certain parameter set with the hardness level of the instance
of the underlying lattice problem that corresponds to these parameters regardless of the
tightness gap of the provided security reduction. The parameter choice according to a
reduction can be considered as a more convincing security argument since it provably
guarantees that our scheme has the selected security level as long as the corresponding
R-LWE instance is intractable. Our three parameter sets are chosen regarding our given
quantum security reduction.

The security of our proposed parameter sets are estimated against known state-of-the-art
classical and quantum algorithms to solve the learning with errors problem. Furthermore,
our parameters are chosen with a comfortable gap between the targeted and the estimated
bit security they provide such that they might be secure against improved or unknown LWE
solvers as well. Moreover, our choice of parameters is easy comprehensible: All relations be-
tween the parameters are explained and we make our sage script used to choose parameters
available2. Hence, if more parameter sets are needed they can be chosen easily.

Ease of Implementation. qTESLA has a very compact structure consisting of a few,
ease-to-implement functions. Moreover, in contrast to popular R-LWE based schemes,
qTESLA does not enforce the use of the number theoretic transform (NTT), i.e., its use
is optional and the scheme remains fully compatible with an implementation that uses a
straightforward schoolbook polynomial multiplication. This design decision enables the
possibility of even simpler implementations. Another advantage of qTESLA is that Gaus-
sian sampling is only required during key generation. Even if the fast Gaussian sampler
included in this document is not used, most applications will not be impacted by the use
of a slower Gaussian sampler.

Implementation attacks. We protect the signature generation against cache side chan-
nels by implementing the countermeasures proposed in [20]. Furthermore, the predecessor
of our proposed scheme was already analyzed with respect to fault attacks [19,36].

Applicability of our scheme. Our proposal is a good candidate to be integrated to hy-
brid signature schemes easing the transition from classical to post-quantum cryptography.
The key sizes of all three parameter sets are small enough to be used in hybrid signature
schemes [21]. Following [21] it should be appropriate to be used in X.509 standard version
3 [25], to be used in TLSv1.2 [28] for most browsers and libraries tested in [21], and to

2It is called parameterchoice.sage and can be found in the submission folder
“Script to choose parameters”.
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be used in the Cryptographic Message Syntax (CMS) [43] that is the main cryptographic
component of S/MIME [54].

Comparison with selected state-of-the-art signature schemes. In the following we
give a comparison of the key and signature sizes with selected classical and post-quantum
signature schemes. We do not compare qTESLA with other post-quantum signatures
regarding the running time because cycle counts, in particular for lattice-based signature
schemes, are usually given for optimized implementations that utilize fast AVX2 arithmetic.
Such optimizations, however, are not requested by NIST. A comparison of cycle counts
obtained from different platforms might be misleading.

Table 4 summarizes the key and signature sizes of selected signature schemes. Moreover, it
also states the underlying computational assumptions although not all construction do rely
provably on the corresponding hardness assumption. Furthermore, only few of the param-
eters in the table are chosen according to provided security reductions and the bit security
of the parameters are not always estimated against classical and quantum adversaries. We
distinguish the different was to choose parameters in the table.

As can be seen in Table 4, qTESLA is among the post-quantum schemes with the smallest
signature size if parameters are chosen with regard to quantum algorithms. In particular,
the signature size of qTESLA is several magnitudes smaller than hash-based and multi-
variate signatures. Only the lattice-based scheme BLISS has noticeably smaller signatures.
The parameters proposed for BLISS, however, are not chosen with state-of-the-art meth-
ods, not according to the provided security reduction, and the bit security is not estimated
against quantum adversaries.

In comparison with the classical signature schemes RSA and ECDSA for the same security
level, qTESLA has larger signature sizes. However, qTESLA is comparable with RSA-3072
in view of secret key size.
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Table 4: Overview of selected state-of-the-art post-quantum and classical signature
schemes; signature and key sizes are given in byte [B]; we write “–” if no correspond-
ing data is available

Software/
Scheme

Comp.
Assum.

Bit
Security

Key Size
[B]

Sig. Size
[B]

Selected lattice-based signatures schemes

qTESLA qTesla-128a

(this document)
R-LWE 128b pk: 2 976

sk: 1 856
2 720

qTESLA qTesla-192a

(this document)
R-LWE 192b pk: 6 176

sk: 4 160
5 664

qTESLA qTesla-256a

(this document)
R-LWE 256b pk: 6 432

sk: 4 128
5 920

Dilithium -high
[30]

module SIS
module LWE

125b pk: 1 472
sk: –

2 700

GPV-polya

[34, 38]
R-SIS 96c pk: 55 705

sk: 26 316
32 972

BLISS-B-IV
[31,57]

R-SIS,
NTRU

182c pk: 896
sk: 384

812

Selected other post-quantum signature schemes

gravity-SPHINCS
[12]

Hash collisions,
2nd preimage

128b pk: 32
sk: 64

22 304

SPHINCS-256
[17]

Hash collisions,
2nd preimage

128b pk: 1 056
sk: 1 088

41 000

MQDSS-31-64
[24]

Multivariate
Quadratic system

128b pk: 72
sk: 64

40 952

Selected classic signature schemes

RSA-3072
[56]

Integer
Factorization

128d pk: 384
sk: 1 728

384

ECDSA (P-256)
[44]

Elliptic Curve
Discrete Logarithm

128d pk: 64
sk: 96

64

aParameters are chosen according to given security reduction in the quantum random oracle model.
bBit security analyzed against classical and quantum adversaries.
cBit security analyzed against classical adversaries.
dBroken against quantum computers (bit security analyzed against classical adversaries).
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[39] Florian Göpfert. Securely Instantiating Cryptographic Schemes Based on the Learning
with Errors Assumption. PhD thesis, Darmstadt University of Technology, Germany,
2016.
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[44] James Howe, Thomas Pöppelmann, Máire O’neill, Elizabeth O’sullivan, and Tim
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