
NTS-KEM

Second round submission

Principal submitter:

This submission is from the following team, listed in alphabetical order:

� Martin Albrecht, martin.albrecht@rhul.ac.uk, Information Security Group & In-
stitute for Cyber Security Innovation, Royal Holloway University of London, Egham,
Surrey, TW20 0EX, United Kingdom, +44 (0)1784 434455

� Carlos Cid, carlos.cid@rhul.ac.uk, Information Security Group & Institute for Cy-
ber Security Innovation, Royal Holloway University of London, Egham, Surrey, TW20
0EX, United Kingdom, +44 (0)1784 434455

� Kenneth G. Paterson, kenny.paterson@inf.ethz.ch, Information Security Group &
Institute for Cyber Security Innovation, Royal Holloway University of London, Egham,
Surrey, TW20 0EX, United Kingdom, +44 (0)1784 434455; and Department of Com-
puter Science, ETH Zürich, Universitätstrasse 6, CH-8092 Zürich, Switzerland, +41 (0)
44 632 32 52

� Cen Jung Tjhai, cjt@post-quantum.com, PQ Solutions Ltd, 50 Liverpool Street, 5th
�oor, London, EC2M 7PR, United Kingdom, +44 203 713 7388

� Martin Tomlinson, mt@post-quantum.com, PQ Solutions Ltd, 50 Liverpool Street, 5th
�oor, London, EC2M 7PR, United Kingdom, +44 203 713 7388

Auxiliary submitters: There are no auxiliary submitters.

Inventors/developers: The inventors/developers of this submission are the same as the
principal submitter. Relevant prior work is credited below where appropriate.

Owner: PQ Solutions Ltd, 50 Liverpool Street, 5th �oor, London, EC2M 7PR, United
Kingdom.

Signature:

Martin
Albrecht

Carlos Cid
Kenneth G.
Paterson

Cen Jung Tjhai
Martin

Tomlinson

1

mailto:martin.albrecht@rhul.ac.uk
mailto:carlos.cid@rhul.ac.uk
mailto:kenny.paterson@inf.ethz.ch
mailto:cjt@post-quantum.com
mailto:mt@post-quantum.com

Contents

1 Introduction 4

2 Notation and De�nitions 5

2.1 Code-based Cryptography . 6

2.2 Security Notions . 8

3 NTS-KEM: algorithm speci�cation 10

3.1 Key Generation . 11

3.1.1 Detailed description . 12

3.2 Encapsulation . 14

3.3 Decapsulation . 15

3.3.1 Detailed description . 15

3.4 Correctness of NTS-KEM . 17

4 Parameter sets 19

5 Design rationale 20

6 Performance analysis 23

7 NTS-KEM security 28

7.1 IND-CCA security of NTS-KEM . 28

7.2 McEliece OW security: decoding complexity 29

7.2.1 Information-set decoding . 29

7.2.2 Quantitative complexity estimates for inverting the McEliece PKE scheme 31

7.3 Quantum attacks . 32

7.4 Security against other known attacks . 33

2

7.5 Security claims . 35

8 Advantages and limitations 35

References 38

A Binary Field Arithmethic 45

A.1 Addition and Subtraction . 45

A.2 Multiplication . 45

A.3 Modulo Reduction . 46

A.4 Squaring . 47

A.5 Inversion . 48

B Additive Fast Fourier Transform 49

C Polynomial Derivative and GCD 54

D Random Permutation 54

E IND-CCA Security Reduction for NTS-KEM 56

F KATs and Intermediate Values 64

3

1 Introduction

This document contains the proposal of the NTS-KEM key encapsulation mechanism (KEM)
to the NIST Post-Quantum Cryptography Standardization process. NTS-KEM can be seen
as a variant of the McEliece and Niederreiter public-key encryption schemes [McE78, Nie86].
However, compared to those original schemes, NTS-KEM is no longer concerned with the
communication of an encrypted message but rather with the secure communication of a
random key.

Neither McEliece nor Niederreiter, in their pure form, achieve indistinguishability under either
chosen plaintext (IND-CPA) or chosen ciphertext (IND-CCA) attacks. In contrast, NTS-
KEM achieves IND-CCA security (as a KEM) in the Random Oracle Model by employing a
transform akin to the Fujisaki-Okamoto [FO13] or Dent [Den03] transforms.1

The IND-CCA security of NTS-KEM reduces directly to the di�culty of breaking the one-
wayness of the McEliece scheme, which is in turn related to the well-known problem of decod-
ing random linear codes. We propose three sets of parameters in this submission, matching
three of the security strength categories de�ned in NIST's Call for Proposals [NIS16]. This
allows NTS-KEM to be used in applications with a range of pre- and post-quantum security
requirements.

NTS-KEM features e�cient key encapsulation and decapsulation operations, the latter due to
e�cient decoding algorithms for Goppa codes. Ciphertexts are relatively compact, making
the scheme suitable for applications with limited communication bandwidth. In common
with most code-based schemes, NTS-KEM requires large public keys. This arises from our
conservative choice of codes, in which we avoid any cyclic or quasi-cyclic structure. There is
a range of applications in which the use of large public keys would not be considered as a
handicap and where fast operations and compact ciphertexts are considered more important.
Examples of such applications are any that use long-term �xed public keys.

Our choice for a conservative KEM design based on error-correcting codes is motivated by
our desire to provide long-term post-quantum security, which is based on a simple, �exible
and e�cient approach that has been extensively studied and trusted for almost four decades.
The security guarantees come from a well-known mathematical problem and good estimates
of the complexity of classical decoding algorithms, which can be leveraged to provide suitable
levels of security against chosen ciphertext attacks.

Organisation of this document. In Section 2, we de�ne the notation used in this doc-
ument, and provide the de�nitions of the mathematical objects and security notions of rele-
vance to this submission. In Section 3, we provide the full speci�cation of NTS-KEM, with
the recommended sets of parameters given in Section 4. Section 5 contains the design ratio-
nale for NTS-KEM. We discuss and analyse the scheme's implementation and performance

1In this submission, we do not distinguish between non-adaptive and adaptive IND-CCA security. The
reason being that this distinction does not exist for KEMs as the adversary does not choose any messages in
the IND-CCA security game, cf. Section 2.2.

4

in Section 6. In Section 7, we present and justify our security claims for the di�erent pa-
rameter sets, and provide a security analysis of NTS-KEM. We list and discuss the main
advantages, together with any known limitations, of our proposal in Section 8. After a list of
cited references, we provide some introductory material on binary �eld arithmetic and how
it can be implemented without look-up tables in Appendix A. An overview of the additive
Fast Fourier Transform over a �nite �eld, which we use in key-generation and decapsulation,
is presented in Appendix B. Appendix C describes how to obtain the �rst derivative of a
polynomial and the greatest common divisor (GCD) of two polynomials, which we need as
part of NTS-KEM key-generation. In Appendix D, we discuss how we uniformly shu�e a se-
quence of �nite length and how we generate random bits uniformly. We claim that NTS-KEM
achieves IND-CCA security in the Random Oracle Model and this is proved in Appendix E.
In Appendix F, we describe how to generate the KATs and outline the intermediate values
that we produce.

2 Notation and De�nitions

In this section we outline the notation adopted in this document, and provide the de�nition
of the main mathematical objects and security notions of relevance to our submission.

We denote by F2 the �eld with two elements, and by F2m an extension �eld of F2 with 2m

elements. If F is a �eld, let F[x] be the ring of univariate polynomials with coe�cients in F.
Then for an extension �eld of order 2m, there exists an irreducible polynomial f(x) ∈ F2[x]
of degree m, such that F2m

∼= F2[x]/f(x). If we construct an extension �eld F2m via the
polynomial f(x), then any element of F2m can be represented as b0 + b1β + b2β

2 + · · · +
bm−1β

m−1, where bi ∈ F2 and β ∈ F2m is a root of f(x). A primitive element α ∈ F2m is one
that generates the cyclic group of 2m − 1 elements under multiplication of F2m .

We denote by Fn2 the n-dimensional vector space with entries in F2, and by Fk×n2 the kn-
dimensional vector space of matrices with k rows and n columns with entries in F2. We denote
vectors of Fn2 in bold lowercase, for example e = (e0, e1, . . . , en−1) ∈ Fn2 ; and matrices of Fk×n2

in bold uppercase, for example G ∈ Fk×n2 . If G ∈ Fk×n2 is a matrix, we denote the transpose
of G by GT ∈ Fn×k2 . The i-th row of matrix G is denoted by Gi = (gi,0, gi,1, . . . , gi,n−1).
The Hamming weight of a vector e is the number of non-zero components in the vector
and is denoted by hw(e). Given a vector e of length n over a �eld F, and positive integers
` < k < n, we adopt the following notation to denote the partition of e into three �sub-
vectors�: e = (ea | eb | ec), where ea ∈ Fk−`, eb ∈ F` and ec ∈ Fn−k. More generally, if
v ∈ Fn1 and w ∈ Fn2 are vectors over F, we will denote by (v | w) the vector in Fn1+n2

constructed as the �concatenation� of v and w.

A permutation π on a ordered sequence of n elements may be represented by a permutation
matrix P ∈ Fn×n2 where there is exactly one entry of 1 in each row and column and 0 elsewhere.
It may also be represented by a permutation vector p = (p0, p1, . . . , pn−1) where pi denotes
the row of P that has a 1 at column i. Then, given the sequence b = (b0, b1, . . . , bn−1),
we denote the permuted sequence b′ = b · P = πp(b) such that b′i = bpi , and the inverse

5

permutation is given by b = b′ ·P−1 = π−1p (b′) such that bpi = b′i. Likewise for a matrix M,
πp(M) = M ·P reorders the columns of M according to the permutation vector p.

If b is a binary string b0b1 . . . bm−1 of length m, then b0 represents its least signi�cant bit,
and bm−1 the most signi�cant bit. When representing vectors over F2 or elements of the
�eld extension F2m as binary strings, we use the following convention: (b0, b1, . . . , bm−1) ↔
b0b1 . . . bm−1 and b0 + b1β + · · ·+ bm−1β

m−1 ↔ b0b1 . . . bm−1. Finally, given a set X, we will
denote by x←$X the operation of sampling an element x ∈ X uniformly at random.

2.1 Code-based Cryptography

Let C = [n, k, d]2 be a linear error-correcting code over F2 of length n and dimension k, with
minimal distance d. The code C is capable of correcting at most τ =

⌊
d−1
2

⌋
errors, and can be

described by a generator matrix G ∈ Fk×n2 , or a parity-check matrix H ∈ F(n−k)×n
2 , such that

G ·HT = 0. Then, a vector w ∈ Fk2 can be encoded as a codeword in C as c = w ·G ∈ Fn2 .
Moreover, for any codeword c in C, we have c ·HT = 0. More generally, given any vector
v ∈ Fn2 , the vector s = v·HT ∈ Fn−k2 is called a syndrome. The problem of syndrome decoding
is to �nd a vector of minimum weight v ∈ Fn2 such that s = v ·HT given a syndrome s.

De�nition 1. A binary separable Goppa code CG is a class of [n, k, d]2 linear error-correcting
codes de�ned by a Goppa polynomial G(z) = g0 + g1z + · · ·+ gτz

τ ∈ F2m [z] and d = 2τ + 1.
The polynomial G(z) has the following properties:

� G(z) has no roots in F2m, which implies n = 2m;

� G(z) has no repeated roots in any extension �eld, which guarantees that CG is capable
of correcting up to τ errors.

Let (a0, a1, . . . , an−1) be a sequence of all elements in F2m . We may write the parity-check
matrix Hm ∈ Fτ×n2m of CG using G2(z) as follows [MS77]:

Hm =

1 1 1 · · · 1

a0 a1 a2 · · · an−1
...

...
...

. . .
...

aτ−10 aτ−11 aτ−12 · · · aτ−1n−1

 ·

G(a0)

−2 0 0 · · · 0

0 G(a1)
−2 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · G(an−1)
−2

=

G(a0)

−2 G(a1)
−2 G(a2)

−2 · · · G(an−1)
−2

a0G(a0)
−2 a1G(a1)

−2 a2G(a2)
−2 · · · an−1G(an−1)

−2

...
...

...
. . .

...

aτ−10 G(a0)
−2 aτ−11 G(a1)

−2 aτ−12 G(a2)
−2 · · · aτ−1n−1G(an−1)

−2

 . (1)

Let B(ai) = (bi0, bi1, . . . , bi(m−1)) be a representation of ai over F2, i.e.

ai = bi0 + bi1β + bi2β
2 + · · ·+ bi(m−1)β

m−1,

6

where bij ∈ F2. Then by replacing each entry of Hm with B(·)T , we have the binary parity-
check matrix H ∈ Fmτ×n2 , which has rank mτ = n− k. The generator matrix G ∈ Fk×n2 can
then be easily obtained from H.

With knowledge of its structure, binary Goppa codes can be e�ciently decoded by using
Patterson's method [Pat75] or the Berlekamp-Massey algorithm [Ber68, Mas69]. However, if
the code structure is hidden, then decoding binary Goppa codes is expected to be as hard as
decoding a random linear code. In this case, the best currently known algorithms are based
on the technique known as information-set decoding, originally proposed by Prange [Pra62].

In 1978 [McE78], McEliece proposed a public-key encryption scheme whose security is based
on two hardness assumptions. Firstly, the intractability of decoding a random linear code, a
problem which is known to be NP-hard [BMvT78]. Secondly, the di�culty of distinguishing
an unknown and permuted binary Goppa code from a random code. The McEliece scheme
may be described as follows:

KGen: generate a Goppa polynomial G(z) of degree τ , which de�nes a binary Goppa code CG
with generator matrix G′ ∈ Fk×n2 . Let S be a non-singular matrix in Fk×k2 and P be a
permutation matrix in Fn×n2 , both generated at random. Then, de�ne G = S ·G′ ·P.
The public key is given by pk = (G, τ) and the private key is sk = (G(z),S−1,P−1).

Enc: to encrypt a message m ∈ Fk2, sample e ∈ Fn2 with Hamming weight τ and output the
ciphertext c = m ·G + e ∈ Fn2 .

Dec: to recover the message m, compute c′ = c·P−1 = m·S·G′+e·P−1, and decode c′ using
an algebraic decoder for CG to recover the permuted e, and hence m′ = (m · S) ∈ Fk2.
Finally, recover m = m′ · S−1 and output m.

A variant of the McEliece scheme reducing the public key size was introduced by Neiderreiter
in 1986 [Nie86]. In the Niederreiter scheme the public key is the (usually) smaller parity-check
matrix instead of the generator matrix of a code. Moreover, in the Niederreiter scheme, the
message is encoded as a low-weight vector u ∈ Fn2 , and the ciphertext is represented as the
syndrome of u rather than as the information bits of a codeword corrupted with a random
τ -weight error vector e. In particular, the Niederreiter scheme may be described as follows:

KGen: generate a Goppa polynomial G(z) of degree τ , which de�nes a binary Goppa code

CG with parity-check matrix H′ ∈ F(n−k)×n
2 . Let S be a non-singular matrix in

F(n−k)×(n−k)
2 , and P be a permutation matrix in Fn×n2 , both generated at random.

Then de�ne H = S ·H′ · P. The public key is given by pk = (H, τ) and the private
key is sk = (G(z),S−1,P−1).

Enc: to encrypt the message m, encode it as a vector u ∈ Fn2 with Hamming weight at most
τ using a keyless, invertible encoding scheme φ. The ciphertext is c = H ·uT ∈ Fn−k2 .

Dec: to recover the message m, compute S−1 ·c = H′ ·P ·uT , perform a syndrome decoding
algorithm on S−1 ·c to recover P ·uT , then compute P−1 ·P ·uT to recover u. Finally,
recover m from u as m = φ−1(u).

7

The Neiderreiter scheme was originally proposed to be used in conjunction with generalised
Reed-Solomon codes. However, this construction was broken in [SS92]. On the other hand,
Li et al. [LDW94] have shown that the security of the Niederreiter scheme and that of the
McEliece scheme are equivalent. Thus, considering the Niederreiter scheme using Goppa
codes comes with no loss of security compared to McEliece. Overbeck and Sendrier provide
a comprehensive overview of code-based cryptography in [OS09].

Our NTS-KEM proposal can be considered as a mixture of McEliece and Niederreiter schemes
combined with a transform akin to the Fujisaki-Okamoto [FO13] or Dent [Den03] transforms,
resulting in a key encapsulation mechanism which is resistant against chosen ciphertext at-
tacks.

2.2 Security Notions

A basic security notion for a public-key encryption (PKE) scheme is IND-CPA: indistin-
guishability under chosen plaintext attacks. This security notion states that it is hard for an
adversary A to decide which of two messages of its choosing m0,m1 is encrypted in a given
ciphertext c.

In its basic form, the McEliece PKE scheme is not IND-CPA secure, and only achieves a
weaker notion of security: one-wayness (OW). This notion states that an attacker cannot
recover the underlying m for some ciphertext c. The notion is formalised in the game below,
where we write {0, 1}poly(λ) for the plaintext space, indicating that it consists of bit-strings
of some length that depends on the security parameter via some polynomial function. Note
that messages are random strings in the OWA

Enc game and are not chosen by the adversary.

OWA
Enc

1 : (pk, sk)←$KGen(1λ)

2 : m←$ {0, 1}poly(λ)

3 : c←$Enc(pk,m)

4 : m′←$A(1λ, pk, c)

5 : return (m′ = m)

We say that an adversary A is a (t, ε)-adversary against OW security of a PKE scheme if that
adversary causes the OWA

Enc game to output '�1� with probability at least ε (where 0 < ε ≤ 1)
and runs in time at most t.

A PKE scheme is said to be (t, ε)-secure with respect to a given security notion (for example,
IND-CPA or OW security) if no (t, ε)-adversary exists for that notion. We sometimes simply
write that a scheme is, for example, IND-CPA secure, if for some appropriate choice of
parameters, we can prove (under some reasonable assumptions) that it is (t, ε)-secure where
t can be made su�ciently high (e.g. t = 2128) and ε su�ciently low (e.g. ε = 2−128).

8

Our proposal is not for a PKE scheme, but rather for aKey Encapsulation Mechanism (KEM).
A KEM is a public-key scheme to securely encapsulate bit-strings (keys) chosen uniformly
at random. These keys can then be used in a symmetric encryption scheme commonly
called a Data Encapsulation Mechanism (DEM), producing what is known as the KEM-DEM
paradigm for public-key encryption. Formally, a KEM is de�ned as follows [Den03]:

De�nition 2. A Key Encapsulation Mechanism (KEM) consists of a triple of algorithms
(KGen,Encap,Decap) with the following syntax and operation:

� The Key Generation algorithm KGen takes as input a security parameter 1λ and outputs
a public/private key-pair (pk, sk).

� The Encapsulation algorithm Encap takes as input a public key pk and outputs an en-
capsulated key and ciphertext (K,C).

� The Decapsulation algorithm Decap takes as input a ciphertext C and a private key sk,
and outputs a key K encapsulated in C (or an error message indicating a decapsulation
failure).

Informally, we say that a KEM is (t, ε)-secure in the IND-CPA sense if no (t, ε)-adversary
can decide whether a given pair (K,C) is such that C encapsulates K. We can also de�ne
a one-wayness security notion for KEMs, which like that for PKE schemes, informally states
that it is di�cult to recover an encapsulated key K from its ciphertext C. This is captured
in the following game:

OWA
KEM

1 : (pk, sk)←$KGen(1λ)

2 : (K0, C
∗)←$Encap(pk)

3 : K1←$A(1λ, pk, C∗)

4 : return (K1 = K0)

We note that, albeit somewhat nonstandard, we permit the adversary to return ⊥ to indicate
that it did not �nd a candidate solution in our OW games.

The desired security notion for a PKE scheme or a KEM is IND-CCA security, i.e. indistin-
guishability under chosen ciphertext attacks. In the KEM version of this security notion, in
addition to a challenge ciphertext C∗ and one of K0 or K1, the attacker is also given access to
an oracle that returns the output of Decap(C ′, sk) for any C ′ 6= C∗ (and where we assume the
adversary never queries C∗ to this oracle, to prevent trivial wins). We denote this capability
as ADecap(·,sk)(1λ, pk,Kb, C

∗) below and require that such an adversary cannot decide whether
K0 or K1 was encapsulated. Formally, a (t, ε)-adversary against the IND-CCA security of
a KEM causes the following game to return �1� with probability at least 1/2 + ε (where
0 < ε ≤ 1/2) and runs in time at most t.

9

IND-CCAA
KEM

1 : b←$ {0, 1}
2 : (pk, sk)←$KGen(1λ)

3 : (K0, C
∗)←$Encap(pk)

4 : K1←$ {0, 1}|K0|

5 : b′←$ADecap(·,sk)(1λ, pk,Kb, C
∗)

6 : return (b′ = b)

We say that a KEM is (t, ε)-secure in the IND-CCA sense if no (t, ε)-adversary exists.

3 NTS-KEM: algorithm speci�cation

NTS-KEM is a key encapsulation mechanism targeting IND-CCA security derived as a com-
bination of the McEliece and Niederreiter PKE schemes. In this section, we specify the
scheme's three operations: Key Generation, Encapsulation and Decapsulation. For each of
the three operations, we �rst specify all steps to fully carry out the operation, followed by a
more detailed description of the algorithmic aspects of each step, with suggested subroutines
to implement the full operations.

The public parameters for an instance of NTS-KEM are:

- n = 2m: a power-of-two, positive integer, which denotes the length of codewords.

- τ : a positive integer denoting the number of errors corrected by the code.

- f(x): an irreducible polynomial of degree m over F2, de�ning the extension �eld F2m
∼=

F2[x]/f(x).

- ` = 256: a positive integer, set to 256 in this submission, which denotes the length of
the random key to be encapsulated.

We require that log2
(
n
τ

)
≥ `, and ` < k < n, where k = n − τm. The proposed parameter

sets in this submission are given in Section 4.

The NTS-KEM scheme makes use of a pseudorandom bit generator to produce `-bit binary
strings, which we denote by H`(·). In this submission, we have set ` = 256, and use the
SHA3�256 hash function [NIS15] to implement H`(·).

We note that, apart from theH`(·) function, we chose not to prescribe in this speci�cation any
particular procedure for sampling pseudorandom values required for the di�erent operations
described below (e.g. for generating random Goppa codes and permutations in key generation;
and random error vectors in encapsulation). The structure of NTS-KEM permits us to
consider entropy generation as being out of scope of this submission. That said, a natural

10

way in which implementations may sample entropy for NTS-KEM is by expanding a random
seed using the SHAKE256 extendable output function [NIS15], which is also based on the
SHA3�256 hash function.

3.1 Key Generation

The procedure to generate a NTS-KEM key-pair is as follows:

1. Randomly generate a monic Goppa polynomial of degree τ

G(z) = g0 + g1z + · · ·+ gτ−1z
τ−1 + zτ ,

where gi ∈ F2m
∼= F2[x]/f(x), with g0 6= 0. The polynomial G(z) de�nes a binary

Goppa code CG of length n = 2m, dimension k = n− τm, capable of correcting up to τ
errors.

2. Randomly generate a permutation vector p of length n, representing a permutation πp
on the set of n elements.

3. Construct a generator matrix in the reduced row echelon form G = [Ik | Q] of a
permuted code CG as follows:

(a) let a′ be a ordered sequence of all elements of F2m , as given in equation (3) in Sec-
tion 3.1.1, and a = πp(a′) = (ap0 , ap1 , . . . , apn−1) ∈ Fn2m be the sequence obtained
by re-ordering the elements of a′ according to πp.

(b) construct the parity-check matrix Hm ∈ Fτ×n2m using the sequence a, as described
in equation (1). Let h = (hp0 , hp1 , . . . , hpn−1) ∈ Fn2m be the �rst row of Hm.

(c) transform Hm to H ∈ Fmτ×n2 using operator B(·)T , as described in Section 2.1.

(d) transform H to reduced row echelon form, re-ordering its columns if necessary,
such that the identity matrix In−k occupies the last n−k columns of H. If ρ is the
permutation representing this re-ordering of columns, apply the same re-ordering
to the vectors a, h and p, i.e. make a = ρ(a), h = ρ(h) and p = ρ(p).2

(e) construct the generator matrix G = [Ik | Q] ∈ Fk×n2 of the permuted code CG from
the parity-check matrix3 H = [QT | In−k].

4. Sample z ∈ F`2 uniformly at random.

5. Partition the vectors a and h as a = (aa | ab | ac) and h = (ha | hb | hc), where aa,ha ∈
Fk−`2m , ab,hb ∈ F`2m and ac,hc ∈ Fn−k2m . Finally, de�ne

a∗ = (ab | ac) and h∗ = (hb | hc) .
2Although not required for the implementation of the scheme itself, for the purpose of showing correctness

of NTS-KEM (Section 3.4) we will assume that the permutation ρ is also applied to the parity-check matrix
Hm ∈ Fτ×n2m , i.e. we make Hm = ρ(Hm).

3Strictly speaking, H = [−QT | In−k]; however since −1 = 1 mod 2, we omit the negative sign.

11

The NTS-KEM public and private keys are given as follows.

� The public key is pk = (Q, τ, `), where Q ∈ Fk×(n−k)2 and τ, ` are positive integers
(determined in the parameter sets).

� The private key is sk = (a∗,h∗,p, z), where a∗,h∗ ∈ Fn−k+`2m , p ∈ Fn2m and z ∈ F`2.

3.1.1 Detailed description

We provide more details concerning steps 1�3 above, with some suggested subroutines to
perform required operations.

To randomly generate a monic Goppa polynomial G(z) of degree τ (Step 1), the coe�cients
gi for i = {0, 1, . . . , τ − 1} are uniformly sampled from F2m , with g0 6= 0. We uniformly
sample m bits for each coe�cient gi, and as a result at least mτ bits of random data are
required per polynomial generation trial. The generation procedure is outlined below:

(a) Sample uniformly at random mτ bits of random data and sequentially assign m bits
for gi in g = (g0, g1, . . . , gτ−1).

(b) Set gτ = 1 and let G(z) =
∑τ

i=0 giz
i.

(c) Check the validity of G(z). A Goppa polynomial is considered valid if:

� g0 6= 0.

� G(z) has no roots in F2m . This condition guarantees that n = 2m. An additive
FFT [GM10] (see Appendix B) is an e�cient method to evaluate whether or not
G(z) has zeros in F2m .

� G(z) has no repeated roots in any extension �eld. This condition guarantees that
the binary Goppa code is capable of correcting up to τ errors. This condition
is met if GCD

(
G(z), ddzG(z)

)
= 1. Refer to Appendix C on how to realise the

polynomial derivative of G(z) and the GCD.

If either one of the above conditions is not met, restart at (a).

To generate a length n permutation vector p (Step 2), we may proceed as follows:

(a) Initialise p = (p0, p1, . . . , pn−1) = (0, 1, . . . , n− 1).

(b) Shu�e p using the Fisher-Yates shu�ing algorithm; see Appendix D. The algorithm
generates unbiased permutations of n elements in linear time [Knu97].

We note that the permutation vector p may also be equivalently represented by a permutation
matrix P.

The generator matrix G ∈ Fk×n2 (Step 3) can be obtained as follows.

12

(a) Let β ∈ F2m be a root of f(x), where F2m
∼= F2[x]/f(x) and B be a basis of F2m ,

B = 〈β(m−1), . . . , β, 1〉. The i-th element of F2m in the basis of B is de�ned by

B[i] = {b0β(m−1) + b1β
(m−2) + . . .+ bm−2β + bm−1 : bj ∈ {0, 1}}, (2)

where i =
∑m−1

j=0 bj2
j .

(b) Let a′ be the sequence of all elements of F2m given by

a′ = (a0, a1, a2, . . . , an−2, an−1) = (B[0], B[1], B[2], . . . , B[n− 2], B[n− 1]), (3)

where B[i] is de�ned above.

(c) Obtain the vector h̄ = AdditiveFFT(G(z)) = (G(B[0]), G(B[1]), . . . , G(B[n − 1])); see
Algorithm 4 in Appendix B. Here, h̄ contains the evaluation of G(z) on all elements of
F2m in the order de�ned by basis B, i.e. (B[0], B[1], . . . , B[n− 1]).

(d) Apply inversion and squaring on h̄, resulting in

h′ = (h̄−20 , h̄−21 , . . . , h̄−2n−1).

(e) Permute the sequences a′ and h′ with permutation p:

a = πp(a′) = (ap0 , ap1 , . . . , apn−1)

h = πp(h′) = (hp0 , hp1 , . . . , hpn−1).

(f) Construct the permuted parity-check matrix Hm with a and h as per equation (1) as
follows:

Hm =

hp0 hp1 · · · hpn−1

ap0hp0 ap1hp1 · · · apn−1hpn−1

...
...

. . .
...

aτ−1p0 hp0 aτ−1p1 hp1 · · · aτ−1pn−1
hpn−1

 . (4)

(g) Transform Hm to H ∈ Fmτ×n2 by applying operator B(·)T on each component of Hm.

(h) Transform H to reduced row echelon form by means of row operations such that H forms
an (n− k)× (n− k) identity matrix In−k. Let r be a permutation vector representing
the permutation ρ, required to obtain In−k on the last n − k columns of H. Reorder
the vectors a, h and p following the permutation vector r.

(i) The parity-check matrix of the permuted code CG is now in the form H = [QT | In−k].
Obtain the generator matrix G = [Ik | Q].

The matrix G and the vectors a,h,p are then used to produce a NTS-KEM public and
private key pair pk = (Q, τ, `) and sk = (a∗,h∗,p, z).

13

3.2 Encapsulation

Given a NTS-KEM public key pk = (Q, τ, `), the encapsulation process produces two vectors
over F2, one of which is a random vector kr, where |kr| = ` = 256; the other is the ciphertext
c∗ encapsulating kr.

The NTS-KEM encapsulation algorithm is as follows.

1. Generate uniformly at random an error vector e ∈ Fn2 with Hamming weight τ (for
example, following Algorithm 1 below).

2. Partition e as e = (ea | eb | ec), where ea ∈ Fk−`2 , eb ∈ F`2 and ec ∈ Fn−k2 .

3. Compute ke = H`(e) ∈ F`2.

4. Construct the message vector m = (ea | ke) ∈ Fk2.

5. Perform systematic encoding of m with Q:

c = (m |m ·Q) + e

= (ea | ke | (ea | ke) ·Q) + (ea | eb | ec)
= (0a | ke + eb | (ea | ke) ·Q + ec)

= (0a | cb | cc) ,

where cb = ke + eb and cc = (ea | ke) ·Q + ec. Then remove the �rst k− ` coordinates
(all zero) from c to obtain c∗ = (cb | cc) ∈ Fn−k+`2 .

6. Output the pair (kr, c
∗) where kr = H`(ke | e) ∈ F`2.

Algorithm 1 Generate random vector e of length n and weight τ

1: function RandomVector(n, τ)
2: e← (0, 0, . . . , 0, 1, 1, . . . , 1) where hw(e) = τ

/* Shu�e the non-zero entries of e with Fisher-Yates algorithm */
3: i← n− 1
4: while i ≥ n− τ do
5: r←$ {0, 1, . . . , i}
6: Swap ei with er
7: i← i− 1
8: end while
9: return e
10: end function

Remark 1. Algorithm 1 is not constant-time but it is possible to transform the algorithm to be
constant-time using the approach suggested in [BCS13, BCLvV16]. We note that Algorithm 1
is only used for generating the ephemeral vector e.

14

3.3 Decapsulation

At a high level, the decapsulation of a NTS-KEM ciphertext c∗ = (cb | cc) proceeds as
follows:

1. Consider the vector c = (0a | cb | cc) ∈ Fn2 , and apply a decoding algorithm � using
the secret key � to recover a permuted error pattern e′.

2. Compute the error vector e = πp(e′).

3. Partition e = (ea | eb | ec), where ea ∈ Fk−`2 , eb ∈ F`2 and ec ∈ Fn−k2 , and compute
ke = cb − eb.

4. Verify that H`(e) = ke and hw(e) = τ . If yes, return kr = H`(ke | e) ∈ F`2; otherwise
return H`(z | 1a | cb | cc).

3.3.1 Detailed description

In more detail, given a NTS-KEM ciphertext c∗ = (cb | cc) ∈ Fn−k+`2 and a private key
sk = (a∗,h∗,p, z), where a∗,h∗ ∈ Fn−k+`2m , p ∈ Fn2m and z ∈∈ F`2, the process of decapsulation
can be implemented as follows.

1. Decoding of c = (0a | cb | cc) to recover a permuted error pattern e′.

(a) Partition the private-key vectors a∗ and h∗ as

a∗ = (ab | ac) = (ab,0, ab,1, . . . , ab,`−1 | ac,0, ac,1, . . . , ac,r−1)
h∗ = (hb | hc) = (hb,0, hb,1, . . . , hb,`−1 | hc,0, hc,1, . . . , hc,r−1)

where r = m · τ = n− k.
(b) Construct a truncated parity-check matrix H∗m ∈ F2τ×(`+m·τ)

2m from a∗ and h∗ as
follows4:

H∗m =

hb,0 · · · hb,`−1 hc,0 · · · hc,r−1

ab,0hb,0 · · · ab,`−1hb,`−1 ac,0hc,0 · · · ac,r−1hc,r−1
...

. . .
...

...
. . .

...

aτ−1b,0 hb,0 · · · aτ−1b,`−1hb,`−1 aτ−1c,0 hc,0 · · · aτ−1c,r−1hc,r−1
...

. . .
...

...
. . .

...

a2τ−1b,0 hb,0 · · · a2τ−1b,`−1hb,`−1 a2τ−1c,0 hc,0 · · · a2τ−1c,r−1hc,r−1

. (5)

4Unlike the parity-check matrix Hm in equation (4), H∗m is obtained by extending the number of rows
to a total of 2τ rows and removing the large number of columns that correspond to section a of c. This
row extension allows us to use the Berlekamp-Massey algorithm [Ber68, Mas69] to obtain an error locator
polynomial σ(x) that can correct all τ errors [Ret75].

15

(c) Compute all 2τ syndromes of c∗ = (cb | cc) as follows:

s = (cb | cc) · (H∗m)T

= (s0, s1, . . . , s2τ−1)

Due to the structure of H∗m, the syndromes s may be computed following Algo-
rithm 2.

Algorithm 2 Syndrome Computation on ciphertext c∗ = (cb | cc)
1: function ComputeSyndrome(c∗,a∗,h∗)
Require: c∗ ← (cb,0, cb,1, . . . , cb,`−1 | cc,0, cc,1, . . . , cc,r−1)
Require: a∗ ← (ab,0, ab,1, . . . , ab,`−1 | ac,0, ac,1, . . . , ac,r−1)
Require: h∗ ← (hb,0, hb,1, . . . , hb,`−1 | hc,0, hc,1, . . . , hc,r−1)
2: s0 ←

∑`−1
j=0(cb,j · hb,j) +

∑r−1
j=0(cc,j · hc,j)

3: i← 1
4: while i < 2τ do
5: h∗ ← h∗ · a∗ // Pointwise component multiplication modulo F2m

6: si ←
∑`−1

j=0(cb,j · hb,j) +
∑r−1

j=0(cc,j · hc,j)
7: i← i+ 1
8: end while
9: return s = (s0, s1, . . . , s2τ−1)F2m

10: end function

(d) Compute the error locator polynomial σ(x) and the �rst coordinate error indica-
tor ξ from the syndrome vector s using the Berlekamp-Massey algorithm.5 The
original Berlekamp-Massey algorithm [Ber68, Mas69] requires the computation of
the inverse of a �eld element at each iteration. As is evident from Appendix A.5,
inversion is expensive but this can be avoided as shown by [Bur71, You91]. Our
inversion-free implementation of Berlekamp-Massey algorithm is shown in Algo-
rithm 3.

(e) Evaluate the polynomial σ(x) on all elements of F2m de�ned by basis B, i.e.
Λ = {σ(B[0]), σ(B[1]), . . . , σ(B[n − 1])}. This multi-point evaluation may be
e�ciently computed by means of the additive Fast Fourier Transform over a �nite
�eld [GM10]; see Algorithm 4 in Appendix B.

(f) Given Λ = {σ(B[0]), σ(B[1]), . . . , σ(B[n − 1])}, obtain the error vector e′ where
the non-zero positions of e′ are determined as follows:

� Initialise e′ = 0 ∈ Fn2 .
� Set e′j = 1 if σ(B[j]) = 0.

Furthermore, if ξ is 1, set e′0 = 1.

2. Apply the permutation p to e′ to obtain e = πp(e′). This is because the syndrome s is
computed using h∗ on c∗, and thus we have e′ = πp−1(e).

5The roots of the polynomial σ(x) tell us the locations of the τ bit errors and as Berlekamp-Massey cannot
return σ(x) with root zero, the error in the �rst coordinate is indicated by ξ in Algorithm 3. If the �rst
coordinate is in error, ξ = 1; otherwise it is 0.

16

Algorithm 3 Berlekamp Massey Algorithm

1: function BerlekampMassey(s)
Require: s = (s0, s1, . . . , s2τ−1)
Require: σ(x) =

∑
σix

i = 1
Require: β(x) =

∑
βix

i = x
Require: δ = 1
Require: L = R = ξ = 0
2: for i← 0 to 2τ − 1 step 1 do

3: d←
∑min{i,τ}

j=0 σjsi−j
4: ϕ(x)← δ σ(x)− d β(x)
5: if d == 0 OR i < 2L then
6: R← R+ 1
7: β(x)← xβ(x)
8: else
9: R← 0
10: β(x)← xσ(x)
11: L← i− L+ 1
12: δ ← d
13: end if
14: σ(x)← ϕ(x)
15: end for
16: if Degree of σ(x) < (τ − R

2) then
17: ξ ← 1
18: end if
19: σ∗(x)← xτ−ξσ(x−1) // σ∗(x) is the reciprocal polynomial of σ(x)
20: return (σ∗(x), ξ)
21: end function

3. Consider e = (ea | eb | ec), and compute ke = cb − eb.

4. Verify that H`(e) = ke and hw(e) = τ . If yes, return kr = H`(ke | e) ∈ F`2; otherwise
return kr = H`(z | 1a | c∗) ∈ F`2.

3.4 Correctness of NTS-KEM

It is straightforward to show correctness of the NTS-KEM scheme by drawing attention to
the similarities with the McEliece scheme. If we denote by H the parity-check matrix of
the Goppa code CG de�ned by G(z) with elements in the order given in Section 3.1.1, then
the parity-check matrix in row echelon form H for the permuted code CG used in the NTS-
KEM key generation algorithm (Section 3.1) can be described as H = U ·H · P, where P
is the random permutation matrix generated during key generation6 and U ∈ Fn−k2 is the

6As explained in Section 3.1, item 3d, we assume that the permutation ρ, which may have been required
during the row echelon reduction of H for the identity matrix In−k to occupy the last n − k columns of H,
has been applied to the matrices P and Hm, and vectors a∗ and h∗.

17

transformation matrix representing the row echelon reduction.

The NTS-KEM public key Q can then be considered as a compact representation of a
McEliece public key G = G · P = [Ik | Q] using the Goppa code CG , where G is a gen-
erator matrix of CG (and setting the invertible matrix S to the identity). Indeed we have

G ·HT
= G · (P ·PT) ·HT · (UT · (UT)−1)

= (G ·P) · (U ·H ·P)T · (UT)−1

= G ·HT · (UT)−1 = 0,

since G ·HT = 0 by construction (in the NTS-KEM key generation algorithm).

In the NTS-KEM encapsulation algorithm described in Section 3.2, one �rst samples at
random an error vector e of Hamming weight τ , which will carry the information for the
generation of the encapsulated key kr, and constructs a message m = (ea | ke) ∈ Fk2, where
ke = H`(e). The NTS-KEM ciphertext is computed by performing a �McEliece encryption�
of the message m with public key G and error e, thus:

c = m ·G + e

= m · [Ik | Q] + e

= (m |m ·Q) + e

= (ea | ke | (ea | ke) ·Q) + (ea | eb | ec)
= (0a | ke + eb | (ea | ke) ·Q + ec)

= (0a | cb | cc) .

We note that setting the messages to be encrypted to be of the form m = (ea | ke) in the
NTS-KEM scheme will always result on the the �rst k − ` bits of c being zero, and thus the
transmitted ciphertext can be taken to have the compact form c∗ = (cb | cc) ∈ Fn−k+`2 .

Finally, for the NTS-KEM decapsulation, we note that the private key (a∗,h∗,p) contains
the information for constructing the permuted and truncated parity-check matrix H∗m, which
is used for syndrome decoding. Unlike the (permuted) parity-check matrix Hm = H ·P, the
matrix H∗m is obtained by extending the number of rows to a total of 2τ rows and removing a
large number of columns that correspond to section a of c. While the row extension allows us
to directly use the Berlekamp-Massey algorithm [Ber68, Mas69] for syndrome decoding, the
removal of the �rst k−` columns can be done because the �rst k−` bits of the ciphertext are
always zero, and thus do not contribute to the computation of syndromes. As a result, for
NTS-KEM ciphertexts, syndrome decoding using the matrix H∗m as described in Section 3.3
is equivalent to syndrome decoding with the original parity-check matrix Hm, and we have:

c ·HT
m = m ·G ·HT

m + e ·HT
m

= m · (G ·P) · (H ·P)T + e · (H ·P)T

= m ·G ·P ·PT ·HT
+ e ·PT ·HT

= e′ ·HT
,

18

algorithm security security pk size sk size ctext size

version category target7 n k d τ f(x) (in bytes) (in bytes) (in bits)

NTS-KEM(12,64) 1 128-bit 4096 3328 129 64 1 + x3 + x12 319,488 9,248 1,024

NTS-KEM(13,80) 3 192-bit 8192 7152 161 80 1 + x+ x3 + x4 + x13 929,760 17,556 1,296

NTS-KEM(13,136) 5 256-bit 8192 6424 273 136 1 + x+ x3 + x4 + x13 1,419,704 19,922 2,024

Table 1: NTS-KEM recommended parameter sets

where e′ = e · PT = e · P−1 = πp−1(e), since PT = P−1 for permutation matrices. That
our syndrome decoding algorithm will recover the correct e′ (and thus e = πp(e′)) follows
from the basic coding theory fact that there is a unique syndrome s for every vector e with
hw(e) ≤ τ [MS77]. Thus the decoding procedure in the NTS-KEM decapsulation operation
can be used to recover the error vector e. This can in turn be veri�ed against the hash ke
in the ciphertext, and if successful, both values can be used to recover the encapsulated key
kr = H`(ke | e) ∈ F`2.

This shows correctness of the NTS-KEM algorithm. We discuss security of NTS-KEM in
Section 7.

4 Parameter sets

In this submission, we recommend three parameters sets for NTS-KEM, which are shown in
Table 1. We specify the di�erent parameters of the [n, k, d]2 Goppa code used in the NTS-
KEM scheme, including the minimum-weight irreducible polynomial f(x) used to de�ne the
�nite �eld F2m so as to facilitate fast multiplicative arithmetic in the �eld. We also provide
the sizes of the public key, private key and ciphertext for each set of parameters. We refer to
the di�erent versions as NTS-KEM(m, τ), where m = log2 n and τ = (d− 1)/2.

The recommended NTS-KEM parameters sets were selected to meet three of the security
strength categories de�ned in NIST's call for proposals [NIS16]:

- Category 1 : any attack that breaks the IND-CCA security of NTS-KEM must require
computational resources comparable to or greater than those required for key search
on a block cipher with a 128-bit key (e.g. AES-128).

- Category 3 : any attack that breaks the IND-CCA security of NTS-KEM must require
computational resources comparable to or greater than those required for key search
on a block cipher with a 192-bit key (e.g. AES-192).

- Category 5 : any attack that breaks the IND-CCA security of NTS-KEM must require
computational resources comparable to or greater than those required for key search
on a block cipher with a 256-bit key (e.g. AES-256).

7Classical security target.

19

We claim that NTS-KEM(12,64), NTS-KEM(13,80) and NTS-KEM(13,136) provide at least
128-bit, 192-bit and 256-bit classical security, respectively, and at least 64-bit, 96-bit and 128-
bit post-quantum security. These claims are based on the analysis of state-of-art algorithms
for decoding random binary linear codes and the reasonable assumption that our scheme is
not subject to dedicated quantum attacks, other than the generic speed-ups due to Grover's
algorithm, quantum walks, etc. In the same spirit of our conservative code-based design,
we have also decided to propose conservative security parameters, which are likely to o�er
a reasonable security margin within the security categories we aimed for. We discuss and
justify our security claims in more detail in Section 7.

As in McEliece's original scheme, we have decided to use codes of length power of two, i.e.
n = 2m. The main reason is that for any given security level, choosing codes with a maximum
length of n = 2m minimises the length of the ciphertext. This is because in our NTS-KEM
implementation, it is the number of parity bits that de�nes the length of the ciphertext.
Another point is that while some recent implementations suggest the potential use of non-
power of two code lengths [BCS13], we believe that software and hardware implementations
are cleaner and usually faster with n = 2m. Moreover, setting parameters is also simpler: once
the code length n = 2m has been chosen, di�erent security levels may be achieved by selecting
the only independent variable τ , the number of errors. In our choice of parameters, we also
decided to select τ,m such that the number of parity bits m ·τ is an integral number of bytes,
as it is already the case for the code length n = 2m. This minimises the chances of software
bugs and avoids messy bit/byte boundary formatting problems in software implementations.

Finally we note that while the three suggested parameter sets, and corresponding security
levels and implementation pro�les, should cater for most users requiring a secure key en-
capsulation mechanism, the NTS-KEM scheme is very versatile and o�ers a high degree of
�exibility in the setting of parameters. The code length n = 2m and the number of errors τ
may be chosen to meet users' needs, with the corresponding security level and implementation
pro�le easily derived.

5 Design rationale

In this submission, we target long-term security, with a conservative design based on a simple
and well-studied mathematical problem to provide a quantum-resistant, IND-CCA key encap-
sulation mechanism. Our choice is for a code-based cryptographic scheme, more speci�cally a
combination of the McEliece and Niederreiter public-key encryption schemes, although they
require large public keys. McEliece's construction is nearly 40 years old and has received
considerable attention. Despite enormous cumulative e�orts by the cryptographic commu-
nity, it remains unbroken when instantiated with Goppa codes for suitable parameters. Our
proposal NTS-KEM, a variant of McEliece and Niederreiter, is a �tting candidate to meet
our design goals.

A major advantage of code-based schemes is that the security achieved is highly adjustable
by appropriate choice of the code length n and the number of errors τ contained in the error

20

vector. For many software and hardware implementations, di�erent sets of parameters with
their associated security levels may be accommodated straightforwardly without redesign.
Moreover, by setting parameters conservatively, large security margins may also be built in,
in case there are new improvements developed in the cryptanalysis of McEliece-like schemes.
This is in fact the approach we have taken in this submission.

Another point we considered when designing NTS-KEM as a combination of the McEliece and
Niederreiter schemes, is that the security level of our scheme may be increased by increasing
the code length n, without however substantially increasing the ciphertext length. With
standard McEliece if the code length is doubled then the ciphertext length is also doubled;
on the other hand if the code length is doubled in standard Niederreiter, the ciphertext
length only increases by the factor log2(n)+1

log2(n)
. Similar to the latter, doubling the code length

in NTS-KEM will result in an increase of ciphertext length from n− k + ` = mτ + 256 bits
to (m+ 1)τ + 256 bits. Of course doubling the code length substantially increases the size of
the public keys of our schemes.

Although NTS-KEM public keys are large, the ciphertext length is short: 2024 bits at the
highest, 256-bit security level. At the 192-bit security level the ciphertext length is 1296 bits,
reducing to 1024 bits at the 128-bit security level.8 To achieve these compact ciphertext
sizes, we exploit the property of a binary Goppa code (or any binary linear code) that the
syndrome of a truncated codeword is equal to the syndrome of the portion of the codeword
that was truncated. It is this property that makes it possible for ciphertexts to be reduced in
length from 8192 bits for McEliece to 2024 bits in NTS-KEM, at the 256-bit security level,
with no consequent loss in security.

On the selection of parameters, we elected to make the code length n = 2m because this choice
minimises the ciphertext length, for all security levels. Shortening the code by reducing n,
for the same security level, necessitates increasing the number of errors τ in the error vector,
requiring additional parity bits thereby increasing the ciphertext length. It should be noted
that shortening the code can lead to a reduced public-key size at the expense of increased
ciphertext length. We chose to make shortening the ciphertext length our top design priority.
We also chose code parameters that provide clean, byte level boundaries between parity bits
and information bits. This makes the implementation more straightforward and reduces the
possibilities for software bugs, at the expense of a small increase in security margin that may
not be required.

As for the random error vector e, an n-bit binary vector containing τ bit errors used to carry
information for the encapsulated key, we decided that τ should be a constant since there
is negligible security advantage in making τ variable; and a variable τ would considerably
complicate a constant-time decapsulation implementation. For similar reasons we rejected
the notion of increasing τ beyond the error correcting capability of the underlying Goppa
code. Bit �ipping decoders can extend τ by 1 or 2 bits, thus increasing security, but at
the cost of longer decapsulation times and a more di�cult constant-time implementation.
Similarly, we rejected the idea of using a list decoder to extend τ because this would mean
that the probability of successful decryption by the private-key holder would no longer be 1,

8All classical security.

21

due to the possibility of the list decoder failing to decode.

We also elected to make the generation of the error vector to be entirely random with no
internal structure or redundant formatting on the grounds that any such structure or for-
matting may invite an attack. This decision thereby precludes any Niederreiter-type, self-
authenticating error vector schemes. It is obvious that using completely random error vectors,
limited only by the random number generator, is the safest approach, and it is the one we
have taken in our proposal.

To achieve IND-CCA security, we deploy a transform in the spirit of Dent's transform [Den03],
which converts an OW secure public-key encryption into an IND-CCA secure KEM. Making
careful use of the properties of the underlying OW secure scheme, we achieve a construction
which comes equipped with a tight proof of security in the Random Oracle Model.

In our approach to implementation, we have aimed to provide fast execution times whilst
minimising any leakage due to processing time variations in both encapsulation and decapsu-
lation. We believe that with further development the implementation may be made constant
time. Where there is a free choice we also elected to choose the simplest, most transparent
algorithms in order to minimise the possibility of undetected software bugs. For example,
in decapsulation we use a bit-sliced version of the well-understood Berlekamp-Massey al-
gorithm combined with a BCH decoding approach commonly used for decoding standard
Reed-Solomon codes. This is instead of using the somewhat complicated Patterson's method
for decoding Goppa codes. In some cases alternative representations can result in faster ex-
ecution. For example, we generate the parity-check matrix directly from the square of the
Goppa polynomial G2(z) rather than the traditional approach of generating the parity check
matrix from G(z). This has the advantage of producing all of the component syndromes
necessary for decoding without requiring the additional step of interpolation that is needed
to produce the missing component syndromes when the traditional parity-check matrix is
used.

Look-up tables are avoided for F2m arithmetic and the lowest Hamming weight irreducible
polynomial is used to de�ne F2m . This ensures that polynomial-based F2m multiplication is
fast and runs in constant-time. Short ciphertexts are used to advantage in decapsulation.
At the 256-bit security level only 2024 columns of the parity check matrix need be used
to calculate the decoding syndrome instead of the 8192 columns of the standard McEliece
system. This means faster calculation of the syndromes required to determine the error vector,
as well as reducing the size of the private key since only 2024 columns of the parity-check
matrix need to be stored.

Code-based cryptography makes use of long codes, much longer than the codes traditionally
used, with increased number of errors, to achieve the security targets. Consequently with
conventional implementation approaches there are noticeable bottlenecks particularly in the
determination of the roots of the error locator polynomial during decapsulation. The use
of an additive FFT can however be very e�cient, and this has also been adopted in other
implementations of McEliece [BCS13, Cho17]. In this submission, we have used a bit-sliced
additive FFT implementation to speed up the root �nding stage during decapsulation and

22

the validity check of a Goppa polynomial during key-generation.

In key generation, the major bottleneck, particularly with the long codes used, is in determin-
ing the mτ × n binary reduced-row echelon parity-check matrix for the binary Goppa code.
This is a (1768× 8192)-bit matrix for NTS-KEM(13,136), meeting the 256-bit security level.
A particularly e�cient algorithm for Gauss-Jordan elimination [ABP11] has been used in this
part of the implementation to produce satisfactory performance, as described in Section 6.

Finally, we declare that we have not knowingly introduced any back-door in the NTS-KEM
with our proposed design and suggested parameters.

6 Performance analysis

The performance pro�le of NTS-KEM key-generation, encapsulation and decapsulation is
obtained from the following machines:

� A server with 16 cores Intel® Xeon® E5-2667 v2 3.3GHz processors, 256GB of RAM,
running Debian Linux 9.6. It has an Ivy Bridge-EP processor microarchitecture sup-
porting SSE2/SSE4.1 instruction set extensions.

� An Amazon Web Services (AWS) c4.xlarge instance with 4 cores Intel® Xeon® E5-
2660 v3 2.9GHz processors, 7.5GB of RAM, running Ubuntu Linux 18.04. It has a
Haswell processor microarchitecture supporting AVX2.0 instruction set extensions.

� A server with 28 cores Intel® Xeon® E5-2690 v4 2.6GHz processors, 256GB of RAM,
running Debian Linux 9.6. It has a Broadwell processor microarchitecture supporting
AVX2.0 instruction set extensions.

� A Macbook with Intel® Core� m3-6Y30 1.1GHz processor, 8GB of RAM (early 2016
model), running OS X 10.14. It has a Skylake processor microarchitecture supporting
AVX2.0 instruction set extensions.

We tested our code on gcc version 4.9.2, 5.4.0, 6.3.0 and 7.3.0 on Linux, and clang-1000 on
OS X platforms. Furthermore, the code is compiled with the following compiler �ags:

-O3 -ansi -std=c99 -fomit-frame-pointer -fwrapv

and additionally -msse2 -msse4.1 or -mavx2 depending on the processor architecture in or-
der to make use of the wide single instruction, multiple data (SIMD) registers. We collected
the number of CPU cycles at various stages of key-generation, encapsulation and decapsula-
tion from 5, 000 runs. These are reported in Tables 2, 3 and 4, respectively. Note that on
the Macbook, the computations were carried out in a single-user mode in order to obtain a
more accurate �gure.

23

CPU
NTS-KEM Random G(z) Random p Matrix Q

parameter (Step 1) (Step 2) (Step 3)

E5-2667 v2 NTS-KEM(12, 64) 211, 606 1, 598, 912 37, 578, 135

3.3GHz NTS-KEM(13, 80) 578, 861 3, 496, 818 121, 597, 044

Ivy Bridge-EP NTS-KEM(13, 136) 856, 828 3, 522, 043 224, 978, 415

E5-2660 v3 NTS-KEM(12, 64) 167, 013 1, 115, 812 42, 512, 888

2.9GHz NTS-KEM(13, 80) 468, 056 2, 493, 882 127, 976, 217

Haswell NTS-KEM(13, 136) 798, 792 2, 424, 697 232, 458, 429

E5-2690 v4 NTS-KEM(12, 64) 161, 434 1, 189, 804 36, 489, 611

2.6GHz NTS-KEM(13, 80) 447, 585 2, 604, 659 115, 749, 543

Broadwell NTS-KEM(13, 136) 670, 221 2, 613, 570 208, 104, 855

Core m3-6Y30 NTS-KEM(12, 64) 82, 370 937, 342 17, 111, 234

1.1GHz NTS-KEM(13, 80) 201, 814 2, 061, 832 48, 511, 940

Skylake NTS-KEM(13, 136) 343, 408 2, 038, 628 105, 608, 875

Table 2: The average number of CPU cycles consumed during key-generation for di�erent
parameter sets on various processor architectures. A reference to the corresponding step in
the speci�cation is also given.

We note that there are variations on the benchmarking results presented in the following
tables compared to those in the respective tables of the original NTS-KEM submission. We
believe these variations are attributed to various changes in the operating system and compiler
versions on our benchmarking machines.

The key-generation process in NTS-KEM consumes the most CPU time. It can be broken
down into three main steps, namely sampling of a random Goppa polynomialG(z), generation
of a random permutation vector p and construction of the matrix Q. Table 2 shows the
average number of CPU cycles on these three steps for the three parameter sets proposed in
Section 4.

Empirical results have shown that on average, approximately 3 sets of mτ bits are required
in order to obtain a valid Goppa polynomial G(z). The cost of sampling a random G(z)
is dominated by GCD computation between G(z) and its derivative, which is used to check
whether or not G(z) has repeated roots in any extension �eld. As shown in Table 2, the
highest cost is on the generation of matrix Q. This cost is largely attributed to transforming
a matrix into reduced-row echelon form, which has average-case complexity of O(n3/ log2 n)
using M4RI [AP10]. We optimise this step following the approach in [ABP11] that exploits
data locality, i.e. the cost of reading data from RAM is often higher than the combined
cost of doing arithmetic operations and reading data from CPU cache. Note that unlike
McBits [BCS13, Cho17] where on average 3 Gaussian elimination attempts are required per
key-generation, only one attempt is required in NTS-KEM because we can update p, see
Step 3d of the key generation procedure.

24

Encapsulation

NTS-KEM E5-2667 v2 E5-2660 v3 E5-2690 v4 Core m3-6Y30

parameter 3.3GHz 2.9GHz 2.6GHz 1.1GHz

Ivy Bridge-EP Haswell Broadwell Skylake

NTS-KEM(12, 64) 124, 528 110, 714 94, 684 76, 152

NTS-KEM(13, 80) 396, 513 545, 719 343, 826 197, 776

NTS-KEM(13, 136) 532, 168 789, 996 443, 364 270, 994

Table 3: The average number of CPU cycles consumed during encapsulation for di�erent
parameter sets on various processor architectures.

The encapsulation in NTS-KEM is simple and relatively cheap compared to the key-generation
process. Table 3 shows the average CPU cycles for encapsulation, which includes the gener-
ation of a random vector of weight τ , vector multiplication with Q and running SHAKE256
twice. The vector multiplication step is carried out with τ

⌈
n−k
W

⌉
XOR operations where W

is the width of an SIMD register.

CPU

Syndrome Berlekamp- Root Obtain e′ Compute kr

NTS-KEM computation Massey �nding Permute e′ & hash check

parameter algorithm & recover ke

(Steps 1a�1c) (Step 1d) (Step 1e) (Step 1f, 2�3) (Step 4)

E5-2667 v2 NTS-KEM(12, 64) 488, 120 96, 129 23, 235 25, 770 16, 862

3.3GHz NTS-KEM(13, 80) 908, 084 141, 843 52, 864 50, 510 28, 072

Ivy Bridge-EP NTS-KEM(13, 136) 1, 994, 487 360, 485 66, 856 50, 451 28, 196

E5-2660 v3 NTS-KEM(12, 64) 245, 324 67, 163 16, 357 28, 464 16, 322

2.9GHz NTS-KEM(13, 80) 441, 872 106, 401 39, 436 52, 187 28, 994

Haswell NTS-KEM(13, 136) 854, 528 276, 437 52, 512 68, 842 29, 115

E5-2690 v4 NTS-KEM(12, 64) 201, 649 56, 174 13, 753 27, 341 13, 000

2.6GHz NTS-KEM(13, 80) 357, 490 85, 948 28, 061 54, 098 23, 073

Broadwell NTS-KEM(13, 136) 692, 775 219, 579 36, 948 52, 729 23, 867

Core m3-6Y30 NTS-KEM(12, 64) 102, 569 31, 650 6, 684 14, 859 9, 324

1.1GHz NTS-KEM(13, 80) 187, 414 50, 600 15, 153 27, 600 16, 633

Skylake NTS-KEM(13, 136) 385, 508 128, 706 21, 578 29, 563 16, 684

Table 4: The average number of CPU cycles consumed during decapsulation for di�erent
parameter sets on various processor architectures. A reference to the corresponding step in
the speci�cation is also given.

Table 4 shows the break-down of the average CPU cycles consumed at di�erent stages in
NTS-KEM decapsulation. For the syndrome computation, NTS-KEM operates on vectors
with (`+mτ) elements only, instead of n as in a typical McEliece implementation. This gives
the syndrome computation complexity of mτ2. To compute an error-locator polynomial, we
use the Berlekamp-Massey algorithm, which has complexity τ2. Our implementation of this
algorithm aims to minimise any potential timing side-channel information by removing all
if-else branches and ensuring that it always runs for 2τ iterations for a given set of syndrome

25

components. We use the additive-FFT, which requires 2n log2 n �nite-�eld multiplications
and n

2 (log2 n)2 �nite-�eld additions [GM10], to perform root �nding. The step to obtain e′

is low cost compared to permuting e′ to produce e. The cost in the last decapsulation step
is attributed to SHAKE256 computations.

A signi�cant gain in performance has been obtained by bit-slicing the �nite-�eld arithmetic
operations. The �eld operations described in Appendix A are rather ine�cient. Bit-slicing
allows the same operation to be carried out simultaneously on a block of W items with
relatively few bitwise logical operations on W -bit SIMD registers. For example, for m = 12
in NTS-KEM(12, 64), a naive �eld multiplication over F2m requires 30 bitwise operations.9

Following the work on circuit minimization [BDP+], it is possible to build a circuit to multiply
two polynomials of degree less than m with 126 XOR and 81 AND gates respectively. A
modulo reduction circuit requires 22 XOR gates only. Therefore, on a processor with 256-bit
SIMD registers (AVX2.0 support), bit-slicing allows us to perform �eld multiplication on 256
elements in parallel with just 229 elementary operations. In contrast using the equivalent
naive approach would require 7, 680 operations.

Our implementations of syndrome computation, the Berlekamp-Massey algorithm, and addi-
tive FFT all make use of bit-slicing. In particular, we follow the work of [Cho17] on bit-sliced
additive FFT implementation. Root �nding is usually the most time-consuming step in de-
capsulation [BS08], however as is evident from Table 4, using the bit-sliced additive FFT for
root �nding turns this step into one of the most e�cient steps. The trade-o� of bit-sliced
FFT is the cost of storage where we need to store the scaling factors of the Taylor expansion
of a polynomial (δi,j in Step 16 of Algorithm 4) and the twiddle factors of the FFT butter�ies
(Γj [i] in Step 27 of Algorithm 4). The storage requirement of the scaling factors is small,
under 500 bytes for NTS-KEM(12, 64), 1.2 kilobytes for NTS-KEM(13, 80) and just under
3 kilobytes for NTS-KEM(13, 136). On the other hand, the twiddle factors require a slightly
more modest storage space, around 6 kilobytes for NTS-KEM(12, 64) and around 14 kilobytes
for the other two NTS-KEM versions. Table 5 gives the high-level overview of the memory
requirements of the current implementation of NTS-KEM key-generation, encapsulation and
decapsulation.

We believe that the performance of NTS-KEM can be further improved. As shown in Table 4,
the most CPU consuming step in decapsulation is syndrome computation. While bit-slicing
has been used in our syndrome computation, we believe that a considerable amount of per-
formance gain will be obtained by using a bit-sliced implementation of a transposed additive
FFT as demonstrated in [BCS13, Cho17]. Moreover, following the results in error-correcting
codes, it may be possible to simplify the Berlekamp-Massey algorithm to run in τ iterations,
instead of 2τ [Bla83, LC04].

Survey of hardware implementation. A number of works have addressed the subject of
hardware implementation. One of the �rst published implementations of the McEliece PKE
scheme on an 8-bit microcontroller is MicroMcEliece [EGHP09]. It uses a binary Goppa

912 AND and 11 XOR operations for schoolbook multiplication, and 3 AND and 4 XOR operations for
modulo reduction.

26

NTS-KEM(12, 64) NTS-KEM(13, 80) NTS-KEM(13, 136)

Key-Gen

G(z) 96 208 312

FFT 13, 152 28, 288 30, 368

p 8, 192 16, 384 16, 384

a 6, 144 13, 312 13, 312

H 393, 216 1, 064, 960 1, 810, 432

Public-key 319, 488 929, 760 1, 419, 704

Private-key 9, 248 17, 556 19, 922

Encap

Public-key 319, 488 929, 760 1, 419, 704

e 512 1, 024 1, 024

ke 32 32 32

Key kr 32 32 32

Ciphertext 128 162 253

Decap

Private-key 9, 248 17, 556 19, 922

Ciphertext 128 162 253

s 192 416 624

σ(x) 192 208 416

FFT 13, 152 28, 288 30, 368

e 512 1, 024 1, 024

ke 32 32 32

Key kr 32 32 32

Table 5: High-level overview of the memory requirements (in bytes) in NTS-KEM key-
generation, encapsulation and decapsulation operations.

code with parameters m = 11 and t = 27, with a claimed security of 80-bits [EGHP09].
Implemented on AVR ATxMega192 microcontroller clocked at 32MHz, it achieves encryp-
tion and decryption throughput of 3, 889 and 2, 835 bits per second respectively for the
McEliece scheme; whereas for the Niederreiter scheme, it achieves encryption and decryption
throughput of 119, 890 and 1, 062 bits per second respectively. The same Goppa code is also
implemented in a Xilinx Virtex-6 FPGA to achieve 1.5 million encryptions per second and
17, 000 decryptions per second [HG12, Hey13]. Strenzke [Str10a, Str13a] demonstrated a
prototype of the McEliece PKE scheme on a 16-bit smartcard. The author uses two binary
Goppa codes, the �rst one has parameters m = 10, t = 40 and it takes around 1.2 seconds to
encrypt and just under 1 second to decrypt; the second one has parameters m = 11, t = 50
and both encryption and decryption take less than 2 seconds each.

As stated earlier, the key-generation is the most time consuming step in McEliece-like
schemes. Due to this constraint, this step may be prohibitive to implement on a low-end hard-
ware platform. Furthermore most hardware implementations consider the lower end of the
security target. For post-quantum security at the 128-bit level, Wang et al [WSN17] present

27

a tunable FPGA implementation of key-generation which takes under 900, 000 clock cycles on
a Stratix V FPGA. The authors use a binary Goppa code recommended by the PQCRYPTO
project [PQC] and claim 128-bit post-quantum security, with parameters m = 13, t = 119
and n = 6960. It is interesting to note that the additive FFT [GM10] is also implemented on
the FPGA in [WSN17] and it requires 1, 000 clock cycles to evaluate a Goppa polynomial
of degree 119. Furthermore, they also use the Fisher-Yates shu�e in generating random
permutations.

7 NTS-KEM security

In this section, we justify our parameter selection. In Section 7.1, we present Theorem 1 which
states that an attack defeating the IND-CCA security of NTS-KEM can be used to break
the one-wayness of a McEliece PKE scheme with the same security parameters and similar
adversarial advantage. The proof of the theorem is given in Appendix E. In Section 7.2, we
provide quantitative estimates for breaking the one-wayness of10 the McEliece PKE scheme,
based on the complexity of the best-known decoding algorithms. We provide justi�cation in
Section 7.3 for our assumption that NTS-KEM is not subject of dedicated quantum attacks,
other than the speed-ups due to Grover's algorithm and other generic quantum algorithms.
Section 7.4 summarises the security of NTS-KEM against other forms of attack, including
side-channel attacks and reaction attacks. Finally, Section 7.5 summarises our security claims
for the three di�erent parameter sets that we propose for NTS-KEM.

7.1 IND-CCA security of NTS-KEM

Theorem 1 shows that the NTS-KEM scheme is secure against chosen-ciphertext attacks,
under the reasonable assumption that inverting the McEliece PKE scheme is hard. In more
detail, it proves that an adversary A capable of winning a IND-CCA game for NTS-KEM
can be used to construct an adversary B that defeats the OW security of the McEliece PKE
scheme with similar advantage.

Theorem 1. If there exists a (t, ε)-adversary A winning the IND-CCA game for NTS-KEM,
then there exists a

(
2 t, ε− qD

2`

)
-adversary B against the OW security of the McEliece PKE

scheme with same code parameters:

- in the Random Oracle Model;

- when τ < `; and

- when the decapsulation algorithm succeeds with probability 1 for all public keys (Q, τ, `)
and all well-formed ciphertexts;

with qD being the number of queries made by A to its decapsulation oracle.

10In what follows, we write �inverting� as short-hand for �breaking the one-wayness of�.

28

Note that the condition τ < ` holds for all parameter sets given in this speci�cation. Note
also that the third condition in the theorem statement above does hold for the decapsulation
algorithm that we have speci�ed for NTS-KEM.

The full proof of the theorem can be found in Appendix E. We note that while our proof is
tight, we use it mainly as design validation. In particular, when selecting parameters we do
not take the additive term of qD/2

` into account.11 That is, we use the cost of inverting the
McEliece PKE scheme directly to select parameters.

We expect that a security analysis of NTS-KEM in the Quantum Random Oracle Model
(QROM) can be carried out using techniques analogous to those in [SXY18, JZC+18], with
appropriate modi�cations being made to cater for NTS-KEM hashing the recovered error
vector rather than the ciphertext when computing the encapsulated key.

7.2 McEliece OW security: decoding complexity

The best, known attack against the one-wayness of the McEliece PKE scheme is to attempt
to determine the error vector from the ciphertext and the public key. The most e�cient class
of this type of attack is information-set decoding (ISD), which was anticipated and described
by McEliece in his original paper [McE78]. The ISD technique was originally proposed by
Prange [Pra62] in the 1960s and was aimed at error correction of random binary codes when
used in digital communication systems. It has been shown that decoding a random binary
code is NP-hard [BMvT78] and, indeed, Prange's original decoder and all subsequent ISD
algorithms have exponential running times. They remain, however, the most e�cient attack
currently known against the McEliece scheme, and more generally against Goppa code based
cryptographic schemes, under the assumption that the structure of the original code used is
hidden.

7.2.1 Information-set decoding

An OW adversary for the McEliece PKE scheme can treat the code as a random binary code
and attempt to use Prange's decoder or subsequently improved ISD algorithms to obtain the
plaintext message. In its basic form, an information-set decoding algorithm on any binary
code with parameters [n, k, 2τ + 1]2 will randomly select k columns of the generator matrix,
and carry out Gauss-Jordan elimination of the rows. There is a non-zero probability that a
reduced echelon generator matrix will be obtained which may be used to generate an error-free
codeword from k coordinates of the McEliece ciphertext.

First of all, the k × k sub-matrix resulting from the k selected columns needs to be full
rank. The probability of this depends on the particular code, but for the long Goppa codes
used in the McEliece scheme, this probability turns out to be the same as the probability of

11This omission does not substantially alter the promised security for two out of three of our proposed
parameter sets as we have ` = 256 and, per NIST's call [NIS16], qD ≤ 264.

29

a randomly chosen k × k binary matrix being full rank, which has an asymptotic value of
0.2887.

Given a McEliece ciphertext containing τ errors, an attacker then selects k bits randomly and
constructs the corresponding permuted, reduced echelon generator matrix with the chance of
success of 0.2887. The attacker uses this matrix to generate a codeword from the correspond-
ing k bits of the target ciphertext and �nds the Hamming distance between this codeword
and the ciphertext. If the Hamming distance is exactly τ , then it can recover the plaintext
message. If not, it can start again with a di�erent selection of k bits.

For an information-set attack to work, the selected k bits of the ciphertext need to be free
from error. The probability of this event is

k−1∏
i=0

n− τ − i
n− i

=
(n− τ)!(n− k)!

(n− τ − k)!n!

Thus, in its basic form each iteration of the ISD algorithm has a probability of

0.2887 ·
(

(n− τ)!(n− k)!

(n− τ − k)!n!

)
to successfully invert the McEliece PKE scheme.

We note however that if the k×k sub-matrix is not full rank it may not be necessary to start
again. By selecting k + ε columns rather than k, a simple back tracking algorithm can be
used to �nd a set of k full rank columns.

Then, assuming ε additional columns have been selected so that the selected matrix has rank
k, in the basic ISD algorithm the expected number of selections of k bits from the ciphertext
required for recovering the plaintext message is roughly given by

(n− τ − k)!n!

(n− τ)!(n− k)!
.

One can already use this initial crude analysis of complexity of basic ISD to derive minimum
parameter values for the McEliece PKE scheme for comparison between the computational
resources required for inverting the scheme and for exhaustive key search on a λ-bit block
cipher. Assuming a somewhat simplistic computational equivalence, the parameters need to
satisfy

N(m,τ) =
(mτ − τ)!2m!

(2m − τ)!(mτ)!
=

(n− τ − k)!n!

(n− τ)!(n− k)!
≥ 2λ, (6)

where the binary Goppa code used is of full length n = 2m, with the number of parity bits
n− k = mτ . This basic ISD analysis allows one to derive minimum values for the pair (m, τ)
to satisfy this inequality. In particular we have:

� m ≥ 12 and τ ≥ 42 =⇒ N(m,τ) ≥ 2128.

30

(m, τ) time complexity

(12,64) 2158.4

(13,80) 2239.9

(13,136) 2305.1

Table 6: Proposed code parameters and ISD attack time complexities based on [BLP11]

� m ≥ 13 and τ ≥ 53 =⇒ N(m,τ) ≥ 2192.

� m ≥ 13 and τ ≥ 90 =⇒ N(m,τ) ≥ 2256.

While an analysis of basic ISD can indicate minimum parameter values for code-based
cryptography, the literature documents a succession of developments and re�nements to
information-set decoding, particularly when applied to the task of inverting the McEliece
PKE scheme. Canteaut et al. [CS98] formulated an attack based on extending the code by
augmenting the generator matrix with the target ciphertext. For this new code, there will be
only one codeword with Hamming weight τ , which is the error vector e. With this approach
any algorithm that �nds low-weight codewords of a code may be used to attack the McEliece
PKE scheme.

Most modern ISD attacks are based on collisions between the calculated syndrome of the
target ciphertext and syndromes calculated from selected columns of the parity-check matrix.
Equivalently stated, the target ciphertext has a syndrome s and there are τ columns of the
parity-check matrix whose modulo 2 sum is equal to s. There are many di�erent variants of
this type of attack with di�erent strategies of partitioning sets of columns of the parity-check
matrix and looking for collisions of sub-sum syndrome evaluations.

Starting with Stern [Ste88] there have been a large number of improvements in the work
factors of this and similar approaches [LB88, BLP08, MMT11]. Good surveys of the di�erent
improvements of the syndrome based approach are provided in [FS09, BLP11].

7.2.2 Quantitative complexity estimates for inverting the McEliece PKE scheme

Our selection of parameters for NTS-KEM and corresponding security claims follow com-
plexity estimates for inverting the McEliece PKE scheme using recent improvements in
information-set decoding algorithms. In particular, we make use of scripts and results
from [BLP08, FS09, MMT11] to assess the security levels of the proposed code parameters
used in the NTS-KEM(12,64), NTS-KEM(13,80) and NTS-KEM(13,136) versions of NTS-
KEM. Speci�cally, we used the scripts by Peters [BLP11] to produce the estimates on ISD
attack time complexity for the three proposed sets of parameters for NTS-KEM shown in
Table 6.

We also considered more recent results by Both and May [BM17a], which use the BJMM
algorithm [BJMM12] with nearest neighbour search to derive time complexities for full and

31

bounded distance decoding. Their work indicates work factors of 2128, 2198 resp. 2256 oper-
ations [BM17b]. As noted in [BM17a], the analysis there neglects all polynomial factors, so
these work factor estimates do not necessarily give upper bounds on the bit security level
of the corresponding McEliece PKE scheme instantiations. We also note that the algorithm
in [BM17a] has exponential space complexity. Thus, the area-time complexity of known algo-
rithms for inverting McEliece is larger than indicated above, even when ignoring polynomial
factors.

Yet, in the spirit of our conservative design, we chose to err on the side of caution and
selected parameters which lead to an estimated cost of at least 2λ for the three targeted
classical security levels λ ∈ {128, 192, 256} for an analysis based on [BM17a]. We stress that
this is optimistic for the attacker.

7.3 Quantum attacks

There are currently no known dedicated quantum algorithms for attacking McEliece, and
thus the NTS-KEM scheme. To the best of our knowledge, the best approach exploiting
quantum computers to attack code-based schemes are the applications of generic quantum
techniques such as Grover's algorithm and random walks to speed up information-set decoding
algorithms.

Bernstein in [Ber10] showed that Grover's algorithm could be used to speed up the search step
in Prange's original ISD algorithm. He showed that the basic search for an information set

could be done on a quantum computer using Grover's algorithm in about
√(

n
k

)
/0.2887

(
n−τ
k

)
≈

c(1/2)n/ logn iterations, where c = (1 − k
n)−(1−

k
n
), with each iteration requiring O(n3) qubit

operations. Bernstein's algorithm thus represents a quadratic speed-up on Prange's basic
ISD algorithm.

More recently, Kachigar and Tillich [KT17] considered how to speed up some of the more
advanced information-set decoding algorithms on quantum computers. This was done by
proposing a method to solve the generalised subset-sum problem with quantum walks and
Grover search. They were then able to obtain a (below quadratic) speed-up, however on more
sophisticated ISD algorithms, e.g. for the algorithm of May et al. [MMT11]. Their quantum
information-set decoding algorithm represents an improvement (numerically) compared to
Bernstein's, yet does not go beyond the square-root improvement o�ered by generic quantum
algorithms.

Thus we can conservatively assume that quantum attacks will at best o�er a square-root
reduction in the classical security level o�ered by NTS-KEM.12 We have not estimated the
exact circuit depth and size required, but the research on quantum information-set decoding
algorithms outlined above indicates that the quantum resources required to carry out such a
quantum attack against NTS-KEM(12,64), NTS-KEM(13,80) and NTS-KEM(13,136) would

12We also note that best quantum speed-ups in [KT17] appear to occur for codes with rate around 0.4−0.5,
while the codes used in NTS-KEM have rate 0.78− 0.87.

32

be comparable to or greater than those required for a (quantum) key search on the AES block
cipher with 128-bit, 192-bit and 256-bit keys, respectively.

We stress that the above analysis assumes not only the existence of an algorithmic square-
root speed-up but also the existence of perfect quantum computers that can run inde�nitely.
In contrast, in [NIS16] NIST encourages designers to assume a much smaller depth achievable
on a quantum computer, further limiting potential Grover-style speed-ups.

7.4 Security against other known attacks

In addition to ISD-based message recovery attacks discussed in Section 7.2.1, our security
analysis may also consider attacks to recover the private key of code-based schemes. These
so-called structural attacks attempt to recover the original code (i.e. to recognise the code
structure) from the public key. This in turn would allow the attacker to construct an algebraic
decoder, and break any ciphertext for the particular instantiation of the scheme.

Overbeck and Sendrier discuss in [OS09, Chapter 4.3] how one may attempt to recognise
the code structure for schemes based on di�erent classes of algebraic codes. For Goppa code
based schemes, a structural attack means recovering either the Goppa polynomial G(z) or
the permutation P; knowledge of either would allow recovery of the full private key from the
public key in polynomial time. Faugère et al. discuss structural attacks on high rate Goppa
codes, with k

n > 0.95, in [FGUPT11], and Loidreau and Sendrier showed that binary Goppa
codes derived from binary Goppa polynomials [LS01] are vulnerable to structural attacks.
However, for standard Goppa code based schemes, having a systematic generator matrix
of the permuted Goppa code is considered su�cient to hide the original code structure, in
which case the best known structural attacks have exponential time complexity. This is the
case for NTS-KEM, where the public key can be seen as the systematic generator matrix
G = [Ik | Q] over F2 of the permuted Goppa code CG . Thus, for the NTS-KEM scheme and
the suggested parameters in this proposal, such structural attacks are universally accepted
as being infeasible, in fact of higher complexity than the decoding attacks used to derive our
suggested parameter sets.

Ciphertexts in textbook McEliece are highly malleable. This allows so-called reaction at-
tacks, in which an attacker manipulates a target ciphertext (e.g. performing bit �ips on it),
then observes the receiver's reaction (whether decoding fails or not), and uses this informa-
tion to recover the secret message. Reaction attacks may also be applied against code-based
schemes that require the use of a probabilistic decoding procedure for decryption, in some
cases allowing for recovery of the private key [GJS16]. NTS-KEM employs a deterministic
decoding algorithm during decapsulation, and this decoding algorithm always produces some
output (with that output being correct whenever a valid ciphertext is presented for decryp-
tion). Moreover, NTS-KEM is designed to be IND-CCA secure, such that any ciphertext
manipulations are detected after the decoding step is complete. This allows us to assert that
NTS-KEM is not vulnerable to reaction attacks.

An overview of side-channel attacks against McEliece is given in [RZ14, Section 7]. Of partic-

33

ular applicability to code-based schemes are timing attacks, in which an attacker may observe
the time required for key generation, encapsulation or decapsulation to recover secret infor-
mation; see for example [STM+08, SSMS09, Str10b, AHPT12, Str13b]. As a variant of the
McEliece scheme, NTS-KEM would also be vulnerable to timing attacks if implemented with-
out care. While not all algorithms de�ned and recommended in Section 3 are constant-time
� at times our choice for sub-routines were done for the sake of simplicity of presentation
� implementations of NTS-KEM can be made constant-time by applying, for example, the
approach suggested in [BCS13, BCLvV16]. Power attacks may also be attempted against
software and hardware implementations of NTS-KEM [HMP10]. The implementation may
however be protected against simple power analysis using standard techniques, see for ex-
ample [EGHP09, CEvMS16]. Di�erential power analysis has also been applied against a
number of implementations of McEliece, for example see [CEvMS15] for QC-MDPC-based
scheme and [PRD+16] for Goppa-based scheme. The di�erential power cryptanalysis of
Chen et al. [CEvMS15] shows that it is possible to recover the complete private key after a
few observed decryptions. On the other hand, Petrvalsky et al. [PRD+16] attack the soft-
ware implementation of a secure bit permutation proposed by Strenzke et al. [STM+08] and
demonstrate that part of the private-key and permutation matrix can be recovered. Clearly
care would be needed in the implementation of NTS-KEM in environments where DPA is a
concern.

Code-based schemes may also be at risk from potential misuse attacks by one of the commu-
nicating parties. For NTS-KEM, the cases we foresee are the following:

1. in encapsulation, the sending party may generate error vectors either with weight lower
than τ , or not uniformly at random among the space of weight-τ vectors of length n;

2. in key generation, the receiving party may deliberately generate weak keys, for example
reducing the coe�cient space of the Goppa polynomial by restricting the coe�cients
to be binary values (a case for which there is an attack [LS01]), or by restrictions in
the construction of the public key via binary mappings of �eld elements to an echelon
reduced-row parity check matrix by means of Gauss-Jordan elimination.

In case 1, if hw(e) � τ an attacker may e�ciently decode the ciphertext with knowledge of
the public key only, by using a bit �ipping decoder or a general purpose decoder for random
binary codes. However our algorithm checks the weight of the error vector on decapsulation,
returning ⊥ if hw(e) 6= τ . On the other hand, if error vectors are not chosen uniformly
at random, for example if the error positions are restricted, this information may be used
for faster recovery of the error vector and thus of the encapsulated key. The NTS-KEM
decapsulation algorithm will not recognise such cases; if this is considered a threat, analysis
may be carried out to verify that error vectors are generated uniformly at random. In case 2,
an attacker may e�ciently decode the ciphertext with knowledge of the public key if an
instantiation of NTS-KEM generates keys in this manner. Again, if this form of attack is
considered a threat, analysis of key generation may be carried out. We note however that
all misuse cases discussed above require non-compliance with the speci�cation of NTS-KEM
given in Section 3 and/or use of algorithms against our recommendations given there.

34

7.5 Security claims

Our proof relating the IND-CCA security of NTS-KEM to the hardness of inverting the
McEliece PKE scheme, combined with complexity estimates for state-of-art information-set
decoding algorithms, and the absence of dedicated quantum attacks against our scheme,
underpin our quantitative security claims for the three versions of NTS-KEM.

1. NTS-KEM(12,64): scheme version based on [212, 3328, 129]2 Goppa codes capable
of correcting up to τ = 64 errors. We claim that any attack that can break the
IND-CCA security of NTS-KEM(12,64) will require computational resources of the
order of at least 2128 operations on a classical computer, and at least 264 operations
on a quantum computer. Those computational resources are comparable to or greater
than those required for key search on the AES-128 block cipher. Our claim places
NTS-KEM(12,64) in the Security Strength Category 1, as de�ned in NIST's call
for proposals [NIS16].

2. NTS-KEM(13,80): scheme version based on [213, 7152, 161]2 Goppa codes capable
of correcting up to τ = 80 errors. We claim that any attack that can break the
IND-CCA security of NTS-KEM(13,80) will require computational resources of the
order of at least 2192 operations on a classical computer, and at least 296 operations
on a quantum computer. Those computational resources are comparable to or greater
than those required for key search on the AES-192 block cipher. Our claim places
NTS-KEM(13,80) in the Security Strength Category 3.

3. NTS-KEM(13,136): scheme version based on [213, 6424, 273]2 Goppa codes capable
of correcting up to τ = 136 errors. We claim that any attack that can break the
IND-CCA security of NTS-KEM(13,136) will require computational resources of the
order of at least 2256 operations on a classical computer, and at least 2128 operations
on a quantum computer. Those computational resources are comparable to or greater
than those required for key search on the AES-256 block cipher. Our claim places
NTS-KEM(13,136) in the Security Strength Category 5.

8 Advantages and limitations

NTS-KEM is a code-based key encapsulation mechanism, with a conservative design aiming
for long-term security against classical and quantum attacks. We discuss in more detail below
the main features of our proposal.

� A main advantage of our proposal is its strong security guarantees. NTS-KEM is
a conservative proposal, a variant of the McEliece and Niederreiter schemes. These
are schemes that have received considerable attention from the cryptographic commu-
nity for nearly four decades. The NTS-KEM construction itself is a key encapsulation
mechanism which o�ers resistance against chosen ciphertext attacks. This is shown

35

via a proof of security which demonstrates a tight relationship between the IND-CCA
security of NTS-KEM and the problem of inverting the McEliece PKE scheme.

� The security of NTS-KEM is therefore based on a simple and well-understood
mathematical problem. The main approach to tackle this problem, namely information-
set decoding algorithms, has been extensively studied and has good complexity esti-
mates.

� These estimates were used to set conservative parameter sets, which are likely to
o�er a reasonable security margin within the security categories we aimed for.

� Moreover, the absence of dedicated quantum attacks indicates the best-case post-
quantum scenario, with at best a quadratic speed-up on the classical ISD algorithms for
cryptanalysing NTS-KEM on quantum computers. These features lead us to conclude
that NTS-KEM o�ers long-term post-quantum security.

� Although we proposed conservative parameters in this submission, the scheme o�ers
a high degree of �exibility in the setting of parameters. The two NTS-KEM pa-
rameters (the code length and the weight of the error vector) can be adjusted in case
of future progress in ISD algorithms, or, conversely, if some of the current estimates
are proven to be too optimistic. More generally, it is straightforward to derive from
the parameter choices the security level estimates and associated costs in performance
and size of keys and ciphertexts. This makes easy to consider potential trade-o�s
between performance and security. Finally, parameters may be set deliberately low in
reduced versions of the algorithm, to test any new proposed cryptanalytic technique in
practice.

� One further advantage of NTS-KEM is that it provides good long-term keys. The
most e�cient attacks target the keys encapsulated in individual ciphertexts instead.
Other features of the scheme, for example the use of a deterministic decoding algorithm
during decapsulation, mean that brute force is essentially the only known practical
means of attack to determine the private key from the public key, and thus private-
public key pairs may be deployed for long periods of time.

� NTS-KEM has compact ciphertexts, around 2,000 bits at the highest security level.
This makes the scheme particularly suitable for low bandwidth applications with long-
term keys.

� NTS-KEM has also e�cient operations, particularly encapsulation, leading to rea-
sonably fast software implementations. Moreover, the simplicity of the operations and
subroutines allow for the straightforward deployment of protection measures against
side-channel attacks by, for example implementing constant-time versions of the scheme's
operations.

The notable disadvantage of our design is the size of the public key. At the highest security
level proposed, the NTS-KEM public key is approximately 1.39MB in size (312KB for the
128-bit security version). Large public keys are a common feature of all Goppa code based
schemes. There are however applications to which large public keys are not of major concern.

36

In these applications NTS-KEM long-term security, compact ciphertexts and e�cient public
and private key operations may be considered as more relevant and attractive features.

Finally, we note that NTS-KEM does not currently come equipped with a proof of security
in the Quantum Random Oracle Model (QROM), but only in the classical Random Oracle
Model. However, several new proof techniques have recently become available for proving
security in the QROM [SXY18, JZC+18]. Thus, we are optimistic that we will also be able
to prove NTS-KEM secure in the QROM in future work.

37

References

[ABP11] Martin R. Albrecht, Gregory V. Bard, and Clément Pernet. E�cient Dense
Gaussian Elimination over the Finite Field with Two Elements. Computing
Research Repository, abs/1111.6549, 2011.

[AHPT12] Roberto Avanzi, Simon Hoerder, Dan Page, and Michael Tunstall. Erratum to:
Side-channel attacks on the McEliece and Niederreiter public-key cryptosystems.
J. Cryptographic Engineering, 2(1):75, 2012.

[AP10] Martin R. Albrecht and Clément Pernet. E�cient Decomposition of Dense Ma-
trices over GF(2). Computing Research Repository, abs/1006.1744, 2010.

[Arn11] Jörg Arndt. Matters Computational: Ideas, Algorithms, Source Code. Springer-
Verlag, 2011.

[BBHT17] Axel Bacher, Olivier Bodini, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. Generat-
ing Random Permutations by Coin Tossing: Classical Algorithms, New Anal-
ysis, and Modern Implementation. ACM Trans. Algorithms, 13(2):24:1�24:43,
February 2017.

[BCLvV16] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine
van Vredendaal. NTRU Prime: reducing attack surface at low cost. Cryptology
ePrint Archive, Report 2016/461, 2016. https://eprint.iacr.org/2016/461.

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast constant-
time code-based cryptography. In Guido Bertoni and Jean-Sébastien Coron,
editors, Cryptographic Hardware and Embedded Systems � CHES 2013, volume
8086 of Lecture Notes in Computer Science, pages 250�272, Santa Barbara, CA,
USA, August 20�23, 2013. Springer, Heidelberg, Germany.

[BDP+] Joan Boyar, Morris Dworkin, Rene Peralta, Meltem Turan,
Cagdas Calik, and Luis Brandao. Circuit minimization work.
http://www.cs.yale.edu/homes/peralta/CircuitStu�/CMT.html. Past col-
laborators include: Michael Bartock, Ramon Collazo, Magnus Find, Michael
Fischer, Christopher Wood, Andrea Visconti, Chiara Schiavo, Holman Gao,
Bruce Strackbein and Larry Bassham. A web page including explicit formulas
for multiplication over the binary �eld by the Circuit Minimization Team at
the Yale University (last accessed 1 Nov 2017).

[Ber68] Elwyn R. Berlekamp. Algebraic coding theory. McGraw-Hill series in systems
science. McGraw-Hill, 1968.

[Ber71] Elwyn R. Berlekamp. Factoring Polynomials over Large Finite Fields. In Pro-
ceedings of the Second ACM Symposium on Symbolic and Algebraic Manipula-
tion, SYMSAC '71, page 223, New York, NY, USA, 1971. ACM.

[Ber10] Daniel J. Bernstein. Grover vs. McEliece. In Post-Quantum Cryptography,
Third International Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-
28, 2010. Proceedings, pages 73�80, 2010.

38

https://eprint.iacr.org/2016/461

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set
decoding. In David Pointcheval and Thomas Johansson, editors, Advances in
Cryptology � EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer
Science, pages 520�536, Cambridge, UK, April 15�19, 2012. Springer, Heidel-
berg, Germany.

[BK15] E. B. Barker and J. M. Kelsey. Recommendation for random number genera-
tion using deterministic random bit generators. US Department of Commerce,
Technology Administration, National Institute of Standards and Technology,
Computer Security Division, Information Technology Laboratory, 2015.

[Bla83] Richard E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1983.

[BLP08] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defend-
ing the McEliece cryptosystem. Cryptology ePrint Archive, Report 2008/318,
2008. http://eprint.iacr.org/2008/318.

[BLP11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding expo-
nents: Ball-collision decoding. In Phillip Rogaway, editor, Advances in Cryptol-
ogy � CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages
743�760, Santa Barbara, CA, USA, August 14�18, 2011. Springer, Heidelberg,
Germany.

[BM17a] Leif Both and Alexander May. Optimizing BJMM with Nearest Neighbors: Full
Decoding in 22/21n and McEliece Security. The Tenth International Workshop
on Coding and Cryptography 2017, 2017.

[BM17b] Leif Both and Alexander May. private communication, November 2017.

[BMvT78] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of
certain coding problems (Corresp.). IEEE Transactions on Information Theory,
24(3):384�386, May 1978.

[BS08] Bhaskar Biswas and Nicolas Sendrier. McEliece Cryptosystem Implementation:
Theory and Practice. In Proceedings of the 2nd International Workshop on Post-
Quantum Cryptography, PQCrypto '08, pages 47�62, Berlin, Heidelberg, 2008.
Springer-Verlag.

[Bur71] Herbert O. Burton. Inversionless decoding of binary BCH codes. IEEE Trans.
Information Theory, 17(4):464�466, Jul 1971.

[CEvMS15] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Steinwandt.
Di�erential power analysis of a McEliece cryptosystem. In Tal Malkin, Vladimir
Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors, ACNS
15: 13th International Conference on Applied Cryptography and Network Secu-
rity, volume 9092 of Lecture Notes in Computer Science, pages 538�556, New
York, NY, USA, June 2�5, 2015. Springer, Heidelberg, Germany.

39

http://eprint.iacr.org/2008/318

[CEvMS16] Cong Chen, Thomas Eisenbarth, Ingo von Maurich, and Rainer Steinwandt.
Masking large keys in hardware: A masked implementation of McEliece. In Orr
Dunkelman and Liam Keliher, editors, SAC 2015: 22nd Annual International
Workshop on Selected Areas in Cryptography, volume 9566 of Lecture Notes in
Computer Science, pages 293�309, Sackville, NB, Canada, August 12�14, 2016.
Springer, Heidelberg, Germany.

[Chi64] Robert Chien. Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem
codes. IEEE Transactions on Information Theory, 10(4):357�363, Oct 1964.

[Cho17] Tung Chou. McBits Revisited. In Wieland Fischer and Naofumi Homma, editors,
Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th Interna-
tional Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, volume
10529 of Lecture Notes in Computer Science, pages 213�231. Springer, 2017.

[CS98] Anne Canteaut and Nicolas Sendrier. Cryptanalysis of the original McEliece
cryptosystem. In Kazuo Ohta and Dingyi Pei, editors, Advances in Cryptology
� ASIACRYPT'98, volume 1514 of Lecture Notes in Computer Science, pages
187�199, Beijing, China, October 18�22, 1998. Springer, Heidelberg, Germany.

[Den03] Alexander W. Dent. A designer's guide to KEMs. In Kenneth G. Paterson,
editor, 9th IMA International Conference on Cryptography and Coding, volume
2898 of Lecture Notes in Computer Science, pages 133�151, Cirencester, UK,
December 16�18, 2003. Springer, Heidelberg, Germany.

[Dur64] Richard Durstenfeld. Algorithm 235: Random Permutation. Communications
of the ACM, 7(7):420�, July 1964.

[EGHP09] Thomas Eisenbarth, Tim Güneysu, Stefan Heyse, and Christof Paar. Mi-
croEliece: McEliece for Embedded Devices. In Christophe Clavier and Kris Gaj,
editors, Cryptographic Hardware and Embedded Systems - CHES 2009: 11th In-
ternational Workshop Lausanne, Switzerland, September 6-9, 2009 Proceedings,
pages 49�64. Springer Berlin Heidelberg, 2009.

[FGUPT11] Jean-Charles Faugère, Ayoub Gauthier-Umaña, Valérie Otmani, Ludovic Perret,
and Jean-Pierre Tillich. A Distinguisher for High Rate McEliece Cryptosystems.
In Information Theory Workshop (ITW), 2011 IEEE, pages 282�286, October
2011.

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. Journal of Cryptology, 26(1):80�101, January
2013.

[FS09] Matthieu Finiasz and Nicolas Sendrier. Security Bounds for the Design of Code-
based Cryptosystems. In M. Matsui, editor, Asiacrypt 2009, volume 5912 of
Lecture Notes in Computer Science, pages 88�105. Springer, 2009.

[FY48] Ronald A. Fisher and Frank Yates. Statistical tables for biological, agricultural
and medical research. Oliver and Boyd, London, 3rd edition, 1948.

40

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack
on MDPC with CCA security using decoding errors. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology � ASIACRYPT 2016, Part I,
volume 10031 of Lecture Notes in Computer Science, pages 789�815, Hanoi,
Vietnam, December 4�8, 2016. Springer, Heidelberg, Germany.

[GM10] Shuhong Gao and Todd Mateer. Additive Fast Fourier Transforms Over Finite
Fields. IEEE Transactions on Information Theory, 56(12):6265�6272, Dec 2010.

[Hey13] Stefan Heyse. Post Quantum Cryptography: Implementing Alternative Public
Key Scheme on Embedded Devices. PhD thesis, Faculty of Electrical Engineering
and Information Technology, Faculty of Electrical Engineering and Information
Technology, Oct 2013.

[HG12] Stefan Heyse and Tim Güneysu. Towards one cycle per bit asymmetric en-
cryption: Code-based cryptography on recon�gurable hardware. In Emmanuel
Prou� and Patrick Schaumont, editors, Cryptographic Hardware and Embed-
ded Systems � CHES 2012, volume 7428 of Lecture Notes in Computer Science,
pages 340�355, Leuven, Belgium, September 9�12, 2012. Springer, Heidelberg,
Germany.

[HMP10] Stefan Heyse, Amir Moradi, and Christof Paar. Practical Power Analysis At-
tacks on Software Implementations of McEliece. In Post-Quantum Cryptography,
Third International Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-
28, 2010. Proceedings, pages 108�125, 2010.

[HMV04] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to Elliptic Curve
Cryptography. Springer-Verlag, 2004.

[JZC+18] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-
CCA-secure key encapsulation mechanism in the quantum random oracle model,
revisited. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology � CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Com-
puter Science, pages 96�125, Santa Barbara, CA, USA, August 19�23, 2018.
Springer, Heidelberg, Germany.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[KT17] Ghazal Kachigar and Jean-Pierre Tillich. Quantum Information Set Decod-
ing Algorithms. In Post-Quantum Cryptography - 8th International Workshop,
PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings, pages
69�89, 2017.

[KY76] Donald E. Knuth and Andrew C. Yao. Algorithms and Complexity: New Direc-
tions and Recent Results, chapter The complexity of nonuniform random number
generation. Academic Press, 1976.

41

[LB88] Pil Joong Lee and Ernest F. Brickell. An observation on the security of
McEliece's public-key cryptosystem. In C. G. Günther, editor, Advances in
Cryptology � EUROCRYPT'88, volume 330 of Lecture Notes in Computer Sci-
ence, pages 275�280, Davos, Switzerland, May 25�27, 1988. Springer, Heidelberg,
Germany.

[LC04] Shu Lin and Daniel J. Costello. Error Control Coding. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 2nd edition, 2004.

[LDW94] Yuan Xing Li, Robert H. Deng, and Xin Mei Wang. On the equivalence of
McEliece's and Niederreiter's public-key cryptosystems. IEEE Transactions on
Information Theory, 40:271�273, January 1994.

[LS01] P. Loidreau and N. Sendrier. Weak keys in the McEliece public-key crtptosystem.
IEEE Transactions on Information Theory, 47(3):1207�1211, 2001.

[Lum13] Jérémie Lumbroso. Optimal Discrete Uniform Generation from Coin Flips, and
Applications. Computing Research Repository, abs/1304.1916, 2013.

[Mas69] James L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans.
Information Theory, 15(1):122�127, Jan 1969.

[McE78] Robert J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding
Theory. Deep Space Network Progress Report, 44:114�116, January 1978.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random lin-
ear codes in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, Advances
in Cryptology � ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer
Science, pages 107�124, Seoul, South Korea, December 4�8, 2011. Springer, Hei-
delberg, Germany.

[MS77] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting
Codes. North-Holland Publishing Company, 1977.

[Nie86] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
In Problems of Control and Information Theory 15, pages 159�166, 1986.

[NIS15] NIST. FIPS PUB 202 Federal Information Processing Standards Publication:
SHA-3 Standard: Permutation-Baed Hash and Extendable-Output Functions,
August 2015.

[NIS16] NIST. Post-Quantum Cryptography Standardization: Call for Proposals, De-
cember 2016.

[OS09] Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In Daniel J.
Bernstein, Johannes Buchmann, and Erik Dahmen, editors, Post-Quantum
Cryptography, pages 95�145. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

[Pat75] Nicholas J. Patterson. The Algebraic Decoding of Goppa Codes. IEEE Trans-
actions on Information Theory, 21(2):203�207, September 1975.

42

[PQC] Post-quantum cryptography for long-term security PQCRYPTO ICT-645622.
https://pqcrypto.eu.org. Last accessed 1 Nov 2017.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Trans.
Information Theory, 8(5):5�9, 1962.

[PRD+16] Martin Petrvalsky, Tania Richmond, Milos Drutarovsky, Pierre-Louis Cayrel,
and Viktor Fischer. Di�erential power analysis attack on the secure bit per-
mutation in the McEliece cryptosystem. In 2016 26th International Conference
Radioelektronika (RADIOELEKTRONIKA), pages 132�137, April 2016.

[Ret75] Charles Retter. Decoding Goppa codes with a BCH decoder. IEEE Transactions
on Information Theory, 21(1):112�112, Jan 1975.

[RZ14] Marek Repka and Pavol Zajac. Overview of the McEliece Cryptosystem and its
Security. ATatra Mountains Mathematical Publications, 60(1):57�83, Sep 2014.

[SS92] Vladimir M. Sidel'nikov and Sergey O. Shestakov. On insecurity of cryptosys-
tems based on generalized Reed-Solomon codes. Discrete Mathematics and Ap-
plications, 2, January 1992.

[SSMS09] Abdulhadi Shoufan, Falko Strenzke, H. Gregor Molter, and Marc Stöttinger. A
Timing Attack against Patterson Algorithm in the McEliece PKC. In Infor-
mation, Security and Cryptology - ICISC 2009, 12th International Conference,
Seoul, Korea, December 2-4, 2009, Revised Selected Papers, pages 161�175, 2009.

[Ste88] Jacques Stern. A method for �nding codewords of small weight. In Coding The-
ory and Applications, 3rd International Colloquium, Toulon, France, November
2-4, 1988, Proceedings, pages 106�113, 1988.

[STM+08] Falko Strenzke, Erik Tews, H. Gregor Molter, Raphael Overbeck, and Abdulhadi
Shoufan. Side Channels in the McEliece PKC. In Post-Quantum Cryptography,
Second International Workshop, PQCrypto 2008, Cincinnati, OH, USA, October
17-19, 2008, Proceedings, pages 216�229, 2008.

[Str10a] Falko Strenzke. A Smart Card Implementation of the McEliece PKC. In Proceed-
ings of the 4th IFIP WG 11.2 International Conference on Information Security
Theory and Practices: Security and Privacy of Pervasive Systems and Smart
Devices, WISTP'10, pages 47�59, Berlin, Heidelberg, 2010. Springer-Verlag.

[Str10b] Falko Strenzke. A Timing Attack against the Secret Permutation in the
McEliece PKC. In Post-Quantum Cryptography, Third International Workshop,
PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings, pages
95�107, 2010.

[Str13a] Falko Strenzke. E�ciency and Implementation Security of Code-based Cryp-
tosystems. PhD thesis, Technischen Universität Darmstadt, Nov 2013.

[Str13b] Falko Strenzke. Timing attacks against the syndrome inversion in code-based
cryptosystems. In Post-Quantum Cryptography - 5th International Workshop,

43

PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings, pages 217�230,
2013.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-
encapsulation mechanism in the quantum random oracle model. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology � EU-
ROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer Science,
pages 520�551, Tel Aviv, Israel, April 29 � May 3, 2018. Springer, Heidelberg,
Germany.

[von51] John von Neumann. Various techniques used in connection with random digits.
In A.S. Householder, G.E. Forsythe, and H.H. Germond, editors, Monte Carlo
Method, pages 36�38. National Bureau of Standards Applied Mathematics Series,
12, Washington, D.C.: U.S. Government Printing O�ce, 1951.

[WSN17] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based Key Genera-
tor for the Niederreiter Cryptosystem Using Binary Goppa Codes. In Wieland
Fischer and Naofumi Homma, editors, Cryptographic Hardware and Embedded
Systems � CHES 2017, volume 10529 of Lecture Notes in Computer Science,
pages 253�274, Taipei, Taiwan, September 25�28 2017. Springer, Heidelberg,
Germany.

[WZ88] Y. Wang and X. Zhu. A fast algorithm for the Fourier transform over �nite
�elds and its VLSI implementation. IEEE Journal on Selected Areas in Com-
munications, 6(3):572�577, Apr 1988.

[You91] Xu Youzhi. Implementation of Berlekamp-Massey algorithm without inversion.
IEE Proceedings I - Communications, Speech and Vision, 138(3):138�140, June
1991.

44

A Binary Field Arithmethic

A �nite �eld F2m is constructed from an irreducible polynomial f(x) ∈ F2[x] of degree m.
The polynomial f(x) is irreducible in F2 and it has a root β in F2m . There exists a prim-
itive element α ∈ F2m that generates a cyclic multiplicative group of order 2m − 1, i.e.
{α, α2, ..., α2m−2, 1}. We can write β = αi for some integer i and depending on the choice
of f(x), β may be equal to α. Each element of F2m may be represented as a polynomial of
degree at most m− 1 with coe�cients in F2, i.e.

F2m = {b0 + b1β + b2β
2 + . . .+ bm−1β

m−1 : bi ∈ {0, 1}}.

This representation is commonly known as polynomial basis representation. The set of binary
coe�cients (bm−1, . . . , b1, b0) is represented as a machine integer in software implementations.

For the purpose of this document, we are only interested in F212 and F213 . Each element of
these �elds are represented as a 16-bit integer. Throughout this document, it is assumed that
the following irreducible polynomials are used because these are the lowest weight irreducible
polynomials in their respective �elds, apart from their reciprocal polynomial counterparts:

Field f(x) Relationship of α and β

F212 1 + x3 + x12 α = 1 + β + β2

F213 1 + x+ x3 + x4 + x13 α = β

In the following sub-sections, we describe how the operations such as addition, substraction,
multiplication, squaring, modulo reduction and inversion are implemented. The emphasis
is on an implementation that does not require the use of look-up tables as this could lead
to timing side-channel vulnerabilities. The material in this section is drawn from [HMV04]
and [Arn11].

A.1 Addition and Subtraction

In a binary �eld, both addition and substraction are identical and they can be easily computed
as the XOR output of the two input operands in polynomial basis representation.

A.2 Multiplication

Given two �eld elements αi, αj , their product is simply αi · αj = αk where k = i + j
mod 2m − 1. This can be easily implemented by means of a look-up table that maps a
polynomial representation of an element to its logarithmic value and vice-versa. However,
this may introduce a timing side-channel and we give algorithms avoiding look-up tables
below.

45

Let ai(x) be the polynomial representation of αi ∈ F2m for some integer i, the product of αi

and αj may also be computed as the polynomial product of ai(x) and aj(x) reduced modulo
f(x), the irreducible polynomial that de�nes the �eld. The product of ai(x) and aj(x) may
be implemented as a sequence of shift-and-add operations. Refer to Section A.3 on how to
perform reduction modulo f(x). The pseudocode below shows how to perform multiplication
over F212 and F213 . Note that the operator × on the pseudocode below denotes integer
multiplication.

function FFMultiply12(α, β)
/* α, β ∈ F212 are 16-bit integers */
/* σ is a 32-bit integer */

σ = α× (β AND 1)
σ = σ XOR (α× (β AND 2))
σ = σ XOR (α× (β AND 4))
σ = σ XOR (α× (β AND 8))
σ = σ XOR (α× (β AND 16))
σ = σ XOR (α× (β AND 32))
σ = σ XOR (α× (β AND 64))
σ = σ XOR (α× (β AND 128))
σ = σ XOR (α× (β AND 256))
σ = σ XOR (α× (β AND 512))
σ = σ XOR (α× (β AND 1024))
σ = σ XOR (α× (β AND 2048))
return FFReduce12(σ)

end function

function FFMultiply13(α, β)
/* α, β ∈ F213 are 16-bit integers */
/* σ is a 32-bit integer */

σ = α× (β AND 1)
σ = σ XOR (α× (β AND 2))
σ = σ XOR (α× (β AND 4))
σ = σ XOR (α× (β AND 8))
σ = σ XOR (α× (β AND 16))
σ = σ XOR (α× (β AND 32))
σ = σ XOR (α× (β AND 64))
σ = σ XOR (α× (β AND 128))
σ = σ XOR (α× (β AND 256))
σ = σ XOR (α× (β AND 512))
σ = σ XOR (α× (β AND 1024))
σ = σ XOR (α× (β AND 2048))
σ = σ XOR (α× (β AND 4096))
return FFReduce13(σ)

end function

A.3 Modulo Reduction

The modulo operation a(x) mod f(x) may be computed using long division but this is not
e�cient for software implementation. If f(x) is chosen such that it has the lowest possible
weight, for example a trinomial or pentanomial, the modulo operation can be e�ciently
performed with a few shift and add operations.

Consider the case for F212 where we can use the trinomial f(x) = 1+x3+x12. The intermediate
value σ of the product of two elements of F212 is a polynomial of degree at most 22. Following
f(x), we can write the following two sets of congruences:

x22 = x13 + x10

...

x16 = x7 + x4

x15 = x6 + x3

...

x12 = x3 + 1

In the �rst set of congruences above, we isolate the bits at indices 16 to 22, shift them to
the right by (22 − 13) = 9 positions and add these to σ; we also shift right them to the
right by (22− 10) = 12 positions and add these to σ. Once the operations on the �rst set of

46

congruence are completed, the same operations are applied to the second set of congruences.

Likewise, for the case of F213 , we use the pentanomial f(x) = 1 + x + x3 + x4 + x13. The
intermediate product value σ is a polynomial of degree at most 24 and as before, we have the
following two sets of congruences:

x24 = x15 + x14 + x12 + x11

...

x16 = x7 + x6 + x4 + x3

x15 = x6 + x5 + x3 + x2

x14 = x5 + x4 + x2 + x

x13 = x4 + x3 + x+ 1

The pseudocode below shows how modulo reduction is computed for F212 and F213 . Note
that the symbol � denotes a right shift operation.

function FFReduce12(σ)
/* σ, µ are 32-bit integers */

µ = σ AND 0x007F0000
σ = σ XOR (µ� 9)
σ = σ XOR (µ� 12)

/* The �rst set of congruence is done */
µ = σ AND 0x0000F000
σ = σ XOR (µ� 9)
σ = σ XOR (µ� 12)

/* The second set of congruence is done */
return (σ AND 0x0FFF)

end function

function FFReduce13(σ)
/* σ, µ are 32-bit integers */

µ = σ AND 0x01FF0000
σ = σ XOR (µ� 9)
σ = σ XOR (µ� 10)
σ = σ XOR (µ� 12)
σ = σ XOR (µ� 13)

/* The �rst set of congruence is done */
µ = σ AND 0x0000E000
σ = σ XOR (µ� 9)
σ = σ XOR (µ� 10)
σ = σ XOR (µ� 12)
σ = σ XOR (µ� 13)

/* The second set of congruence is done */
return (σ AND 0x1FFF)

end function

A.4 Squaring

Let αi ∈ F2m for some integer i and ai(x) = b0+b1x+b2x
2+· · ·+bm−1xm−1 be its polynomial

representation. Squaring αi produces ai(x)2 = b0 + b1x
2 + b2x

4 + · · · + bm−1x
2(m−1). If we

represent αi in its binary form, we have (bm−1, bm−2, . . . , b1, b0)2 and the e�ect of squaring is
the insertion of 0 between consecutive bits of αi, i.e. (bm−1, 0, bm−2, 0, . . . , 0, b1, 0, b0)2. This
operation can be computed e�ciently as shown in the following pseudocode. Note that the
symbol � denotes a left shift operation.

47

function FFSquare12(α)
/* α ∈ F212 is a 16-bit integer */
/* σ is a 32-bit integer */

σ = α
σ = (σ OR (σ � 8)) AND 0x00FF00FF
σ = (σ OR (σ � 4)) AND 0x0F0F0F0F
σ = (σ OR (σ � 2)) AND 0x33333333
σ = (σ OR (σ � 1)) AND 0x55555555
return FFReduce12(σ)

end function

function FFSquare13(α)
/* α ∈ F213 is a 16-bit integer */
/* σ is a 32-bit integer */

σ = α
σ = (σ OR (σ � 8)) AND 0x00FF00FF
σ = (σ OR (σ � 4)) AND 0x0F0F0F0F
σ = (σ OR (σ � 2)) AND 0x33333333
σ = (σ OR (σ � 1)) AND 0x55555555
return FFReduce13(σ)

end function

A.5 Inversion

Following Fermat's Little Theorem, if α ∈ F2m and α 6= 0 then its inverse α−1 = α2m−2.
The value α2m−2 may be obtained by repeated squaring and a few multiplication operations.
Consider the case of F212 , the integer 4094 may be written as follows

4094 =

((3× 22) + 3

)︸ ︷︷ ︸
15

×24

︸ ︷︷ ︸

240

+15

︸ ︷︷ ︸

255

×22

︸ ︷︷ ︸

1020

+3

︸ ︷︷ ︸

1023

×2

︸ ︷︷ ︸

2046

+1

︸ ︷︷ ︸

2047

×2.

In the case of F213 , we can write integer 8190 as follows

8190 =

((((((3× 22) + 3

)
× 24

)
+ 15

)
× 22

)
+ 3
)︸ ︷︷ ︸

1023

×22

︸ ︷︷ ︸

4092

+3

︸ ︷︷ ︸

4095

×2.

Based on the above representation of integers 4094 and 8190, the following pseudocode shows
how inversion is computed. As evident from the pseudocode, inversion is an expensive oper-
ation.

48

function FFInverse12(α)
/* α, α3, α15, σ ∈ F212 */

α3 = FFSquare12(α) // α2

α3 = FFMultiply12(α3, α) // α3

α15 = FFSquare12(α3) // α6

α15 = FFSquare12(α15) // α12

α15 = FFMultiply12(α15, α3) // α15

σ = FFSquare12(α15) // α30

σ = FFSquare12(σ) // α60

σ = FFSquare12(σ) // α120

σ = FFSquare12(σ) // α240

σ = FFMultiply12(σ, α15) // α255

σ = FFSquare12(σ) // α510

σ = FFSquare12(σ) // α1020

σ = FFMultiply12(σ, α3) // α1023

σ = FFSquare12(σ) // α2046

σ = FFMultiply12(σ, α) // α2047

return FFSquare12(σ) // α4094

end function

function FFInverse13(α)
/* α, α3, α15, σ ∈ F213 */

α3 = FFSquare13(α) // α2

α3 = FFMultiply13(α3, α) // α3

α15 = FFSquare13(α3) // α6

α15 = FFSquare13(α15) // α12

α15 = FFMultiply13(α15, α3) // α15

σ = FFSquare13(α15) // α30

σ = FFSquare13(σ) // α60

σ = FFSquare13(σ) // α120

σ = FFSquare13(σ) // α240

σ = FFMultiply13(σ, α15) // α255

σ = FFSquare13(σ) // α510

σ = FFSquare13(σ) // α1020

σ = FFMultiply13(σ, α3) // α1023

σ = FFSquare13(σ) // α2046

σ = FFSquare13(σ) // α4092

σ = FFMultiply13(σ, α3) // α4095

return FFSquare13(σ) // α8190

end function

B Additive Fast Fourier Transform

The most time-consuming stage in decoding a Goppa code is �nding the roots of an error
locator polynomial. The simplest method is do this was discovered by Robert Chien [Chi64].
The Chien search basically evaluates the error locator polynomial with a speci�c order of the
elements of the �nite �eld that de�nes the code. Let e(x) = e0 + e1x+ . . .+ eτx

τ be the error
locator polynomial where ei ∈ F2m , Chien's method �nds the roots of e(x) by exploiting the
following relationship

e(αi) = e0 + e1α
i + . . .+ eτ

(
αi
)τ

e(αi+1) = e0 + e1α
i · α+ . . .+ eτ

(
αi
)τ · ατ ,

where α is a primitive element of F2m . Whilst this method is ideal for hardware implemen-
tation, the theoretical complexity is O(τ2m) assuming that the Goppa code is of length 2m,
correcting at most τ errors, and is not the lowest complexity that can be achieved.

Another method of root �nding is due to Berlekamp [Ber71] and is commonly known as the
Berlekamp Trace Algorithm (BTA). This method has a theoretical complexity of O(mτ2).

Both Chien search and BTA are e�cient enough for practical purposes when m ≤ 11. For
larger m values, we need to use an approach like the Fast Fourier Transform (FFT) that
o�ers sub-quadratic theoretical complexity. Evaluating a polynomial e(x) for all x ∈ F2m

49

is equivalent to taking the FFT of the polynomial. For binary �nite �elds however, it is
not possible to perform an FFT operation in a traditional sense, i.e. execute a multiplicative
FFT, because there do not exist primitive n-th roots of unity in F2m . On the other hand, this
is not the case for additive FFT as �rst shown by Wang and Zhu [WZ88] and more recently
by Gao and Mateer [GM10].

Following [GM10], we describe the additive FFT and how to implement it in this section.
Let A = 〈α0, α1, . . . , αm−1〉 be a basis of F2m and

A[i] = {b0α0 + b1α1 + . . .+ bm−1αm−1 : bi ∈ {0, 1}}

the i-th element of F2m under the basis A where (b0, b1, . . . , bm−1)2 is the binary representation
of i. If f(x) ∈ F2m [x] has degree less than n = 2m, then the additive FFT of f(x) over basis
A is denoted as

FFT(f(x),m,A) = (f(A[0]), f(A[1]), . . . , f(A[n− 1])). (7)

As shown in equation (7), we can use the additive FFT to evaluate f(x) over all elements
of F2m . The roots of f(x) are the set {A[i] ∈ F2m | f(A[i]) = 0 for 0 ≤ i < n}. As in the
classical FFT algorithm, the e�ciency of the FFT comes from reducing a problem of size n
into two problems of size n/2, and recursively applying this reduction until we hit a problem
of small enough size suitable for direct evaluation.

In order to perform the aforementioned reduction, we derive a new basis Γ = 〈γ0, γ1, . . . , γm−2〉
from A of size m − 1 where γi = αiα

−1
m−1. By denoting g(x) = f(αm−1x), then we have

FFT(f(x),m,A) = FFT(g(x),m,A · α−1m−1) where A · α
−1
m−1 = Γ ∪ (1 + Γ). Consequently, we

can reduce FFT(f(x),m,A) into two FFTs of half the size, i.e.

FFT(f(x),m,A) = (FFT(g(x),m− 1,Γ),FFT(g(x),m− 1, 1 + Γ)) .

We can write the polynomial g(x) as

g(x) =

n/2−1∑
i=0

(ḡi + ĝix) · (x2 − x)i (8)

where ḡi, ĝi ∈ F2m and this is a Taylor expansion of g(x) at x2 − x. Let σ ∈ Γ and b ∈ F2,
evaluating the polynomial g(x) at (σ + b), we have

g(σ + b) =

n/2−1∑
i=0

(ḡi + ĝi(σ + b)) · ((σ + b)2 − (σ + b))i

=

n/2−1∑
i=0

ḡi(σ
2 − σ)i + σ

n/2−1∑
i=0

ĝi(σ
2 − σ)i + b

n/2−1∑
i=0

ĝi(σ
2 − σ)i

= ḡ(σ2 − σ) + σĝ(σ2 − σ) + bĝ(σ2 − σ) (9)

50

where we de�ne

ḡ(x) =

n/2−1∑
i=0

ḡix
i and ĝ(x) =

n/2−1∑
i=0

ĝix
i. (10)

By deriving another basis ∆ = 〈δ0, δ1, . . . , δm−2〉 of the same size from Γ where δi = γ2 − γ,
it follows that

FFT(g(x),m− 1,Γ) = (w0, w1, . . . , wn/2−1)

can be obtained from

FFT(ḡ(x),m− 1,∆) = (u0, u1, . . . , un/2−1)

and

FFT(ĝ(x),m− 1,∆) = (v0, v1, . . . , vn/2−1)

whereby wi = ui + Γ[i] · vi and Γ[i] is the i-th element of the sub�eld of F2m de�ned by basis
Γ. Now that we have FFT(g(x),m− 1,Γ), following equation (9) and by letting b = 1, we
then have

FFT(g(x),m− 1, 1 + Γ) = FFT(g(x),m− 1,Γ) + FFT(ĝ(x),m− 1,∆).

Algorithm 4 summarises the additive FFT execution above in pseudocode format. How to
compute the Taylor expansion of a polynomial at (x2 − x), i.e. as given by equation (8), is
described in Algorithm 5.

In addition to being used to compute the roots of an error locator polynomial in decoding
a Goppa code, the additive FFT is also used as part of syndrome computation to evaluate
the Goppa polynomial G(z) over all elements of F2m . This kind of evaluation is also invoked
during the key generation process to determine whether or not the randomly generated Goppa
polynomial G(z) is valid. The use of additive FFT for cryptography was �rst shown in
McBits [BCS13].

51

Algorithm 4 Additive FFT of f(x) ∈ F2m [x]

1: function AdditiveFFT(f(x),m,A)
Require: A = 〈α0, α1, α2, . . . , αm−1〉 where αi ∈ F2m

Require: Stack is initialised
Require: m > 0 and w = 02m

Require: k ← 0
/* As we reduce the FFT into two FFTs of half the original size at stage i, */
/* two new bases Γi = 〈γi,0, γi,1, . . . , γi,i〉 and ∆i = 〈δi,0, δi,1, . . . , δi,i〉 are */
/* constructed. We need to pre-compute Γi and ∆i for i = {1, 2, . . . ,m− 1} */

2: Γm−1 = ∆m−1 = A
3: for i← (m− 2) downto 1 step −1 do
4: Γi = Γi+1 · γ−1i+1,i+1

5: ∆i = 〈δi,0, δi,1, . . . , δi,i〉 where δi,j = (γ2i,j − γi,j)
6: end for
7: Stack

Push←−−− (f(x),m)
8: while Stack is not empty do

9: (f ′(x),m′)
Pop←−− Stack

10: if m′ = 1 OR deg f ′(x) ≤ 0 then
11: wk ← f ′0
12: wk+1 ← f ′0 + δ0,0 · f ′1
13: k ← k + 2m

′

14: Continue
15: end if
16: g(x)← f ′(δm′−2,m′−1x)
17: `← d(deg g(x) + 1)/2e
18: ((ḡ0 + ĝ0x), . . . , (ḡ`−1 + ĝ`−1x))← TaylorExpansion(g(x))

19: ḡ(x)←
∑n/2−1

i=0 ḡix
i

20: ĝ(x)←
∑n/2−1

i=0 ĝix
i

21: Stack
Push←−−− (ĝ(x),m′ − 1)

22: Stack
Push←−−− (ḡ(x),m′ − 1)

23: end while
/* Update w */

24: for s← 1 to m step 1 do
25: for i← 0 to 2m step 2s+1 do
26: for j ← i to (2s + i) step 1 do
27: wj = wj + (Γs−1[j − i] · w2s+j)
28: w2s+j = w2s+j + wj
29: end for
30: end for
31: end for
32: return w
33: end function

52

Algorithm 5 Taylor Expansion f(x) ∈ F2m [x] at (x2 − x)

1: function TaylorExpansion(f(x))
Ensure: L← ((f̄0 + f̂0x), . . . , (f̄j−1 + f̂j−1x)) where j = d(deg f(x) + 1)/2e
Require: L← ∅
Require: Stack is initialised

2: Stack
Push←−−− (f(x),deg f(x) + 2)

3: while Stack is not empty do

4: (f ′(x), `)
Pop←−− Stack

5: if ` ≤ 2 then

6: L
Append←−−−−− f ′(x)

7: Continue
8: end if
9: Find k that satis�es 2k+1 < ` ≤ 2k+2

10: Partition f ′(x) into three blocks as f ′(x) = f ′0(x) + x2
k+1

(f ′1(x) + x2
k
f ′2(x)) where

� deg f ′0(x) < 2k+1,

� deg f ′1(x) < min{`− 2k+1, 2k}, and
� f ′2(x) = 0 if (`− 2k+1) < 2k otherwise deg f ′2(x) < 2k

11: Compute g0(x)← f ′0(x) + x2
k
(f ′1(x) + f ′2(x))

12: Compute g1(x)← (f ′1(x) + f ′2(x)) + x2
k
f ′2(x)

13: Stack
Push←−−− (g1(x), `− 2k+1)

14: Stack
Push←−−− (g0(x), 2k+1)

15: end while
16: return L
17: end function

53

C Polynomial Derivative and GCD

One of the conditions on the validity of a Goppa polynomial G(z) is that it does not have
repeated zeros. This condition is met if G(z) and its derivative are relatively prime, i.e.
GCD

(
G(z), ddzG(z)

)
= 1. Let G(z) =

∑τ
i=0 giz

i, its derivative is de�ned by

d

dz
G(z) =

τ∑
i=1

igiz
i−1

=

dτ/2e−1∑
j=0

g2j+1z
2j .

Note that because we are working in the �eld of characteristic 2, d
dzG(z) contains even powers

only and it is a perfect square.

The GCD of two polynomials in F2m [z] may be computed by repeated modular reduction as
shown in the following algorithm.

Algorithm 6 Greatest common divisor of a(z) and b(z)

1: function GCD(a(z), b(z))
Require: deg a(z) ≥ deg b(z)
2: while deg b(z) ≥ 0 do
3: t(z)← b(z)
4: b(z)← a(z) mod b(z)
5: a(z)← t(z)
6: end while
7: return a(z)
8: end function

D Random Permutation

The Fisher-Yates shu�e is an algorithm to generate a random permutation on a sequence of
�nite length. The original Fisher-Yates shu�e [FY48] was not suitable for computer use. The
version suitable for computer implementation, which is shown in Algorithm 7, was introduced
by Durstenfeld [Dur64] and it also appears in Knuth's book [Knu97], hence it is commonly
referred to as the Knuth shu�e.

As shown in Step 4 of Algorithm 7, the Fisher-Yates shu�e requires sampling of uniform
random integers between 0 and i for some integer i < n where n is the length of the sequence.
However, most random number generators produce numbers in some �xed range M that is
usually a power of 2. If we need to generate a uniform random number r between 0 and i
where i ≤M and is not a power of 2, we cannot simply force the generated random numbers
to be in the range by means of a modular reduction operation as this will introduce a bias.

54

Algorithm 7 Fisher-Yates shu�e on sequence a = (a0, a1, . . . , an−1)

1: function RandomShu�e(a)
2: i← n− 1
3: while i > 0 do
4: r←$ {0, 1, . . . , i}
5: Swap ai with ar
6: i← i− 1
7: end while
8: return the shu�ed sequence a
9: end function

One way to address this is to perform rejection sampling; we start by divide the rangeM into
blocks of size i, sample a number r, if r > i bM/ic reject it and repeat sampling, otherwise
output r = r/ bM/ic.

A more elegant method is to simulate successively the discrete uniform distribution by �ipping
unbiased coins, i.e. generating random bits [BBHT17]. To simulate the sampling of random
number r, generate dlog2 re random bits and if the integer value of these bits when read
as a binary representation is less than r, return the sample r; otherwise reject these bits
and restart the sampling until a value < r is found. This rejection method is attributed to
von Neumann [von51] and it is called Simple Discard Method in NIST's recommendation for
random number generation [BK15]. However, the Simple Discard Method is not e�cient;
instead of rejecting the bits and starting again, we can use the di�erence between this value
and r to seed the next sampling round. This latter method relies on Knuth-Yao's discrete
distribution generating-tree (DDG-tree) [KY76] algorithm [Lum13, BBHT17] and it is shown
in Algorithm 8.

Algorithm 8 Knuth-Yao algorithm to generate a uniform random number in {0, . . . , i− 1}
1: function KnuthYaoUniformRNG(i)
2: u← 1
3: x← 0
4: while TRUE do
5: while u < i do
6: u← 2u
7: x← 2x+ RandomBit
8: end while
9: d← u− i
10: if x ≥ d then
11: return x− d
12: else
13: u← d
14: end if
15: end while
16: end function

55

E IND-CCA Security Reduction for NTS-KEM

NTS-KEM achieves IND-CCA security in the Random Oracle Model by employing a trans-
form akin to the Fujisaki-Okamoto [FO13] or Dent [Den03] transforms.

As a stepping stone towards our IND-CCA proof, we de�ne a variant of NTS-KEM, which we
denote NTS−. Recall that NTS-KEM creates encapsulations which are essentially encryptions
(in the McEliece PKE scheme with public key in systematic form) of message vectors of the
form m = (ea | ke) ∈ Fk2, where ke = H`(e) ∈ F`2; the encapsulated key is then de�ned to
be kr = H`(ke | e) ∈ F`2. In contrast, the scheme NTS− creates encapsulations which are
encryptions of message vectors of the form (ea | rb), where rb is a uniformly random string in
F`2; we take rb as the encapsulated key for NTS−. That is, NTS− outputs as encapsulations
vectors c = (cb | cc) such that

(0a | cb | cc) = (m |m ·Q) + e

= (ea | rb | (ea | rb) ·Q) + (ea | eb | ec) ∈ Fn2 .

Clearly, any adversary capable of recovering e from c as de�ned above can also recover rb,
since cb = rb + eb. On the other hand, knowledge of rb reduces the decoding problem with
parameters (n, k, τ) into a smaller, albeit possibly still non-trivial, decoding problem with
parameters roughly (n−`, k−`, τ−(τ/n) ·`). Here, �roughly� means that the exact Hamming
weight of the error depends on the randomness of the challenge ciphertext; τ − (τ/n) · ` is
the expectation. Thus, in contrast to the standard McEliece scheme, it is not obvious that
recovering rb implies the ability to recover e in the NTS− scheme.

To circumvent this issue, we will prove that NTS− satis�es a non-generic security notion
speci�c to schemes like NTS-KEM, i.e. McEliece-type PKE resp. KEM schemes that encrypt
resp. encapsulate messages of the form m = (ea | rb) with error vector e = (ea | eb | ec).
This notion informally states that it is hard to recover the error vector e used to generate a
challenge ciphertext c. For this reason, we refer to �error one-wayness� and EOW security. We
stress that this non-standard security notion merely serves as an intermediate step between
the OW security of McEliece and the IND-CCA security of NTS-KEM in our proofs. Formally,
EOW security for public-key encryption is de�ned via the following game:

EOWA
Enc

1 : (pk, sk)←$KGen(1λ)

2 : rb←$ {0, 1}poly(λ)

3 : C∗←$Enc(pk, rb)

4 : e← error vector used to produce C∗

5 : e′←$A(1λ, pk, C∗)

6 : return (e′ = e)

Here, Enc(pk, rb) denotes the NTS-KEM-like encryption of a message of the form m =

56

(ea | rb). Similar to in our OW games, we permit the adversary to output a special symbol
⊥ to indicate it did not �nd a candidate for e.

We can also de�ne an equivalent notion of EOW security for NTS-KEM-like KEMs via a
security game. In this game, the adversary receives the encapsulation of a random key and
is required to produce the error vector that led to that encapsulation:

EOWA
KEM

1 : (pk, sk)←$KGen(1λ)

2 : (K,C∗)←$Encap(pk)

3 : e← error vector used to produce C∗

4 : e′←$A(1λ, pk, C∗)

5 : return (e′ = e)

The observation above that recovery of e implies recovery of rb for NTS
− can now be restated

as that any adversary against EOW security of NTS− (as a KEM, encapsulating the key
rb) can be turned into an OW adversary against NTS−. The reverse implication does not
necessarily hold.

We now give a proof that NTS− is EOW secure as a KEM if McEliece is OW secure as a
PKE scheme. To this end, we �rst show that any (t, ε)-adversary against the OW security
of McEliece with public key in systematic form Gsys = [Ik | Q] can be turned into an (t, ε)-
adversary against the OW security of standard McEliece. We note that this reduction is
well-known, but reproduce it here for completeness.

In what follows, to ease notation we will assume that the parameters ` and τ are public
constants. Thus, NTS-KEM public keys are reduced to simply Q. Similarly, for ease of
exposition, we are going to assume that running times of all algorithms are expressed in
the number of NTS-KEM encapsulations/decapsulations. That is, saying that algorithm A
runs in time t is saying that A runs in the time required to perform t NTS-KEM encapsula-
tions/decapsulations.

Lemma 1. If there is an (t, ε)-adversary A against the OW security of the McEliece PKE
scheme with public keys of the form Gsys = [Ik | Q], then there is a (t, ε)-adversary B against
the OW security of the McEliece PKE scheme with any public key G.

Proof. By assumption, with probability ε and in time t, A returns r on input (Gsys, c
′) with

c′ = r · Gsys + e, hw(e) = τ and r←$Fk2. We show the existence of B � operating on
challenge (G, c) � by constructing it explicitly from A.

Adversary B receives as input (G, c), where G is the public key for the standard McEliece
PKE scheme and c = m ·G + e is a ciphertext for this scheme. It then proceeds as follows:

1. compute Gsys = U · G · P, where P ∈ Fn×n2 is a permutation matrix and U is the
transformation matrix for turning G into reduced row-echelon form.

57

2. submit (Gsys, c ·P) to A to recover r.

3. return m = r ·U.

The pair (Gsys, c ·P) is a valid OW challenge for A because

c ·P = m ·G ·P + e ·P
= r ·U ·G ·P + e ·P, where r = m ·U−1

= r ·Gsys + e ·P,

with hw(e ·P) = hw(e) = τ .

The linear algebra in steps 1 and 3 is no more expensive than McEliece encryption. Hence,
B essentially runs in time the same as that of A, namely t. Furthermore, B succeeds if A
succeeds.

Next, we show that an EOW adversary against NTS− as a KEM can be turned into an OW
adversary against the McEliece PKE scheme with public key in systematic form.

Lemma 2. If there is an (t, ε)-adversary A against the EOW security of NTS− as a KEM,
then there is a (t, ε)-adversary B against the OW security of the McEliece PKE scheme with
public key in systematic form.

Proof. Let c = r ·Gsys + e with hw(e) = τ be a ciphertext for the McEliece PKE scheme in
systematic form for some random message r←$Fk2. Adversary B receives as input (Gsys, c)
and wishes to recover r.

Denote Gsys = [Ik | Q], c = (ca | cb | cc), r = (ra | rb) ∈ Fk2 and e = (ea | eb | ec). It holds
that

c = r ·Gsys + e = (ra + ea | rb + eb | (ra | rb) ·Q + ec) .

B then constructs

c∗ = (ca | 0b) ·Gsys = (ra + ea | 0b | (ra + ea | 0b) ·Q)

and

c′ = c + c∗

= (ra + ea | rb + eb | (ra | rb) ·Q + ec) + (ra + ea | 0b | (ra + ea | 0b) ·Q)

= (0a | rb + eb | (ra | rb) ·Q + (ra + ea | 0b) ·Q + ec)

= (0a | rb + eb | (ea | rb) ·Q + ec)

= (0a | c′b | c′c).

58

The vector (c′b | c′c) corresponds to an NTS− encapsulation of random key rb. Indeed, we
have

(ea | rb) ·Gsys + e = (ea | rb) · [Ik | Q] + e

= (ea | rb | (ea | rb) ·Q) + (ea | eb | ec)
= (0a | rb + eb | (ea | rb) ·Q + ec)

= (0a | c′b | c′c)

Adversary B then proceeds as follows:

1. Run A on (Q, (c′b | c′c)) to recover e.

2. Compute r′ = (ca + ea | cb + eb) and return r′.

The adversary B makes one call to A and adds essentially no extra running time to that of
A. It succeeds when A succeeds.

Combining the preceding lemmas, we arrive at the following theorem:

Theorem 2. If there is an (t, ε)-adversary A against the EOW security of NTS−, then there
is a (t, ε)-adversary B against the OW security of the McEliece PKE scheme.

Next, in order to make our IND-CCA reduction for NTS-KEM �tight�, i.e. so that the running
times and success probabilities of the two adversaries are closely related, we will make use of
the following proposition stating that for a given valid ciphertext there is a unique e.

Proposition 1. Let C∗ = (cb | cc) be a correctly formed ciphertext for NTS− or for NTS-
KEM with public key in systematic form. Then there exists a unique pair of vectors ((ea |
rb), e) such that hw(e) = τ and C∗ = (ea | rb) · [Ik | Q] + e.

Proof. First, we note that from the minimum distance d = 2τ + 1 of the underlying code it
follows that there is no e′ with hw(e′) ≤ τ such that C∗ = r′ · [Ik | Q] + e′ with r′ 6= (ea | rb).

Now, from (0a | cb | cc) + (ea | rb) · [Ik | Q] = e, the vector e is completely determined.

We are now ready to prove the main result of this appendix. At a high level, our proof for
establishing the IND-CCA security of NTS-KEM proceeds as follows:

1. We show that, in the Random Oracle Model, it is possible to simulate the decapsulation
oracle using only publicly available information, with the simulation being correct with
high probability.

59

2. Then, using this simulated decapsulation oracle, we show that it is possible to convert
any adversary against the IND-CCA security of NTS-KEM into an adversary against
the EOW security of NTS−.

3. The last step of the proof argues that the adversary must have made a query to H(·)
involving the correct e to succeed or to detect that it is running in a simulation.

Lemma 3. If there exists a (t, ε)-adversary A winning the IND-CCA game for NTS-KEM,
then there exists a

(
2 t, ε− qD

2`

)
-adversary B against the EOW security of NTS−:

- in the Random Oracle Model;

- when τ < `; and

- when the decapsulation algorithm succeeds with probability 1 for all public keys Q and
all well-formed ciphertexts;

with qD being the number of queries made by A to the decapsulation oracle.

Proof. We construct the adversary B against the EOW security of NTS− from adversary
A. Adversary B receives as input one NTS− encapsulation C∗ of some unknown rb and one
randomly generated public key Q. Note that Q is also a randomly generated public key for
NTS-KEM. We can write

c = (ea | rb) · [Ik | Q] + e

where e = (ea | eb | ec) is an unknown error vector, and where c = (0a | C∗). B passes to
A the pair (y, C∗), where y←$ {0, 1}`, along with the public key Q. Note that C∗ is highly
unlikely to be a correct NTS-KEM encapsulation of any key, let alone y, a fact that we will
need to account for in our analysis that follows. B also samples z ∈ F`2 and answers all queries
of A to the random oracle and the decapsulation oracle.

Separating random oracles. In order to simplify the presentation of our analysis, we
de�ne three new hash functionsHn

` (·), H`+n
` (·) andH+

` (·). These are all implemented directly
using H`(·), but we give them di�erent names to di�erentiate the operation of the di�erent
components of the scheme more clearly. The three hash functions are distinguished by the
length of their inputs: Hn

` (·) accepts inputs of length n bits, H`+n
` (·) accepts inputs of length

` + n bits, and H+
` (·) accepts inputs of all lengths except n or ` + n bits. This separation

by length of inputs means that we can treat Hn
` (·), H`+n

` (·) and H+
` (·) as separate random

oracles in our security analysis, even though each is in the end implemented using a single
random oracle H`(·).

A further separation of random oracle inputs is arranged between H`(z | 1a | C ′) (computed
in case of implicit rejection) and H`(ke | e) (computed in case of a valid encapsulation).
The separation holds because we enforce τ < `, which in turn ensures that the vector 1a | C ′
cannot be a valid error vector e. This separation is needed to avoid introducing a dependence
on the number of oracle queries made by the adversary in our security bound.

60

Furthermore, when we write that B �queries the random oracle H`(·)� we mean that B picks
a uniformly random string of length `, maintaining tables to ensure consistency as usual.

Queries. A continues with B handling all queries made by A to the random oracles as
follows:

1. When A queries the random oracle H`+n
` (·) on input (k′e | e′), B passes the query on to

the random oracle H`(·) and returns the answer x′ to A. If hw(e′) = τ and k′e = H`(e
′)

then A computes C ′, the encapsulation of x′ under public key Q and error vector e′.
Note that at this point B knows all inputs to the encapsulation algorithm needed to
produce C ′ exactly. B then stores(

k′e, e
′,x′, C ′, `+ n

)
=
(
H`(e

′), e′, H`(H`(e
′) | e′), C ′, `+ n

)
in a table T , unless that table already contains a row (H`(e

′), e′, H`(H`(e
′) | e′), C ′, n).

The table T is organised in such a way as to allow constant-time lookup by C ′.13 The
last entry �` + n� tags the row in the table as coming from a query to H`+n

` (·). If
hw(e′) 6= τ or k′e 6= H`(e

′), then B takes no additional action.

2. When A queries the random oracle Hn
` (·) on input e′, B passes the query on to the

random oracle H`(·) and returns the answer k′e to A. If hw(e′) = τ then B also stores(
k′e, e

′,x′, C ′, n
)

=
(
H`(e

′), e′, H`(H`(e
′) | e′), C ′, n

)
in T . If T already contains an entry (H`(e

′), e′, H`(H`(e
′) | e′), C ′, `+ n), it is removed

�rst. Here, again, C ′ is the encapsulation of x′ under public key Q and error vector
e′. Note that, again, at this point B knows all inputs to the encapsulation algorithm
needed to produce C ′ exactly. If hw(e′) 6= τ then B takes no additional action.

3. Queries to H+
` (·) are simply passed through to the random oracle without any record

keeping.

Note that by Proposition 1 there is a one-to-one map from C ′ to rows of T , thus indexing by
C ′ is well-de�ned. Now, whenever A requests a decapsulation of some ciphertext C ′, B will
respond as follows:14

� If C ′ is found as the penultimate component in an entry (k′e, e
′,x′, C ′, n) ∈ T , then

return x′.

� Otherwise, return H`(z | 1a | C ′).
13We write �constant-time� to express that an appropriate data structure is used to ensure that the running

time of looking up values in T does not grow as more entries are added, i.e. a hash table.
14This logic is conservative in that it checks that the corresponding row in T is tagged with n. This

restriction permits a more modular proof.

61

Analysing the simulation of decapsulation. We argue that B simulates the decapsu-
lation oracle for A perfectly, except with probability at most qD/2

`, where qD is the number
of decapsulation queries made by the adversary. To see this, note that:

� Invalid encapsulations result in H`(z | 1a | C ′) being returned by both the real decap-
sulation oracle and by the simulation described above. In particular, any encapsulation
with hw(e′) 6= τ is �implicitly� rejected.

� Valid encapsulations produced by �rst making the right query to Hn
` (·) result in the

correct encapsulated keys being returned by both the real decapsulation oracle and
by the simulation described above. Here, we use that decapsulation succeeds with
probability 1 for correctly formed ciphertexts.

Thus, the simulation fails only when A queries the decapsulation oracle on some correct
encapsulation C ′ without having queried Hn

` (·) on the required inputs �rst. In this case, the
real decapsulation will return the encapsulated key if Hn

` (e′) = k′e but the simulation will
return H`(z | 1a | C ′).

First, note that, given C ′, there is a unique e′ such that Hn
` (e′) = k′e holds, and no other

input to Hn
` (·) will lead to successful decapsulation by the real decapsulation algorithm. This

is due to the uniqueness of the pair (k′e, e
′) given C ′ (Proposition 1).

Now, when the adversary has not queried Hn
` (e′), the output of Hn

` (·) on input e′ is still
uniformly random from the adversary's point of view. This in turn implies that the probability
that the equation Hn

` (e′) = k′e holds is exactly 2−` (because Hn
` (·) has `-bit outputs).

Thus, the probability that the simulation fails when considering all qD decryption queries can
be bounded by qD/2

` by applying the union bound. As a consequence, we have that with
probability at least

(
1− qD

2`

)
, adversary A runs in a simulated environment in which all its

decapsulation queries are correctly handled.

We let F denote the event that B's simulation of the decapsulation oracle is incorrect. The
above analysis establishes that

Pr[F] ≤ qD
2`
.

For ease of presentation, in what follows we de�ne δ := qD
2`
.

Handling unde�ned behaviour. Note that A's behaviour is unde�ned when the simula-
tion is incorrect, that is, when event F occurs and we cannot estimate A's success probability
in such cases. However, when the event F does not occur then the adversary succeeds with
the same probability as with the real decapsulation oracle. Denote by Pr[Areal] = 1/2 + ε the
probability of the IND-CCA adversary winning the original IND-CCA game and let Pr[Asim]
denote the probability of the IND-CCA adversary winning with our simulated decapsulation
oracle. Then we have:

62

1/2 + ε = Pr[Areal]

= Pr[Areal | F] Pr[F] + Pr[Areal | F] Pr[F]

≤ Pr[F] + Pr[Areal | F]

≤ Pr[F] + Pr[Asim | F]

≤ δ + Pr[b = b′ | F].

Hence:

1/2 + ε− δ ≤ Pr[b = b′ | F].

The critical queries. Now let G denote the event that A during its execution makes
a query either to Hn

` (·) on e or to H`+n
` (·) on (t | e) with t = Hn

` (e) for the e used to
construct C∗. We refer to these as the critical queries. By further conditioning our preceding
probability Pr[b = b′ | F] also on event G, we obtain:

1/2 + ε− δ ≤ Pr[b = b′ | F ∧G] Pr[F ∧G] + Pr[b = b′ | F ∧G] Pr[F ∧G]

≤ Pr[F ∧G] + Pr[b = b′ | F ∧G].

Next, consider the term Pr[b = b′ | F ∧ G]. We argue that this probability is equal to 1/2.
First note that the probability is conditioned in part on the event F , meaning that B correctly
simulates decapsulation queries for A. Then note that, if G does not occur, then the values of
Hn
` (e) and of H`+n

` (Hn
` (e) | e) are uniformly random strings (in the Random Oracle Model)

from the adversary's point of view. However, it is the value Hn
` (e) that determines if C∗ is a

valid encapsulation of any key and it is the value H`+n
` (Hn

` (e) | e) that determines whether

C∗ is a valid encapsulation of y (via testing the equation H`+n
` (Hn

` (e) | e) = y). Thus, if A
does not make the critical queries then it cannot detect that (Q,y, C∗) may not be a valid
CCA challenge for NTS-KEM, nor can it learn anything about the hidden bit b (indicating
whether C∗ does encapsulate y or not).

Then, we consider the term Pr[F ∧G]. Here B still correctly simulates decapsulation queries
but one of the critical queries indicated by event G does occur, in which case A may be
able to detect that C∗ is an invalid encapsulation for any y, in violation of the requirements
concerning the construction of the challenge encapsulation. At the point when eventG occurs,
then the behaviour of A becomes unde�ned and we cannot make any arguments about event
probabilities beyond this point. However, up until the point when G occurs, B provides a
correct simulation to A, meaning that the probabilities of all events remain the same as they
would in such a simulation. This includes the probability of the event G itself.

Combining the above analyses, we end at:

1/2 + ε− δ ≤ 1/2 + Pr[F ∧G].

63

Rearranging and using Pr[F ∧G] ≤ Pr[G] we �nally obtain:

ε− δ ≤ Pr[G].

Finalising the construction of B. Now, B proceeds as follows:

� It runs A, handling all queries as described above.

� After t steps, B terminates A.15

� Finally, for all (H`(e
′), e′,x′, C ′, ·) ∈ T , B tests if e′ decodes C∗, that is, if C∗ + e′ is a

codeword in the code de�ned by the generator matrix [Ik | Q]. If such an e′ is found,
B returns it, otherwise it returns ⊥.

First, we note that if event G occurs, that is, if A queried Hn
` (e) or H`+n

` (Hn
` (e) | e), then

the above procedure executed by B will return the correct e. This follows from Proposition 1,
i.e. that C∗ cannot be also a valid ciphertext for some other error vector e′. Hence B succeeds
in returning the correct value e with probability Pr[G] ≥ ε− δ.

A runs in time t that is at least qH , where qH is the total number of queries made by A to the
random oracle and we have |T | ≤ qH by construction. Thus, since B runs A and terminates it
after t steps, and then performs a computation for each entry in T , with |T | ≤ qH ≤ t we see
that B runs in time at most 2t. Substituting δ with the value qD

2`
concludes the analysis.

Combining Lemma 3 with Theorem 2, we arrive at Theorem 1.

F KATs and Intermediate Values

This section describes how to obtain the known answer tests (KATs) and the intermediate
values from the reference code. Information on the types of intermediate values and their
relation to NTS-KEM speci�cations (Section 3) is also provided.

The KATs are produced with the code provided by NIST16, in particular PQCgenKAT_kem.c
and the associated AES-CTR-DRBG random number generator. The KATs and intermediate
values are produced as follows. Note that we specify 100 sets of KATs and intermediate values
per run.

15The behaviour of A is unde�ned if the events F or G occur. For example, it might enter an in�nite loop
in such cases. Thus, we must take care to terminate it after t steps and cannot rely on its guarantees to
terminate itself, which only holds in the real IND-CCA security game. Note also that, up until the event
F ∨G occurs, A's view is identical to that in a correct execution of the IND-CCA game.

16They are available at Source Code Files for KATs.

64

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/example-files/source-code-files-for-kats.zip

1. On the reference implementation code, execute Makefile. This produces executables
ntskem-m-τ-kat and ntskem-m-τ-intval in bin directory, where the pair m and τ
denotes a speci�c NTS-KEM parameter set.

2. Execute the combined KAT and intermediate value generator binary, for example for
m = 12 and τ = 64:

./bin/ntskem-12-64-intval > ntskem-12-64-kat.intvalues

This produces two KATs �les, namely PQCkemKAT_YYYYY.req and PQCkemKAT_YYYYY.rsp
where YYYYY is some integer denoting the private-key size in bytes; and the intermediate
values are stored in ntskem-12-64-kat.intvalues. Note that the generation of KATs
and the intermediate values will take a few minutes to complete.

We output the following intermediate values. Note that a line pre�x by # denotes a comment.

Key-Generation

1. An array of (τ + 1) elements containing the coe�cients of the random Goppa
polynomial G(z), i.e. (g0, g1, . . . , gτ) and gi ∈ F2m (Step 1).

Gz = 1EE 677 162 5EC 23B AA7 076 A65 A3B 519 ...

2. An array of n elements of the random permutation vector p (Step 2).

p = 48E 6DB 364 16A 10E 826 785 505 9B4 B7F ...

3. An array of n elements of a = πp(a′) = (ap0 , ap1 , . . . , apn−1), api ∈ F2m (Step 3a).

a = 712 DB6 26C 568 708 641 A1E A0A 2D9 FED ...

4. An array of n elements of h = (hp0 , hp1 , . . . , hpn−1), the �rst row of Hm and
hpi ∈ F2m (Step 3b).

h = 771 2C7 7E0 257 D87 F02 E96 2AF FD5 5B2 ...

5. A string of (n − k)n8 bytes of matrix H in row-major representation (Step 3c).
Note that H is not in reduced-row echelon form yet.

H = 70E5E1604CFAAF0CE0C0CB28FA2308A466ABE46 ...

6. A string of (n − k)n8 bytes of reduced-row echelon matrix H in row-major repre-
sentation (Step 3d).

H = D82B0277361D04BD6752F6F7F2C1B3BFA3CB59D ...

7. An array of n elements of the random permutation vector p after permutation ρ
(Step 3d).

p = 48E 6DB 364 16A 10E 826 785 505 9B4 B7F ...

8. An array of n elements of a after permutation ρ and each element is a member of
F2m (Step 3d).

65

a = 712 DB6 26C 568 708 641 A1E A0A 2D9 FED ...

9. An array of n elements of h after permutation ρ and each element is a member of
F2m (Step 3d).

h = 771 2C7 7E0 257 D87 F02 E96 2AF FD5 5B2 ...

10. A string of kn−k8 bytes of matrix Q in row-major representation (Step 3e).

Q = 5E04CE2F46579905A765571B698A750EC3544E6 ...

11. A string of n8 bytes of a random vector z (Step 4).

z = 1C21058607F2011FC84B51D03CB97A19EB0C5B79DEEAAD ...

12. An array of s + (n − k) elements of a∗ and each element is a member of F2m

(Step 5).

a_ast = 8F9 117 A20 5B7 5E2 BE8 2A8 16D 0EB E56 ...

13. An array of s + (n − k) elements of h∗ and each element is a member of F2m

(Step 5).

h_ast = 5DD 46F 39C 39D B7A 909 9F9 558 BE0 8CE ...

Encapsulation

1. A string of n8 bytes of a random error vector e (Step 1).

e = 00800000 ...

2. A string of s8 bytes of ke = Hs(e) (Step 3).

k_e = FA6E661808C004E296A24EE68ADA8669808DC24CE62AC6C4A5F4C3B320BBD2C7

3. A string of k8 bytes of m (Step 4).

m = 0080000 ... 62AC6C4A5F4C3B320BBD2C7

4. A string of s8 bytes of cb = ke + eb (Step 5).

c_b = FA6C661808C004E296A24EC6CADA8669808DC34CE62AC6C421F4C3B320BBD2C7

5. A string of n−k8 bytes of cc = (ea | ke) ·Q + ec (Step 5).

c_c = 5574C21080112877A4B662587FC1F1BF952A9F7664AE4275A ...

6. A string of `
8 bytes of kr (Step 6).

k_r = 6FA29D451A4FE3B49833F7BE6C8F6AA6B74FA22570FD7D19FC25E4E1CE7E9DA6

Decapsulation

1. An array of (n− k) elements of syndrome s and each element is a member of F2m

(Step 1c).

s = 9A3 FCF 869 721 F03 0E5 95C EA0 DA2 D6E ...

2. An array of (τ + 1) elements containing the coe�cients of the error locator poly-
nomial σ(x), i.e. (σ0, σ1, . . . , στ) and σi ∈ F2m (Step 1d).

66

sigma = D32 2B8 144 8B0 717 ED5 2C3 FC2 892 CBC ...

3. An indicator ξ of whether there is an error in the last coordinate (Step 1d).

xi = 0

4. An array of n elements of the evaluations of σ(x) over all elements of F2m de�ned
by basis A (Step 1e).

evaluations = D32 38B A1A EEA C6A 50C 9CB FAC C1B 020 ...

5. A string of n8 bytes of the inversely permuted error pattern e′ (Step 1f).

e_prime = 00000400000000000000000000008000000000000000000000 ...

6. A string of n8 bytes of the error pattern e = e′ ·P (Step 2).

e = 00800000 ...

7. A string of s8 bytes of ke recovered, ke = cb − eb (Step 3).

k_e = FA6E661808C004E296A24EE68ADA8669808DC24CE62AC6C4A5F4C3B320BBD2C7

8. A string of s8 bytes of Hs(e) (Step 4).

SHAKE256_e = FA6E661808C004E296A24EE68ADA8669808DC24CE62AC6C4A5F4C3B320BBD2C7

9. A string of `
8 bytes of kr, kr = H` (ke | e) (Step 4).

k_r = 6FA29D451A4FE3B49833F7BE6C8F6AA6B74FA22570FD7D19FC25E4E1CE7E9DA6

67

	Introduction
	Notation and Definitions
	Code-based Cryptography
	Security Notions

	NTS-KEM: algorithm specification
	Key Generation
	Detailed description

	Encapsulation
	Decapsulation
	Detailed description

	Correctness of NTS-KEM

	Parameter sets
	Design rationale
	Performance analysis
	NTS-KEM security
	IND-CCA security of NTS-KEM
	McEliece OW security: decoding complexity
	Information-set decoding
	Quantitative complexity estimates for inverting the McEliece PKE scheme

	Quantum attacks
	Security against other known attacks
	Security claims

	Advantages and limitations
	References
	Binary Field Arithmethic
	Addition and Subtraction
	Multiplication
	Modulo Reduction
	Squaring
	Inversion

	Additive Fast Fourier Transform
	Polynomial Derivative and GCD
	Random Permutation
	IND-CCA Security Reduction for NTS-KEM
	KATs and Intermediate Values

