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1 Introduction

Lattice based cryptography is one of the most promising cryptographic families that is
believed to offer resistance to quantum computers. We introduce Saber [5], a family of
cryptographic primitives that rely on the hardness of the Module Learning With Rounding
problem (Mod-LWR). We first describe Saber.PKE, an IND-CPA secure encryption scheme,
and transform it into Saber.KEM, an IND-CCA secure key encapsulation mechanism, using
a version of the Fujisaki-Okamoto transform. The design goals of Saber were simplicity,
efficiency and flexibility resulting in the following choices: all integer moduli are powers
of 2 avoiding modular reduction and rejection sampling entirely; the use of LWR halves the
amount of randomness required compared to LWE based schemes and reduces bandwidth;
the module structure provides flexibility by reusing one core component for multiple security
levels.

2 General algorithm specification (part of 2.B.1)

2.1 Notation

We denote with Zq the ring of integers modulo an integer q with representants in [0, q) and
for an integer z, we denote with z mod q the reduction of z in [0, q). Rq is the quotient
ring Zq[X]/(Xn + 1) with n a fixed power of 2 (we only need n = 256). For any ring R,
Rl×k denotes the ring of l × k-matrices over R. For p|q, the mod p operator is extended to
(matrices over) Rq by applying it coefficient-wise. Single polynomials are written without
markup, vectors are bold lower case and matrices are denoted with bold upper case. If χ is a
probability distribution over a set S, then x← χ denotes sampling x ∈ S according to χ. If χ
is defined on Zq, XXX ← χ(Rl×k

q ) denotes sampling the matrix XXX ∈ Rl×k
q , where all coefficients

of the entries in XXX are sampled from χ. The randomness that is used to generate the
distribution can be specified as follows: XXX ← χ(Rl×k

q ; r), which means that the coefficients
of the entries in matrix XXX ∈ Rl×k

q are sampled deterministically from the distribution χ
using seed r. U denotes the uniform distribution and βµ is a centered binomial distribution
with parameter µ (where µ is even and the samples are in the interval [−µ/2, µ/2]) with
probability mass function P [x|x← βµ] = µ!

(µ/2+x)!(µ/2−x)!2
−µ.

The bitwise shift operations � and � have the usual meaning when applied to an integer
and are extended to polynomials and matrices by applying them coefficient-wise.

2.2 Parameter space

The parameters for Saber are:

• q, p, T : The moduli involved in the scheme are chosen to be powers of 2, in particular
q = 2εq , p = 2εp and T = 2εT with εq > εp > εT , so we have T | p | q. A higher choice
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for parameters p and T , will result in lower security, but higher correctness. A python
script that calculates optimal values for p and T is part of the submission.

• µ: The coefficients of the secret vectors sss and sss′ are sampled according to a centered
binomial distribution βµ(Rl×1

q ) with parameter µ, where µ < p. A higher value for µ
will result in a higher security, but a lower correctness of the scheme.

• n, l: The degree n and the number l of polynomials in the secret vectors sss and sss′

determine the dimension of the underlying lattice problem as l · n. Increasing the
dimension of the lattice problem increases the security, but reduces the correctness.

• F ,G,H: The hash functions that are used in the protocol. Functions F and H are
implemented using SHA3-256, while G is implemented using SHA3-512.

• gen: The extendable output function that is used in the protocol to generate a pseu-
dorandom matrix AAA ∈ Rl×l

q from a seed seedAAA. It is implemented using SHAKE-128. It
might be possible that a non-cryptographic pseudorandomness generator or a SHAKE-
128 variant with a limited number of rounds suffices for security, which would speed
up computations. However, as a thorough security evaluation of these options lacks,
the more conservative SHAKE-128 is chosen.

2.3 Constants

The algorithm uses three constants: a constant polynomial h1 ∈ Rq with all coefficients set
equal to 2εq−εp−1, a constant vector hhh ∈ Rl×1

q where each polynomial is equal to h1 and a
constant polynomial h2 ∈ Rq with all coefficients set equal to (2εp−2 − 2εp−εT−1 + 2εq−εp−1).
These constants are used to replace rounding operations by a simple bit shift.

2.4 Saber Public Key Encryption

Saber.PKE is the public key encryption scheme consisting of the triplet of algorithms
(Saber.PKE.KeyGen, Saber.PKE.Enc, Saber.PKE.Dec) as described in Algorithms 1, 2 and
3 respectively. The more detailed technical specifications are given in Section 10.
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2.4.1 Saber.PKE Key Generation

The Saber.PKE key generation is specified by the following algorithm.

Algorithm 1: Saber.PKE.KeyGen()

1 seedAAA ← U({0, 1}256)
2 AAA = gen(seedAAA) ∈ Rl×l

q

3 r = U({0, 1}256)
4 sss = βµ(Rl×1

q ; r)

5 bbb = ((AAATsss+ hhh) mod q)� (εq − εp) ∈ Rl×1
p

6 return (pk := (seedAAA, bbb), sk := (sss))

2.4.2 Saber.PKE Encryption

The Saber.PKE Encryption is specified by the following algorithm, with optional argument r.

Algorithm 2: Saber.PKE.Enc(pk = (seedAAA, bbb),m ∈ R2; r)

1 AAA = gen(seedAAA) ∈ Rl×l
q

2 if r is not specified then
3 r = U({0, 1}256)
4 s′s′s′ = βµ(Rl×1

q ; r)

5 bbb′ = ((AAAsss′ + hhh) mod q)� (εq − εp) ∈ Rl×1
p

6 v′ = bbbT (sss′ mod p) ∈ Rp

7 cm = (v′ + h1 − 2εp−1m mod p)� (εp − εT ) ∈ RT

8 return c := (cm, b
′b′b′)

2.4.3 Saber.PKE Decryption

The Saber.PKE Decryption is specified by the following algorithm.

Algorithm 3: Saber.PKE.Dec(sk = sss, c = (cm, b
′b′b′))

1 v = bbb′T (sss mod p) ∈ Rp

2 m′ = ((v − 2εp−εT cm + h2) mod p)� (εp − 1) ∈ R2

3 return m′

2.5 Saber Key-Encapsulation Mechanism

Saber.KEM is the key-encapsulation mechanism consisting of the triplet of algorithms
(Saber.KEM.KeyGen, Saber.KEM.Enc, Saber.KEM.Dec) as described in Algorithms 4, 5
and 6 respectively. The more detailed technical specifications are given in Section 10.
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2.5.1 Saber.KEM Key Generation

The Saber key generation is specified by the following algorithm.

Algorithm 4: Saber.KEM.KeyGen()

1 (seedAAA, bbb, sss) = Saber.PKE.KeyGen()
2 pk = (seedAAA, bbb)
3 pkh = F(pk)
4 z = U({0, 1}256)
5 return (pk := (seedAAA, bbb), sk := (sss, z, pkh))

2.5.2 Saber.KEM Key Encapsulation

The Saber key encapsulation is specified by the following algorithm and makes use of
Saber.PKE.Enc as specified in Algorithm 2.

Algorithm 5: Saber.KEM.Encaps(pk = (seedAAA, bbb))

1 m← U({0, 1}256)
2 (K̂, r) = G(F(pk),m)
3 c = Saber.PKE.Enc(pk,m; r)

4 K = H(K̂, c)
5 return (c,K)

2.5.3 Saber.KEM Key Decapsulation

The Saber key decapsulation is specified by the following algorithm and makes use of
Saber.PKE.Dec as specified in Algorithm 3.

Algorithm 6: Saber.KEM.Decaps(sk = (sss, z, pkh), pk = (seedAAA, bbb), c)

1 m′ = Saber.PKE.Dec(sss, c)

2 (K̂ ′, r′) = G(pkh,m′)
3 c′ = Saber.PKE.Enc(pk,m′; r′)
4 if c = c′ then

5 return K = H(K̂ ′, c)
6 else
7 return K = H(z, c)
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3 List of parameter sets (part of 2.B.1)

3.1 Saber.PKE parameter sets

For Saber.PKE, we define the following parameters sets with corresponding security levels in
Table 1. The secret key can be compressed by only storing the log2(µ) LSB for each coefficient
in the entries of sss. The values for a compressed secret key can be found in brackets.

Sec Cat fail prob attack Classical Quantum pk (B) sk (B) ciphertext (B)

LightSaber-PKE: l = 2, n = 256, q = 213, p = 210, T = 23, µ = 10

1 2−120
primal 125 114

672 832(256) 736
dual 169 153

Saber-PKE: l = 3, n = 256, q = 213, p = 210, T = 24, µ = 8

3 2−136
primal 203 185

992 1248(288) 1088
dual 244 226

FireSaber-PKE: l = 4, n = 256, q = 213, p = 210, T = 26, µ = 6

5 2−165
primal 283 257

1312 1664(384) 1472
dual 338 308

Table 1: Security and correctness of Saber.PKE.

3.2 Saber.KEM parameter sets

For Saber.KEM, we define the following parameters sets with corresponding security levels
in Table 2. The secret key can be compressed by only storing the log2(µ) LSB for each
coefficient in the entries of sss. The values for a compressed secret key can be found in
brackets. Note that only the secret key size (sk) differs from the Saber.PKE table due to
the inclusion of the public key hash and the random value z.

Sec Cat fail prob attack Classical Quantum pk (B) sk (B) ciphertext (B)

LightSaber-KEM: l = 2, n = 256, q = 213, p = 210, T = 23, µ = 10

1 2−120
primal 125 114

672 1568(992) 736
dual 169 153

Saber-KEM: l = 3, n = 256, q = 213, p = 210, T = 24, µ = 8

3 2−136
primal 203 185

992 2304(1344) 1088
dual 244 226

FireSaber-KEM: l = 4, n = 256, q = 213, p = 210, T = 26, µ = 6

5 2−165
primal 283 257

1312 3040(1760) 1472
dual 338 308

Table 2: Security and correctness of Saber.KEM.
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4 Design rationale (part of 2.B.1)

Our design combines several existing techniques resulting in a very simple implementation,
that reduces both the amount of randomness and the bandwidth required.

• Learning with Rounding (LWR) [2]: schemes based on (variants of) LWE require
sampling from noise distributions which needs randomness. Furthermore, the noise is
included in public keys and ciphertexts resulting in higher bandwidth (which can be
mitigated by the use of compression techniques akin to LWR). In LWR based schemes,
the noise is deterministically obtained by scaling down from a modulus q to modulus
p, which does not need randomness and naturally reduces bandwidth for keys and
ciphertexts.

• Modules [12, 4]: the module versions of the problems allow to interpolate between
the original pure LWE/LWR problems and their ring versions, lowering computational
complexity and bandwidth in the process. As in ‘Kyber’ [4], we use modules to protect
against attacks on the ring structure of Ring-LWE/LWR and to provide flexibility. By
increasing the rank of the module, it is easy to move to higher security levels without
any need to change the underlying arithmetic.

• Encryption: we use a simple LWR version of Regev’s LWE encryption scheme [13],
where the encryption part is compressed (using the parameter T ) to save on bandwith.

• Choice of moduli: all integer moduli in the scheme are powers of 2. This has several
advantages: there is no need for explicit modular reduction; sampling uniformly modulo
a power of 2 is trivial and thus avoids rejection sampling or other complicated sampling
routines, which is important for constant time implementations; we immediately have
that the moduli p | q in LWR, which implies that the scaling operation maps the
uniform distribution modulo q to the uniform distribution modulo p.

The main disadvantage of using such moduli is that it excludes the use of the number
theoretic transform (NTT) to speed up polynomial multiplication. However, we never
require a multiplication of two random elements; we only require the multiplication
of a random element by a small element. Instead of implementing this using general
purpose multiplication techniques, this can also be implemented using simple shifts and
additions/subtractions. Furthermore, we remark that such approach is not possible for
submissions that work mostly in the NTT domain, since the smallness of elements is lost
during the NTT. Finally, we remark that using a compression technique as in ‘Kyber’
requires one to move back to the polynomial representation (the ‘time domain’), so
if low bandwidth is a design goal, a scheme that works purely in the NTT-domain
(‘frequency domain’) is simply not possible.
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5 Detailed performance analysis (2.B.2)

We evaluated the performance of the software implementation on a Dell laptop with an
Intel(R) Core(TM) i7-6600U CPU 2.60GHz processor, Ubuntu operating system, and gcc
compiler 7.0. We disabled hyperthreading and TurboBoost. The performance results for the
various parameter sets of Saber.KEM can be found in Table 3. For performance on ARM
microcontrollers please refer to [10].

Our key encapsulation mechanism uses three hash functions F , G and H. For hash functions
F and H, SHA3-256 is used, while G is implemented using SHA3-512.

Table 3: Performance of Saber.KEM. Cycles on an Intel(R) Core(TM) i5-7200U CPU @
2.50GHz for key generation, encapsulation, and decapsulation are represented by K, E, and
D respectively in the 4th column. Sizes of secret key (sk), public key (pk) and ciphertext
(c) are reported in the last column.

Scheme Problem Security Cycles (ref) Cycles (avx) Bytes
LightSaber-KEM Module-LWR 114 K: 85,474 61,849 sk: 1,568

E: 108,927 72,692 pk: 672
D: 119,868 70,605 c: 736

Saber-KEM Module-LWR 185 K: 163,333 104,177 sk: 2,304
E: 196,705 122,086 pk: 992
D: 215,733 120,464 c: 1,088

FireSaber-KEM Module-LWR 257 K: 259,504 161,379 sk: 3,040
E: 308,277 184,766 pk: 1,312
D: 341,654 186,625 c: 1,472

6 Expected strength (2.B.4) in general

6.1 Security

The IND-CPA security of Saber.PKE can be reduced from the decisional Mod-LWR problem
as shown by the following theorem:

Theorem 6.1. For any adversary A, there exist three adversaries B0, B1 and B2 such that
Advind-cpaSaber.PKE(A) 6 Advprf

gen()(B0) + Advmod-lwr
l,l,ν,q,p (B1) + Advmod-lwr

l+1,l,ν,q,q/ζ(B2), where ζ = min ( q
p
, p
T

).

The correctness of Saber.PKE can be calculated using the python scripts included in the
submission, following theorem 6.2:

Theorem 6.2. Let AAA be a matrix in Rl×l
q and sss,sss′ two vectors in Rl×1

q sampled as in
Saber.PKE. Define eee and eee′ as the rounding errors introduced by scaling and rounding AAATsss
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and AAAsss′, i.e. ((AAATsss+hhh) mod q)� (εq− εp) = p
q
AAATsss+eee and ((AAAsss′+hhh) mod q)� (εq− εp) =

p
q
AAAsss′ + e′e′e′. Let er ∈ Rq be a polynomial with uniformly distributed coefficients with range

[−p/2T, p/2T ]. If we set

δ = Pr[||(sss′Teee− eee′Tsss+ er) mod p||∞ > p/4]

then after executing the Saber.PKE protocol, both communicating parties agree on a n-bit
key with probability 1− δ.

For these calculations, the failure probabilities of the different coefficients of (sss′Teee−eee′Tsss+er)
can be assumed independent, as discussed in [7].

This IND-CPA secure encryption scheme is the basis for the IND-CCA secure KEM
Saber.KEM=(Encaps, Decaps), which is obtained by using an appropriate transformation.
Recently, several post-quantum versions [8, 15, 14, 9] of the Fujisaki-Okamoto transform with
corresponding security reductions have been developed. At this point, the FO 6⊥ transforma-
tion in [8] with post-quantum reduction from Jiang et al. [9] gives the tightest reduction for
schemes with non-perfect correctness. However, other transformation could be used to turn
Saber.PKE into a CCA secure KEM.

6.1.1 Security in the Random Oracle Model

By modeling the hash functions G and H as random oracles, a lower bound on the CCA
security can be proven. We use the security bound of Hofheinz et al. [8], which considers
a KEM variant of the Fujisaki-Okamoto transform that can also handle a small failure
probability δ of the encryption scheme. This failure probability should be cryptographically
negligibly small for the security to hold. Using Theorem 3.2 and Theorem 3.4 from [8], we
get the following theorems for the security and correctness of our KEM in the random oracle
model:

Theorem 6.3. For a IND-CCA adversary B, making at most qH and qG queries to respec-
tively the random oracle G and H, and qD queries to the decryption oracle, there exists an
IND-CPA adversary A such that:

Advind-ccaSaber.KEM(B) 6 3Advind-cpaSaber.PKE(A) + qGδ +
2qG + qH + 1

2256
.

6.1.2 Security in the Quantum Random Oracle Model

Jiang et al. [9] provide a security reduction against a quantum adversary in the quantum
random oracle model from IND-CCA security to OW-CPA security. IND-CPA with a suffi-
ciently large message space M implies OW-CPA [8, 3], as is given by following lemma:

Theorem 6.4. For an OW-CPA adversary B, there exists an IND-CPA adversary A such
that:

Advow-cpaSaber.PKE(B) 6 Advind-cpaSaber.PKE(A) + 1/|M |
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Therefore, we can reduce the IND-CCA security of Saber.KEM from the IND.CPA security
of the underlying public key encryption:

Theorem 6.5. For any IND-CCA quantum adversary B, making at most qH and qG queries
to respectively the random quantum oracle G and H, and qD many (classical) queries to the
decryption oracle, there exists an adversary A such that:

Advind-ccaSaber.KEM(B) 6 2qH
1√
2256

+ 4qG
√
δ + 2(qG + qH)

√
Advind-cpaSaber.PKE(A) + 1/|M |

In all attack scenarios we assume that the depth of quantum computation is limited to 264

quantum gates.

6.2 Decryption failure attack

Instead of solving the Mod-LWR problem, an attacker can mount an attack that uses de-
cryption failures. In this scenario, the adversary uses Grover’s algorithm to precompute m
that have a relatively high failure probability. Once messages m are found that trigger a
decryption failure, they can be used to estimate the secret as described in [6]. This attack
strategy is covered by the 4qG

√
δ term of the quantum IND-CCA security reduction. How-

ever, the best known attack requires an impractical number of decryption queries far above
264.

6.3 Multi-target protection

As described in [4], hashing the public key into K̂ has two beneficial effects: it makes sure
that K depends on the input of both parties, and it offers multi-target protection. Hashing
pk into K̂ ensures that an attacker is not able to use precomputed ‘weak’ values of m on
multiple targets when searching for decryption failures.

7 Expected strength (2.B.4) for each parameter set

The expected strengths of Saber.PKE and Saber.KEM for each parameter set are included
in Table 1 and Table 2.

8 Analysis of known attacks (2.B.5)

In this report, the security of Saber is based on only one execution of the SVP-oracle, which
is a very conservative underestimation of the real security. Laarhoven [11] estimated the
complexity for the state-of-the-art SVP solver in high dimensions as 20.292b, which can be
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lowered to 20.265b using Grover’s search algorithm. We report the security as estimated by
the “estimate all the {LWE/NTRU} schemes” effort [1] that bundles security estimates on
all LWE/NTRU based submissions to round 1 of the NIST Post-Quantum Standardization
Process.

9 Advantages and limitations (2.B.6)

Advantages:

• No modular reduction: since all moduli are powers of 2 we do not require explicit
modular reduction. Furthermore, sampling a uniform number modulo a power of 2 is
trivial in that it does not require any rejection sampling or more complicated sampling
routines. This is especially important when considering constant time implementations.

• Modular structure and flexibility: the core component consists of arithmetic in the
fixed polynomial ring Z213 [X]/(X256 +1) for all security levels. To change security, one
simply uses a module of higher rank.

• Less randomness required: due to the use of Mod-LWR, our algorithm requires less
randomness since no error sampling is required as in (Mod-)LWE.

• Low bandwidth: again due to the use of Mod-LWR, the bandwidth required is lower
than similar systems based on (Mod-)LWE.

• No full multiplications: all multiplications that occur in the algorithms are multiplying
a random element in Rq by a small element sampled from βµ(Rq). Since the small
element has coefficients bounded by µ/2 in absolute value, it is possible to replace the
full multiplication of random elements in Rq by simple circular shifts and additions.
We note that this is not possible when using NTT since the smallness of elements from
βµ(Rq) is lost due to the NTT.

Limitations:

• The use of two-power moduli precludes NTT-like multiplication algorithms, so we have
to resort to Toom-Cook and Karatsuba. However, as the last advantage shows there is
no need for multiplying two random elements in Rq, so a general polynomial multiplier
is not strictly required.

• The functionality is limited to an encryption scheme and a KEM. No signature scheme
is provided.

14



10 Technical Specifications (2.B.1)

This section provides technical specifications for implementing Saber. For more details, the
reader may read the C source code present in the reference implementation package.

10.1 Implementation constants

The values of the implementation constants used in the algorithms are provided in Table 4.

Table 4: Implementation constants

Constants LightSaber Saber FireSaber
EQ 13 13 13
EP 10 10 10
ET 3 4 6
SABER SEEDBYTES 32 32 32
SABER INDCPA PUBKEYBYTES 672 992 1312
SABER INDCPA SECRETKEYBYTES 832 1248 1664
SABER NOISE SEEDBYTES 32 32 32
SABER PUBLICKEYBYTES 672 992 1312
SABER SECRETKEYBYTES 1568 2304 3040
SABER KEYBYTES 32 32 32
SABER HASHBYTES 32 32 32
SABER BYTES CCA DEC 736 1088 1472

10.2 Data Types and Conversions

10.2.1 Bit Strings and Byte Strings

A bit is an element of the set {0, 1} and a bit string is an ordered sequence of bits. In a bit
string the rightmost or the first bit is the least significant bit and the leftmost or the last bit
is the most significant bit. A byte is a bit string of length 8 and a byte string is an ordered
array of bytes. Following the same convention, the rightmost or the first byte is the least
significant byte and the leftmost or the last byte is the most significant byte.

For example, consider the byte string of length three: 3d 2c 1b. The most significant byte is
3d and the least significant byte is 1b. This byte string corresponds to the bit string 0011
1101 0010 1100 0001 1011. The least significant bit of the byte string is 1 and the most
significant bit is 0.
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10.2.2 Concatenation of Bit Strings

Concatenation of two bit strings b0 to b1 is denoted by b1 ‖ b0 where b0 is present in the least
significant part and b1 is present in the most significant part. The length of the concatenated
bit string is the sum of the lengths of b0 and b1.

Similarly concatenation of n bit strings b0 to bn−1 is denoted by bn−1 ‖ bn−2 ‖ . . . ‖ b1 ‖ b0
where b0 is present in the least significant part and bn−1 is present in the most significant
part. Naturally the length of the concatenated bit string is the sum of the lengths of b0 to
bn−1.

10.2.3 Concatenation of Byte Strings

Concatenation of two byte strings B0 to B1 is denoted by B1 ‖ B0 where B0 is present in
the least significant part and B1 is present in the most significant part. The length of the
concatenated byte string is the sum of the lengths of B0 and B1.

Similarly concatenation of n byte strings B0 to Bn−1 is denoted by Bn−1 ‖ Bn−2 ‖ . . . ‖ B1 ‖
B0 where B0 is present in the least significant part and Bn−1 is present in the most significant
part. Naturally the length of the concatenated byte string is the sum of the lengths of B0

to Bn−1.

10.2.4 Polynomials

For a modulus N = 2k we denote with R = ZN [x]/(xn + 1) the polynomial ring modulo
xn + 1 with coefficients in ZN . We will only require n = 256, so such polynomials will be
represented as an array of 256 elements in ZN . For N we will the following values:

• N = q = 213, so each coefficient occupies 13 bits

• N = p = 210, so each coefficient occupies 10 bits

• N = T = 2εT , so each coefficient occupies εT bits, depending on which version of Saber
is implemented

• N = 2, so each coefficient occupies 1 bits

The i-th coefficient of a polynomial object, say pol, is accessed by pol[i]. In the following
example

pol = c255x
255 + . . .+ c1x+ c0 (1)

the constant coefficient c0 is accessed by pol[0] and the highest-degree (i.e. x255) coefficient
c255 is accessed by pol[255].

• SHIFTLEFTN : This function takes a polynomial in RN and shifts each coefficient to
the left over s positions. The algorithm is shown in Alg. 7
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Algorithm 7: Algorithm SHIFTLEFTN
Input: pin: polynomial in RN , shift s
Output: pout: polynomial in RN .

1 for (i = 0, i < 256, i = i+ 1) do
2 pout[i] = (pin[i]� s)

3 return pout

• SHIFTRIGHTN : This function takes a polynomial in RN and shifts each coefficient to
the right over s positions. The algorithm is shown in Alg. 8

Algorithm 8: Algorithm SHIFTRIGHTN
Input: pin: polynomial in RN , shift s
Output: pout: polynomial in RN .

1 for (i = 0, i < 256, i = i+ 1) do
2 pout[i] = (pin[i]� s)

3 return pout

10.2.5 Vectors

A vector in Rl×1
N is an ordered collection of l polynomials from RN . The i-th element of a

vector object, say vvv ∈ Rl×1
N , is accessed by vvv[i], where (0 ≤ i ≤ l − 1).

10.2.6 Matrices

A matrix in Rl×m
N is a collection of l ×m polynomials in row-major order. The polynomial

present in the i-th row and j-th column a matrix object, say MMM , is accessed by MMM [i, j]. Here
(0 ≤ i ≤ l − 1) and (0 ≤ j ≤ m− 1).

10.2.7 Data conversion algorithms

The data conversion algorithms allow to map byte strings to elements or vectors of elements
of the ring ZN for N = 2k. The different N we use in the algorithm were specified in
Subsection 10.2.4.

• BS2POLN : This function takes a byte string of length k × 256/8 where N = 2k and
transforms it into a polynomial in RN . The algorithm is shown in Alg. 9.

• POLN2BS: This function takes a polynomial from RN and transforms it into a byte
string of length k × 256/8 with N = 2k. The algorithm is shown in Alg. 10.
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Algorithm 9: Algorithm BS2POLN

Input: BS : byte string of length k × 256/8 with N = 2k

Output: polN : polynomial in RN

1 Interpret BS as a bit string of length k × 256.
2 Split it into bit strings each of length k and obtain (bs255 ‖ . . . ‖ bs0) = BS.
3 for (i = 0, i < 256, i = i+ 1) do
4 polN [i] ← bs i

5 return pol

Algorithm 10: Algorithm POLN2BS

Input: polN : polynomial in RN

Output: BS : byte string of length k × 256/8 with N = 2k

1 Interpret the coefficients of pol q as bit strings, each of length k.
2 Concatenate the coefficients and obtain the bit string bs = (polN [255] ‖ . . . ‖ polN [0])

of length k × 256.
3 Interpret the bit string bs as the byte string BS of length k × 256/8.
4 return BS

• BS2POLVECN : This function takes a byte string of length l × k × 256/8 with N = 2k

and transforms it into a vector in Rl×1
N . The algorithm is shown in Alg. 11.

Algorithm 11: Algorithm BS2POLVECN
Input: BS : byte string of length l × k × 256/8
Output: vvv: vector into Rl×1

N

1 Split BS into l byte strings of length k × 256/8 and obtain (BSl−1 ‖ . . . ‖ BS0) = BS
2 for (i = 0, i < l, i = i+ 1) do
3 vvv[i] = BS2POLN(BSi)

4 return vvv

• POLVECN2BS: This function takes a vector from Rl×1
N and transforms it into a byte

string of length l × k × 256/8 with N = 2k. The algorithm is shown in Alg. 12.

10.3 Supporting Functions

10.3.1 SHAKE-128

SHAKE-128, standardized in FIPS-202, is used as the extendable-output function. It receives
the input byte string from the byte array input byte string of length ‘input length’ and
generates the output byte string of length ‘output length’ in the byte array output byte string
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Algorithm 12: Algorithm POLVECN2BS

Input: vvv: vector in Rl×1
N

Output: BS : byte string of length l × k × 256/8
1 Instantiate the byte strings BS0 to BSl−1 each of length k × 256/8.
2 for (i = 0, i < l, i = i+ 1) do
3 BSi = POLN2BS(vvv[i])

4 Concatenate these byte strings and get the byte string BS = (BSl−1 ‖ . . . ‖ BS0).
5 return BS

as described below.

SHAKE-128(output byte string, output length, input byte string, input length) (2)

10.3.2 SHA3-256

SHA3-256, standardized in FIPS-202, is used as a hash function. It receives the input byte
string from the byte array input byte string of length ‘input length’ and generates the output
byte string of length 32 in the byte array output byte string as described below.

SHA3-256(output byte string, input byte string, input length) (3)

10.3.3 SHA3-512

SHA3-512, standardized in FIPS-202, is used as a hash function. It receives the input byte
string from the byte array input byte string of length ‘input length’ and generates the output
byte string of length 64 in the byte array output byte string as described below.

SHA3-512(output byte string, input byte string, input length) (4)

10.3.4 Modulo

The modulo operation y = x mod q performs a coefficient-wise modulo operation on the
input x as defined in Subsection 2.1. As the divisor q is a power of two in our design, this
operation can be implemented as a bitmasking operation.
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10.3.5 HammingWeight

This function returns the Hamming weight of the input bit string. For example,

w = HammingWeight(a) (5)

returns the Hamming weight of the input bit string a to the integer w. Naturally, Hamming-
Weight always returns non-negative integers.

10.3.6 Randombytes

This function outputs a random byte string of a specified length. The following ex-
ample shows how to use randombytes to generate a random byte string seed of length
SABER SEEDBYTES.

randombytes(seed, SABER SEEDBYTES)

10.3.7 PolyMul

This function performs polynomial multiplications in Rp and Rq. For two polynomials a and
b in Rp, their product c ∈ Rp is computed using PolyMul as follows:

c = PolyMul(a, b, p) .

Similarly, for two polynomials a′ and b′ in Rq, their product c′ ∈ Rq is computed using
PolyMul as follows:

c′ = PolyMul(a′, b′, q) .

10.3.8 MatrixVectorMul

This function performs multiplication of a matrix, say MMM ∈ Rl×l
q , and a vector vvv ∈ Rl×1

q and
returns the product vector mvmvmv = MMM ∗ vvv ∈ Rl×1

q . The algorithm is described in Alg. 13. The
function is used in the following way.

mvmvmv = MatrixVectorMul(MMM,vvv, q)

10.3.9 InnerProd

This function takes a vector vvva ∈ Rl×1
p and a vector vvvb ∈ Rl×1

p and computes the inner
product of vvva and vvvb, which is a polynomial c ∈ Rp. The algorithm is described in Alg. 14.
The function is used in the following way.
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Algorithm 13: Algorithm MatrixVectorMul

Input: MMM : matrix in Rl×l
q ,

vvv: vector in Rl×1
q ,

q: coefficient modulus
Output: mvmvmv: vector in Rl×1

q

1 Instantiate polynomial object c
2 for (i = 0, i < l, i = i+ 1) do
3 c = 0
4 for (j = 0, j < l, j = j + 1) do
5 c = c+ PolyMul(MMM [i, j], vvv[j], q)

6 mvmvmv[i] = c mod q

7 return mvmvmv

c = InnerProd(vvva, vvvb, p)

Algorithm 14: Algorithm InnerProd

Input: vvva: vector in Rl×1
p ,

vvvb: vector in Rl×1
p ,

p: coefficient modulus
Output: c: polynomial in Rp

1 c← 0
2 for (i = 0, i < l, i = i+ 1) do
3 c = c+ PolyMul(vvva[i], vvvb[i], p)

4 return c mod p

10.3.10 Verify

This function compares two byte strings of the same length and outputs a binary bit. The
output bit is ‘1’ if the byte strings are equal; otherwise it is ‘0’. The following example shows
how to use Verify to compare the byte strings BS0 and BS1 of length ’input length’.

c = Verify(BS0,BS1, input length) (6)

If BS0 = BS1 then c = 1; otherwise c = 0.

10.3.11 GenMatrix

This function generates a matrix in Rl×l
q from a random byte string (called seed) of length

SABER SEEDBYTES. The steps are described in the algorithm GenMatrix in Alg. 15. The use
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of GenMatrix to generate the matrix AAA ∈ Rl×l
q from the seed seedAAA is as follows.

AAA = GenMatrix(seedAAA)

Algorithm 15: Algorithm GenMatrix for generation of matrix AAA ∈ Rl×l
q

Input: seedAAA: random seed of length SABER SEEDBYTES

Output: AAA: matrix in Rl×l
q

1 Instantiate byte string object buf of length l2 × n× εq/8
2 SHAKE-128(buf, l2 × n× εq/8, seedAAA, SABER SEEDBYTES)
3 Split buf into l2 × n equal byte strings of bit length εq and obtain

(bufl2n−1 ‖ . . . ‖ buf0) = buf
4 k = 0
5 for (i1 = 0, i1 < l, i1 = i1 + 1) do
6 for (i2 = 0, i2 < l, i2 = i2 + 1) do
7 for (j = 0, j < n, j=j+1) do
8 AAA[i1, i2][j] = bufk
9 k = k + 1

10 return AAA ∈ Rl×l
q

10.3.12 GenSecret

This function takes a random byte string (called seed) of length SABER SEEDBYTES as input
and outputs a secret which is a vector in Rl×1

q with coefficients sampled from a centered
binomial distribution βµ. The steps are described in the algorithm GenSecret in Alg. 16
The use of GenSecret to generate a secret sss ∈ Rl×1

q from a random seed seedsss is shown as
follows.

sss = GenSecret(seedsss)

10.4 IND-CPA encryption

The IND-CPA encryption consists of 3 components,

• Saber.PKE.KeyGen, returns public key and the secret key to be used in the encryption.

• Saber.PKE.Enc, returns the ciphertext obtained by encrypting the message.

• Saber.PKE.Dec, returns a message obtained by decrypting the ciphrtext.
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Algorithm 16: Algorithm GenSecret for generation of secret sss ∈ Rl×1
q

Input: seedsss: random seed of length SABER SEEDBYTES

Output: sss: vector in Rl
q

1 Instantiate a byte string object buf of length l × n× µ/8
2 SHAKE-128(buf, l × n× µ/8, seedsss, SABER SEEDBYTES)
3 Split buf into 2× l × n bit strings of length µ/2 bits and obtain

(buf2ln−1 ‖ . . . ‖ buf0) = buf
4 k = 0
5 for (i = 0, i < l, i = i+ 1) do
6 for (j = 0, j < n, j = j + 1) do
7 sss[i][j] = HammingWeight(bufk)− HammingWeight(bufk+1) mod q
8 k = k + 2

9 return sss ∈ Rl
q

10.4.1 Saber.PKE.KeyGen

This function generates public and secret key pair as byte strings of length
SABER INDCPA PUBKEYBYTES and SABER INDCPA SECRETKEYBYTES respectively. The details
of Saber.PKE.KeyGen are provided in Alg. 17.

Algorithm 17: Algorithm Saber.PKE.KeyGen for IND-CPA public and secret key pair
generation

Output: PublicKeycpa: byte string of public key,
SecretKeycpa: byte string of secret key

1 randombytes(seedAAA, SABER SEEDBYTES)
2 SHAKE-128(seedAAA, SABER SEEDBYTES, seedAAA, SABER SEEDBYTES)
3 randombytes(seedsss, SABER NOISE SEEDBYTES)
4 AAA = GenMatrix(seedAAA)
5 sss = GenSecret(seedsss)
6 bbb = MatrixVectorMul(AAAT , sss, q) + hhh mod q // Here AAAT is transpose of AAA
7 for (i = 0, i < l, i = i+ 1) do
8 bbbp[i] = SHIFTRIGHT(bbb[i], EQ− EP)

9 SecretKeycpa = POLVECq2BS(sss)

10 pk = POLVECp2BS(bbbp)
11 PublicKeycpa = seedAAA ‖ pk
12 return (PublicKeycpa, SecretKeycpa)
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10.4.2 Saber.PKE.Enc

This function receives a 256-bit message m, a random seed seedenc of length SABER SEEDBYTES

and the public key PublicKeycpa as the inputs and computes the corresponding ciphertext
CipherTextcpa. The steps are described in Alg. 18.

Algorithm 18: Algorithm Saber.PKE.Enc for INC-CPA encryption

Input: m: message bit string of length 256,
seeds′s′s′ : random byte string of length SABER SEEDBYTES,
PublicKeycpa: public key generated using Saber.PKE.KeyGen

Output: CipherTextcpa: byte string of ciphertext

1 Extract pk and seedAAA from PublicKeycpa = (pk ‖ seedAAA)

2 AAA = GenMatrix(seedAAA)
3 s′s′s′ = GenSecret(seedsss′)
4 b′b′b′ = MatrixVectorMul(AAA,s′s′s′, q) + hhh mod q
5 for (i = 0, i < l, i = i+ 1) do
6 b′b′b′[i] = SHIFTRIGHT(b′b′b′[i], EQ− EP)

7 bbb = BS2POLVECp(pk)
8 v′ = InnerProd(bbb, s′s′s′ mod p, p)
9 mp = SHIFTLEFT(m, EP− 1)

10 cm = SHIFTRIGHT(v′ −mp + h1 mod p, EP− ET)
11 CipherTextcpa = (POLT2BS(cm) ‖ POLVECp2BS(b′b′b′))

12 return CipherTextcpa

10.4.3 Saber.PKE.Dec

This function receives Saber.PKE.Enc generated CipherTextcpa and Saber.PKE.KeyGen gen-
erated SecretKeycpa as inputs and computes the decrypted message m. The steps are shown
in Alg. 19.

10.5 IND-CCA KEM

The IND-CCA KEM consists of 3 algorithms.

• Saber.KEM.KeyGen, returns public key and the secret key to be used in the key encap-
sulation.

• Saber.KEM.Encaps, this function takes the public key and generates a session key and
the ciphertext of the seed of the session key.

• Saber.KEM.Decaps, this function receives the ciphertext and the secret key and returns
the session key corresponding to the ciphertext.
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Algorithm 19: Algorithm Saber.PKE.Dec for IND-CPA decryption

Input: CipherTextcpa: byte string of ciphertext generated using Saber.PKE.Enc,
SecretKeycpa: byte string of secret key generated using Saber.PKE.KeyGen

1 Output: m: decrypted message bit string of length 256
2 sss = BS2POLVECq(SecretKeycpa)

3 (cm ‖ ct) = CipherText
4 cm = SHIFTLEFT(cm, EP− ET)
5 b′b′b′ = BS2POLVECp(ct)
6 v = InnerProd(b′b′b′, sss mod p, p)
7 m′ = SHIFTRIGHT(v − cm + h2 mod p, EP− 1)
8 m = POL22BS(m′)
9 return (m)

10.5.1 Saber.KEM.KeyGen

This function returns the public key and the secret key in two separate byte arrays of size
SABER PUBLICKEYBYTES and SABER SECRETKEYBYTES respectively. The function is
described in Alg. 20.

Algorithm 20: Algorithm Saber.KEM.KeyGen for generating public and private key
pair.

Output: PublicKeycca: public key for encapsulation,
SecretKeycca: secret key for decapsulation

1 (PublicKeycpa, SecretKeycpa) = Saber.PKE.KeyGen()

2 SHA3-256(hash pk,PublicKeycpa, SABER INDCPA PUBKEYBYTES)

3 randombytes(z, SABER KEYBYTES)
4 SecretKeycca = (z ‖ hash pk ‖ PublicKeycpa ‖ SecretKeycpa)

5 PublicKeycca = PublicKeycpa
6 return (PublicKeycca, SecretKeycca)

10.5.2 Saber.KEM.Encaps

This function generates a session key and the ciphertext corresponding the key. The algo-
rithm is described in Alg 21.

10.5.3 Saber.KEM.Decaps

This function returns a secret key by decapsulating the received ciphertext. The algorithm
is described in Alg 22.
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Algorithm 21: Algorithm Saber.KEM.Encaps for generating session key and ciphertext.

Input: PublicKeycca: public key generated by Saber.KEM.KeyGen
Output: SessionKeycca: session key,

CipherTextcca: cipher text corresponding to the session key
1 randombytes(m, SABER KEYBYTES)
2 SHA3-256(m, m, SABER KEYBYTES)
3 SHA3-256(hash pk, PublicKeycca, SABER INDCPA PUBKEYBYTES )
4 buf = (hash pk ‖ m)
5 SHA3-512(kr, buf , 2×SABER KEYBYTES)
6 Split kr in two equal chunks of length SABER KEYBYTES and obtain (r ‖ k) = kr
7 CipherTextcca = Saber.PKE.Enc(m, r,PublicKeycca)
8 SHA3-256(r′, CipherTextcca, SABER BYTES CCA DEC)
9 kr′ = (r′ ‖ k)

10 SHA3-256(SessionKeycca, kr
′, 2×SABER KEYBYTES)

11 return (SessionKeycca, CipherTextcca)

Algorithm 22: Algorithm Saber.KEM.Decaps for recovering session key from ciphertext

Input: CipherTextcca: cipher text generated by Saber.KEM.Encaps,
SecretKeycca: public key generated by Saber.KEM.KeyGen

Output: SessionKeycca: session key
1 Extract (z ‖ hash pk ‖ PublicKeycpa ‖ SecretKeycpa) = SecretKeycca
2 m = Saber.PKE.Dec(CipherTextcca, SecretKeycpa)
3 buf ← hash pk ‖ m
4 SHA3-512(kr, buf , 2×SABER KEYBYTES)
5 Split kr in two equal chunks of length SABER KEYBYTES and obtain (r ‖ k)
6 CipherText’cca = Saber.PKE.Enc(m, r,PublicKeycpa)

7 c = Verify(CipherText’cca,CipherTextcca, SABER BYTES CCA DEC)
8 SHA3-256(r′,CipherText’cca, SABER BYTES CCA DEC)
9 if c = 0 then

10 temp = (k ‖ r′)
11 else
12 temp = (z ‖ r′)
13 SHA3-256(SessionKeycca, temp, 2×SABER KEYBYTES)
14 return SessionKeycca

A Changes with respect to Round 1 submission

Very few changes were made between the round 1 version and the round 2 version of Saber.
The only changes made are as follows:

• Transposing matrixAAA: in Saber.PKE.KeyGen given in Algorithm 1, the matrixAAA is now
transposed in line 5. On the other hand, in Saber.PKE.Enc given in Algorithm 2 the
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matrix AAA is used without transpose in line 5. In the first round submission, this was
the exact opposite: we used AAA in KeyGen, whereas AAAT was used in Enc. The advantage
of the new approach is that it allows to speed-up encryption.

• The parameter T : to simplify the description of the algorithms we introduced a pa-
rameter T which equals 2t in the first round submission. This has no impact on the
actual implementation.

• Simplification of the specification: the round 2 version of Saber has a much simpler
specification than the round 1 version by working entirely in the interval [0, q[ and
never resorting to the centered interval [−q/2, q/2]. This has no impact on the actual
implementation.

• The constant polynomial h has been removed and replaced by two new constant poly-
nomials h1 and h2. This is needed to provably reduce the security of Saber to Mod-LWR
and it slightly changes the implementation.
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