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Prologue

The public key encryption protocol NTRU [15] was introduced in 1998, the main idea
behind the protocol is that the secret key consists in the knowledge of a small Euclidean
weight vector, which is used to derive a double circulant matrix. This matrix is then seen
as a dual matrix of an associated lattice and a specific decoding algorithm based on the
knowledge of this small weight dual matrix is used for decryption.

This idea of having as a trapdoor a small weight dual matrix (with a specific associated
decoding algorithm) can naturally be generalized to other metrics. It was done in 2013
with MDPC [19] for Hamming metric and also in 2013 for Rank metric with LRPC codes
[9]. These three protocols derive from the same basic main idea, adapted for different
metrics, which have different properties in terms of efficiency, size of parameters and security
reduction.

The previous schemes have many nice features in terms of size of keys, size of exchanged
data and efficiency but suffer from the same weakness: their security do not reduce to a well
known problem but rather to a specific problem where a special structure is hidden in the
public matrix. Indeed the public matrix is generated by small weight vectors. Although
this problem is less specific than hidden structure in the McEliece setting, it remains a
potential weakness for these schemes (even if practically, one does not really know how to
use this type of structure for strongly more efficient attacks in the more general cases).

Recently a new approach called Ouroboros was presented in [1], this approach permits to
benefit from the nice features of the previous schemes, but at the same time has a reduction
to decoding random quasi-cyclic codes, rather than a more specific code. Of course this
comes at a cost: doubling the size of the ciphertext. ROLLO-I follows the idea of [1] for
rank metric. The resulting scheme benefits from the nice features of NTRU-like schemes but
has also a reduction to a generic problem, at the cost of doubling the size of the ciphertext,
also as all associated decoding algorithm for the NTRU-like family of schemes, there is a
decryption failure, but in the case of rank metric this decryption failure is low and perfectly
estimated.

This proposal is the fusion of three propositions to standardization for the post-
quantum cryptography NIST competition: LAKE, LOCKER and Rank Ouroboros (for-
merly Ouroboros-R). For uniformity reasons, they have been renamed ROLLO-I, ROLLO-II
and ROLLO-III respectively.

1 Specifications
In the following document, q denotes a power of a prime p. The finite field with q elements
is denoted by Fq and more generally for any positive integer m the finite field with qm

elements is denoted by Fqm . We will frequently view Fqm as an m-dimensional vector space
over Fq.

We use bold lowercase (resp. uppercase) letters to denote vectors (resp. matrices).
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Let P ∈ Fq[X] a polynomial of degree n. We can identify the vector space Fnqm with the
ring Fqm [X]/〈P 〉, where 〈P 〉 denotes the ideal of Fqm [X] generated by P .

Ψ : Fnqm ' Fqm [X]/〈P 〉

(v0, . . . , vn−1) 7→
n−1∑
i=0

viX
i

For u,v ∈ Fnqm , we define their product similarly as in Fqm [X]/〈P 〉: w = uv ∈ Fnqm is
the only vector such that Ψ(w) = Ψ(u)Ψ(v). In order to lighten the formula, we will omit
the symbol Ψ in the future.

To a vector v ∈ Fnqm we can associate an n × n square matrix corresponding to the
product by v. Indeed,

uv = u(X)v(X) (mod P )

=
n−1∑
i=0

uiX
iv(X) (mod P )

=
n−1∑
i=0

ui(X
iv(X) mod P )

= (u0, . . . , un−1)


v(X) mod P
Xv(X) mod P

...
Xn−1v(X) mod P


Such a matrix is called the ideal matrix generated by v and P , or simply by v when

there is no ambiguity in the choice of P .

Definition 1.0.1 (Ideal Matrix). Let P ∈ Fq[X] a polynomial of degree n and v ∈ Fnqm.
The ideal matrix generated v is the n× n square matrix denoted IM(v) of the form:

IM(v) =


v

Xv mod P
...

Xn−1v mod P


As a consequence, the product of two elements of Fqm [X]/〈P 〉 is equivalent to the usual

product vector-matrix:
uv = uIM(v) = IM(u)Tv = vu.

Let S be a finite set. x
$← S means that x is an element of S, chosen uniformly at

random.
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1.1 Presentation of rank metric codes

1.1.1 General definitions

Definition 1.1.1 (Rank metric over Fnqm). Let x = (x1, . . . , xn) ∈ Fnqm and (β1, . . . , βm) ∈
Fmqm a basis of Fqm viewed as an m-dimensional vector space over Fq. Each coordinate xj
is associated to a vector of Fmq in this basis: xj =

∑m
i=1 xijβi. The m× n matrix associated

to x is given by M (x) = (xij)16i6m
16j6n

.

The rank weight ‖x‖ of x is defined as

‖x‖ def
= RankM (x).

The associated distance d(x,y) between elements x and y in Fnqm is defined by d(x,y) =
‖x− y‖.

Definition 1.1.2 (Fqm-linear code). An Fqm-linear code C of dimension k and length n is
a subspace of dimension k of Fnqm embedded with the rank metric. It is denoted [n, k]qm.
C can be represented by two equivalent ways:

• by a generator matrix G ∈ Fk×nqm . Each row of G is an element of a basis of C,

C = {xG,x ∈ Fkqm}

• by a parity-check matrix H ∈ F(n−k)×n
qm . Each row of H determines a parity-check

equation verified by the elements of C:

C = {x ∈ Fnqm : HxT = 0}.

HvT is called the syndrome of v (with respect to H).

We say that G (respectively H) is under systematic form if and only if it is of the form
(Ik|A) (respectively (In−k|B)).

Definition 1.1.3 (Support of a word). Let x = (x1, . . . , xn) ∈ Fnqm. The support E of x,
denoted Supp(x), is the Fq-subspace of Fqm generated by the coordinates of x:

E = 〈x1, . . . , xn〉Fq

and we have dimE = ‖x‖.

The number of supports of dimension w of Fqm is denoted by the Gaussian coefficient[
m
w

]
q

=
w−1∏
i=0

qm − qi

qw − qi
.
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1.1.2 Ideal codes

One of the difficulty with code-based cryptography is the size of the key. Indeed, to represent
an [n, k]qm code with a systematic matrix, we need k(n−k) symbols in Fqm , or k(n−k) dlog qe
bits. In order to reduce the size of the representation of a code, we introduce the family
of ideal codes, which are basically codes with a systematic generator matrix formed with
blocks of ideal matrices. More formally,

Definition 1.1.4 (Ideal codes). Let P (X) ∈ Fq[X] be a polynomial of degree n. An
[ns, nt]qm code C is an (s, t)-ideal code if its generator matrix under systematic form is
of the form

G =

 IM(g1,1) . . . IM(g1,s−t)

I tn
... . . . ...

IM(gt,1) . . . IM(gt,s−t)


where

(
gi,j
)
i∈[1..s−t]
j∈[1..t]

are vectors of Fnqm. In this case, we said that C is generated by the (gi,j).

It would be somewhat more natural to choose the generator matrix to be made up of
s× t ideal matrices, rather than to require the code to admit a systematic generator matrix.
However, if m and n are two different prime numbers and if P is irreducible, a nonzero ideal
matrix is always nonsingular. To prove this, we need the following lemma:
Lemma 1. Let m and n be two different prime numbers. Let P ∈ Fq[X] be an irreducible
polynomial of degree n and U ∈ Fqm [X] a non zero polynomial of degree at most n − 1.
Then P and U are coprime in Fqm [X].

Proof. We will show that P and U have no common root. Let Z(P ) (respectively Z(U))
be the set of the roots of P (respectively U).

Since P is irreducible of degree n, its roots generate Fqn

=⇒ Z(P ) ⊂ Fqn\Fq

Since U is of degree at most n, its roots belong to Fqm(n−1)! .
But GCD(n,m(n− 1)!) = 1 for m and n are two different prime numbers. Thus

Fqm(n−1)! ∩ Fqn = Fq =⇒ Z(P ) ∩ Z(U) = ∅

Hence, P and U are coprime.

Now, let u ∈ Fnqm a non zero vector and P ∈ Fq[X] an irreducible polynomial of degree
n. According to the lemma, there exist a vector v ∈ Fnqm such that

uv = 1 (mod P )

⇐⇒ uIM(v) = (1, 0, . . . , 0)

⇐⇒ IM(u)IM(v) = In

8



This demonstrates that every block of ideal matrix of G is nonsingular, hence C can be
represented under systematic form. �

All the parameters we propose in Section 1.7 verify these conditions.

Remark 1.1. With this definition, the ideal codes can be seen as a generalization of Quasi-
Cyclic codes. Indeed, the generator matrix under systematic form of a Quasi-Cyclic code
[7] is of the same form, except that the ideal matrices are replaced by circulant matrices.
Yet, an n× n circulant matrix can be seen as an element of Fqm [X]/〈Xn − 1〉. Thus ideal
codes only differ from Quasi-Cyclic codes by the choice of the polynomial P .

In our scheme, we only use [ns, n]qm ideal codes. In order to shorten the notation, we
denote these codes an s-ideal code. If C is an [sn, n] ideal code generated by (g1, . . . , gs−1),
we have C = {(u,ug1, . . . ,ugs−1),u ∈ Fnqm}.

We need to be careful when we use these notations in the case of parity-check matrix.
Indeed, the parity-check matrix under systematic form of C is of the form:

H =

 IM(h1)
T

In(s−1)
...

IM(hs−1)
T

 . (1)

Thus, if σ = (σ1 . . .σs−1) ∈ Fs(n−1)qm is the syndrome of an error e = (e1 . . . es−1) ∈ Fnsqm ,
the parity-check equations

HeT = σT

are equivalent to ei + hies−1 = σi for 1 6 i 6 s− 1.

1.2 Difficult problems in rank metric

In this section, we introduce the difficult problems on which our cryptosystem is based.

Problem 1.2 (Rank Syndrome Decoding). Given a full-rank matrix H ∈ F(n−k)×n
qm , a

syndrome σ and a weight w, the RSD problem consists in sampling a vector x ∈ Fnqm of
weight lower than w such that HxT = σT .

For the security proof we also need a decision version of the problem, which is given in
the following definition.

Problem 1.3 (Decision Rank Syndrome Decoding). Given a full-rank matrixH ∈ F(n−k)×n
qm

and an integer w, the DRSD problem consists in deciding if a vector σ ∈ Fn−kqm is sampled
according to the uniform distribution over Fn−kqm or the uniform distribution over the set of
syndromes of errors of weight w, i.e.

σ
$← Fn−kqm or σ $← {y ∈ Fn−kqm : ∃x ∈ Fnqm , ‖x‖ = w,y = xHT}
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Hardness of the problems: The RSD problem has recently been proven hard in
[12] with a probabilistic reduction to the well-known NP-Hard syndrome decoding problem
in Hamming metric. For the average case, all the best known algorithm are exponential
and the problem is considered difficult by the cryptography community. In [8] the DRSD
problem has been proven as hard as the same Decision problem in the Hamming metric.
This last problem has been proven hard in [6].

Since our cryptosystems use ideal code, we explicitly define the problems on which they
are based. These problems are simply a particular case of the RSD problem where the
matrix H is a parity-check matrix of an s-ideal code.

Problem 1.4 (s-Ideal Rank Syndrome Decoding). Given a polynomial P ∈ Fq[X] of degree
n, s− 1 vectors h1, . . . ,hs−1 ∈ Fnqm generating the systematic parity-check matrix H of an
[ns, n]qm ideal code (see Equation 1), a syndrome σ and a weight w, the s-IRSD problem
consists in sampling a vector x = (x0, . . .xs−1) ∈ Fsnqm of weight lower than w such that
HxT = σT .

Problem 1.5 (s-Decision Ideal Rank Syndrome Decoding). Given a polynomial P ∈ Fq[X]
of degree n, s− 1 vectors h1, . . . ,hs−1 ∈ Fnqm generating the systematic parity-check matrix
H of an [ns, n]qm ideal code and an integer w, the s-DIRSD problem consists in deciding
if a vector σ ∈ Fn(s−1)qm is sampled according to the uniform distribution over Fn(s−1)qm or the
uniform distribution over the set of syndromes of errors of weight w, i.e.

σ
$← Fn(s−1)qm or σ $← {y ∈ Fn(s−1)qm : ∃x ∈ Fnsqm , ‖x‖ = w,y = xHT}

Hardness of the problems: As we have seen in the Section 1.1.2, the ideal codes
are a generalization of quasi-cyclic codes. Although there is no general complexity result
for quasi-cyclic codes, decoding these codes is considered hard by the community. In rank
metric, there is no known speed-up which exploit this structure. he conclusion is that in
practice, the best attacks are the same as those for random codes.

Finally we need to introduce a last problem which is useful for the security proof of our
schemes. (see Sections 4).

Problem 1.6 (s-Ideal Rank Support Recovery). Given a vector h1, . . . ,hs−1 ∈ Fnqm, a
polynomial P ∈ Fq[X] of degree n and a syndrome σ and a weight w, it is hard to recover
a support E of dimension lower than w such that e0 + e1h1 + . . . es−1hs−1 = σ (mod P )
where the vectors ei are of support E.

Hardness of the problem: We show that the s-IRSR problem and the s-IRSD problem
are equivalent.

The s-IRSR problem is trivially reduced to the s-IRSD problem. Indeed to recover the
support E of an instance of the s-IRSR problem from a solution x of the s-IRSD problem,
we just have to compute the support of x.

Reciprocally, the s-IRSD problem can also be reduced to the s-IRSR problem. We prove
this property for s = 2, the generalization is straightforward. Let us suppose we know the
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support E of a solution of the 2-IRSR problem for a weight w. We want to find x = (x0,x1)
of weight lower than w such that x0 + x1h = σ (mod P ).

This equation is equivalent to In IM(h)T

 (x0,0 . . . x0,n−1, x1,0 . . . x1,n−1)
T = σT (2)

where x0 = (x1,0 . . . x0,n−1) and x1 = (x1,0 . . . x1,n−1).
Let (E1, . . . , Ew) be a basis of E. We can express the coordinates of x0 and x1 in this

basis:

∀i ∈ {0, 1}, 0 6 j 6 n− 1, xij =
w∑
k=1

λijkEk, with λijk ∈ Fq

Then we rewrite the equations of (2) in the new unknowns λijk. We obtain a system of 2nw
unknowns over Fq and n equations over Fqm , so nm equations over Fq.

Since E is solution to the 2-IRSR problem, the system has at least one solution and by
construction all the solutions have their support included in E of dimension w, so we can
find a solution to the 2-IRSD problem by solving this system.

The complexity of known attacks against these problems are described in Section 5.

1.3 The Low Rank Parity Check codes

The LRPC codes have been introduced in [9]. They are good candidates for the cryptosys-
tem of McEliece because the have a weak algebraic structure.

Definition 1.3.1 (LRPC codes). Let H = (hij)16i6n−k
16j6n

∈ F(n−k)×n
qm a full-rank matrix such

that its coefficients generate an Fq-subspace F of small dimension d:

F = 〈hij〉Fq

Let C be the code with parity-check matrix H. By definition, C is an [n, k]qm LRPC code.
Such a matrix H is called homogeneous matrix of weight d and support F .

We can now define the ideal LRPC codes. As we will only use (2, 1)-ideal LRPC codes
in our cryptosystems, we restraint the following definition to this type of codes, but the
generalization is straightforward, such as we have done for ideal code.

Definition 1.3.2 (Ideal LRPC codes). Let F be a Fq-subspace of dimension d of Fqm,
(h1,h2) 2 vectors of Fnqm of support F and P ∈ Fq[X] a polynomial of degree n. Let

H =

IM(h1)
T IM(h2)

T


By definition, the code C with parity check matrixH is an ideal LRPC code of type [2n, n]qm.
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As we can see, since P ∈ Fq[X], the support of X ih1 is still F for all 1 6 i 6 n−1 hence
the necessity to choose P with coefficients in the base field Fq to keep the LRPC structure
of the ideal code.

To hide the structure of an ideal LRPC, we only reveal its systematic parity-check
matrix.

Problem 1.7 (Ideal LRPC codes indistinguishability). Given a polynomial P ∈ Fq[X] of
degree n and a vector h ∈ Fnqm, it is hard to distinguish whether the ideal code C with the
parity-check matrix generated by h and P is a random ideal code or if it is an ideal LRPC
code of weight d.

In other words, it is hard to distinguish if h was sampled uniformly at random or as
x−1y mod P where the vectors x and y have the same support of small dimension d.

The ideal LRPC codes are particularly interesting if we choose an irreducible polynomial
for P . In this case we counter a structural attack against double circulant LRPC which can
be found in [13].

1.4 A support recovery algorithm

Notation 1.8. Let E be an Fq-subspace of Fqm of dimension r and F an Fq-subspace of
dimension d. We denote by EF the subspace generated the product of the elements of E
and F :

EF = 〈{ef, e ∈ E, f ∈ F}〉

Let (e1, . . . , er) be basis of E and (f1, . . . fd) a basis of F . It is clear that (eifj)16i6r
16j6d

is a

generator family of EF . So, dimEF 6 rd with equality with a an overwhelming probability
(see [9], Section 3 for more details). We will suppose in the following section that dimEF =
rd.

Let H ∈ F2n×n
qm be an homogeneous matrix of support F and e ∈ F2n

qm an error of support
E. Let C be the LRPC code with parity-check matrix H and s be the syndrome of e :
HeT = sT . In the following section S denotes the support of s, it is a subspace of EF so
its dimension is at most rd.

Si is defined by Si := f−1i S and Sij is defined by Sij := Si ∩ Sj.

1.4.1 Algorithm

The decoding algorithm of LRPC codes first recovers the support of the error vector then
solves a linear system in order to recover the error coordinates. For these proposals, we
only need to recover the support of the error. The probabilistic support recovery algorithm
was recently improved in [3]. The algorithm we present here uses both the general decoding
algorithm of the LRPC codes described in [9] and a tweak of the improved algorithm
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described in [3] designed to run in constant time.
Algorithm 1: Rank Support Recover (RSR) algorithm
Data: F = 〈f1, ..., fd〉 an Fq-subspace of Fqm , s = (s1, · · · , sn) ∈ Fnqm a syndrome of

an error e of weight r and of support E
Result: A candidate for the vector space E
//Part 1 : Compute the vector space EF

1 Compute S = 〈s1, · · · , sn〉
2 Precompute every Si for i = 1 to d
3 Precompute every Si,i+1 for i = 1 to d− 1
4 for i from 1 to d− 2 do
5 tmp← S + F (Si,i+1 + Si+1,i+2 + Si,i+2)
6 if dim(tmp) 6 rd then
7 S ← tmp
8 end
9 end
//Part 2 : Recover the vector space E

10 E ←
⋂d
i=1 f

−1
i S

11 return E

The algorithm is designed in two parts : the first one is used to recover the whole vector
space EF in case S is of dimension < rd. This ensures that the second part, which is the
general decoding of the LRPC codes, outputs E. Note that we do not need to recover the
coordinates of the error vector e since we only need the support E for our cryptosystems.

1.4.2 Probability of failure

The second part of the algorithm will fail if the subspace S ′ obtained at the end of Part 1 is
different from EF . Thus the global probability of failure depends both on the probability
of dim(S) being smaller than rd and the probability of not recovering EF during the first
part of the algorithm.

Notation 1.9. In the following, c is the codimension of S as a subspace of EF : dim(S) =
rd− c. P (c = i) denotes the probability that dimEF −dimS = i and Pc=i(failure) denotes
the probability of not recovering EF when c = i.

Proposition 1.10. The probability of failure of the new algorithm is
rd−1∑
i=1

P (c = i) ×

Pc=i(failure)

Proposition 1.11. The probability that dimS = rd− i is

P (c = i) = q−nrd
rd−i∏
j=0

(qn − qj)(qrd − qj)
qrd−i − qj

= Θ
(
q−i(n−rd+i)

)
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Proof. Since each coordinate of s is a random element of EF , s can be associated to a
random matrix of size rd×n over Fq. Thus the probability P (c = i) is equal to the number
of matrices of size rd×n and of rank rd− i divided by the total number of matrices of size
rd× n.

The number of matrices of size rd× n and of rank rd− i is
∏rd−i

j=0
(qn−qj)(qrd−qj)

qrd−i−qj [18].
The number of matrices of size rd× n is qnrd hence the first equality.
The second one is straightforward since (qj − qi) = Θ (qj) for j > i.

Analysis of Pc=1(failure)
This algorithm uses the fact that dim(Si ∩E) > r − 1 for all i ∈ [1..d], which means Si

contains at least r − 1 independent vectors of E. Since all other vectors in Si are random,
we need to intersect two different Si in order to recover r − 2 independent vectors of E :
those are the Sij.

At each iteration, we compute Si,i+1 + Si+1,i+2 + Si,i+2 to find vectors of E. Once we
have those, we multiply them by the vector space F to find vectors of EF . If one of these
vectors (denoted by x) is not in S, then S + x = EF : we can decode successfully.

We know that every Sij contains at least r − 2 vectors of E. To study what happens
during each iteration of the algorithm, we suppose that Sij contains exactly r − 2 vectors
of E. Two cases may occur during each of the d− 2 iterations :

• If Si,i+1 = Si+1,i+2, then dim(Si,i+1 + Si+1,i+2 + Si,i+2) = r − 2, since the equality
implies that each vector that we find is in Si, Si+1 and Si+2 at the same time. In that
case the algorithm might not find new vectors of EF . This equality happens with
probability q2−r.

• If Si,i+1 6= Si+1,i+2, then dim(Si,i+1 + Si+1,i+2 + Si,i+2) = r : the inequality implies
that dim(Si,i+1 + Si+1,i+2) = r− 1 and, since Si,i+2 is different from both of the other
Sij (otherwise we would be in the first case), the union of the three Sij is exactly E.
In that case the algorithm always finds EF .

Since each iteration can fail to recover EF with probability q2−r, the probability of not
finding EF when dim(S) = rd− 1 is q(2−r)(d−2).

Analysis of Pc>1(failure)
Since P (c = i) decreases extremely fast (by at least a factor q−n+rd), we have P (c >

3) 6 P (c = 1)× Pc=1(failure) for all sets of parameters.
The case c = 2 is more complicated. Indeed, in practice, Algorithm 1 can still decode

when c = 2 but the probability of failure in this case is difficult to evaluate. However our
simulations have shown that, for every set of parameters where P (c = 2) < P (c = 1) ×
Pc=1(failure) (i.e ROLLO-I-192, ROLLO-I-256, ROLLO-III-192 and ROLLO-III-256), we
have Pc=2(failure) < 2−20, hence the DFR is always majored by P (c = 1)×Pc=1(failure).

We can conclude this section with the following proposition.
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Proposition 1.12. According to Propositions 1.10 and 1.11 and the analysis of
Pc=i(failure), the Decryption Failure Rate (DFR) of our schemes is majored by
q(2−r)(d−2)q−(n−rd+1) = q−(n−2∗(r+d)+5) for all sets of parameters.

Notice that the algorithm supposes that m is sufficiently higher than 2rd − r to work,
which will be the case for all parameters considered.

1.5 Presentation of the schemes

In this subsection, Snw(Fqm) stands for the set of vectors of length n and rank weight w over
Fqm and Sn1,w(Fqm) stands for the set of vectors of length n of rank weight w, such that its
support contains 1:

Snw(Fqm) = {x ∈ Fnqm : dim Supp(x) = w}
Sn1,w(Fqm) = {x ∈ Fnqm : dim Supp(x) = w, 1 ∈ Supp(x)}

1.5.1 ROLLO-I as a KEM

A Key-Encapsulation scheme KEM = (KeyGen,Encap,Decap) is a triple of probabilistic
algorithms together with a key space K. The key generation algorithm KeyGen generates a
pair of public and secret key (pk, sk). The encapsulation algorithm Encap uses the public
key pk to produce an encapsulation c, and a key K ∈ K. Finally Decap using the secret
key sk and an encapsulation c, recovers the key K ∈ K or fails and return ⊥.

ROLLO-I is depicted in fig. 1, then formally described in fig. 2. The RSR algorithm
was presented in previous section. P is a irreducible polynomial of Fq[X] of degree n and
constitutes a parameter of the cryptosystem.

Alice Bob

(x,y)
$← S2n

d (Fqm), h← x−1y mod P
F ← Supp (x,y)

s← xc
E ← RSR (F, s, r)

Hash (E)

h−−−−−→

c←−−−−−

Shared
Secret

(e1, e2)
$← S2n

r (Fqm)
E ← Supp (e1, e2)

c← e1 + e2h mod P

Hash (E)

Figure 1: Informal description of ROLLO-I. h constitutes the public key.

Correctness: Alice recovers s = xc = xe1 + xe2h = xe1 + ye2 mod P , since E =
Supp(e1, e2), F = Supp(x,y) and P ∈ Fq[X], the coordinates of s generate a subspace of
EF on which Bob can apply the RSR algorithm to recover E.

Computational costs. The costs are expressed in operations in the base field Fq. The
KeyGen cost corresponds to a polynomial modular inversion in Fqm [X]/〈P 〉, the Encap and
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• KeyGen(1λ): Picks (x,y)
$← S2n

d (Fqm). Sets h = x−1y mod P and return pk = h, sk = (x,y).

• Encap(pk): Picks (e1, e2)
$← S2n

r (Fqm), sets E = Supp(e1, e2), c = e1 + e2h mod P .
Computes K = Hash(E) and returns c.

• Decap(sk): Sets s = xc mod P , F = Supp(x,y) and E ← RSR (F, s, r).
Recovers K = Hash(E).

Figure 2: Formal description of ROLLO-I.

Decap costs correspond to a polynomial modular addition and a polynomial modular multi-
plication in Fqm [X]/〈P 〉, plus the decoding cost of the RSR algorithm for the decapsulation.

1.5.2 ROLLO-II as a PKE

A Public Key Encryption (PKE) scheme is defined by three algorithms: the key generation
algorithm KeyGen which takes on input the security parameter λ and outputs a pair of public
and private keys (pk, sk) ; the encryption algorithm Encrypt(pk,M) which outputs the
ciphertext C corresponding to the message M and the decryption algorithm Decrypt(sk, C)
which outputs the plaintext M .

Since ROLLO-II is almost identical to ROLLO-I, we only give its formal description
in fig. 3, the correctness and the computational costs are the same. P is a irreducible
polynomial of Fq[X] of degree n and constitutes a parameter of the cryptosystem. The
symbol ⊕ denotes here the bitwise XOR.

• KeyGen(1λ): Picks (x,y)
$← S2n

d (Fqm). Sets h = x−1y mod P and return pk = h, sk = (x,y).

• Encrypt(M, pk): Picks (e1, e2)
$← S2n

r (Fqm), sets E = Supp(e1, e2), c = e1 + e2h mod P .
Computes cipher = M ⊕ Hash(E) and returns the ciphertext C = (c, cipher).

• Decrypt(C, sk): Sets s = xc mod P , F = Supp(x,y) and E ← RSR (F, s, r).
Return M = cipher ⊕ Hash(E).

Figure 3: Formal description of ROLLO-II.

1.5.3 ROLLO-III as a KEM

This variant is based on the works of Ouroboros [1], adapted to the context of ideal codes
in rank metric. Unlike ROLLO-I, the security of this KEM does not depend on the indis-
tinguishability of ideal LRPC but only on the hardness of the DIRSD problem. This weaker
security assumption comes at the price of a keysize slightly larger and a ciphertext size
two times larger than ROLLO-I. We will deal with the details of these differences in the
appropriate sections.

As previously, ROLLO-III is depicted in fig. 4, then formally described in fig. 5.
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Alice Bob

seedh
$← {0, 1}λ, h seedh← Fnqm

(x,y)
$← S2n

1,w(Fqm), s← x + hy
F ← Supp (x,y)

ec ← se − ysr
E ← RSR (F, ec, wr)

Hash (E)

h,s−−−−−−→

sr,se←−−−−−−−

Shared
Secret

(r1, r2, er)
$← S3n

wr
(Fqm)

E ← Supp (r1, r2, er)
sr ← r1 + hr2, se ← sr2 + er

Hash (E)

Figure 4: Informal description of ROLLO-III. h and s constitute the public key.

Correctness: Alice recovers ec = se − ysr = sr2 + er − y(r1 + hr2) = (x + hy)r2 +
er − y(r1 +hr2) = xr2−yr1 +er, since E = Supp(r1, r2, er) and F = Supp(x,y), and since
1 ∈ F , the coordinates of ec generate a subspace of EF on which one can apply the RSR
algorithm to recover E.

• KeyGen(1λ): Picks seedh
$← {0, 1}λ, h seedh← Fnqm , (x,y)

$← S2n
1,w(Fqm).

Sets s← x + hy and returns pk = (h, s), sk = (x,y).

• Encap(pk): Picks (r1, r2, er)
$← S3n

wr
(Fqm), sets E = Supp(r1, r2, er), sr = r1 + hr2, se = sr2 + er

Computes K = Hash(E), and returns c = (sr, se)

• Decap(sk): Sets ec = se − ysr, F = Supp(x,y) and E ← RSR (F, ec, wr)
Recovers K = Hash(E)

Figure 5: Formal description of ROLLO-III.

Computational costs. The costs are expressed in operations in the base field Fq. The
KeyGen cost corresponds to a polynomial modular addition and a polynomial modular
multiplication in Fqm [X]/〈P 〉, the Encap costs corresponds to two polynomial modular
additions and two polynomial modular multiplications and Decap costs correspond to a
polynomial modular addition and a polynomial modular multiplication, plus the decoding
cost of the RSR algorithm.

1.6 Representation of objects

Field elements. Elements of Fqm are represented as vectors of sizem over Fq. For ROLLO,
q is always chosen equal to 2 (see section 1.7) thus e ∈ Fqm is represented as (e0, . . . , em−1) ∈
Fm2 . Elements are stored using dm

8
e bytes in which the unused 8 × dm

8
e −m bits are zero-

padded. The first bit e0 corresponds to the constant coefficient of the polynomial e.
The polynomials used to construct F2m as an extension of F2 are given table 1.

Vectors. Elements of Fnqm are represented as n-dimensional arrays of Fqm elements.
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m Pm
79 X79 +X9 + 1
83 X83 +X7 +X4 +X2 + 1
89 X89 +X38 + 1
101 X101 +X7 +X6 +X + 1
107 X107 +X9 +X7 +X4 + 1
113 X113 +X9 + 1
127 X127 +X + 1
131 X131 +X8 +X3 +X2 + 1

Table 1: Polynomials used to construct F2m .

Vector spaces. Let E be an Fq-subspace of Fqm and (e1, . . . er) ∈ Frqm a basis of E. We
suppose that Alice and Bob have agreed on a basis (β1, . . . , βm) of Fqm over Fq. There exists
a matrix M ∈ Fr×mq such that (e1, . . . er)

T = M(β1, . . . , βm)T . In order to have a unique
representation, the natural way is to choose the row echelon form ofM to represent E (this
is equivalent to choose a basis of E). This representation only depends on E. M is then
converted into a byte string before being hashed.

Seeds. The considered seedexpander has been provided by the NIST. It is initialized with a
byte string of length 40 of which 32 are used as the seed and 8 are used as the diversifier.
In addition, it is initialized with max_length equal to 232 − 1.

1.6.1 Parsing vectors from/to byte strings

Vectors of Fnqm are converted to byte strings using a compact representation, in which the
unused bits of each element are removed thus leading to a

⌈
nm
8

⌉
long byte string.

1.7 Parameters for our schemes

1.7.1 General remarks

In this Section, we propose several sets of parameters for ROLLO-I, ROLLO-II and ROLLO-
III, achieving 128, 192, or 256 bits of security and corresponding therefore to NIST’s security
strength categories 1, 3, and 5 respectively.

All of our submissions use ideal code over F2m in order to reduce the size of the key
and to allow to compute the syndrome of an error as sums and products of polynomials in
F2m [X]/〈P 〉, with P ∈ F2[X] of degree n. In order to avoid folding attacks (see [14]), P is
chosen irreducible. Moreover, to decrease the computational costs, we want P to be sparse.
We have obtained these polynomials with the Magma software. More details are available
at http://magma.maths.usyd.edu.au/magma/handbook/text/193#1685.

The best known attacks against our cryptosystems consist in solving an instance of the
IRSD problem. The most important parameter for the complexity of algorithms which solve
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this problem is the weight of the error. That is why we want this parameter to increase at
each level of security. Moreover, in order to get homogeneous parameters, we choose the
same value for the weight of the error in all sets of parameters, 5 for 128 bits of security, 6
for 192 bits of security and 7 for 256 bits of security.

All the parameters have been chosen so that the best known attack requires at least
2λ elementary operations for λ bits of security. We refer the reader to Section 5 for more
details on best known attacks.

1.7.2 ROLLO-I

Choice of parameters. In section 4.2, the security of the protocol is reduced to the
ILRPC problem 1.7 and the IRSR problem 1.6. Our parameters are chosen in function of
the best known attacks on these problems described in Section 5.

The probability of decryption failure (DFR) comes from the probability that the RSR
algorithm 1 fails (see Proposition 1.12).

Size of parameters. One may use seeds to represent the random data in order to decrease
the keysize. We use the NIST seed expander initialized with 40 bytes long seeds.

The public key pk is composed of a vector h ∈ Fn2m , so its size is
⌈
nm
8

⌉
bytes.

The secret key sk is composed of two random vectors of Snd (F2m), so its size is 40 bytes.
The ciphertext ct is composed of a vector of Fn2m , so its size is

⌈
nm
8

⌉
bytes.

The shared secret ss is composed of K = Hash(E), so its size is 64 bytes (SHA512 output
size).

The aforementioned sizes are the ones used in our reference implementation.

Instance q n m r d P security DFR
ROLLO-I-128 2 47 79 5 6 X47 +X5 + 1 128 2−30

ROLLO-I-192 2 53 89 6 7 X53 +X6 +X2 +X + 1 192 2−32

ROLLO-I-256 2 67 113 7 8 X67 +X5 +X2 +X + 1 256 2−42

Table 2: Parameters for ROLLO-I.

Instance pk size sk size ct size ss size Security
ROLLO-I-128 465 40 465 64 128
ROLLO-I-192 590 40 590 64 192
ROLLO-I-256 947 40 947 64 256

Table 3: Resulting sizes in bytes for ROLLO-I using NIST seed expander initialized with
40 bytes long seeds. The security is expressed in bits.
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1.7.3 ROLLO-II

Choice of parameters. In section 4.3, the security of the protocol is reduced to the
ILRPC problem 1.7 and the IRSR problem 1.6. Our parameters are chosen in function of
the best known attacks on these problems described in Section 5.

The probability of decryption failure (DFR) comes from the probability that the RSR
algorithm 1 fails (see Proposition 1.12).

Size of parameters. One may use seeds to represent the random data in order to decrease
the keysize. We use the NIST seed expander initialized with 40 bytes long seeds.

The public key pk is composed of a vector h ∈ Fn2m , so its size is
⌈
nm
8

⌉
bytes.

The secret key sk is composed of two random vectors of Snd (F2m), so its size is 40 bytes.
The ciphertext ct is composed of a vector of Fn2m and a message of 64 bytes masked

by random value obtained via an hash. To obtain the IND-CCA2 security, we need to add
another hash to the ciphertext (see Section 4.3.2 for more details) so the ciphertext size is⌈
nm
8

⌉
+ 128 bytes (SHA512 output size).

The aforementioned sizes are the ones used in our reference implementation.

Instance q n m r d P security DFR
ROLLO-II-128 2 149 83 5 8 X149 +X10 +X9 +X7 + 1 128 2−128

ROLLO-II-192 2 151 107 6 8 X151 +X3 + 1 192 2−128

ROLLO-II-256 2 157 127 7 8 X157 +X6 +X5 +X2 + 1 256 2−132

Table 4: Parameters for ROLLO-II.

Instance pk size sk size ct size Security
ROLLO-II-128 1546 40 1674 128
ROLLO-II-192 2020 40 2148 192
ROLLO-II-256 2493 40 2621 256

Table 5: Resulting sizes in bytes for ROLLO-II using NIST seed expander initialized with
40 bytes long seeds. The security is expressed in bits.

1.7.4 ROLLO-III

Choice of parameters. In section 4.4, the security of the protocol is reduced to the
DIRSD problem 1.5. Our parameters are chosen in function of the best known attacks on
this problem described in Section 5.

The probability of decryption failure (DFR) comes from the probability that the RSR
algorithm 1 fails (see Proposition 1.12).
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Size of parameters. One may use seeds to represent the random data in order to decrease
the keysize. We use the NIST seed expander initialized with 40 bytes long seeds.

The public key pk is composed of a random vector h ∈ Fn2m and a vector s ∈ Fn2m , so its
size is

⌈
nm
8

⌉
+ 40 bytes.

The secret key sk is composed of two random vectors of Sn1,w(F2m), so its size is 40 bytes.
The ciphertext ct is composed of two vectors of Fn2m , so its size is 2

⌈
nm
8

⌉
bytes.

The shared secret ss is composed of K = Hash(E), so its size is 64 bytes (SHA512 output
size).

The aforementioned sizes are the ones used in our reference implementation.

Instance q n m w wr P security DFR
ROLLO-III-128 2 47 101 5 6 X47 +X5 + 1 128 2−30

ROLLO-III-192 2 59 107 6 8 X59 +X7 +X4 +X2 + 1 192 2−36

ROLLO-III-256 2 67 131 7 8 X67 +X5 +X2 +X + 1 256 2−42

Table 6: Parameters for ROLLO-III.

Instance pk size sk size ct size ss size Security
ROLLO-III-128 634 40 1188 64 128
ROLLO-III-192 830 40 1580 64 192
ROLLO-III-256 1138 40 2196 64 256

Table 7: Resulting sizes in bytes for ROLLO-III using NIST seed expander initialized with
40 bytes long seeds. The security is expressed in bits.

2 Performances
In this section, we provide concrete performance measures of our implementation. For
each parameter set, results have been obtained by running 100,000 random instances and
computing their average execution time. The benchmarks have been performed on a ma-
chine running Archlinus. The latter has 16GB of memory and an Intel R© CoreTM i7-7820X
CPU @ 3.6GHz for which the Hyper-Threading, Turbo Boost and SpeedStep features were
disabled. The scheme have been compiled with gcc (version 7.2.0) using the compilation
flags -O2 -pedantic. The following third party libraries have been used: openssl (version
1.1.0f), gmp (version 6.1.2) and ntl (version 10.5.0) [20].

2.1 ROLLO-I

Reference Implementation

Tab. 8 gives timings (in ms) of the reference implementation on our benchmark platform,
and Tab. 9 gives the number of CPU cycles.
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Instance KeyGen Encap Decrypt
ROLLO-I-128 0.55 0.13 0.46
ROLLO-I-192 0.82 0.14 0.78
ROLLO-I-256 0.95 0.20 1.32

Table 8: Timings (in ms) of the reference implementation for different instances of ROLLO-
I.

Instance KeyGen Encap Decrypt
ROLLO-I-128 2.00 0.46 1.65
ROLLO-I-192 2.96 0.50 2.85
ROLLO-I-256 3.42 0.73 4.78

Table 9: Millions of cycles reference implementation for different instances of ROLLO-I.

2.2 ROLLO-II

Reference Implementation

Tab. 10 gives timings (in ms) of the reference implementation on our benchmark platform,
and Tab. 11 gives the number of CPU cycles.

Instance Keygen Encrypt Decap
ROLLO-II-128 2.67 0.42 1.37
ROLLO-II-192 3.07 0.56 1.80
ROLLO-II-256 3.20 0.67 2.21

Table 10: Timings (in ms) of the reference implementation for different instances of ROLLO-
II.

2.3 ROLLO-III

Reference Implementation

Tab. 12 gives timings (in ms) of the reference implementation on our benchmark platform,
and Tab. 13 gives the number of CPU cycles.

2.4 Optimized Implementation

No optimized implementation has been provided. As a consequence, the folders
Optimized_Implementation/ and Reference_Implementation/ are identical. Additional
implementation (optimized variant using vectorization, constant-time implementation...)
might be provided later.
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Instance Keygen Encrypt Decap
ROLLO-II-128 9.62 1.52 4.96
ROLLO-II-192 11.04 2.00 6.52
ROLLO-II-256 11.41 2.39 7.94

Table 11: Millions of cycles reference implementation for different instances of ROLLO-II.

Instance Keygen Encap Decap
ROLLO-III-128 0.15 0.25 0.44
ROLLO-III-192 0.16 0.29 0.85
ROLLO-III-256 0.21 0.40 1.33

Table 12: Timings (in ms) of the reference implementation for different instances of ROLLO-
III.

2.5 Constant time Implementation

The decoding algorithm 1 has been designed to perform the same number of intersections
for any dimension of the input subspace S. Measuring the execution time taken to perform
an intersection, an attacker might be able to recover the codimension of S in EF , but the
results of [2] show that for ROLLO-I and ROLLO-III, use of ephemeral keys negate this
attack, and for ROLLO-II, the probability of obtaining subspaces S of codimension 1 is low
enough that the attack is not practical.

3 Known Answer Test Values
Known Answer Test (KAT) values have been generated using the script provided by
the NIST. They are available in the folder KAT/Reference_Implementation/. As men-
tioned in Sec. 2.4, since the reference and optimized implementations are identical,
KAT/Optimized_Implementation/ is just a copy of KAT/Reference_Implementation/.

In addition, we provide, for each parameter set, an example with intermediate values in
the folder KAT/Reference_Implementation/.

Notice that one can generate the aforementioned test files using respectively the kat
and verbose modes of our implementation. The procedure to follow in order to do so is
detailed in the technical documentation.
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Instance Keygen Encap Decap
ROLLO-III-128 2.71 0.55 2.57
ROLLO-III-192 3.19 0.23 1.08
ROLLO-III-256 3.58 0.60 3.77

Table 13: Millions of cycles reference implementation for different instances of ROLLO-III.

4 Security

4.1 Security Models and Hybrid Argument

IND-CPA. IND-CPA is generally proved through the following game: the adversary A
chooses two plaintexts µ0 and µ1 and sends them to the challenger who flips a coin b ∈ {0, 1},
encrypts µb into ciphertext c and returns c to A. The encryption scheme is said to be
IND-CPA secure if A has a negligible advantage in deciding which plaintext c encrypts.
This game is formally described hereunder on Fig. 6.

Expind−b
E,A (λ)

1. param← Setup(1λ)
2. (pk, sk)← KeyGen(param)
3. (µ0, µ1)← A(FIND : pk)
4. c∗ ← Encrypt(pk, µb, θ)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

Figure 6: Experiment against the indistinguishability under chosen plaintext attacks

The global advantage for polynomial time adversaries (running in time less than t) is:

Advind
E (λ, t) = max

A≤t
Advind

E,A(λ), (3)

where Advind
E,A(λ) is the advantage the adversary A has in winning game Expind−b

E,A (λ):

Advind
E,A(λ) =

∣∣Pr[Expind−1
E,A (λ) = 1]− Pr[Expind−0

E,A (λ) = 1]
∣∣ . (4)

Hybrid argument. Alternatively (and equivalently by the hybrid argument), it is pos-
sible to construct a sequence of games from a valid encryption of a first message µ0 to a
valid encryption of another message µ1 and show that these games are two-by-two indis-
tinguishable. We follow this latter approach and prove the security of our KEM similarly
to [1].
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4.2 IND-CPA security proof of ROLLO-I

Theorem 4.1. Under the Ideal LRPC indistinguishability 1.7 and the Ideal-Rank Support
Recovery 1.6 Problems, the KEM presented earlier in section 1.5.1 is indistinguishable
against Chosen Plaintext Attack in the Random Oracle Model.

Proof. We are going to proceed in a sequence of games. The simulator first starts from the
real scheme. First we replace the public key matrix by a random element, and then we use
the ROM to solve the Ideal-Rank Support Recovery.

We start from the normal game G0: We generate the public key h honestly, and E, c
also

• In game G1, we now replace h by a random vector, the rest is identical to the previous
game. From an adversary point of view, the only difference is the distribution on h,
which is either generated at random, or as a product of low weight vectors. This is
exactly the Ideal LRPC indistinguishability problem, hence

AdvG0
A ≤ AdvG1

A + AdvILRPCA

• In game G2, we now proceed as earlier except we receive h, c from a Support Recovery
challenger. After sending c to the adversary, we monitor the adversary queries to the
Random Oracle, and pick a random one that we forward as our simulator answer to
the Ideal-Rank Support Recovery problem. Either the adversary was able to predict
the random oracle output, or with probably 1/qG, we picked the query associated
with the support E (by qG we denote the number of queries to the random oracle G),
hence

AdvG1
A ≤ 2−λ + 1/qG · AdvIRSRA

which leads to the conclusion.

4.3 IND-CCA2 security proof of ROLLO-II

4.3.1 IND-CPA security proof of the ROLLO-II PKE

Theorem 4.2. Under the Ideal LRPC indistinguishability 1.7 and the Ideal-Rank Sup-
port Recovery 1.6 Problems, the encryption scheme presented earlier in section 1.5.2 in
indistinguishable against Chosen Plaintext Attack in the Random Oracle Model.

Proof. We are going to proceed in a sequence of games. The simulator first starts from the
real scheme. First we replace the public key matrix by a random element, and then we use
the ROM to solve the QC-Rank Support Recovery.

We start from the normal game G0: We generate the public key ~h honestly, and E,~c
also
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• In game G1, we now replace ~h by a random vector, the rest is identical to the previous
game. From an adversary point of view, the only difference is the distribution on ~h,
which is either generated at random, or as a product of low weight vectors. This is
exactly the Ideal LRPC indistinguishability problem, hence

AdvG0
A ≤ AdvG1

A + AdvILRPCA

• In game G2, we now proceed as earlier except we replace G(E) by random. It can
be shown, that by monitoring the call to the ROM, the difference between this game
and the previous one can be reduced to the QC-Rank Support Recovery problem, so
that:

AdvG1
A ≤ 2−λ + 1/qG · AdvIRSRA .

• In a final game G3 we replace ~d = M ⊕ Rand by just ~d = Rand, which leads to the
conclusion.

4.3.2 A IND-CCA2 conversion of the ROLLO-II PKE

Let E be an instance of the ROLLO-II cryptosystem as described above. Let G, H, and K
be hash functions, typically SHA512 as advised by NIST. The KEM-DEM version of the
ROLLO-II cryptosystem is defined as follows (following [16]) :

• Setup(1λ): as before, except that k will be the length of the symmetric key being
exchanged, typically k = 256.

• KeyGen (param): exactly as before.

• Encap (pk): generate m
$← Fk (this will serve as a seed to derive the shared

key). Derive the randomness θ ← G(m). Generate the ciphertext c ← (u,v) =
E .Encrypt(pk,m, θ), and derive the symmetric key K ← K(m, c). Let d← H(m),
and send (c,d).

• Decap (sk, c,d): Decrypt m′ ← E .Decrypt(sk, c), compute θ′ ← G(m′), and (re-
)encrypt m′ to get c′ ← E .Encrypt(pk,m′, θ′). If c 6= c′ or d 6= H(m′) then abort.
Otherwise, derive the shared key K ← K(m, c).

Figure 7: Description of our proposal ROLLO-II.KEM.

When applying the HHK [16] framework for the Fujisaki-Okamoto transformation, one
can show that the final transformation is CCA-2 secure such that:

AdvCCA−2
A ≤ qG · δ + qV · 2−γ +

2qG + 1

|M|
+ 3AdvCPA

A
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As our scheme is CPA secure, the last term is negligible, we can handle exponentially
large message space for a polynomial number of query, so the previous is too.

As shown before, our scheme is gamma-spread so again for a polynomial number of
verification query, the term in qV is negligible.

The tricky term remaining is qG · δ, this is the product of the number of queries to the
random oracle, by the probability of generating an decipherable ciphertext in an honest
execution. For real application, we want schemes to be correct enough so that the proba-
bility of such occurrence is very small. This often leads, in application in running with a
probability of a magnitude of 2−64. This may seem not low enough for pure cryptographic
security, however it should be noted this number, corresponds to the number of request,
adversarially generated where the simulator gives an honest answer to a decryption query,
which would mean that a single user would be able to do as many queries as expected by
the whole targeted users in a live application, so a little trade-off at this level seems more
than fair.

4.4 IND-CPA security proof of ROLLO-III

Theorem 4.3. ROLLO-III is IND-CPA secure under the assumption of the hardness of the
2-DIRSD and 3-DIRSD problems 1.5.

The proof follows the same ideas as the one from [1, Proof of Theorem 1].

Proof. It is worth noticing first that an adversary A succeeds in breaking the scheme if he
manages to recover the support E = Supp (r1, r2, er) given only the public key pk = (h, s)
and the transcripts (sr = r1 + hr2, se = sr2 + er). This is exactly an instance of the IRSR
problem defined in Sec. 1.2 (see Pb. 1.6). It has also been shown in that section that the
IRSR problem is equivalent to the IRSD problem, and the security reduction exploits the
equivalence between these problems.

The aim is to prove that an adversary distinguishing one game from another can be
exploited to break either the 2-DIRSD or the 3-DIRSD assumption (respectively on [2n, n]
or [3n, n] codes) in polynomial time. We are going to proceed in a sequence of games
moving from the real world with a valid encryption, to an idealistic version where both the
ciphertext and the key are random. Let A be a probabilistic polynomial time adversary
against the IND-CPA of our scheme and consider the following games where we consider
that A receives the encapsulation at the end of each game.

• Game G1 : This game corresponds to an honest run of the protocol. In particular,
the simulator has access to all keys / randomness.

• Game G2 : Now the simulator picks uniformly at random x,y (resulting in a random
s). He then proceeds honestly.
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An adversary distinguishing between those two games, can distinguish between a well-
formed pk and a random one. The public key in the first game correspond to a valid
2-DIRSD instance, while it is a random one in the second.

Hence AdvG1−G2
A1,2

≤ Adv(2-DIRSD)(λ)

• Game G3 : Now the simulator also picks uniformly at random er, r1 and r2 and uses
them to generate sr, se.

An adversary has access to:(
sr
se

)
=

(
In 0 IM(h)
0 In IM(s)

)
(r1, er, r2)

>

The syndrome (sr, se) follows the QCRSD distribution in game G2 and the uniform
distribution over (Fn2 )2 inG3. If an adversary is able to distinguish gamesG2 fromG3,
then a simulator can break the underlying problem.

Hence AdvG2−G3
A2,3

≤ Adv(3-DIRSD)(λ).

AdvIND-CPAKEM (A) ≤ Adv2-DIRSD(λ) + Adv3-DIRSD(λ).

Therefore, a PPT adversary A breaking the protocol with non negligible advantage can
be used to solve the QCRSD problem.

5 Known Attacks
In this section, we present the best known attacks against the IRSR 1.6, ILRPC 1.7 and
DIRSD 1.5 problems on which our schemes are based.

Both the ILRPC and DIRSD problems are decision problems. However, at the current
state-of-the-art, the best attacks consist in solving a search problem: finding a codeword of
a small weight in an ideal LRPC code for the ILRPC and solving an instance of the IRSD
problem for the DIRSD problem.

There exist two types of attacks on these problems:

• the combinatorial attacks where the goal is to find the support of the error or of the
codeword.

• the algebraic attacks where the opponent tries to solve an algebraic system by Groeb-
ner basis.

First, we deal with the combinatorial attacks for the IRSD and the ILRPC problems and in
a third subsection we discuss about the algebraic attacks.
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5.1 Attack on the IRSD problem

For an [sn, n] ideal code over Fqm the best combinatorial attack to solve the IRSD problem
1.4 with an error of weight r is in:

O
(

((s− 1)nm)ωqrd
m(n+1)

sn e−m
)

operations in Fq. ω is the exponent of the complexity of the solution of a linear system.
This attack is an improvement of a previous attack described in [10], a detailed de-

scription of the attack can be found in [4]. The general idea of the attack is to adapt the
Information Set Decoding attack for the Hamming distance. For the rank metric, the at-
tacker tries and guesses a subspace which contains the support of the error and then solves
a linear system obtained from the parity-check equations to check if the choice was correct.

The complexity of the best attack against IRSR problem is the same since there is no
known way to compute the support of an error without first computing this error.

This attack is a generic attack against the RSD problem, there is no known improvement
which exploit the ideal structure of the code.

Remark 5.1. Since the linear system is not random, it is reasonable to take ω = 2 for
the choice of the parameters of ROLLO-I, ROLLO-II and ROLLO-III, even if the attack
described in [4] takes ω = 3.

Let us remark that the choice of our parameter is flexible. We could take ω = 0 and
increase the parameters, which corresponds to only keeping the exponential complexity of
the attack, for instance by slightly increasing m.

5.2 Structural attack on ideal LRPC codes

Let C be an [2n, n]qm ideal LRPC code generated by the two polynomials (x,y) of support
F of dimension d. Let h = x−1y which generates the systematic parity-check matrix of C.
The problem is to recover the structure of C, given only access to h.

The most efficient known attack is to find a codeword of weight d in an [2n−
⌊
n
d

⌋
, n−⌊

n
d

⌋
]qm subcode C ′ of the dual code C⊥ generated by h, as described in [11]. The best

algorithm is the same decoding algorithm used in the previous subsection [4]. Its complexity
is in:

O

(nm)ωq
d

⌈
(n−bndc)m

2n−bndc

⌉
−m


However, the dual of an ideal LRPC code contains much more codeword of weight d
than a random code with the same parameters. Indeed, let H be the matrix of size n× 2n
generated by (x,y). By definition, H is a generator matrix of C⊥. Let (hi)16i6n be the
rows of H . For all 1 6 i 6 n, Supp(hi) = F =⇒ C⊥ contains qn codewords of the same
support. Thus, we have considered an attack in

O
(

(nm)ωqdd
m
2 e−m−n

)
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for the choice of the parameters of ROLLO-I and ROLLO-II.
There exists a specific attack on the ideal LRPC codes which can be found in [14]. In

this article, the authors present an attack against double circulant LRPC codes but it can
be adapted straightforwardly in the case of ideal LRPC codes. However, the crucial point
of this attack is that the polynomial Xn − 1 has always X − 1 as divisor and may have
many more factors depending on n and q. In the case of ideal LRPC codes, we can choose
an irreducible polynomial P of degree n of Fq[X] to generate the quotient-ring Fq[X]/〈P 〉,
which completely negates this specific attack.

5.3 Algebraic attacks

The second way to solve the equations of the system HeT = sT is to use the Groebner
basis [17]. The advantage of these attacks is that they are independent of the size of q.
They mainly depend on the number of unknowns with respect to the number of equations.
However, in the case q = 2 the number of unknowns is generally too high for that the
algorithms by Groebner basis are more efficient than the combinatorial attacks. We have
chosen our parameters such that the best attacks are combinatorial, the expected complexity
of the algorithms by Groebner basis is based on the article [5].

5.4 Quantum speed-up

For computational attacks, the quantum speed-up is easy to analyze. According to [8], a
slight generalization of Grover’s quantum search algorithm allows to divide by a factor 2 the
exponential complexity of the attacks. Thus the complexity of the quantum computational
attack is

• O
(

((s− 1)nm)ωq
1
2
(rdm(n+1)

sn e−m)
)
for the attack on the s− IRSD problem.

• O
(

(nm)ωq
1
2
(ddm2 e−m−n)

)
for the attack on ideal LRPC codes.

6 Advantages and Limitations

6.1 Strengths

The proposed schemes are very efficient, both in terms of size of keys and computational
complexity. They also benefit from a constant time decoding algorithm and its failure
probability is very well studied and estimated and can easily be chosen to meet security
standards. Moreover, the choice of parameters is very versatile. For ROLLO-I and ROLLO-
II, there is a reduction to a well understood generic problem IRSD, which is a natural
generalization of Quasi-Cyclic RSD problem. This type of problems has been used for
many years for Hamming and Euclidean distances.
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ROLLO-III also benefit from the nice features of the LRPC protocol but with a tight
reduction to the generic s-DIRSD problems. It comes at price, since the ciphertext size is
doubled, but due to the inherent difficulty of decoding codes in rank metric, parameters
are rather low, and compare very well to other type of protocols.

6.2 Limitations

Rank metric has very nice features, but the use of rank metric for cryptographic purposes
is not very old (1991). It may seems as a limitation, but still in recent years there have
been a lot of activities on understanding the inherent computational difficulty of the related
problems and it seems very hard to improve on their general complexity.

Like for cryptosystems à la McEliece, ROLLO-I and ROLLO-II security proofs rely on
the hardness of retrieving the structure of a structured code, in our case the ideal LRPC
codes. However, this problem has been also studied for Hamming and euclidean metrics and
is considered hard by the community (for instance, MDPC and NTRU-like cryptosystems
are based on it).
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