
   

  
     

  
   

   
                    

                        
              

 
     

From: Greg Zaverucha <gregz@microsoft.com> 
Sent: Monday, August 5, 2019 8:57 PM 
To: pqc-forum 
Cc: pqc-comments; Daniel Kales 
Subject: OFFICIAL COMMENT: MQDSS 
Attachments: mqdss_attack.pdf 

Hello PQC forum 
Recently we found an attack on the proposed parameters for the MQDSS signature scheme. Attached is a short write-up 
describing the attack. We hope to have a more complete write-up on ePrint in the near future. The MQDSS team has confirmed 
the attack is valid, and they will send an update to the mailing list. 

Greg Zaverucha & Daniel Kales 
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Abstract

MQDSS is a post-quantum signature scheme, currently a second round candidate
in the NIST post-quantum cryptography standardization project. It is built from
a 5-pass identification scheme relying on the hardness of the MQ-problem. To
transform the 5-pass identification scheme into a signature scheme, a generalization
of the Fiat-Shamir transformation is used. In this note, we present a forgery attack
on the proposed instances of MQDSS. Concretely, forging a signature for the L1
instance of MQDSS, which should provide 128 bits of security, can be done in ≈ 295

hash function calls with high probability. We verify the validity of the attack by
implementing it for round reduced versions of MQDSS, and show that we can forge
a signature for 40 rounds of MQDSS with ≈ 229 hash function calls. Even though
a security proof of the scheme exists and we did not find a flaw in it, the proof is
not tight enough to rule out these attacks. Our attack does not break the MQDSS
design, rather the proposed parameter sets. One mitigation is to increase the number
of rounds by a factor of roughly 1.4.

1 Preliminaries

We give a short background on some of the cryptographic building blocks involved in
the MQDSS signature scheme. We use the same notation as the MQDSS specification
document [CHR+18].

1.1 Canonical (2n+ 1)-pass Identification Schemes

Canonical (2n+1)-pass identification schemes are a class of identification schemes which
follow a certain message structure. First the prover sends an initial commitment com,
then the two parties engage in n rounds, where the verifier sends a challenge chi, to which
the prover responds with respi. We depict a 5-pass identification scheme in Figure 1.

∗Work done at Microsoft Research.
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Prover Verifier
com← P0(sk) com

ch1
$← ChS1(1k)ch1

resp1 ← P1(sk , com, ch1) resp1

ch2
$← ChS2(1k)ch2

resp2 ← P2(sk , com, ch1, resp1, ch2) resp2

b← V(pk , com, ch1, resp1, ch2, resp2)

Figure 1: A canonical 5-pass identification scheme.

1.2 Fiat-Shamir Transformation for a class of 5-pass ID schemes

In [CHR+16], Chen et al. give a Fiat-Shamir transformation for a certain class of 5-
pass identification schemes. They note that many existing 5-pass identification schemes
follow a certain structure, given in Definition 1.

Definition 1 (q2-Identification scheme [CHR+16]). Let k ∈ N. A q2-Identification
scheme IDS(1k) is a canonical 5-pass identification scheme where for the challenge spaces
C1 and C2 it holds that |C1| = q and |C2| = 2. Moreover the probability that the
commitment com takes a given value is negligible (in k), where the probability is taken
over the random choice of the input and the used randomness.

Definition 2 (q2-Extractor [CHR+16]). We say that a q2-Identification scheme IDS(1k)
has a q2-extractor if there exists a PPT algorithm E, the extractor, that given a public

key pk and four transcripts trans(i) = (com, ch
(i)
1 , resp

(i)
1 , ch

(i)
2 , resp

(i)
2 ), i ∈ {1, 2, 3, 4}, with

ch
(1)
1 = ch

(2)
1 6= ch

(3)
1 = ch

(4)
1 ,

ch
(1)
2 = ch

(3)
2 6= ch

(2)
2 = ch

(4)
2 ,

which are valid with respect to pk, outputs a matching secret key sk for pk with non-
negligible success probability (in k).

The soundness error of an identification scheme, denoted κ, is the probability that the
q2-extractor fails, and often κ is not sufficiently small to provide cryptographic security.
The soundness error can be boosted by running r instances of the identification scheme
in parallel. The parameter r is called the number of rounds or parallel repetitions. Chen
et al. [CHR+16] give a proof in the ROM for a Fiat-Shamir transform of q2-IDS, if they
additionally have a so-called q2-extractor (Definition 2).

Construction 1 (Fiat-Shamir transform for q2-IDS [CHR+16]). Let k ∈ N be the secu-
rity parameter, IDS = (KGen,P,V) a q2-Identification scheme that achieves soundness
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with constant soundness error κ. Select r the number of (parallel) rounds of IDS, such
that κr = negl(k), and that the challenge spaces of the composition IDSr, Cr1 , C

r
2 have

exponential size in k. Moreover, select cryptographic hash functions H1 : {0, 1}∗ 7→ Cr1
and H2 : {0, 1}∗ 7→ Cr2 . The q2-signature scheme q2-Dss(1k) derived from IDS is the
triplet of algorithms (KGen, Sign,Vf) with:

• (sk , pk)← KGen(1k)

• σ = (σ0, σ1, σ2) ← Sign(sk ,m) where σ0 = com ← Pr0(sk), h1 = H1(m,σ0), σ1 =
resp1 ← Pr1(sk , σ0, h1), h2 = H2(m,σ0, h1, σ1) and σ2 = resp2 ← Pr2(sk , σ0, h1, σ1, h2).

• Vf(pk ,m, σ) parses σ = (σ0, σ1, σ2), computes the values h1 = H1(m,σ0), h2 =
H2(m,σ0, h1, σ1) as above and outputs Vr(pk , σ0, h1, σ1, h2, σ2).

Theorem 1.1 (EU-CMA security of q2-signature schemes [CHR+16]). Let k ∈ N,
IDS(1k) be a q2-IDS that is honest-verifier zero-knowledge, achieves soundness with
constant soundness error κ and has a q2-extractor. Then q2-Dss(1k), the q2-signature
scheme derived applying Construction 1 is existentially unforgeable under adaptive cho-
sen message attacks.

The proof of Theorem 1.1 is given in [CHR+16]. However, the authors also note
that the proof is non-tight. The number of parallel rounds r are chosen according to the
soundness error of the underlying IDS, ignoring the potential loss in security that comes
from the non-tightness of the proof.

2 Forgery attacks on MQDSS

Chen et al. [CHR+16] give a concrete instantiation – called MQDSS – by applying Con-
struction 1 to the 5-pass identification scheme from [SSH11]. MQDSS is a post-quantum
signature scheme submitted to the NIST post-quantum standardization project. For a
detailed description of the 5-pass identification scheme we refer to [SSH11, Section 4].
For a complete description of the signature scheme MQDSS we refer to [CHR+18].

MQDSS versions. In August 2018, the MQDSS team updated their specification and
recommended parameter sets, due to the original parameters mistakenly being selected
for a higher security level. This new parameter sets were called MQDSS v1.1. Addition-
ally, in March 2019 the MQDSS team modified the scheme to include a random string
ρ of length 2κ in their commitments. At the time of writing, this is the latest version
of MQDSS, MQDSS v2.0. Our attack applies to both, MQDSS v1.1 and v2.0, but in
the following, we will use MQDSS v2.0 to be compatible with the most recent reference
implementation.

2.1 Description of the Attack on MQDSS

The basic idea of the attack is to split the attacker work between two phases: We try to
guess ch1 for N1 rounds, and then move on to guess ch2 for the remaining rounds. For
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Algorithm 1 Forge(pk,Msg)

Parse pk as v, SF
F← XOFF(SF)

r
(1)
0 , . . . , r

(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0

$← Fn×3rq

α∗
$← Fq

s∗
$← Fnq

for j ∈ {1, . . . , r} do

r
(j)
1 ← s∗ − r

(j)
0

t
(j)
1 ← α∗ · r(j)0 − t

(j)
0

e
(j)
1 ← α∗ · F(r

(j)
0 )− e

(j)
0

ρ
(j)
0 , ρ

(j)
1

$← {0, 1}2κ×2

com
(j)
0 ← H

(
ρ
(j)
0 , r

(j)
0 , t

(j)
0 , e

(j)
0

)
com

(j)
1 ← H

(
ρ
(j)
1 , r

(j)
1 , α∗ · (v − F(r

(j)
1 ))−G(t

(j)
1 , r

(j)
1 )− α∗ · F(r

(j)
0 ) + e

(j)
0

)
end for
σ0 ← H(com

(1)
0 , com

(1)
1 , . . . , com

(r)
0 , com

(r)
1 )

repeat

R
$← {0, 1}2κ

D ← H(pk ||R||Msg)
ch1 ← H1(D,σ0)
Parse ch1 as ch1 = {α(1), . . . , α(r)}, α(j) ∈ Fq

until at least N1 of α(j) are equal to α∗

repeat
guess← {0, 1}r // in practice, a counter is used to ensure unique hash inputs
for j ∈ {1, . . . , r} do

if α(j) = α∗ then
resp

(j)
1 ← (t

(j)
1 , e

(j)
1 )

else if bit j of guess is 0 then

resp
(j)
1 ←

(
α(j) · r(j)0 − t

(j)
0 , α(j) · F(r

(j)
0 )− e

(j)
0

)
else

resp
(j)
1 ←

(
t
(j)
1 , (α(j) − α∗) · (v − F(r

(j)
1 )) + α∗ · F(r

(j)
0 )− e

(j)
0

)
end if

end for
σ1 ← (resp

(1)
1 , . . . , resp

(r)
1 )

ch2 ← H2(D,σ0, ch1, σ1)
until bits of ch2 agree with guess in positions j where α(j) 6= α∗

for j ∈ {1, . . . , r} do

resp
(j)
2 ← (ρ

(j)
ch2[j]

, r
(j)
ch2[j]

)
end for
σ2 ← (resp

(1)
2 , . . . , resp

(r)
2 )

return σ = (R, σ0, σ1, σ2)
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many 5-pass identification schemes, including the one used in MQDSS, guessing just one
of the two challenges correctly allows the prover to cheat. In the non-interactive version,
we leverage the fact that these phases can be repeatedly and separately attacked offline.

In [CHR+16], Chen et al. give a basic strategy for a cheating adversary, that works
as follows: The cheater chooses α∗ as guess for ch1 and uses a randomly chosen secret key
s∗. He follows the protocol as specified, but computes r1 = s∗ − r0, t1 = α∗r0 − t0 and
e1 ← α∗ ·F(r0)−e0 instead. He also computes the commitment (com0, com1) as com0 ←
H (ρ0, r0, t0, e0) and com1 ← H (ρ1, r1, α

∗ · (v − F(r1))−G(t1, r1)− α∗ · F(r0) + e0). If
ch2 is equal to 0, the recomputed check does not involve the public key v and will
therefore always pass. For ch2 = 1, the cheater set up the values in a way that the check
will still pass if ch1 was equal to α∗. For our attack, it is important that a bad guess for
α∗ can be masked by a correct guess of ch2, without the verifier noticing. This fact allows
us to improve the basic attack strategy by trying to guess ch1 for all parallel repetitions
(subsequently fixing any bad guesses in phase 2), not only for a predetermined subset
of the repetitions, increasing the success probability to guess N1 first round challenges
correctly from (1q )N1 to P1(N1) as given by Equation 1.

Our cheater now has the problem of how to efficiently generate different inputs (still
passing verification) to the challenge hash functions H1 and H2. For phase 1, this is
quite easy, since the signature includes a random salt value R, which is allowed to be
chosen freely by the attacker. Therefore an attacker fixes a guess of α∗ once, computes
the first message σ0 and then varies R until N1 of the first challenges agree with α∗. For
the second phase we have already fixed R, and can therefore not use the same strategy.
However, we can modify the values sent in the second message σ1 in the following way.
While the values of t1 and e1 computed as given by the above cheating algorithm are
always correct for ch2 = 0, and fail to verify for ch2 = 1, we can also come up with
different t1 and e1 that are correct for ch2 = 1, but fail for ch2 = 0. To achieve this we
use the same t1, but compute e1 such that it corrects the error in com1, specifically as
e1 ← (α(j) − α∗) · (v−F(r1)) + α∗ ·F(r0)− e0. Now our attacker has 2 possible values
to send for each second phase round, enabling him to try 2r−N1 different inputs to H2,
and with high probability one of those inputs results in the correct guess for all ch2 for
the remaining r −N1 repetitions. The full attack is given in Algorithm 1.

parameter set κ m = n q r N1 #H rnew

MQDSS-toy 38 48 31 40 11 229 53
MQDSS-L1 128 48 31 135 41 295 184
MQDSS-L3 192 64 31 202 61 2141 277
MQDSS-L5 256 88 31 268 82 2180 370

Table 1: Parameter sets for MQDSS instances. r is the number of rounds of MQDSS v2.0, rnew
is the number of rounds required to resist this attack. (Instance for security level L5 not officially
submitted to NIST). N1 is the number of rounds to attack in the first phase, while #H gives an
estimate of the required hash function calls for a single forgery.
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Alternative for Phase 2. Instead of the adversary trying all different combinations
as shown above, he can also fix all but the last repetition, and just vary the responses
for this repetition in the following way. Choose a random t1 and then calculate e1 as
e1 ← (α(j) − α∗) · (v − F(r1)) + α∗ · F(r0) + G(t0, r1) −G(t1, r1) − e0. This response
is always valid for ch2 = 1. Due to choosing t1 at random, we have qn different possible
hash inputs. This method allows us to fix all other repetitions, but requires us to always
calculate G(t1, r1) instead of being able to cache the output once, like we can do for
the other variant. Additionally, this can be used in combination with the other strategy,
especially for the case when we exhaust all 2r−N1 possible inputs to H2, allowing us to
continue the attack without having to repeat the first phase.

2.2 Attack Parameters and Mitigation

For the attack, we want to achieve an optimal tradeoff between the work needed for
passing the first phase and the work needed for passing the second phase. If we guess
N1 challenges for the first phase correctly, we can answer both possible challenges for
these correct guesses in the second phase, only needing to guess the remaining r − N1

second round challenges.
The probability of guessing at least N1 first round challenges from a challenge space

of size |C1| = q correctly is given by Equation 1.

P1(N1) = Pr(guess at least N1 of r challenges) =
r∑

k=N1

(
1

q

)k (q − 1

q

)r−k (r
k

)
. (1)

To achieve the best tradeoff in terms of attacker efficiency, we want to minimize the
total work for completing both phases. Therefore, the optimal number of rounds to
attack in the first phase is given by

N1 = arg min
0≤N ′1≤r

(
1

P1(N ′1)
+ 2r−N

′
1

)
,

i.e., the value of N1 which minimizes the total cost of the attack. We assume here that
both phases are of equal cost, and give some discussion of the cost of the two phases
in Section 2.3. A slightly better choice of N1 is possible by weighting the cost of each
phase, based on the costs of a given attack implementation.

We give the numbers for N1 for different instances in Table 1, together with the
estimated number of random oracle calls for a single forgery and the number of parallel
repetitions rnew that are required so that the expected number of random oracle calls
for this attack is at least 2κ. We stress that we have only briefly investigated mitigation
options, and our proposal here should be considered preliminary. After communicating
the attack with the MQDSS designers, they have informed us they plan to update the
MQDSS specification.
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2.3 Practical Verification

To verify the validity of the attack, we implemented it and attacked round-reduced
versions of MQDSS. Our MQDSS-toy instance from Table 1 has the same parameters
as the instance for the L1 security level, however, we reduced the number of parallel
repetitions of the underlying identification scheme from 135 to 40. Based on the formula
for the security of MQDSS – κ = (12 + 1

2q )r – these 40 rounds should provide about 38
bits of security. The underlying MQ problem instance is not modified.

Based on our analysis in Section 2.2, we choose the number of rounds to attack in
phase 1 to be N1 = 11. The estimated number of random oracle calls is approximately
229, while for our experiments the average over 10 runs is 227.98, all taking between 1
and 12 minutes on a standard desktop PC.

Notes on the implementation. Our implementation also uses a constant amount of
memory independent of the security level, making the only real cost producing the inputs
to the hash function and executing it, which is very suitable for hardware acceleration.
We also provide a more efficient variant of the attack using AVX2 wherever possible
and using a Gray code to minimize the changes to the hash input of the second phase.
We also observed that even though the first phase has two hash function calls per round
compared to the single one for the second phase, the inputs for the second phase hash are
much longer, requiring multiple calls to the Keccak permutation (about 1 permutation
per 2.25 repetitions). For concrete attack efficiency, this means that attacking 1 or 2
more rounds than given in Table 1 in the first phase is usually faster. We discuss an
alternative way to create responses for the second phase in Section 2.1, which can reduce
the number of calls to the Keccak permutation to 1, but requires the attacker to evaluate
G instead. Based on our experiments, the cost of G is about 8 times the cost of the
Keccak permutation, which should still result in a faster attack in practice, especially
for the larger parameter sets.
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From: simona s <simona.samardziska@gmail.com>
Sent: Tuesday, August 6, 2019 4:18 PM
To: pqc-forum; pqc-comments
Subject: Re: [pqc-forum] Re: OFFICIAL COMMENT: MQDSS

Dear all, 

We thank Greg and Daniel for their good and insightful work! 
Indeed, the MQDSS team has verified the attack and we confirm its validity. 
We will take appropriate actions to address the implications of the attack. 
As pointed out by Greg and Daniel, the attack asymptotically has exponential complexity. 
Hence, it can be mitigated by adjusting the number of rounds by roughly a factor 1.5.  
We will post our update on the PQC forum as soon as ready. 

We point out that the attack does not invalidate our security proof, 
it rather demonstrates that part of the non-tightness which we considered a proof-artifact 
is indeed related to a real world attack.  
We will work on a more concrete bound for the number of rounds that will 
properly reflect the findings of the attack. 

The MQDSS team 

On Tue, Aug 6, 2019 at 3:14 AM 'daniel.apon' via pqc-forum <pqc-forum@list.nist.gov> wrote: 
Thanks, Greg Z / Daniel K, 

We'll review this immediately. 

--Daniel A 

On Monday, August 5, 2019 at 8:56:39 PM UTC-4, Greg Zaverucha wrote: 

Hello PQC forum 

Recently we found an attack on the proposed parameters for the MQDSS signature scheme.  Attached is a short write-up 
describing the attack.  We hope to have a more complete write-up on ePrint in the near future.  The MQDSS team has 
confirmed the attack is valid, and they will send an update to the mailing list. 

Greg Zaverucha & Daniel Kales 

--  
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/d7a04467-7429-4bc6-
a85c-a82726868bf2%40list.nist.gov. 
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