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Chapter 1

The SIKE protocol specification

This document presents a detailed description of the Supersingular Isogeny Key Encapsulation (SIKE)
protocol. This protocol is based on a key-exchange construction, commonly referred to as Supersingular
Isogeny Diffie-Hellman (SIDH), which was introduced by Jao and De Feo in 2011 [20], and subsequently
improved in various ways by numerous authors [7, 8, 11, 27]. This specification gives an overview of the
mathematical foundations necessary for SIKE, as well as a complete description of all the algorithms and
data type conversions used in implementing SIKE, and a brief discussion of the security of the protocol.

For a summary of the notation used in this document, see Appendix F.

1.1 Mathematical Foundations

Use of the supersingular isogeny key encapsulation (SIKE) protocol described in this document involves
arithmetic operations of elliptic curves over finite fields. This section provides the mathematical concepts
and data type conversions used in the description of the SIKE protocol.

1.1.1 Finite Fields

A finite field consists of a finite set of elements closed under the operations of addition and multiplication
defined over the set. There is an additive identity element (0) and a multiplicative identity element (1).
Every element has a unique additive inverse, and every non-zero element has a unique multiplicative
inverse.

For a positive integer q, there exists a finite field of q elements if and only if q is a power of a prime p.
Further, there is a unique representative, up to isomorphism, of every finite field of q elements. We denote
the finite field of q elements by Fq. If Fq is a finite field with q = pt for prime p, we define the characteristic
char(Fq) of Fq to be p.

The finite fields used in supersingular isogeny cryptography are quadratic extension fields of a prime field
Fp, with p = 2e23e3 − 1, where e2 and e3 are fixed public parameters, and where the extension field is
formed as Fp2 = Fp(i) with i2 + 1 = 0.

When abstraction is useful we will refer to `,m ∈ {2, 3}, such that ` , m.
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1.1.2 The Finite Field Fp

The elements of Fp are represented by the integers:

{0, 1, . . . , p − 1}

with the field operations defined as follows:

• Addition: If a, b ∈ Fp, then a + b = r in Fp, where r ∈ [0, p − 1] is the remainder of a + b divided by
p, also known as addition modulo p.

• Multiplication: If a, b ∈ Fp, then ab = s in Fp, where s ∈ [0, p − 1] is the remainder of ab divided
by p, also known as multiplication modulo p.

• Additive Inverse: If a ∈ Fp, the unique solution in [0, p − 1] to the equation a + x ≡ 0 (mod p) is
the additive inverse (−a).

• Multiplicative Inversion: If a ∈ Fp, a , 0, the unique solution in [0, p − 1] to the equation ax ≡ 1
(mod p) is the multiplicative inverse a−1.

We make the convention that a − b = a + (−b), and a/b = a · b−1 in the field Fp.

1.1.3 The Finite Field Fp2

The elements of Fp2 are represented by s = s0 + s1 · i, where s0, s1 ∈ Fp, with the field operations defined
as follows:

• Addition: If a, b ∈ Fp2 , then (a0 + a1 · i) + (b0 + b1 · i) = (a0 + b0) + (a1 + b1) · i in Fp2 , where the
additions (ai + bi) take place in Fp.

• Multiplication: If a, b ∈ Fp2 , then (a0 + a1 · i)(b0 + b1 · i) = (a0b0 − a1b1) + (a0b1 + a1b0) · i in Fp2 ,
where the addition, additive inverse and multiplication operations take place in Fp.

• Additive Inverse: If a ∈ Fp2 , then (−a0) + (−a1) · i ∈ Fp2 is the additive inverse (−a), where the values
(−ai) are computed in the field Fp.

• Multiplicative Inversion: If a ∈ Fp, a , 0, then (a0(a2
0 + a2

1)−1 + ((−a1)(a2
0 + a2

1)−1) · i) ∈ Fp2 is the
multiplicative inverse a−1, where the operations take place in Fp.

• Square root: If there exists an r = α + β · i ∈ Fp2 with α, β ∈ Fp such that r2 = s, then we define
√

s = r if either α , 0 is an even integer or α = 0 and β is an even integer, otherwise
√

s = −r.
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1.1.4 Montgomery curves

A Montgomery curve is a special form of an elliptic curve. Let A, B ∈ Fq be field elements satisfying
B(A2 − 4) , 0 in Fq (where char(Fq) , 2). A Montgomery curve EA,B defined over Fq, denoted EA,B/Fq, is
defined to be the set of points P = (x, y) of solutions in Fq to the equation

By2 = x3 + Ax2 + x,

together with an extra point O, called the point at infinity. For convenience, we may refer to the curve as:

• EA,B when the underlying field Fq is either fixed by context, or unspecified,

• E(Fq) when the curve parameters are either fixed by context, or unspecified,

• E when both the field and the curve parameters A, B are either fixed by context, or unspecified.

• EA when the underlying field Fq is fixed by context, or unspecified, and when B (which specifies the
quadratic twist) is presumed to either be B = 1 or irrelevant.

At times it will be convenient to refer to the x-coordinate of a point P. We will use the notation xP to refer
to the x-coordinate of P, and analogously yP to refer to the y-coordinate.

The set of points of E together with the point at infinity form a finite abelian group under a point addition
rule. The order of an elliptic curve E over a finite field Fq, denoted #E(Fq), is the number of points in E
including O.

Oftentimes, Montgomery curves are indicated by MA,B, but we will use the notation EA,B instead.

1.1.5 Point addition

Given two points P = (xP, yP) and Q = (xQ, yQ) such that P , ±Q on a Montgomery curve EA,B over a
finite field Fq, we can compute R = P + Q as

xR = Bλ2 − (xP + xQ) − A

and
yR = λ(xP − xR) − yP,

where R = (xR, yR) and λ = (yP − yQ)/(xP − xQ).

We can add a point to itself multiple times, say k times, as follows: P + P + . . . + P = [k]P.

The order ord(P) of a point P is the smallest positive integer n such that [n]P = O (the point at infinity).

1.1.6 Point doubling

Let P = (xP, yP) ∈ EA,B be a point whose order does not divide 2. Then [2]P = (x[2]P, y[2]P) ∈ EA,B can be
computed as

(x[2]P , y[2]P) =

(
(x2

P − 1)2

4xP(x2
P + AxP + 1)

, yP ·
(x2

P − 1)(x4
P + 2Ax3

P + 6x2
P + 2AxP + 1)

8x2
P(x2

P + AxP + 1)2

)
.

Observe that x[2]P only depends on xP and A. The optimized, inversion-free algorithm that takes advantage
of this is given in Algorithm 3 of Appendix A.
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1.1.7 Point tripling

Let P = (xP, yP) ∈ EA,B be a point whose order does not divide 3. Then [3]P = (x[3]P, y[3]P) ∈ EA,B can be
computed as

x[3]P =
(x4

P − 4AxP − 6x2
P − 3)2xP

(4Ax3
P + 3x4

P + 6x2
P − 1)2

,

and

y[3]P = yP ·
(x4

P − 4AxP − 6x2
P − 3)

(
x8

P + 4Ax7
P + 28x6

P + 28Ax5
P + (16A2 + 6)x4

P + 28Ax3
P + 28x2

P + 4AxP + 1
)

(4Ax3
P + 3x4

P + 6x2
P − 1)3

.

Again we see that x[3]P only depends on xP and A. The algorithm that takes advantage of this is given in
Algorithm 6 of Appendix A.

1.1.8 Additional properties of elliptic curves

For any group G, and a set of elements {P1, P2, . . . , Pt} ⊆ G we can define the subgroup 〈P1, P2, . . . Pt〉

generated by this set to be the smallest subgroup of G containing the elements P1, P2, . . . , Pt. For an
abelian group G, we say a set of elements {P1, P2, . . . Pt} ⊆ G form a basis of G if every element P of G
admits a unique expression of the form

P = [k1]P1 + [k2]P2 + · · · [kt]Pt

where 0 ≤ ki < ord(Pi) for all i. Analogously, we say a set {P1, P2, . . . , Pt} ⊆ H forms a basis of a subgroup
H ⊆ G when all elements of the subgroup H admit a unique expression as above. The Weil pairing [29]
can assist in determining whether or not a set forms a basis, since for n = ord(P) = ord(Q), the order-n
Weil pairing en has the property that ord(en(P,Q)) = n if and only if 〈P〉 ∩ 〈Q〉 = {O}.

For a positive integer m, we define the set E[m] of m-torsion elements of an elliptic curve E(Fq) to be the
set of points in E(F̄q) such that [m]P = O.

An elliptic curve E(Fq) over a field of characteristic p is called supersingular if p | (q + 1 − #E(Fq)), and
ordinary otherwise.

The j-invariant of the elliptic curve EA,B is computed as

j(EA,B) =
256(A2 − 3)3

A2 − 4
.

The j-invariant of an elliptic curve over a field Fq is unique up to isomorphism of the elliptic curve. The
SIKE protocol defines a shared secret as a j-invariant of an elliptic curve.
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1.1.9 Isogenies

Let E1 and E2 be elliptic curves over a finite field Fq. An isogeny φ : E1 → E2 is a non-constant rational
map defined over Fq which is also a group homomorphism from E1(Fq) to E2(Fq). If such a map exists we
say E1 is isogenous to E2, and two curves E1 and E2 over Fq are isogenous if and only if #E1(Fq) = #E2(Fq).

An isogeny φ can be expressed in terms of two rational maps f and g over Fq such that φ((x, y)) = ( f (x), y ·
g(x)). We can write f (x) = p(x)/q(x) with polynomials p(x) and q(x) over Fq that do not have a common
factor, and similarly for g(x). We define the degree deg(φ) of the isogeny to be max{deg(p(x)), deg(q(x))},
where p(x) and q(x) are as above. It is often convenient to do isogeny calculations using only the f (x)
component of the isogeny.

Given an isogeny φ : E1 → E2 we define the kernel of φ as follows:

ker(φ) = {P ∈ E1 : φ(P) = O}.

For any finite subgroup H of E(Fq), there is a unique isogeny (up to isomorphism) φ : E → E′ such that
ker(φ) = H and deg(φ) = |H|, where |H| denotes the cardinality of H. In this case, we denote by E/H
the curve E′. Given a subgroup H ⊆ E(Fq), Vélu’s formula [41] can be used to find the isogeny φ and
isogenous curve E/H. Vélu’s formula is computationally impractical for arbitrary subgroups. SIKE uses
isogenies over subgroups that are powers of 2, 3 and 4.

2-isogenies Let (x2, y2) ∈ EA,B be a point of order 2 with x2 , ±0 and let φ2 : EA,B → EA′,B′ be the unique
(up to isomorphism) 2-isogeny with kernel 〈(x2, y2)〉. Then EA′,B′ can be computed as

(A′, B′) =
(

2 · (1 − 2x2
2) , Bx2

)
Observe that A′ only depends on x2. The inversion-free algorithm that takes advantage of this is given in
Algorithm 11 of Appendix A .

If P = (xP, yP) is any point on EA,B that is not in ker(φ2), then φ2 : (xP, yP) 7→ (xφ2(P), yφ2(P)), and this can be
computed as

xφ2(P) =
x2

Px2 − xP

xP − x2
,

and

yφ2(P) = yP ·
x2

Px2 − 2xPx2
2 + x2

(xP − x2)2 .

Observe that xφ2(P) only depends on xP and x2. The inversion-free algorithm that takes advantage of this is
given in Algorithm 12 of Appendix A.
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4-isogenies Let (x4, y4) ∈ EA,B be a point of order 4 with x4 , ±1 and let φ4 : EA,B → EA′,B′ be the unique
(up to isomorphism) 4-isogeny with kernel 〈(x4, y4)〉. Then EA′,B′ can be computed as

(A′, B′) =
(

4x4
4 − 2 , −x4(x2

4 + 1) · B/2
)

Observe that A′ only depends on x4. The inversion-free algorithm that takes advantage of this is given in
Algorithm 13 of Appendix A .

If P = (xP, yP) is any point on EA,B that is not in ker(φ4), then φ4 : (xP, yP) 7→ (xφ4(P), yφ4(P)), and this can be
computed as

xφ4(P) =
−(xPx2

4 + xP − 2x4)xP(xPx4 − 1)2

(xP − x4)2(2xPx4 − x2
4 − 1)

,

and

yφ4(P) = yP ·
−2x2

4(xPx4 − 1)(x4
P(x2

4 + 1) − 4x3
P(x3

4 + x4) + 2x2
P(x4

4 + 5x2
4) − 4xP(x3

4 + x4) + x2
4 + 1)

(xP − x4)3(2xPx4 − x2
4 − 1)2

.

Observe that xφ4(P) only depends on xP and x4. The inversion-free algorithm that takes advantage of this is
given in Algorithm 14 of Appendix A.

3-isogenies Let (x3, y3) ∈ EA,B be a point of order 3 and let φ3 : EA,B → EA′,B′ be the unique (up to
isomorphism) 3-isogeny with kernel 〈(x3, y3)〉. Then EA′,B′ can be computed as

(A′, B′) =
(

(Ax3 − 6x2
3 + 6)x3 , Bx2

3

)
The new coefficient A′ only depends on A and x3. The inversion-free algorithm that takes advantage of
this is given in Algorithm 15 of Appendix A.

If P = (xP, yP) is any point on EA,B that is not in ker(φ3), then φ3 : (xP, yP) 7→ (xφ3(P), yφ3(P)), and this can be
computed as

(xφ3(P), yφ3(P)) =

(
xP(xPx3 − 1)2

(xP − x3)2 , yP ·
(xPx3 − 1)(x2

Px3 − 3xPx2
3 + xP + x3)

(xP − x3)3

)
.

Observe that xφ3(P) only depends on xP and x3. The inversion-free algorithm that takes advantage of this is
given in Algorithm 16 of Appendix A.

The SIKE protocol defines secret keys from two separate key spaces, K2 and K3 (cf. §1.3.8). A secret
key sk defines a subgroup H of E(Fq), which in turn defines an isogeny φsk : E → E/H. The public key
is determined by the isogeny φsk and points P,Q ∈ E(Fq) (which are fixed globally as public parame-
ters and do not depend on sk). More specifically, the public key corresponding to sk is determined by
{E/H, φsk(P), φsk(Q)}. The points P and Q are chosen so that {P,Q} forms a basis for E[`e`] . In our imple-
mentations, for efficiency reasons we represent a public key as a triplet of field elements, namely the three
x-coordinates {xφsk(P), xφsk(Q), xφsk(P−Q)} of three points under the isogeny. It is possible to convert between
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representations using the methods given in [8]. For example, the Montgomery curve coefficient A of E/H
can be recovered by the three x-coordinates of a public key {xφsk(P), xφsk(Q), xφsk(P−Q)} using the equation

A =
(1 − xφsk(P)xφsk(Q) − xφsk(P)xφsk(P−Q) − xφsk(Q)xφsk(P−Q))2

4xφsk(P)xφsk(Q)xφsk(P−Q)
− xφsk(P) − xφsk(Q) − xφsk(P−Q).

Similarly, the points φsk(P) and φsk(Q) can be recovered (up to simultaneous sign) from xφsk(P) and xφsk(Q)

using the formula

yφsk(P) =

√
x3
φsk(P) + Ax2

φsk(P) + xφsk(P)

and
yφsk(Q) =

√
x3
φsk(Q) + Ax2

φsk(Q) + xφsk(Q),

and if

xφsk(P−Q) + xφsk(Q) + xφsk(P) + A ,

(
yφsk(Q) − yφsk(P)

xφsk(Q) − xφsk(P)

)2

,

then set yφsk(Q) = −yφsk(Q).

1.2 Data types and conversions

The SIKE protocol specified in this document involves operations using several data types. This section
lists the different data types and describes how to convert one data type to another.

1.2.1 Curve-from-public-key computation - cfpk

An elliptic curve from a public key should be computed as described in this section. Informally, three
field elements are interpreted as x-coordinates to three points P,Q, and P − Q, from which a curve E′ is
computed and returned.

Input: Three field elements (xP, xQ, xR) of Fp2 .

Output: A elliptic curve E′ over Fp2 or FAIL.

Action: Convert (xP, xQ, xR) to an elliptic curve as follows:

1. For i ∈ [P,Q,R] verify xi , 0 or return FAIL.

2. Compute A =
(1−xP xQ−xP xR−xQ xR)2

4xP xQ xR
− xP − xQ − xR in Fp2 .

3. Set E′ = EA.

4. Output E′.
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1.2.2 Octet-string-to-integer conversion - ostoi

Octet strings should be converted to integers as described in this section. This routine takes as input an
octet string M of length mlen and interprets the octet string in base 28 of an integer.

Input: An octet string M of length mlen.

Output: An integer a.

Action: Convert M to an integer a as follows:

1. Parse M = M0M1 . . . Mmlen−1 into mlen-many octets.

2. Interpret each octet Mi as an integer in [0, 255].

3. Compute a =
∑mlen−1

i=0 Mi28i.

4. Output a.

1.2.3 Octet-string-to-field-p-element conversion - ostofp

Octet strings should be converted to elements of Fp as described in this section. This routine takes as input
an octet string M of length Np = d(log2 p)/8e and converts it to an integer, verifying that the integer is in
the range [0, p − 1].

Input: An octet string M of length Np.

Output: A field element a ∈ Fp or FAIL.

Action: Convert the octet string M to field element as follows:

1. Convert M to an integer a (cf. §1.2.2) using M and Np as inputs.

2. If a < [0, p − 1] output FAIL, otherwise output a.

1.2.4 Octet-string-to-field-p2-element conversion - ostofp2

Octet strings should be converted to elements of Fp2 as described in this section. This routine takes as
input an octet string M of length 2Np, where Np = d(log2 p)/8e and converts it to two integers, verifying
each is in the range [0, p − 1], and interprets the results as an element of Fp2 .

Input: An octet string M of length 2Np.

Output: A field element a ∈ Fp2 or FAIL.

Action: Convert the octet string M to field element as follows:

1. Parse M = M0M1 where each Mi is of length Np.

2. For i ∈ [0, 1] convert Mi to a field element ai (cf. §1.2.3) or output FAIL.

3. Form a = a0 + a1 · i, and return a.

8



1.2.5 Octet-string-to-public-key conversion - ostopk

Octet strings should be converted to public keys as described in this section. This routine takes as input
and octet string M of length 6Np, where Np = d(log2 p)/8e and converts it to three field elements of Fq,
interpreted as x-coordinates of three points P, Q, and R.

Input: An octet string M of length 6Np.

Output: A public key (xP, xQ, xR) or FAIL.

Action: Convert the octet string M to a public key as follows:

1. Parse M = M1M2M3, where each Mi is an octet string of length 2Np.
2. For i ∈ [1, 2, 3] convert Mi to a field element xi (cf. §1.2.4) or return FAIL.
3. Output pk` = (x1, x2, x3).

1.2.6 Integer-to-octet-string conversion - itoos

Integers should be converted to octet strings as described in this section. This routine takes as input an
integer a and an octet length mlen is provided as input. The routine will represent a in base 28 and convert
that to an octet string. A restriction is that 28·mlen > a.

Input: A non-negative integer a together with a desired length mlen of the octet string, such that 28·mlen >
a.

Output: An octet string M of length mlen octets.

Actions: Convert a into an mlen-length octet string as follows:

1. Convert a = amlen−128(mlen−1) + amlen−228(mlen−2) + · · · + a128 + a0 represented in base 28.
2. For 0 ≤ i < mlen, set Mi = ai.
3. Form M = M0M1 . . . Mmlen−1.
4. Output M.

1.2.7 Field-p-to-octet-string conversion - fptoos

Field elements of Fp should be converted to octet strings as described in this section. Informally the idea
is that an element of Fp is an integer in [0, p − 1] and is converted to a fixed length octet string.

Input: An element a ∈ Fp.

Output: An octet string M of length Np = d(log2 p)/8e.

Actions: Compute the octet string as follows:

1. Since a is an integer in the interval [0, p − 1], convert a to an octet string M (cf. §1.2.6), with
inputs a and Np.

2. Output M.
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1.2.8 Field-p2-to-octet-string conversion - fp2toos

Field elements Fp2 should be converted to octet strings as described in this section. Informally the idea is
that the elements of Fp2 consists of two field elements of Fp, each of these are converted to an octet string
and the result is concatenated.

Input: An element a ∈ Fp2 .

Output: An octet string M of length 2 · Np where Np = d(log2 p)/8e.

Actions: Compute the octet string as follows:

1. Since a ∈ Fp2 , we can represent it as a = a0 + a1 · i where ai ∈ Fp.

2. Convert ai into an octet string Mi of the length Np (cf. §1.2.7).

3. Form M = M0M1.

4. Output M.

1.2.9 Public-key-to-octet-string conversion - pktoos

Public keys (xP, xQ, xR) should be converted to octet strings as described in this section. This routine
converts each x-coordinate as an octet string encoding of a field elements and concatenates them to form
the output octet string.

In portions of the spec we will refer to a public key pk in octet string format without explicitly referencing
the public-key-to-octet-string conversion.

Input: A public key (xP, xQ, xR) over a finite field Fp2

Output: An octet string M of length 6 · Np where Np = d(log2 p)/8e

Actions: Compute the octet string as follows:

1. Convert xP, xQ, xR into the octet strings M1,M2,M3 respectively, each of length 2Np (cf. §1.2.6).

2. Form M = M1M2M3.

3. Output M.

1.2.10 Compressed-public-key-to-octet-string conversion - cpktoos

Compressed public keys (bit, t1, t2, t3, A, s, r) ∈ Z2 × (Z`e)3 × Fp2 ×Z2
256 should be converted to octet strings

as described in this section. This routine converts each component as an octet string encoding and con-
catenates them to form the output octet string.

In portions of the spec we will refer to a public key pk_comp in octet string format without explicitly
referencing the compressed-public-key-to-octet-string conversion.
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Input: A compressed public key (bit, t1, t2, t3, A, s, r) consisting of a bit, 3 elements in Z`e , one element of
the finite field and 2 bytes.

Output: An octet string M of length 3 ·Nz + 2 ·Np + 2 where Nz = d(dlog2 `
ee)/8)e and Np = d(log2 p)/8e.

Actions: Compute the octet string as follows:

1. Convert t1, t2, t3 into the octet strings M1,M2,M3 respectively, each of length Nz (cf. §1.2.8).

2. Convert A into an octet string M4 of the length 2 · Np (cf. §1.2.7).

3. Let M5 = r of bit = 0 and M5 = r ∨ 0x80 if bit = 1, i.e., bit is encoded in the most significant
bit of the octet r.

4. Set M6 = s, an octet.

5. Form M = M1M2M3M4M5M6.

6. Output M.

1.3 Detailed protocol specification

This section specifies the supersingular isogeny key encapsulation (SIKE) protocol. Some options have
been omitted from this specification for the purpose of simplicity. In particular, the specification below
does not employ point compression. Users seeking the compression of public keys described in [2, 7]
should refer to the implementation provided at https://github.com/Microsoft/PQCrypto-SIDH.

The set of public parameters for SIKE is defined in §1.3.1. The two necessary isogeny computation
algorithms are defined in §1.3.4. The IND-CPA PKE scheme is defined in §1.3.9. The subsequent IND-
CCA KEM is defined in §1.3.10. The security proofs of both the PKE and the KEM are in §4.3.

1.3.1 Public parameters

The public parameters in SIKE are:

• Two positive integers e2 and e3 that define a finite field Fp2 where p = 2e23e3 − 1,

• A starting supersingular elliptic curve E0/Fp2 ,

• A set of three x-coordinates corresponding to points in E0[2e2], and

• A set of three x-coordinates corresponding to points in E0[3e3].

11
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1.3.2 Starting curve

The public starting curve is the supersingular elliptic curve

E0/Fp2 : y2 = x3 + 6x2 + x,

with #E0(Fp2) = (2e23e3)2 and j-invariant equal to j(E0) = 287496. This is the special instance of the
Montgomery curve By2 = x3 + Ax2 + x, where A = 6 and B = 1. Note that this has been updated since
the initial proposal, for reasons that are further explained in [9, §5]. The original curve had j = 1728, for
which E0 above is the only non-isomorphic 2-isogenous curve, meaning an attacker would have known
for certain the first step taken away from this starting point in the 2-isogeny graph, regardless of the secret.
There also exist only two (as opposed to four generally) isomorphism classes that are 3-isogenous to
j = 1728, so that distinct kernels can lead to isomorphic isogenies. Starting on E0 avoids both of these
problems. Moreover, the combination of the basis points on E0 (defined in §1.3.3) and the computation of
the secret kernel subgroups (defined in §1.3.5) ensures that the first 2-isogeny taken from E0 is not in the
direction of the curve with j = 1728, but rather to one of the two other 2-isogenous curves.

1.3.3 Public generator points

The three x-coordinates in the public parameters corresponding to points in E0[2e2] are specified as follows.
We first specify two points

P2 ∈ E0(Fp2) and Q2 ∈ E0(Fp2)

such that both points have exact order 2e2 , and {P2,Q2} forms a basis for E0(Fp2)[2e2], i.e., the order-2e2

Weil pairing e2e2 (P2,Q2) ∈ F×p2 has full order, or equivalently, e2([2e2−1]P2, [2e2−1]Q2) ∈ F×p2 is not equal to
1. Similarly, we specify two points

P3 ∈ E0(Fp2) \ E0(Fp) and Q3 ∈ E0(Fp)

such that both points have exact order 3e3 , and {P3,Q3} forms a basis for E0(Fp2)[3e3].

Let f := x3 + 6x2 + x and recall Fp2 = Fp(i) with i2 + 1. The points P2,Q2, P3,Q3 are determined according
to the following procedure:

• P2 = [3e3]
(
i + c,

√
f (i + c)

)
, where c is the smallest nonnegative integer such that P2 ∈ E0(Fp2) and

[2e2−1]P2 = (−3 ± 2
√

2, 0).

• Q2 = [3e3]
(
i + c,

√
f (i + c)

)
, where c is the smallest nonnegative integer such that Q2 ∈ E0(Fp2) and

[2e2−1]Q2 = (0, 0).

• P3 = [2e2−1]
(
c,

√
f (c)

)
, where c is the smallest nonnegative integer such that f (c) is square in Fp

and P3 has order 3e3 .

• Q3 = [2e2−1]
(
c,

√
f (c)

)
, where c is the smallest nonnegative integer such that f (c) is non-square in

Fp and Q3 has order 3e3 .

The points P2,Q2, P3,Q3 could serve as public parameters for SIKE, but instead, for efficiency reasons
(as described in [8]), we encode the points P2 and Q2 using the three x-coordinates xP2 , xQ2 and xR2 ,
where R2 = P2 − Q2. Similarly, we encode P3,Q3 using the three x-coordinates xP3 , xQ3 and xR3 , where
R3 = P3 − Q3.
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1.3.4 Isogeny computations

In this section we fix `,m ∈ {2, 3} such that ` , m. The two fundamental isogeny algorithms described
are isogen` and isoex`. On input of the public parameters and a secret key, isogen` outputs the public
key corresponding to the input secret key. On input of a secret key and a public key, isoex` outputs the
corresponding shared key. These two algorithms will be used as building blocks for the PKE and KEM
schemes defined in the subsequent sections.

Both algorithms compute an `e`-degree isogeny via the composition of e` individual `-degree isogenies;
these `-degree isogenies are evaluated on at least one point lying on the domain curve. Following [8, 11],
rather than evaluating the image of an isogeny on a point R = (xR, yR), it is more efficient to evaluate
its image under the x-only projection (xR, yR) 7→ xR. Since the coordinate maps for an isogeny ψ : E →
E′, R 7→ ψ(R) can always be written such that xψ(R) = f (xR) for some function f [41], the isogen`
and isoex` algorithms will assume the i-th `-degree isogeny φi adheres to this framework by writing
φi : (x, — ) 7→ ( fi(x), — ).

Note that the definition of public parameters and public keys allows for the possibility of a generic imple-
mentation that reverts back to full isogeny computations which compute both the x- and y-coordinates of
image points in either the Montgomery or short Weierstrass frameworks. In particular, the starting curve
E0 defined in §1.3.2 is a special instance of a Montgomery curve and a short Weierstrass curve, and the
public generator points in §1.3.3 uniquely define the y-coordinates of P2, Q2, P3 and Q3.

1.3.5 Computing public keys: isogen`

A supersingular isogeny key pair consists of a secret key sk`, which is an integer, and a set of three
x-coordinates pk` = (xP, xQ, xR).

Public parameters. A prime p = 2e23e3−1, the starting curve E0/Fp2 , and public generators
{
xP2 , xQ2 , xR2

}
and

{
xP3 , xQ3 , xR3

}
.

Input. A secret key sk`.

Output. A public key pk`.

Actions. Compute a public key pk`, as follows:

1. Set xS ← xP`+[sk`]Q`
;

2. Set (x1, x2, x3)←
(
xPm , xQm , xRm

)
;

3. For i from 0 to e` − 1 do

(a) Compute the x portion for an `-isogeny

φi : Ei → E′

(x, — ) 7−→ ( fi(x), — )

such that ker φi = 〈[`e`−i−1]S 〉, where S is a point on Ei with x-coordinate xS ;
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(b) Set Ei+1 ← E′;
(c) Set xS ← fi(xS );
(d) Set (x1, x2, x3)← ( fi(x1), fi(x2), fi(x3));

4. Output pk` = (x1, x2, x3).

1.3.6 Establishing shared keys: isoex`

Public parameters. A prime p = 2e23e3 − 1.

Input. A public key pkm =
(
xPm , xQm , xRm

)
and a secret key sk`.

Output. A shared secret j, an octet string of length 2Np.

Actions. Compute a shared secret j, as follows:

1. Compute E′0 from pkm using cfpk (cf. §1.2.1);

2. Set xS ← xPm+[sk`]Qm;

3. For i from 0 to e` − 1 do

(a) Compute the x portion for an `-isogeny

φi : E′i → E′

(x, — ) 7−→ ( fi(x), — )

such that ker φi = 〈[`e`−i−1]S 〉, where S is a point on E′i with x-coordinate xS ;
(b) Set E′i+1 ← E′;
(c) Set xS ← fi(xS );

4. Encode j(E′e`) into j using fp2toos (cf. §1.2.8).

1.3.7 Optimized isogen` and isoex`

The algorithms isogen` and isoex` described above, though polynomial-time, are relatively inefficient
in practice. In both cases, the most expensive part is the computation of the point [`e`−i−1]S in step 4.a of
each. Indeed, one such computation requires (at most) e` multiplications by the scalar `, and is repeated
e` times, for a total of O(e2

`) elementary operations.

In optimized implementations, following [11], it is recommended to replace the for loops by a recursive
decomposition of the isogeny computation into elementary operations, requiring only O(e` log e`) multi-
plications by the scalar `, and a similar amount of evaluations of `-isogenies.

We call such a decomposition a computational strategy, and we describe it by a full binary tree on e` − 1
nodes1. If we draw such trees so that all nodes lie within a triangular region of a hexagonal lattice, with all
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Figure 1.1: Three computational strategies of size e` − 1 = 6. The simple approach used in Sections 1.3.5
and 1.3.6 corresponds to the leftmost strategy.

leaves on one border, then the path length of the tree is proportional to the computational effort required
by the strategy. See Figure 1.1 for an example, and [11, §4] for a more formal definition.

In practice, we represent any full binary tree on e`−1 nodes in the following way: associate to any internal
node the number of leaves to its right, then walk the tree in depth-first left-first order and output the labels
as they are encountered. See Figure 1.2 for an example.

3

2

1 1
2

1

Linearization: (3, 2, 1, 1, 2, 1)

Figure 1.2: Linear representation of a strategy on 6 nodes.

Given any full binary tree represented this way, the computation in step 3 of isogen` can be replaced by
the following recursive procedure:

Input. A starting curve E, the x-coordinate xS of a point S on E, a list of x-coordinates (x1, x2, . . . ) on E.
A strategy (s1, . . . , st−1) of size t − 1.

Output. The image curve E′ = E/〈S 〉 of the isogeny ψ : E → E/〈S 〉 with kernel 〈S 〉, the list of image
coordinates (ψ(x1), ψ(x2), . . . ) on E′.

Actions.

1. If t = 1 (i.e., the strategy is empty) then

(a) Compute an `-isogeny

φ : E → E′

(x, — ) 7−→ ( f (x), — )

such that ker φ = 〈S 〉;
(b) Return (E′, f (x1), f (x2), . . . );

2. Let n = s1 ;
1We recall that a full binary tree on n nodes is a binary tree with exactly n nodes of degree 2 and n + 1 nodes (leaves) of

degree 0.
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3. Let L = (s2, . . . , st−n) and R = (st−n+1, . . . , st−1);
4. Set xT ← x[`n]S ;
5. Set (E, (xU , x1, x2, . . . ))← Recurse on (E, xT , (xS , x1, x2, . . . )) with strategy L;
6. Set (E, (x1, x2, . . . ))← Recurse on (E, xU , (x1, x2, . . . )) with strategy R;
7. Return (E, (x1, x2, . . . )).

A similar algorithm, without the inputs (x1, x2, . . . ), can be replaced inside isoex` to obtain the same
speedup. Remark that the simple algorithms of Sections 1.3.5 and 1.3.6 correspond to the strategy
(e` − 1, . . . , 2, 1). A derecursivized version of this algorithm is given in Appendix A.

We stress that the computational strategy is a public parameter independent of the (secret) input: it can
be chosen once for all, and can possibly be hardcoded in the implementation. Changing it has no impact
whatsoever on the security of the protocols (other than it affects the possible set of side-channel attacks).
An implementer needs only be concerned with whether or not a given linear representation (s1, . . . , st−1)
correctly defines a strategy, i.e. that it belongs to the language S t defined by the following grammar:

S 1 ::= ε,

S a+b ::= b . S a . S b.

This can be readily verified with the following recursive procedure, that throws an error whenever a strat-
egy is invalid, and terminates otherwise.

Input. A strategy (s1, . . . , st−1) of size t − 1.

Actions.

1. If t = 1 (i.e., the strategy is empty) return.
2. Let n← s1 ;
3. If n < 1 or n ≥ t halt with error “Invalid strategy”;
4. Let L = (s2, . . . , st−n) and R = (st−n+1, . . . , st−1);
5. Recurse on L;
6. Recurse on R.

These checks can easily be integrated into the isogeny computation algorithm. An analogous check is
performed in the derecursivized versions of Appendix A.

1.3.8 Secret keys

The PKE and KEM schemes require two secret keys, sk2 and sk3, which are used to compute 2e2-isogenies
and 3e3-isogenies, respectively (see §1.3.9 and §1.3.10).

Let Nsk2 = de2/8e. Secret keys sk2 correspond to integers in the range {0, 1, . . . , 2e2 − 1}, encoded as an
octet string of length Nsk2 using itoos (cf. §1.2.6). The corresponding keyspace is denoted K2.

Let s = blog2 3e3c and Nsk3 = ds/8e. Secret keys sk3 correspond to integers in the range {0, 1, . . . , 2s −

1}, encoded as an octet string of length Nsk3 using itoos (cf. §1.2.6). The corresponding keyspace is
denoted K3.
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1.3.9 Public-key encryption

Algorithm 1 defines a public-key encryption scheme PKE = (Gen, Enc, Dec) [11, §3.3]. The two keyspaces
K2 and K3 are defined in 1.3.8. The size of the message space M = {0, 1}n, as well as the function F
that maps the shared secret j to bitstrings, are left unspecified; concrete choices corresponding to our
implementations are specified in Section 1.4. Note that the function Enc generates randomness sk2. In
the case of the key encapsulation mechanism we want to pass this randomness as input, in which case we
write (c0, c1)← Enc(pk3,m; sk2) (see Line 7 of Algorithm 2).

Algorithm 1: PKE = (Gen, Enc, Dec)

function Gen
Input: ()

Output: (pk3, sk3)

1 sk3 ←R K3

2 pk3 ← isogen3(sk3)

3 return
(
pk3, sk3

)

function Enc
Input: pk3, m ∈ M

Output: (c0, c1)

4 sk2 ←R K2

5 c0 ← isogen2(sk2)

6 j← isoex2(pk3, sk2)

7 h← F( j)

8 c1 ← h ⊕ m

9 return (c0, c1)

function Dec
Input: sk3, (c0, c1)

Output: m

10 j← isoex3(c0, sk3)

11 h← F( j)

12 m← h ⊕ c1

13 return m

1.3.10 Key encapsulation mechanism

Algorithm 2 defines a key encapsulation mechanism KEM = (KeyGen, Encaps, Decaps), by applying a
transformation of Hofheinz, Hövelmanns and Kiltz [19] to the PKE defined in §1.3.9. We slightly modify
this transformation by including pk3 in the input to G (as in [4]), and by simplifying “re-encryption”
(see the proof of Theorem 1). Again, The two keyspaces K2 and K3 are defined in 1.3.8. The size of
M = {0, 1}n as well as the functions G and H, are left unspecified; concrete choices corresponding to our
implementations are specified in Section 1.4.

NIST’s API for the KEM

We now define how the inputs and outputs in Algorithm 2 match the API used in the implementations.
NIST specifies the following API for the KEM:

int crypto_kem_keypair(unsigned char *pk, unsigned char *sk);

int crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk);

int crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk);
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Algorithm 2: KEM = (KeyGen, Encaps, Decaps)

function KeyGen
Input: ()

Output: (s, sk3, pk3)

1 sk3 ←R K3

2 pk3 ← isogen3(sk3)

3 s←R {0, 1}n

4 return
(
s, sk3, pk3

)

function Encaps
Input: pk3

Output: (c,K)

5 m←R {0, 1}n

6 r ← G(m || pk3)

7 (c0, c1)← Enc(pk3,m; r)

8 K ← H(m || (c0, c1))

9 return ((c0, c1),K)

function Decaps
Input: (s, sk3, pk3), (c0, c1)

Output: K

10 m′ ← Dec(sk3, (c0, c1))

11 r′ ← G(m′ || pk3)

12 c′0 ← isogen2(r′)

13 if c′0 = c0 then
14 K ← H(m′ || (c0, c1))

15 else
16 K ← H(s || (c0, c1))

17 return K

The public key pk is given by pk3. The secret key sk consists of the concatenation of s, sk3 and pk3
2. The

ciphertext ct consists of the concatenation of c0 and c1. Finally, the shared secret ss is given by K.

1.4 Symmetric primitives

The three hash functions F,G and H that are used in the key encapsulation mechanism KEM are all instan-
tiated with the SHA-3 derived function SHAKE256 as specified by NIST in [13].

Specifically, the function G hashes the random bit string m ∈ M = {0, 1}n concatenated with the public key
pk3. It is instantiated with SHAKE256, taking m || pk3 as the input, requesting e2 output bits. In the notation
of [13], this means G(m || pk3) = SHAKE256(m || pk3, e2). The value n corresponds to n ∈ {128, 192, 256}.

The function F is used as a key derivation function on the j-invariant during public key encryption and is
computed as F( j) = SHAKE256( j, n) using the notation of [13], where the requested output consists of n
bits. Again, the value n corresponds to n ∈ {128, 192, 256}.

The third function H is used to derive the k-bit shared key K from the random bit string m and the ciphertext
c produced by Enc. It is computed as SHAKE256(m || c, k) with m || c as the input. The value k corresponds
to the number of bits of classical security, i.e., k ∈ {128, 192, 256}.

1.5 Public key compression

Recall that uncompressed SIKE public keys are of the form (xP, xQ, xR) ∈ (Fp2)3, which correspond to three
points P,Q,R ∈ EA(Fp2) of exact order `e, for ` ∈ {2, 3}. Following [2] (and the further improvements de-
scribed in [7, 42]), the idea of public key compression is to instead represent these points as elements of

2Since NIST’s decapsulation API does not include an input for the public key, it needs to be included as part of the secret
key.
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Z`e × Z`e with respect to a `e-torsion basis that is determinstically chosen as a function of EA. Encod-
ing elements of Z`e × Z`e requires roughly half as many bits as encoding elements of Fp2 . In particular,
the compressed keys require 3.5 log p bits instead of the 6 log p to represent the triple (xP, xQ, xR). This
translates to a ≈ 41% saving in key sizes.

Below we describe the compression and decompression algorithms, compress` and decompress`. Note
that, since all of the operations in both algorithms are performed on public data, side-channel countermea-
sures (e.g., constant-time routines) are irrelevant except by the last step of decompress` that computes
the last kernel generator and employs the ladder3pt in Algorithm 8. We point out that several alter-
natives for subroutines in both compression and decompression are possible. For example, Step 5 of
compress` requires the solutions of 2-dimensional discrete logarithm problems in E(Fp2)[`e], which can
be solved directly in E(Fp2)[`e] (cf. [36]), but for improved performance our optimized implementation
instead transports the problems to multiple 1-dimensional discrete logarithms in F×p2 , by way of the Tate
pairing [2, 7, 42].

1.5.1 Public key compression: compress`

Input. Three x-coordinates pk` = (xP, xQ, xR) where P,Q,R are ¯̀e-torsion points and ¯̀e means the com-
plementary torsion to `e.

Output. A compressed public key PK = (bit, t1, t2, t3, A, s, r) ∈ Z2 × (Z ¯̀e)3 × Fp2 × Z2
256, encoded as in

1.2.10.

Actions.

1. Compute EA from (xP, xQ, xR) using cfpk (see §1.2.1).

2. Recover the y-coordinates of ±P = (xP,±yP) and ±Q = (xQ,±yQ), and set P and Q such that
R = Q − P via the expressions at the end of §1.1.9.

3. If ` = 3: Compute an entangled basis {U,V} for EA[2e2] as follows:

(a) Select table T containing only QNR or QR values v := 1/(1 + ur2) ∈ Fp2 depending on
whether A is a QR or QNR, respectively. We have u = u2

0 ∈ Fp2\Fp
3, u0 ∈ Fp2\Fp and

r > 0 is a small counter that can be seen as a small element in Fp.
(b) Compute the first abscissa candidate x = −A · v which is non-square by construction.
(c) If x3 + Ax2 + x is a non-square, increment counter r and try another v until a point on the

curve is found. Otherwise, the point U := (x,
√

x3 + Ax2 + x) ∈ EA has full order 2e2 by
the 2-descent result.

(d) For U = (x, y), the other generator is automatically defined as V := (u0 · r · x, u · r2 · y) and
EA[2e2] = 〈[3e3]U, [3e3]V〉 (see Theorem 1 of [42]) .

(e) Store the information learned so that entangled basis generation is faster during decom-
pression (Algorithm 49). The quadraticity of A can be transmitted as a bit, and the counter
r is smaller than 256 with very high probability, and thus can be transmitted as a byte.

4. If ` = 2: Compute a basis {U,V} of EA[3e3] using a general Algorithm 54.

3Note that here u is a square instead of a non-square as in the original elligator.
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(a) First, find a candidate point (x1, z1) using the conventional elligator technique and scalar
multiplication to test for full order correctness. Store the respective elligator counter s.

(b) Once the first candidate is found, get a second candidate (x2, z2) and check for linear
independence using scalar multiplication (removal of cofactors needed) until a basis is
found. Store the respective elligator counter s from the final second candidate.

5. Find (αP, βP) ∈ Z ¯̀e × Z ¯̀e such that P = [αP]U + [βP]V and (αQ, βQ) ∈ Z ¯̀e × Z ¯̀e such that
Q = [αQ]U + [βQ]V .

6. Compute PK ∈ (Z ¯̀e)3 × Fp2 × Z2
256 as

PK =


(
0, α−1

P βP, α
−1
P αQ, α

−1
P βQ, A, s, r

)
if αP ∈ Z

∗
¯̀e(

1, β−1
P αP, β

−1
P αQ, β

−1
P βQ, A, s, r

)
if βP ∈ Z

∗
¯̀e
.

7. Encode the compressed public key as an array of octets according to §1.2.10.

1.5.2 Public key decompression: decompress`

Input. A public key PK encoded as in §1.2.10 .

Output. A kernel generator R = (x, y) for the last isogeny computed by Algorithm 44 or 45.

Actions.

1. Decode PK into (bit, t1, t2, t3, A, s, r) ∈ Z2 × (Z ¯̀e)3 × Fp2 × Z2
256 as in 1.2.10.

2. If ` = 2, find entangled basis {U,V} from A, s and r using Algorithm 55.

3. If ` = 3, find entangled basis {U,V} from A, entang_bit and r using Algorithm 49.

4. Project the secret key and coefficients ti into the basis {U,V} in order to recover the kernel
generator R = (x, y) for the last isogeny. Algorithms 68 and 69 are tailored for this task.

Remark 1. It is worth mentioning that both SIKE public keys and ciphertexts are compressible. Due to
the asymmetry in the original SIDH construction (binary and ternary torsions), compression techniques
are faster in the binary torsion, and therefore torsions in Algorithms 2 are swapped for compression.
This implies that the most frequently used operation (Encapsulation) performs the fastest compression
compress` for ` = 3 which compressed points that are in the 2e2-torsion subgroup.4

Remark 2. Due to an optimization used by Algorithms 68 and 69 introduced in [7] that can save one scalar
multiplication, compression techniques require the secret key sk2 to be an even number and sk3 a multiple
of 3. This is incorporated in the optimized additional implementation.

4Note that the points pk` are in the complementary torsion other than `.
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1.6 Parameter sets

This section presents four different parameter sets, the concrete security of which is discussed in Chapter 5.
The underlying prime fields are of the form p = 2e23e3 − 1 where 2e2 ≈ 3e3 .

The four sets of parameters are SIKEp434, SIKEp503, SIKEp610, and SIKEp751, named so because of
the bitlength of the prime field characteristic. In each case the parameters are, in order: the prime p and
the values e2 and e3; the values xQ2,0 and xQ2,1 such that xQ2 = xQ2,0 + xQ2,1 · i; the values xP2,0 and xP2,1 such
that xP2 = xP2,0 + xP2,1 · i; the values xR2,0 and xR2,1 such that xR2 = xR2,0 + xR2,1 · i; the values xQ3,0 and xQ3,1

such that xQ3 = xQ3,0 + xQ3,1 · i; the values xP3,0 and xP3,1 such that xP3 = xP3,0 + xP3,1 · i; the values xR3,0 and
xR3,1 such that xR3 = xR3,0 + xR3,1 · i.

1.6.1 SIKEp434

p = 0002341F 27177344 6CFC5FD6 81C52056 7BC65C78 3158AEA3 FDC1767A

E2FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

e2 = 000000D8

e3 = 00000089

xQ20 = 0000C746 1738340E FCF09CE3 88F666EB 38F7F3AF D42DC0B6 64D9F461

F31AA2ED C6B4AB71 BD42F4D7 C058E13F 64B237EF 7DDD2ABC 0DEB0C6C

xQ21 = 000025DE 37157F50 D75D320D D0682AB4 A67E4715 86FBC2D3 1AA32E69

57FA2B26 14C4CD40 A1E27283 EAAF4272 AE517847 197432E2 D61C85F5

yQ20 = 0001D407 B70B01E4 AEE172ED F491F4EF 32144F03 F5E054CE F9FDE5A3

5EFA3642 A1181790 5ED0D4F1 93F31124 264924A5 F64EFE14 B6EC97E5

yQ21 = 0000E7DE C8C32F50 A4E735A8 39DCDB89 FE0763A1 84C525F7 B7D0EBC0

E84E9D83 E9AC53A5 72A25D19 E1464B50 9D97272A E761657B 4765B3D6

xP20 = 00003CCF C5E1F050 030363E6 920A0F7A 4C6C71E6 3DE63A0E 6475AF62

1995705F 7C84500C B2BB61E9 50E19EAB 8661D25C 4A50ED27 9646CB48

xP21 = 0001AD1C 1CAE7840 EDDA6D8A 924520F6 0E573D3B 9DFAC6D1 89941CB2

2326D284 A8816CC4 249410FE 80D68047 D823C97D 705246F8 69E3EA50

yP20 = 0001AB06 6B849495 82E3F666 88452B92 55E72A01 7C45B148 D719D9A6

3CDB7BE6 F48C812E 33B68161 D5AB3A0A 36906F04 A6A6957E 6F4FB2E0

yP21 = 0000FD87 F67EA576 CE97FF65 BF9F4F76 88C4C752 DCE9F8BD 2B36AD66

E04249AA F8337C01 E6E4E1A8 44267BA1 A1887B43 3729E1DD 90C7DD2F

xR20 = 0000F37A B34BA0CE AD94F43C DC50DE06 AD19C67C E4928346 E829CB92

580DA84D 7C36506A 2516696B BE3AEB52 3AD7172A 6D239513 C5FD2516

xR21 = 000196CA 2ED06A65 7E90A735 43F3902C 208F4108 95B49CF8 4CD89BE9

ED6E4EE7 E8DF90B0 5F3FDB8B DFE489D1 B3558E98 7013F980 6036C5AC
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xQ30 = 00012E84 D7652558 E694BF84 C1FBDAAF 99B83B42 66C32EC6 5B10457B

CAF94C63 EB063681 E8B1E739 8C0B241C 19B9665F DB9E1406 DA3D3846

xQ31 = 00000000

yQ30 = 00000000

yQ31 = 0000EBAA A6C73127 1673BEEC E467FD5E D9CC29AB 564BDED7 BDEAA86D

D1E0FDDF 399EDCC9 B49C829E F53C7D7A 35C3A074 5D73C424 FB4A5FD2

xP30 = 00008664 865EA7D8 16F03B31 E223C26D 406A2C6C D0C3D667 466056AA

E85895EC 37368BFC 009DFAFC B3D97E63 9F65E9E4 5F46573B 0637B7A9

xP31 = 00000000

yP30 = 00006AE5 15593E73 97609197 8DFBD70B DA0DD6BC AEEBFDD4 FB1E748D

DD9ED3FD CF679726 C67A3B2C C12B3980 5B32B612 E058A428 0764443B

yP31 = 00000000

xR30 = 0001CD28 597256D4 FFE7E002 E8787075 2A8F8A64 A1CC78B5 A2122074

783F51B4 FDE90E89 C48ED91A 8F4A0CCB ACBFA7F5 1A89CE51 8A52B76C

xR31 = 00014707 3290D78D D0CC8420 B1188187 D1A49DBF A24F26AA D46B2D9B

B547DBB6 F63A760E CB0C2B20 BE52FB77 BD2776C3 D14BCBC4 04736AE4

1.6.2 SIKEp503

p = 004066F5 41811E1E 6045C6BD DA77A4D0 1B9BF6C8 7B7E7DAF 13085BDA

2211E7A0 ABFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF

e2 = 000000FA

e3 = 0000009F

xQ20 = 00325CF6 A8E2C618 3A8B9932 198039A7 F965BA85 87B67925 D08D809D

BF9A69DE 1B621F7F 134FA2DA B82FF5A2 615F92CC 71419FFF AAF86A29

0D604AB1 67616461

xQ21 = 003E7B04 94C8E60A 8B72308A E09ED348 45B34EA0 911E356B 77A11872

CF7FEEFF 745D98D0 624097BC 1AD7CD2A DF7FFC2C 1AA5BA3C 6684B964

FA555A07 15E57DB1

yQ20 = 003A3465 4000BD4C B2612017 BD5A1965 A9F89FE1 1C55D517 DF91B89B

94F4F9C5 8B9A9DD0 56915573 FEDC09CC D4997E82 378759E0 0A2DE225

CE04589D 201FD754

yQ21 = 0019DEF0 E8930E51 23A22E34 6B1FFBD3 5EB01451 647D8708 A4835473
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B2539BD2 6806ED10 5A29F2D3 F7EAA262 426A9653 38782C5D 20FBF478

E4D1C8DB FC5B8294

xP20 = 0002ED31 A03825FA 14BC1D92 C503C061 D843223E 611A92D7 C5FBEC0F

2C915EE7 EEE73374 DF6A1161 EA00CDCB 786155E2 1FD38220 C3772CE6

70BC6827 4B851678

xP21 = 001EE4E4 E9448FBB AB4B5BAE F280A99B 7BF86A1C E05D55BD 603C3BA9

D7C08FD8 DE7968B4 9A78851F FBC6D0A1 7CB2FA1B 57F3BABE F87720DD

9A489B55 81F915D2

yP20 = 00244D5F 814B6253 688138E3 17F24975 E596B09B B15C6418 E5295AAF

73BA7F96 EFED145D FAE1B21A 8B7B121F EFA1B6E8 B52F0047 8218589E

604B9735 9B8A6E0F

yP21 = 00181CCC 9F0CBE13 90CC1414 9E8DE88E E79992DA 32230DED B25F04FA

DE07F242 A9057366 060CB599 27DB6DC8 B20E6B15 747156E3 C5300545

E9674487 AB393CA7

xR20 = 003D24CF 1F347F1D A54C1696 442E6AFC 192CEE5E 320905E0 EAB3C9D3

FB595CA2 6C154F39 427A0416 A9F36337 354CF1E6 E5AEDD73 DF80C710

026D4955 0AC8CE9F

xR21 = 0006869E A28E4CEE 05DCEE8B 08ACD597 75D03DAA 0DC8B094 C85156C2

12C23C72 CB2AB2D2 D90D4637 5AA6D66E 58E44F8F 219431D3 006FDED7

993F5164 9C029498

xQ30 = 0039014A 74763076 675D24CF 3FA28318 DAC75BCB 04E54ADD C6494693

F72EBB7D A7DC6A3B BCD188DA D5BECE9D 6BB4ABDD 05DB38C5 FBE52D98

5DCAF744 22C24D53

xQ31 = 00000000

yQ30 = 00000000

yQ31 = 00255120 12C90A68 69C4B29B 9A757A03 006BC7DF 0BF7A252 6A071393

9FA48018 AE3E249B D63699BE B3B8DEA2 15B7AE1B 5A30FE37 1B64C5F1

B0BF051A 11D68E04

xP30 = 0032D03F D1E99ED0 CB05C070 7AF74617 CBEA5AC6 B75905B4 B54B1B0C

2D736978 40155E7B 1005EFB0 2B5D0279 7A8B66A5 D258C76A 3C9EF745

CECE11E9 A178BADF

xP31 = 00000000

yP30 = 002D810F 828E3DC0 24D1BBBC 7D6FA6E3 02CC5D45 8571763B 7CCD0E4D

BC9FA116 3F0C1F8F 4AE32A57 F89DF8D2 586D2A06 E9FA3044 2B94A725

266358C4 5236ADF3

yP31 = 00000000

xR30 = 0000C146 5FD048FF B8BF2158 ED57F0CF FF0C4D5A 4397C754 2D722567
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700FDBB8 B2825CAB 4B725764 F5F52829 4B7F95C1 7D560E25 660AD3D0

7AB011D9 5B2CB522

xR31 = 00288165 466888BE 1E78DB33 9034E2B8 C7BDF048 3BFA7AB9 43DFA05B

2D171231 7916690F 5E713740 E7C7D483 8296E673 57DC34E3 460A95C3

30D51697 21981758

1.6.3 SIKEp610

p = 00000002 7BF6A768 819010C2 51E7D88C B255B2FA 10C4252A 9AE7BF45

048FF9AB B1784DE8 AA5AB02E 6E01FFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

e2 = 00000131

e3 = 000000C0

xQ20 = 25DA39EC 90CDFB9B C0F772CD A52CB8B5 A9F478D7 AF8DBBA0 AEB3E524

32822DD8 8C38F4E3 AEC0746E 56149F1F E89707C7 7F8BA413 45686297

24F4A8E3 4B06BFE5 C5E66E08 67EC38B2 83798B8A

xQ21 = 00000002 250E1959 256AE502 428338CB 47153995 51AEC78D 8935B2DC

73FCDCFB DB1A0118 A2D3EF03 489BA6F6 37B1C7FE E7E5F313 40A1A537

B76B5B73 6B4CDD28 4918918E 8C986FC0 2741FB8C 98F0A0ED

yQ20 = A4FD5539 025C0611 E4B1CEC3 C36F0D75 90C035D3 A25AD930 22849CCE

B3F67E4B 1DBE9884 04290DD8 B87B8D5E 69ED3B0C 5CDBCA24 8DC9D174

CF762012 CFE2D725 CFD92057 F2DBF8B0 4C7B12CC

yQ21 = 00000002 01C807BD 738624E2 2B87554A 2E053A46 A9573BA8 63D4A9D3

09533E30 B27BF7DD 8137F5CE 0F79C263 D9D05054 1D69817A 839085A7

6395F879 315F6999 E3441FC8 FB3936DE E1BEF5B4 E0E25096

xP20 = 00000001 B368BC60 19B46CD8 02129209 B3E65B98 BC64A92B C4DB2F9F

3AC96B97 A1B9C124 DF549B52 8F18BEEC B1666D27 D4753043 5E842212

72F3A97F B80527D8 F8A359F8 F1598D36 5744CA30 70A5F26C

xP21 = 00000001 459685DC A7112D1F 6030DBC9 8F2C9CBB 41617B6A D913E652

3416CCBD 8ED9C784 1D97DF83 092B9B3F 2AF00D62 E08DAD8F A743CBCC

CC1782BE 0186A343 2D3C97C3 7CA16873 BEDE01F0 637C1AA2

yP20 = 00000001 CD75CF51 2FFA9DF8 78EF4950 01A57ABC 07FC7CE9 BB488BB5

2DDCD727 2D8A4FD1 7DD258ED 3F844C86 2CF48803 B9AC2668 C7CB79C3

96128763 B578080C 30D14CA7 EB709F98 E3E682A3 91FB35A7
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yP21 = 00000002 001062A6 289E4082 CED88402 9207A1AC DEC525D7 BC165A6C

FF8BB469 A8588950 A416DBB9 24D2D673 E3D6C32D 232F6E6A DA62B376

08F652C0 B8628827 B304BF13 65D82113 46207B24 EFF09458

xR20 = 00000001 B36A006D 05F9E370 D5078CCA 54A16845 B2BFF737 C8653687

07C0DBBE 9F5A62A9 B9C79ADF 11932A9F A4806210 E25C92DB 019CC146

706DFBC7 FA2638EC C4343C1E 390426FA A7F2F07F DA163FB5

xR21 = 00000001 83C9ABF2 297CA696 99357F58 FED92553 436BBEBA 2C3600D8

9522E700 9D19EA5D 6C18CFF9 93AA3AA3 3923ED93 592B0637 ED0B33AD

F12388AE 912BC4AE 4749E2DF 3C329299 4DCF3774 7518A992

xQ30 = 00000001 4E647CB1 9B7EAAAC 640A9C26 B9C26DB7 DEDA8FC9 399F4F8C

E620D2B2 200480F4 338755AE 16D0E090 F15EA188 2166836A 478C6E16

1C938E4E B8C2DD77 9B45FFDD 17DCDF15 8AF48DE1 26B3A047

xQ31 = 00000000

yQ30 = 00000000

yQ31 = E674067F 5EA6DE85 545C0A99 E9E71E64 FABFDC28 1D1E540F EDA47A56

ED3ADCDD E1841083 FABC7954 B467C71A C6349B04 974A7F9B 688C5F73

5632FEB3 94146B0A 08088006 9D8DA332 4EDF795B

xP30 = 00000001 587822E6 47707ED4 313D3BE6 A811A694 FB201561 111838A0

816BFB5D EC625D23 772DE48A 26D78C04 EEB26CA4 A571C67C E4DC4C62

0282876B 2F2FC263 3CA548C3 AB0C45CC 991417A5 6F7FEFEB

xP31 = 00000000

yP30 = 14F29511 4B69D476 9AC06DD0 7F051AD1 114BCB7F A6B6EDE1 9F840969

AFD56FD1 F728907D 3320A030 9462A944 4D24FE75 4666DB24 70080951

B31C2AC5 9704ABC7 670C3C3A 992C3C16 29791F30

yP31 = 00000000

xR30 = 00000001 DB73BC2D E666D24E 59AF5E23 B79251BA 0D189629 EF87E56C

38778A44 8FACE312 D08EDFB8 76C3FD45 ECF3746D 96E2CADB BA08B1A2

06C47DDD 93137059 E34C90E2 E42E10F3 0F6E5F52 DED74222

xR31 = 00000001 B2C30180 DAF5D918 71555CE8 EFEC76A4 D521F877 B7543112

28C7180A 3E2318B4 E7A00341 FF99F34E 35BF7A10 53CA76FD 77C0AFAE

38E20918 62AB4F1D D4C8D9C8 3DE37ACB A6646EDB 4C238B48

1.6.4 SIKEp751

p = 00006FE5 D541F71C 0E12909F 97BADC66 8562B504 5CB25748 084E9867
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D6EBE876 DA959B1A 13F7CC76 E3EC9685 49F878A8 EEAFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF

e2 = 00000174

e3 = 000000EF

xQ20 = 00001723 D2BFA01A 78BF4E39 E3A333F8 A7E0B415 A17F208D 3419E759

1D59D8AB DB7EE6D2 B2DFCB21 AC29A40F 837983C0 F057FD04 1AD93237

704F1597 D87F074F 682961A3 8B5489D1 019924F8 A0EF5E4F 1B2E64A7

BA536E21 9F5090F7 6276290E

xQ21 = 00002569 D7EAFB6C 60B244EF 49E05B5E 23F73C4F 44169A7E 02405E90

CEB680CB 0756054A C0E3DCE9 5E295033 4262CC97 3235C2F8 7D89500B

CD465B07 8BD0DEBD F322A2F8 6AEDFDCF EE65C093 77EFBA0C 5384DD83

7BEDB710 209FBC8D DB8C35C7

yQ20 = 000035B8 2D1BD2BA 608B4279 4C4820C5 6A3D8BBA D28380B8 D85A1910

E2609A61 F7BC0BCA 8ED8EF88 3E7E98C7 44A0AC85 D2893738 521B62EB

23D1983D 2EDCF2AB 437108DC 048AA853 FF9BC791 224B121E 8FDF1EA5

F617E6ED 5898663D DED49154

yQ21 = 00000F22 306A6963 907F16AA 38F89C67 2A4054DB 5FD1D265 98A3140E

A204B100 94AE6409 3142AEB0 56942494 D216A74E D9F51FFC 9272D177

21510133 34EC570B 532DB0C0 83CF3986 7F63D191 029033F9 42E977B8

5F69EC73 8B4C26D3 B72E2821

xP20 = 00004514 F8CC94B1 40F24874 F8B87281 FA6004CA 5B3637C6 8AC0C0BD

B2983805 1F385FBB CC300BBB 24BFBBF6 710D7DC8 B29ACB81 E429BD1B

D5629AD0 ECAD7C90 622F6BB8 01D0337E E6BC78A7 F12FDCB0 9DECFAE8

BFD643C8 9C3BAC1D 87F8B6FA

xP21 = 0000158A BF500B59 14B3A96C ED5FDB37 D6DD925F 2D6E4F7F EA3CC16E

10857540 77737EA6 F8CC7493 8D971DA2 89DCF243 5BCAC189 7D262769

3F9BB167 DC01BE34 AC494C60 B8A0F65A 28D7A31E A0D54640 653A8099

CE5A84E4 F0168D81 8AF02041

yP20 = 00000BF6 E4E7A28E 9A6EF66A 2F1614AE 2A2B5A58 3C9F2DC6 C83F84E2

D9E6577F 9E22B991 D58FB2F8 9666DC1D 40A2C0A3 AB876CF8 DA8878F1

2325BF8B 0CF92E45 AE006270 41C891BC 96FFBB87 4FC587E4 342F7809

8258DF2E 10A5708A 70A0D5A8

yP21 = 00001502 FB44178D 1DF80A53 858519CB CF233FE3 87905BC8 F9E41387

03C6DB7C 82302FBF B7E97153 F6001FE9 102D2597 AC2B300A 1C669D1A

2803F8D0 5BA3B1F2 ACBF27BC 1A127B4A 553916D6 2004FD21 633C5AEA

AB748338 53B4C5C4 2EB71F7E
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xR20 = 00006066 E07F3C0D 964E8BC9 63519FAC 8397DF47 7AEA9A06 7F3BE343

BC53C883 AF29CCF0 08E5A307 19A29357 A8C33EB3 600CD078 AF1C40ED

5792763A 4D213EBD E44CC623 195C387E 0201E723 1C529A15 AF5AB743

EE9E7C9C 37AF3051 167525BB

xR21 = 000050E3 0C2C0649 4249BC4A 144EB5F3 1212BD05 A2AF0CB3 064C322F

C3604FC5 F5FE3A08 FB3A02B0 5A48557E 15C99225 4FFC8910 B72B8E13

28B4893C DCFBFC00 3878881C E390D909 E39F83C5 006E0AE9 79587775

443483D1 3C65B107 FADA5165

xQ30 = 00005BF9 54478180 3CBD7E0E A8B96D93 4C5CBCA9 70F9CC32 7A0A7E4D

AD931EC2 9BAA8A85 4B8A9FDE 5409AF96 C5426FA3 75D99C68 E9AE7141

72D7F045 02D45307 FA4839F3 9A28338B BAFD54A4 61A53540 8367D513

2E6AA0D3 DA697336 0F8CD0F1

xQ31 = 00000000

yQ30 = 00000000

yQ31 = 00003351 F421FC15 8472AC2D D8B4DABB 5B599456 748A5BCC 4449398F

05ED1AD1 414B4EEB BB70FB91 383474B7 12EA4B5B F096092C DDD57C0A

090B0410 22064C3A 8DD3D890 E7B5AC34 A24CEF50 7955F027 CC4CECFD

B67739CE 89F31FDC 5FE43243

xP30 = 0000605D 4697A245 C394B980 24A55547 46DC12FF 56D0C6F1 5D2F4812

3B6D9C49 8EEE98E8 F7CD6E21 6E2F1FF7 CE0C969C CA29CAA2 FAA57174

EF985AC0 A5042600 18760E9F DF67467E 20C13982 FF5B49B8 BEAB05F6

023AF873 F827400E 453432FE

xP31 = 00000000

yP30 = 00005634 690BFC14 C45E2FAA 930D6258 9855E5BD D1435CFF BDF60962

8FD043B4 BF295BB3 5F7B6D37 836F2C59 A27BB61E D0FF57FF 8093FE6B

712133D2 6502F17C B0D46CDC 8CF9BA76 64EA2B6C 1672A8CA 2FF1CE31

3FEEEF41 99FC7F14 FE720617

yP31 = 00000000

xR30 = 000055E5 124A05D4 809585F6 7FE9EA1F 02A06CD4 11F38588 BB631BF7

89C3F98D 1C332584 3BB53D9B 011D8BD1 F682C0E4 D8A5E723 364364E4

0DAD1B7A 476716AC 7D1BA705 CCDD680B FD4FE473 9CC21A9A 59ED544B

82566BF6 33E89501 86A79FE3

xR31 = 00005AC5 7EAFD6CC 7569E8B5 3A148721 953262C5 B404C143 380ADCC1

84B6C21F 0CAFE095 B7E9C79C A88791F9 A72F1B2F 3121829B 2622515B

694A1687 5ED637F4 21B539E6 6F2FEF1C E8DCEFC8 AEA60805 5E9C4407

7266AB64 611BF851 BA06C821
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Chapter 2

Detailed performance analysis

The submission package includes:

1. A generic reference implementation written exclusively in portable C with simple algorithms to
compute isogeny and field operations, using GMP for multi-precision arithmetic,

2. An optimized implementation written exclusively in portable C that includes efficient algorithms to
compute isogeny and field operations,

3. An additional, optimized implementation for x64 platforms that exploits x64 assembly,

4. An additional, optimized implementation for x64 platforms that exploits x64 assembly and public
key compression (§1.5),

5. An additional, optimized implementation for ARM64 platforms that exploits ARMv8 assembly,

6. An additional, speed-optimized VHDL model for FPGA and ASIC platforms that parallelizes vari-
ous aspects of the isogeny computation and field operations, and

7. An additional, simple textbook implementation written exclusively in portable C, using elliptic
curves in short Weierstrass form.

All implementations except implementations number 1 and 7 are protected against timing and cache at-
tacks at the software level. Specifically, they avoid the use of secret address accesses and secret branches.

The generic reference implementation, optimized implementation, and x64 assembly-optimized imple-
mentation (numbers 1 to 3) support all four parameter sets, namely SIKEp434, SIKEp503, SIKEp610
and SIKEp751. The version with public key compression (number 4) uses the same public parameters
as the uncompressed version, but requires different KAT files, because the output formats are different.
Therefore, we formally assign to this implementation a different collection of parameter sets, denoted by
SIKEpXXX_compressed for XXX ∈ {434, 503, 610, 751}.

The ARM64 assembly-optimized implementation (number 5) supports the parameter sets SIKEp503,
SIKEp751, SIKEp503_compressed, and SIKEp751_compressed.
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The VHDL implementation (number 6) supports the SIKEp751 parameter set. Because of time constraints,
this implementations has not yet been updated for the second round. In particular, the change of starting
curve from A = 0 to A = 6 (cf. Appendix E) is not reflected in this implementation, and the KAT files for
the 2nd round do not pass on this implementation. Updated implementations will be posted on the SIKE
web page (https://sike.org/) when available. In the meantime, the KAT files from the 1st round
submission may be used.

The Weierstrass implementation (number 7) supports the same prime sizes as the main implementation
(namely, 434, 503, 610, and 751 bits). However, it is not directly compatible with any of the parameter sets,
because its main purpose is to illustrate isogeny computations using textbook formulas over elliptic curves
in short Weierstrass form, whereas the parameter sets are defined using Montgomery curves. Converting
between curves in short Weierstrass form and the curves of Montgomery form used in the parameter sets
would defeat the purpose of having a simple textbook implementation.

In this chapter we describe the main features of the implementations and analyze their performance.

2.1 Reference implementation

The reference implementation is written in portable C, and uses simple algorithms for isogeny and elliptic
curve computations. Isogenies are computed using a dense tree traversal algorithm, and elliptic curve com-
putations use affine coordinates and a double-and-add scalar multiplication algorithm. Specifically, this
implementation makes use of Algorithms 25–45 listed in Appendix B. As in the optimized implementation
(see §2.2), the reference implementation uses Montgomery elliptic curves in the form By2 = x3 + Ax2 + x,
but with full x- and y-coordinates. The implementation is generic and is built to a single library supporting
all SIKE instantiations. Additionally, a small library supporting the NIST KEM API is built for each of
the SIKE instantiations. The code base is split in several layers:

1. Multiprecision arithmetic using GMP.

2. Finite field arithmetic over Fp is implemented with a generic API, hiding the underlying GMP func-
tions. The same API is used for any prime. The function headers are available in fp.h.

3. Quadratic extension field arithmetic over Fp2 is built on top of the Fp API. The function headers are
available in fp2.h.

4. Montgomery elliptic curve arithmetic uses the Fp2 code and implements point addition, point dou-
bling, point tripling, 2/3/4-isogeny generation and evaluation, scalar multiplication and j-invariant
computation. For simplicity reasons, the scalar multiplication algorithm is not safe against side-
channel attacks, but could be protected with well known countermeasures against side-channel at-
tacks for ECC. The headers for Montgomery curve arithmetic and 2/3/4-isogeny generation are
available in montgomery.h and isogeny.h, respectively.

5. The SIDH key agreement scheme is implemented with the key-generation algorithm (corresponding
to isogen`) and the shared secret algorithm (corresponding to isoex`). The function headers are
available in sidh.h.
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6. The SIKE key encapsulation protocol is built on top of SIDH and implements PKE encryption,
PKE decryption, KEM encapsulation and KEM decapsulation. The function headers are available
in sike.h and api_generic.h.

7. The parameters for SIKEp434, SIKEp503, SIKEp610 and SIKEp751 are instantiated, all using the
same generic implementation. The parameters are defined in sike_params.h. Each instantiation
leads to a small library that support the NIST KEM API defined in api.h.

The reference implementation uses the same public-key format and encoding that is used in the optimized
implementation. KATs are compatible with both the reference implementation and the optimized imple-
mentation.

2.2 Optimized and x64 assembly implementations

The optimized implementation, which is written in portable C only, uses efficient algorithms for isogeny
and elliptic curve computations using projective coordinates on Montgomery curves, the Montgomery lad-
der, and efficient tree traversal strategies for fast isogeny computation. Specifically, this implementation
makes use of Algorithms 3–24 listed in Appendix A. The optimal tree traversal strategies used in Algo-
rithms 19 and 20 are given in Appendix C along with the algorithm used to compute them. Operations
over Fp2 exploit efficient techniques such as Karatsuba and lazy reduction. Multiprecision multiplication
is implemented using a fully rolled version of Comba, and modular reduction is implemented using a fully
rolled version of Montgomery reduction. Hence, the field arithmetic implementation is generic and very
compact. Conveniently, the optimized implementation reuses the same codebase for all the security levels.

The only difference between the optimized and the additional x64 implementation is that the latter exploits
x64 assembly to implement the field arithmetic. Thus the field arithmetic in the x64 implementation is
specialized per security level. All the rest of the code between the optimized and x64 implementations is
shared, making the library compact and simple.

In the case of the additional x64 implementation, integer multiplication is implemented using one-level
Karatsuba built on top of schoolbook multiplication. For our implementation, schoolbook offers a better
performance than Comba thanks to the availability of MULX and ADX instructions in modern x64 pro-
cessors. Modular reduction is implemented using an efficient version of radix-r Montgomery reduction
and exploiting the MULX and ADX instructions (when available), as done in [14].

As previously stated, the optimized and additional x64 implementations follow standard practices to pro-
tect against timing and cache attacks at the software level and, hence, are expected to run in constant time
on typical x64 Intel platforms.

2.2.1 Performance on x64 Intel

To evaluate the performance of the optimized and x64-assembly implementations, we ran our benchmark-
ing suite on a machine powered by a 3.4GHz Intel Core i7-6700 (Skylake) processor, running Ubuntu
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Scheme KeyGen Encaps Decaps
total

(Encaps + Decaps)

Reference Implementation
SIKEp434 1,047,991 1,482,681 1,790,304 3,272,987
SIKEp503 1,567,725 2,237,865 2,752,500 4,990,364
SIKEp610 2,661,251 3,882,513 4,595,856 8,478,369
SIKEp751 4,743,861 6,534,356 8,016,158 14,550,514

Optimized Implementation
SIKEp434 56,264 92,180 98,335 190,515
SIKEp503 86,067 141,891 150,879 292,770
SIKEp610 160,401 294,628 296,577 591,205
SIKEp751 288,827 468,175 502,983 971,158

Additional implementation using x64 assembly
SIKEp434 6,487 10,536 11,297 21,320
SIKEp503 8,956 14,783 15,759 30,542
SIKEp610 15,511 28,422 28,639 57,061
SIKEp751 26,059 42,170 45,402 87,572

Compressed SIKE implementation using x64 assembly
SIKEp434_compressed 16,542 20,045 18,930 38,975
SIKEp503_compressed 23,395 27,543 25,534 53,077
SIKEp610_compressed 40,386 47,099 45,449 92,548
SIKEp751_compressed 62,347 78,748 72,774 151,522

Table 2.1: Performance (in thousands of cycles) of SIKE on a 3.4GHz Intel Core i7-6700 (Skylake)
processor. Cycle counts are rounded to the nearest 103 cycles.

16.04.3 LTS. The reference implementation is linked against GMP 6.1.1. As is standard practice, Tur-
boBoost was disabled during the tests. For compilation we used clang version 3.8.0 with the command
clang -O3. Results are similar, although slightly slower, when compiling with GNU GCC version 7.2.0.

Table 2.1 details the performance of the reference, optimized, x64-assembly, and compressed implemen-
tations of SIKE. As we can see, the constant-time optimized implementation is about 14-18 times faster
than the variable-time reference implementation, thanks to the use of more efficient elliptic curve arith-
metic and optimal strategies for isogeny computation. The use of assembly optimizations further improves
performance greatly. Compilers still do a poor job of generating efficient code for multiprecision opera-
tions, especially multiprecision multiplication and reduction. Thus, our best performance for SIKEp434,
SIKEp503, SIKEp610 and SIKEp751 (i.e., 6.3 msec., 9.0 msec., 16.8 msec. and 25.8 msec., respectively,
obtained by adding the times for encapsulation and decapsulation) is achieved with the use of hand-tuned
x64 assembly.
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Scheme secret key public key ciphertext shared secret
sk pk ct ss

SIKEp434 (44+330) 374 330 346 16
SIKEp503 (56+378) 434 378 402 24
SIKEp610 (62+462) 524 462 486 24
SIKEp751 (80+564) 644 564 596 32

SIKEp434_compressed (43+196) 239 196 209 16
SIKEp503_compressed (56+224) 280 224 248 24
SIKEp610_compressed (62+273) 336 273 297 24
SIKEp751_compressed (79+334) 413 331 363 32

Table 2.2: Size (in bytes) of inputs and outputs in SIKE.

Memory analysis

First, in Table 2.2 we summarize the sizes, in terms of bytes, of the different inputs and outputs required
by the KEM. We point out that we also include the public key in the secret key sizes in order to comply
with NIST’s API guidelines. Specifically, since NIST’s decapsulation API does not include an input for
the public key, it needs to be included as part of the secret key (see §1.3.10).

Table 2.3 shows the peak (stack) memory usage per function of the reference, optimized and additional
x64-assembly implementations. In addition, on the right-most column we display the size of the produced
static libraries.

To determine the memory usage we first run valgrind (http://valgrind.org/) to get “memory use
snapshots” during execution of the test program:

$ valgrind --tool=massif --stacks=yes --detailed-freq=1 ./sike/test_KEM

The command above produces a file of the form massif.out.xxxxx. Afterwards, we run massif-
cherrypick (https://github.com/lnishan/massif-cherrypick), which is an extension that out-
puts memory usage per function:

$ ./massif-cherrypick massif.out.xxxxx kem_function

Looking at the results in Table 2.3, one can note that the use of stack memory is relatively low. This is
one advantage of supersingular isogeny based schemes, which is partly due to the fact that these schemes
exhibit the most compact keys among popular post-quantum cryptosystems.

It can also be seen that the static library sizes can grow relatively high (see option compiled for speed).
However, it is possible to reduce the library sizes significantly, to around 60KB, at little performance cost:
compiling the additional implementations for size more than halves the library sizes and reduces speed
by less than 5%. It should be noted that the reference implementation is a single library for all SIKE
instantiations, and that GMP attributes to its size because of static linking. The stack memory usage is
relatively low due to GMP’s internal memory management.
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Scheme KeyGen Encaps Decaps static library
(stack) (stack) (stack) speed (-O3) size (-Os)

Reference Implementation
SIKEp434 448 448 448 89,148 81,860
SIKEp503 512 512 512 89,148 81,860
SIKEp610 640 640 640 89,148 81,860
SIKEp751 768 768 768 89,148 81,860

Optimized Implementation
SIKEp434 8,040 8,360 8,744 105,474 54,170
SIKEp503 8,072 8,456 8,904 120,202 58,714
SIKEp610 12,008 12,408 12,936 163,312 56,400
SIKEp751 13,912 14,040 14,696 164,810 60,162

Additional implementation using x64 assembly
SIKEp434 8,136 8,456 8,840 116,192 57,016
SIKEp503 8,152 8,536 8,984 131,872 62,752
SIKEp610 13,536 12,512 12,112 155,864 62,720
SIKEp751 14,064 14,192 14,960 188,800 68,928

Compressed SIKE implementation using x64 assembly
SIKEp434 16,920 15,640 17,000 1,875,070 1,768,350
SIKEp503 18,872 17,560 19,128 5,508,190 5,399,142
SIKEp610 23,824 22,048 24,144 4,342,086 4,191,974
SIKEp751 28,024 27,936 28,320 5,114,334 4,920,350

Table 2.3: Peak memory usage (stack memory, in bytes) and static library size (in bytes) of the various im-
plementations of SIKE on a 3.4GHz Intel Core i7-6700 (Skylake) processor. Static libraries were obtained
by compiling with clang and optimizing for speed (-O3) and for size (-Os).

2.3 Compressed SIKE implementation

We provide an implementation of SIKE that supports public-key compression (§1.5). The compressed
SIKE implementation uses the same codebase as the optimized x64 implementation, but additionally per-
forms public key compression along with key encapsulation. Compression is performed both for the static
public key and for the component of the ciphertext corresponding to the ephemeral public key.

In SIDH (§4.3.1), the public key pk2 encodes 3e3-torsion points, and the public key pk3 encodes 2e2-torsion
points. Key compression is faster on 2e2-torsion points than on 3e3-torsion points. If we assume that one
public key may be used to encrypt multiple ciphertexts over its lifespan, then we must designate pk2 for
static public keys and pk3 for ephemeral public keys in order to achieve optimal performance in the KEM
in the key compression setting. Accordingly, the compressed SIKE implementation swaps the roles of
the subscripts 2 and 3 in Algorithm 2.
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Tables 2.1 and 2.2 respectively indicate the performance penalty and key size improvements offered by
compressed SIKE. The performance penalties range from 139% to 161% for key generation, 66% to 90%
for encapsulation, and 59% to 68% for decapsulation, depending on parameter size. The size of the public
key is reduced by 41%, and the size of the ciphertext by 39%.

As seen in Table 2.3, compressed SIKE has modest memory requirements but incurs a large penalty in
terms of static library size. The size increase arises because our implementation uses large tables of
discrete logarithms in order to speed up compression. A time-space tradeoff is possible here — smaller
tables can be used, in exchange for slower performance. For some applications, such as IoT, which are
constrained in both time and space, further work is needed in order to find the optimal trade-off point.

2.4 64-bit ARM assembly implementation

The submission includes an additional implementation for 64-bit ARM processors. This implementation
is identical to the additional x64 implementation with the exception of the field arithmetic, which is written
with hand-optimized ARMv8 assembly.

To evaluate the performance of this implementation, we ran our benchmarking suite on a Google Pixel
device, powered by a 2.15GHz 64-bit ARM Cortex-A53 processor, running Android version 9. For com-
pilation we used clang version 7.0.1 with the command clang -O3.

Table 2.4 compares the performance of the additional ARMv8-assembly implementation of SIKE to the
(portable) optimized implementation of SIKE. As we can see, the specialized implementation is roughly
9 to 10 times faster than the generic optimized implementation, thanks to the use of assembly routines.
Our best performance for SIKEp503 and SIKEp751 on the targeted platform is 17.4 ms and 51.7 ms,
respectively, corresponding to the total time that it takes to compute the encapsulation and decapsulation
operations.

2.5 VHDL hardware implementation

The optimized VHDL hardware implementation accelerates SIKE operations by using Algorithms 3–24
listed in Appendix A. Thus, this hardware implementation uses projective coordinates on Montgomery
curves, an efficient double-point multiplication ladder, and an efficient tree traversal algorithm for isogeny
computation. A separate tree traversal strategy was computed with Algorithm 46 in Appendix C using
p = 2 and q = 1 which emphasizes isogeny evaluations. Notably, the hardware implementation focuses
on exploiting additional amounts of parallelism through the use of high-radix Montgomery multiplication,
simultaneous isogeny evaluation, and efficient scheduling of resources. This hardware implementation
emphasizes speed over area and power consumption.

The isogeny accelerator architecture includes a controller, program ROM, finite field arithmetic unit, reg-
ister file, Keccak block, and secret message buffer. After populating the register file with the public
parameters, adding keys, and writing a command, the controller can perform each step of the key encap-
sulation mechanism or the individual isogeny computations (isogen2, isogen3, isoex2, and isoex3) for
the public parameters listed in SIKEp751.
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Scheme KeyGen Encaps Decaps
total

(Encaps + Decaps)

Optimized implementation (portable)
SIKEp503 99,890 164,131 174,600 338,731
SIKEp751 340,405 551,450 592,002 1,143,452

SIKEp503_compressed 246,567 303,470 283,480 506,950
SIKEp751_compressed 808,182 1,017,284 941,211 1,958,495

Additional implementation using ARMv8 assembly
SIKEp503 10,862 18,090 19,329 37,419
SIKEp751 33,291 53,413 57,760 111,173

SIKEp503_compressed 28,078 34,064 31,499 65,563
SIKEp751_compressed 79,556 100,321 92,715 193,036

Table 2.4: Performance (in thousands of cycles) of SIKE on a 2.15GHz 64-bit ARM Cortex-A57 processor.
Results are measured in ns and scaled to cycles using the nominal processor frequency. Cycle counts are
rounded to the nearest 103 cycles.

#Multipliers Scheme Cycle counts (cc × 103)
KeyGen Encaps Decaps Total

2

SIKEp751

3,920 6,563 6,992 13,555
4 2,464 4,214 4,488 8,702
6 1,941 3,459 3,633 7,092
8 1,798 3,221 3,383 6,603

10 1,698 3,112 3,240 6,352

Table 2.5: Summary of cycle counts for SIKE accelerator architecture over parameters listed in SIKEp751.
The number of multipliers is a design parameter.

2.5.1 Performance

The SIKE hardware accelerator can perform KEM functions for the public parameters listed in SIKEp751.
There is some configurability in the number of replicated dual-multipliers which affects the number of
cycles per operation. Since the isogeny operations require the most time, this implementation parallelizes
various finite field arithmetic and isogeny calculations. In Table 2.5, we specify the total number of cycles
to perform the key encapsulation operations based on the number of multipliers. In the hardware package,
we include the version with 4 dual-multipliers, or 8 total multipliers.

2.5.2 FPGA SIKE Accelerator

The VHDL SIKE accelerator core was compiled for FPGA with Xilinx Vivado design suite version 2015.4
to a Xilinx Virtex-7 xc7vx690tffg1157-3 board. All results were obtained after place-and-route. The area
and timing results of our SIKEp751 accelerator core on FPGA are shown in Table 2.6. For our design, we
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Area Freq Time (msec)
# # # # # # (MHz) KeyGen Encaps Decaps

total
Mults FFs LUTs Slices DSPs BRAMs (Encaps + Decaps)

8 51,914 44,822 16,756 376 56.5 198 9.08 16.27 17.08 33.35

Table 2.6: FPGA implementation results of SIKE accelerator over SIKEp751 on a Xilinx Virtex-7 FPGA.

Area Frequency Time (msec)

Tech (nm) #Mults Area (kGE) (MHz) KeyGen Encaps Decaps
total

(Encaps + Decaps)
65 8 1,210 350 5.14 9.20 9.67 18.87

Table 2.7: Optimized hardware synthesis results for SIKE accelerator over SIKEp751. The area results do
not include synthesized program ROM, register file, or strategy lookup table results.

had the option of choosing how many dual multipliers to replicate. We focused on 4 replicated multipliers
in our design to ensure the parallelism in isogeny-based computations could be taken advantage of. These
are constant-time results. For the FPGA implementation over SIKEp751, encapsulation and decapsulation
can be performed in 16.27 and 17.08 msec, respectively. This results in a total KEM time of 33.35 msec.

2.5.3 ASIC SIKE Accelerator

The SIKE accelerator core was synthesized using Synopsys Design Compiler. The TSMC 65-nm CMOS
standard technology and CORE65LPSVT standard cell library were used for results. This implementation
was optimized for performance.

The area was converted to Gate Equivalents (GE), where the size of a single NAND gate is considered
1 GE. For our particular technology library, the size of a synthesized NAND gate was 1.41 µm2, so this
was used as the conversion factor. For the ASIC implementation over SIKEp751, encapsulation and
decapsulation can be performed in 9.20 and 9.67 msec, respectively. Thus, the total KEM time is 18.87
msec. The area and timing results of our design are shown in Table 2.7.
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Chapter 3

Known Answer Test values

The submission includes KAT values with tuples containing secret keys (sk), public keys (pk), cipher-
texts (ct) and shared secrets (ss) corresponding to the proposed KEM schemes SIKEp434, SIKEp503,
SIKEp610, SIKEp751, SIKEp434_compressed, SIKEp503_compressed, SIKEp610_compressed and
SIKEp751_compressed. The KAT files can be found in the media folder of the submission: \KAT\
PQCkemKAT_374.rsp, \KAT\PQCkemKAT_434.rsp, \KAT\PQCkemKAT_524.rsp and \KAT\PQCkemKAT_
644.rsp, \KAT\PQCkemKAT_239.rsp, \KAT\PQCkemKAT_280.rsp, \KAT\PQCkemKAT_336.rsp and
\KAT\PQCkemKAT_413.rsp for SIKEp434, SIKEp503, SIKEp610, SIKEp751, SIKEp434_compressed,
SIKEp503_compressed, SIKEp610_compressed and SIKEp751_compressed, respectively.

In addition, we provide a test suite that can be used to verify the KAT values against any of the imple-
mentations. Instructions to compile and run the KAT test suite can be found in the README file in the
top-level directory of the media folder (see Section 2, “Quick Instructions”).

38



Chapter 4

Expected security strength

4.1 Security

The security of SIKE informally relies on the (supersingular) isogeny walk problem: given two elliptic
curves E, E′ in the same isogeny class, find a path made of isogenies of small degree between E and E′.

The isogeny walk problem has been considered in the literature even before the introduction of isogeny-
based cryptography. The best generic algorithm currently known is due to Galbraith [15]: it is a meet-
in-the-middle strategy that, on average, requires a number of elementary steps proportional to the square
root of the size of the isogeny class of E and E′. In the supersingular case, an improvement due to Delfs
and Galbraith [12] has roughly the same computational complexity, but only uses a constant amount of
memory.

Over Fp2 , there is a unique isogeny class of supersingular elliptic curves (up to twist), and it has size
roughly p/12. Thus, the algorithm of Delfs and Galbraith would find an isogeny between the starting
curve E0 and a public curve E′ in O(

√
p) time.1 Nevertheless, these generic algorithms do not improve

upon exhaustive search. Indeed, if p = 2e2 · 3e3 − 1, the key spaces K2 and K3 have sizes roughly 2e2 and
3e3; thus, if these are chosen to balance out, then the size of the key spaces is roughly

√
p.

However, the idea of Galbraith’s meet-in-the-middle approach can be easily adapted to attack SIKE in
only O( 4

√
p) operations. To find the secret isogeny of degree `e` between E0 and E′, an attacker builds a

tree of all curves isogenous to E0 via isogenies of degree `e`/2, and a similar tree of all curves isogenous
to E′ of degree `e`/2. Since we suppose that an isogeny of degree `e` exists between E0 and E′, and since
the length of this walk is much shorter than the size of the graph, with high probability the two trees will
have exactly one curve E′′ in common, so the secret isogeny will be recovered by composing the paths
E0 → E′′ and E′′ → E′. This procedure only requires O(

√
`e`) elementary steps, or O( 4

√
p), as announced.

Given two functions f : A → C and g : B → C with domain of equal size, finding a pair (a, b) such that
f (a) = g(b) is known as the claw problem in complexity theory. The claw problem can obviously be solved
using O(|A| + |B|) invocations of f and g on average, by building a hash table holding f (a) for any a ∈ A

1The attentive reader will have noticed that knowing a generic path between E0 and E′ is not necessarily equivalent to
knowing the secret path generated by isogen`. However, a complete reduction of the security of SIKE to the isogeny walk
problem is presented in [17].
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and looking for hits for g(b) where b ∈ B. However, one can do better with a quantum computer using
Tani’s claw-finding algorithm [37], which only uses O( 3√

|A||B|) invocations to quantum oracles for f and
g. These complexities are optimal for a black-box claw attack [43]. For given supersingular curves E, E′

we could, for example, let A resp. B be the set of points of order exactly `e`/2 on E resp. E′, and C the set
of supersingular j-invariants. The functions f and g compute `e`/2-isogenies which have kernels generated
by their input points and return the j-invariant of the final curve. Classically this is exactly the O(

√
`e`)

attack described above, and applying Tani’s algorithm to SIKE gives an attack requiring O( 3√
`e`) = O( 6

√
p)

invocations of a quantum isogeny computation oracle.

While the generic algorithms described above (and their asymptotic complexities) were used for the se-
curity analysis in the initial SIKE proposal, a series of subsequent papers beginning with [1] have since
argued that the parallel collision finding algorithm of van Oorschot and Wiener [40] is the best classical
claw-finding attack on SIKE, and [21] even argues that the above query-optimal instantiation of Tani’s
algorithm is outperformed by the classical van Oorschot and Wiener algorithm. We further discuss the
concrete security of SIKE in Chapter 5.

We stress that, while breaking SIKE keys can be reduced to claw finding, no reduction is known in the
opposite direction, nor is it widely believed that such a reduction should exist. The security of SIKE is
modeled after a much more specific problem named SIDH (see Problem 1). In particular the knowledge of
the coordinates (x1, x2, x3) output by isogen` apparently gives more information than what is available in
the claw problem. Nevertheless, to this day no attack seems to be able to exploit this auxiliary knowledge
against SIKE. For this reason, we assume that the security of the claw problem and SIDH are equivalent,
and analyze security accordingly.

4.2 Other attacks

Other attacks applying to specific security models have appeared in the literature in recent years.

Galbraith, Petit, Shani and Ti [17] exhibit a very efficient polynomial-time attack against SIDH with static
keys. Their technique is readily adapted to a chosen ciphertext attack against the scheme PKE. However,
their attack does not apply to KEM, as we will prove in the next section that the scheme is CCA secure.

Many authors have considered the security of SIDH under various side-channel scenarios:

• Galbraith, Petit, Shani and Ti [17] show how a secret j-invariant can be recovered from some partial
knowledge of it.

• Ti [39] explains how a random perturbation to the inputs of isogen` yields to a key recovery with
very high probability in most protocols derived from SIDH. It is not clear, however, how the tech-
nique can be used against the public key format specified in 1.2.9.

• Gélin and Wesolowski [18] present a loop-abort fault attack that potentially leads to an efficient key
recovery against the “simple” version of isogen` given in Algorithms 17 and 18. However their
attack is efficiently countered by the additional checks in Algorithms 19 and 20.
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A recent preprint by Petit [30] presents various polynomial-time attacks against generalizations of SIDH.
None of the systems successfully attacked by Petit had previously appeared in the literature, and in partic-
ular the schemes presented in this document are not affected by the attack. It is not clear that Petit’s attacks
could possibly be extended to break real uses of SIDH and derived schemes. The technique employed by
Petit, however, sheds some light on the separation between the isogeny walk problem and the possibly
(though not yet shown to be) easier SIDH problem.

Even more recently, Petit and Lauter [31] showed that the isogeny walk problem used to construct the
Charles-Goren-Lauter hash function [5] is equivalent to the problem of computing endomorphism rings of
supersingular elliptic curves, which is possibly (but not yet shown to be) harder than the SIDH problem.
However, it does not appear to be possible to extend the Charles-Goren-Lauter hash construction to yield
key exchange.

4.3 Security proofs

The PKE scheme in §1.3.9 is a modified version of the classical hashed ElGamal scheme that replaces
the group-based computational Diffie-Hellman problem by its analogue in the setting of supersingular
isogenies (Problem 1 below). As such, the proofs of the IND-CPA PKE scheme and the subsequent IND-
CCA KEM are standard; these are given in §4.3.2 and §4.3.3.

4.3.1 The SIDH problem

Problem 1 is the Supersingular Isogeny Diffie-Hellman (SIDH) problem [11, Problem 5.3].

Problem 1. Let sk2 ∈ K2 and sk3 ∈ K3. Let pk2 = isogen2(sk2) and pk3 = isogen3(sk3). Given(
E0, pk2, pk3

)
, compute j = isoex2(pk3, sk2) = isoex3(pk2, sk3).

4.3.2 IND-CPA PKE

Define the IND-CPA security of a public-key encryption scheme in the standard way (e.g. see [3, 23]).
Assume that F is a random oracle.

Proposition 1. In the random oracle model, PKE is IND-CPA if SIDH is hard.

Proof. The public-key encryption scheme is the classical hashed ElGamal scheme converted to the setting
of supersingular isogeny graphs. More specifically, note that we can view ElGamal as a static-ephemeral
Diffie–Hellman key exchange to obtain a shared secret, which is hashed and used a secret key for a sym-
metric algorithm (for example the one-time pad) to encrypt a message. The scheme PKE simply replaces
the original group-based Diffie–Hellman exchange by an SIDH key exchange, but is otherwise identical
to hashed ElGamal. As a result, its proof of security is completely analogous. For example, see [23, Thm
5], [16, Thm 20.4.11] or [22, Thm 11.21]. �

Remark 3. There exist alternative proofs of security in the standard model, reducing the security to a
decisional variant of SIDH [11, Problem 5.4] instead of SIDH (see [11, Thm 6.2], based on [34, Thm 2]
and [33, §3.4]).
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4.3.3 IND-CCA KEM

Theorem 1 ([19]). For any IND-CCA adversary B against KEM, issuing at most qG (resp. qH) queries to
the random oracle G (resp. H), there exists an IND-CPA adversary A against PKE with

AdvIND−CCAKEM (B) ≤
2qG + qH + 1

2n + 3 · AdvIND−CPAPKE (A).

Proof. This is the bound obtained by combining the results from Theorem 3.2 and Theorem 3.4 from [19],
setting KEM = U 6⊥[T [PKE,G],H].

Note that Decaps slightly deviates from the definition in [19]. Instead of full “re-encryption” (c′0, c
′
1) ←

Enc(pk3,m
′; G(m′ || pk3)), we only re-compute c′0. However, full computation would yield

c′1 = m′ ⊕ F(isoex2(pk3,G(m′ || pk3))) = m′ ⊕ F(isoex3(c′0, sk3)),

while c1 = m′ ⊕ F(isoex3(c0, sk3)). Hence it is clear that c′0 = c0 implies c′1 = c1, making the computation
of c′1 redundant. �
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Chapter 5

Analysis with respect to known attacks

In choosing concrete parameter sizes, our goal is to ensure that the computational cost of breaking
SIKEpXXX, where XXX ∈ {434, 610, 751}, requires respective resources comparable to those required for
key search on a k-bit (ideal) block cipher B, where k ∈ {128, 192, 256}. In addition, our goal is to ensure
that the computational cost of breaking SIKEp503 requires resources comparable to those required for
collision search on a 256-bit (ideal) hash function.

We discuss the complexity of the best known classical attacks in §5.1 and the complexity of the best known
quantum attacks in §5.2. Side-channel attacks are discussed in §5.3.

5.1 Classical security

Following the submission of SIKE to the NIST call in November of 2017, a series of papers have emerged
that have scrutinized the application of generic meet-in-the-middle attacks described in §4.1. The work
of Adj, Cervantes-Vázquez, Chi-Domínguez, Menezes and Rodríguez-Henríquez [1] was the first paper
to argue that the parallel collision-finding algorithm of van Oorschot and Wiener (vOW) [40] is actually
the attack that should be used to evaluate the security of SIKE. The reason is that the O(p1/4) memory that
is required to mount the generic meet-in-the-middle attack — that which runs in O(p1/4) time — is far
beyond feasible for SIKE parameters in the ranges of interest. Since the best known generic attack against
ideal block ciphers (e.g., AES) use only a moderate amount of memory, in deriving SIKE parameters for
which the computational resources are comparable to AES instantiations, the most appropriate model is
to fix an upper bound on the classical memory available, and to evaluate the runtime of the best known
attacks subject to this limit.

Under the assumption that the memory available permits the storage of 280 units, Adj et al. [1] conclude
that SIKEp434 and SIKEp610 meet the respective security requirements of NIST’s categories 2 and 4. A
subsequent paper by Jaques and Schanck [21] — which is largely geared towards the analysis of quantum
algorithms, but also considers vOW — further endorses the classical complexity claims of Adj et al with
respect to these two curves and the NIST requirements they satisfy. And, in addition to a further endorse-
ment of these two curves, a recent paper by Costello, Longa, Naehrig, Renes and Virdia [9] argues that
SIKEp751, which was initially proposed to meet level 3, actually meets NIST’s category 5 requirements.
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We refer to these three papers (and the original vOW paper) for the in-depth analyses, but we summa-
rize their application to three SIKE parameterizations in Table 5.1, noting that they use slightly different
memory assumptions and/or cost metrics in order to estimate the complexity of vOW against SIKE pa-
rameters. Adj et al. assume that the memory permits the storage of 280 units, and present their results in
“total time”, where the unit of time is actually the time complexity of a degree `e/2-isogeny; thus, although
their times fall slightly below NIST’s required gate counts, the corresponding conversion to gate counts
would see these parameters comfortably exceed NIST’s requirements. The classical analysis of Jaques and
Schanck uses the PRAM model and estimates the number of classical gates under the assumption that the
memory is 296 bits. Their model does incorporate the cost of the isogeny computations, but is still rather
conservative. Finally, the vOW analysis of Costello et al. estimates the total number of x64 instructions
required to mount the vOW attack, and argues that this is also a conservative lower bound on the true clas-
sical gate count. In particular, for the SIKEp751 parameterization, they conclude that the true gate count
corresponding to their estimated 2262 x64 instructions would exceed NIST’s 2272 gate count requirement.

Target Classical gate Classical security estimates

level requirement Total time Gates x64 instructions

[38] [1] [21, Fig. 4(d)] [9]

memory 280 units memory 296 bits memory 280 units

SIKEp434 1 143 128 142 143

SIKEp503 2 146 152 169∗ 169∗

SIKEp610 3 207 189 209 210

SIKEp751 5 272 - 263∗ 262

Table 5.1: Classical security estimates of the three SIKE parameterizations according to Adj et al. [1],
Jaques and Schanck [21], and Costello et al. [9]. Gate requirements and classical security estimates are all
expressed as their base-2 logarithms. The values marked with (*) are not found in the actual papers. In the
case of [9], we obtained the numbers for SIKEp503 using their scripts, where (for the half-sized isogenies
used in vOW) the optimal strategy for the 2-torsion resulted in 362 doublings and 189 4-isogenies, and the
optimal strategy for the 3-torsion yielded 229 triplings and 275 3-isogenies. In the former scenario, a vOW
isogeny required over 222 x64 instructions, and in the latter, over 223 x64 instructions. In the case of [21],
the RAM operations for SIKEp503 and SIKEp751 were taken from the width-restricted table in §5.2.

5.2 Quantum security

The initial SIKE proposal used the asymptotic complexity of Tani’s quantum claw-finding algorithm [37]
together with crude lower bounds for the number of quantum gates used in an Fp-multiplication and
the number of such multiplications in a typical isogeny computation to provide conservative resource
estimates for the cost of quantum cryptanalysis of SIKE. The recent paper by Jaques and Schanck [21]
conducts a much more detailed analysis of the best known quantum algorithms to solve the computational
supersingular isogeny problem. Jaques and Schanck propose a model of quantum computation that allows
a direct comparison between quantum and classical algorithms. They treat qubit registers as memory
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peripherals for classical control processors, which run quantum circuits through RAM operations on qubit
memory peripherals. This allows them to use the number of RAM operations as the algorithm’s cost
function, derived either from the quantum gate count in a quantum circuit or the product of its depth and
width. The crucial difference to previous cost estimates lies in considering the complexity of implementing
and querying quantum memory.

Jaques and Schanck consider both Tani’s algorithm as well as a direct application of Grover’s algorithm
to the claw-finding problem, but also include the purely classical vOW algorithm. Their analysis provides
various trade-offs between time, memory and RAM operations, which lead to the preference of different
algorithm parameterizations depending on the given attack constraints. They conclude that in a scenario
with limited memory, quantum algorithms promise to be more efficient, but that the classical vOW al-
gorithm outperforms quantum algorithms for attackers with limited time. Therefore, in some scenarios,
security against classical attacks is the limiting factor for selecting parameters. In particular, it is argued
that the classical hardware required to run the query-optimal parameterization of Tani’s algorithm can be
used to break SIKE faster by running the classical vOW algorithm on that same hardware.

Figure 4 in [21] provides concrete cost estimates for solving the computational supersingular isogeny
problem in different scenarios for the parameters SIKEp434 and SIKEp610. The relevant constraint for
matching the NIST security categories is imposing a depth restriction on quantum circuits between 264

and 296 (corresponding to the MAXDEPTH parameter in the NIST call for proposals [38]). Allowing
depth 296, Jaques and Schanck conclude that no known quantum algorithm can break SIKE in their model
of computation with less than 2143 classical gates and 2207 classical gates for SIKEp434 and SIKEp610,
respectively. Therefore, these two parameter sets are suitable for NIST categories 1 and 3. Running
the scripts accompanying [21] to produce the same tables for SIKEp503 and SIKEp751 suggest that no
quantum algorithm can break those with less than 2146 and 2272 classical gates, respectively, which confirms
that these parameter sets are suitable for NIST categories 2 and 5.

Tables 5.2, 5.3, 5.4 and 5.5 were obtained with the methodology from [21], including all SIKE parameter
sets1. They show the base-2 logarithm of the classical gate count costs (G) and the corresponding depth
(D) and width (W) for a specific parameterisation of a given algorithm. The algorithms considered are a
direct application of Grover search, Tani’s claw-finding algorithm and the classical van Oorschot-Wiener
collision search algorithm (vOW). Table 5.2 shows results when the depth is restricted to either 264 or 296.
This corresponds to the NIST model for quantum computation. In this case, the classical vOW algorithm
does not show the optimal gate count, but instead minimizes the memory (width) with the given depth
restriction. Table 5.3 instead restricts the width of the algorithm to either 264 or 296. Tables 5.4 and
5.5 show the gate cost optimal and the depth-width cost optimal settings. It should be noted that these
parameterizations either violate a reasonable depth or width constraint.

5.3 Side-channel attacks

Side-channel analysis targets various physical phenomena that are emitted by a cryptographic implemen-
tation to reveal critical internal information of the device. Power consumption information, timing in-
formation, and electromagnetic radiation are all emitted externally as cryptographic computations are
performed. Simple power analysis (SPA) analyzes a single power signature of a device, while differential

1Sam Jaques kindly produced these tables for us with the scripts used to generate the tables in [21].
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SIKEp434 SIKEp503 SIKEp610 SIKEp751

Algorithm G D W G D W G D W G D W

Grover 190 64 127 226 64 162 280 64 216 352 64 288

Tani 175 63 126 210 64 161 264 64 216 336 63 288

vOW 145 64 91 162 63 109 189 63 136 225 63 173

Grover 158 96 63 194 96 98 248 96 152 320 96 224

Tani 143 95 62 178 96 97 232 96 152 304 95 224

vOW 155 95 70 173 95 88 200 95 115 236 96 151

Table 5.2: Cost estimates for algorithms to solve the computational supersingular isogeny problem on
SIKE parameter sets with depth constraints. The first three lines restrict to maximal depth close to 264, the
last three to 296.

SIKEp434 SIKEp503 SIKEp610 SIKEp751

Algorithm G D W G D W G D W G D W

Grover 159 95 64 177 113 64 204 140 64 240 176 64

Tani 144 94 64 162 112 65 188 140 64 224 175 64

vOW 158 104 64 185 131 64 225 172 64 279 226 64

Grover 175 79 96 193 97 96 220 124 96 256 160 96

Tani 160 78 96 178 96 97 204 124 96 240 159 96

vOW 142 56 96 169 83 96 209 124 96 263 178 96

Table 5.3: Cost estimates for algorithms to solve the computational supersingular isogeny problem on
SIKE parameter sets with width constraints. The first three lines restrict to maximal width close to 264, the
last three to 296.

SIKEp434 SIKEp503 SIKEp610 SIKEp751

Algorithm G D W G D W G D W G D W

Grover 132 122 10 150 140 10 177 167 10 213 202 11

Tani 124 114 25 142 132 25 169 159 25 205 194 27

vOW 132 14 128 150 15 145 177 14 173 213 16 208

Table 5.4: Cost estimates for algorithms to solve the computational supersingular isogeny problem on
SIKE parameter sets optimizing G-cost.
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SIKEp434 SIKEp503 SIKEp610 SIKEp751

Algorithm G D W G D W G D W G D W

Grover 132 122 10 150 140 10 177 167 10 213 202 11

Tani 131 122 10 149 139 10 177 166 10 213 202 11

VW 132 14 128 150 15 145 177 14 173 213 16 208

Table 5.5: Cost estimates for algorithms to solve the computational supersingular isogeny problem on
SIKE parameter sets optimizing DW-cost.

power analysis (DPA) statistically analyzes many power runs of a device. Timing analysis targets timing
information of various portions of the computation. Electromagnetic radiation can be seen as an extension
of power analysis attacks by analyzing electromagnetic emissions instead of power.

In general, isogeny-based cryptography comes down to two computations: generation of a secret kernel
and computing a large-degree isogeny over that kernel. In schemes like SIKE, the secret kernel is found
by computing a double-point multiplication over a torsion basis. Thus, there are 2 general approaches an
attacker can exploit to attack the security of the cryptosystem via side-channel analysis:

1. Reveal parts of the hidden kernel point,

2. Reveal secret isogeny walks during the isogeny computation.

Regarding the first approach, a double-point multiplication over a torsion basis is used to compute the
hidden kernel. This computation shares many similarities with traditional elliptic curve cryptography.
Accordingly, existing techniques for elliptic curve cryptography side-channel attacks can be applied to
reveal information about this ladder and what kind of hidden kernel point was generated. Further, invalid
parameters may be injected by providing an invalid torsion basis or invalid curve, thus limiting the possible
number of valid kernel points of full isogeny order.

For the second approach, the hidden kernel point is used to perform various walks of small degree on an
isogeny graph. If an attacker can identify specific walks used during this computation, then the attacker
has a subset of the isogeny computation between two distant isomorphism classes and the security of
SIKE is weakened. As this part of the computation has no analogue in traditional ECC, this category of
side-channels attacks is being actively investigated by the research community.

In targeting these parts of the SIKE cryptosystem, an attacker no doubt has access to a wide range of
power, timing, fault, and various other side-channels. Constant-time implementations using a constant set
of operations has been shown to be a good countermeasure against SPA and timing attacks. Higher level
differential power analysis attacks and fault injection attacks are much harder to defend against. Papers and
publications describing side-channel attacks against SIKE and countermeasures include [18, 25, 26, 39].
We remark that most, if not all, post-quantum cryptosystems are vulnerable to side-channel attacks to
some extent, and research in this area is extremely active.
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Chapter 6

Advantages and Limitations

Despite their relatively short lifespans as foundations for cryptographic key exchange, problems relating
to the computation of isogenies between elliptic curves defined over finite fields have been studied since at
least as far back as the mid 1990’s [24]. Although there exists a subexponential quantum algorithm [6] that
can solve the analogue of SIDH that uses ordinary curves (this scheme was first suggested by Couveignes
in 1997 [10] and later published by Rostovtsev and Stolbunov in 2006 [32, 35]), the best classical attacks
against this protocol remain exponential. Moreover, given that problems for which there exist subexpo-
nential classical algorithms (e.g., RSA) are widely used and considered secure in the classical sense, even
the existence of a quantum subexponential attack against the ordinary analogue of SIDH does not neces-
sarily preclude its consideration in the quantum setting. Nevertheless, the supersingular case is currently
preferred because it is more efficient, and because the best known classical and quantum algorithms for
solving well-formed instances of the SIDH problem (see §4.3.1) are exponential. Computational num-
ber theorists therefore have reasonable evidence that the underlying problems are hard. Furthermore, if
the best algorithms for SIDH remain the claw-finding algorithms, then we have known lower bounds
on the respective classical and quantum complexities in the asymptotic case (cf. §4.1). Moreover, two
recent works [1, 9] have both shown that implementations of the vOW algorithm in the context of the
computational supersingular isogeny problem essentially perform in exact accordance with the theoreti-
cal predictions made by van Oorschot and Wiener [40]. Coupled with the recent quantum cryptanalysis
performed by Jaques and Schanck [21], these works provide confidence in the concrete security of the
parameterizations in the present proposal.

We note that the number of isogeny classes that can be used at any given security level are plentiful; even
when restricting to the case of 2e2- and 3e3-isogenies, there are many primes of the form p = f · 2e23e3 − 1
(where f is a small cofactor [11]) with 2e2 ≈ 3e3 that can be used for secure SIKE instantiations. Fixing
f = 1 still yields many choices at any given security level, and the SIKEp434, SIKEp503, SIKEp610, and
SIKEp751 parameters were selected from these candidates according to the criteria discussed in §1.6.

Following decades of intense research on traditional elliptic curve cryptography, one advantage of isogeny-
based schemes is that there already exists a wide-reaching global expertise in the secure implementation
of curve-based cryptography. History has shown that the most serious reported real-world attacks against
public-key cryptography have not been a result of algorithms that break the underlying mathematical
problems, but rather a result of attacks that exploit poor implementations (e.g., side-channel attacks).
Isogeny-based cryptography essentially inherits all of its operations from elliptic curve cryptography, so
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any implementer that is experienced with producing secure code for real-world ECC should find little or
no trouble developing secure code for the scheme in this proposal.

Compared to other primitives that are conjectured to offer reasonable quantum security, the main practical
advantage of SIKE is its relatively small key sizes. The uncompressed public key (resp. ciphertext)
sizes corresponding to SIKEp434 and SIKEp503 are 330 and 378 (resp. 378 and 402) bytes, which is
comparable to the 384-byte (3072-bit) modulus that is conjectured to offer 128 bits of classical security.
Likewise, SIKEp610 public keys (resp. ciphertexts) are 462 (resp. 486) bytes, and the largest of our
parameter sets, SIKEp751, has 564-byte uncompressed public keys and 596-byte ciphertexts. One main
update made to this version of the proposal is the inclusion of a protocol specification that offers further
public key and ciphertext compression; this reduces all of the above numbers to roughly 60% of their
former size, for performance overheads ranging from 139% to 161% during public key generation, 66%
to 90% during encapsulation, and 59% to 68% during decapsulation (Tables 2.1 and 2.2), and a significant
cost in static library size (Table 2.3).

The ease of partnering supersingular isogeny-based public-key cryptography with strong classical elliptic
curve cryptography (ECC) is discussed in [8, §8]. In particular, a sound SIKE software library contains all
of the ingredients necessary to securely implement elliptic curve Diffie-Hellman in a hybrid key exchange
scheme, with a minimal amount of additional coding effort required. As in the case of high-performance
ECC implementations, a large portion of the code is dedicated to tailored arithmetic in the underlying finite
field. Strong, well-chosen Montgomery curves (like those recently chosen for adoption in TLS [28]) can
be defined over any large enough prime field, and (beyond the field arithmetic) are essentially implemented
in the same way. Even when defined over the 434 and 503-bit prime fields corresponding to SIKEp434
and SIKEp503, this technique gives rise to respective SIKE+ECDH hybrids that offer around 216 and
251 bits of ECDLP security, the latter being comparable to the NISTp521 curve. The corresponding
(uncompressed) SIKE+ECDH public keys inflate by a factor of no more than 1.17x relative to SIKE
alone, and the benchmarks reported in [8, Table 3] show that the performance slowdown is even less than
this factor.

Relative to other post-quantum candidates, the main practical limitation of SIKE currently lies in its per-
formance. Although the benchmarks in §2.2 show that, especially for the SIKEp434 and SIKEp503 pa-
rameters, SIKE is already practical enough for many applications, it is still at least an order of magnitude
slower than some popular lattice- and code-based alternatives. Nevertheless, high-performance supersin-
gular isogeny-based public-key cryptography is arguably much less developed than its counterparts, and a
similar trade-off (small keys versus larger latencies) was seen in the early days of classical elliptic curve
cryptography; this was before the decades of research and performance optimizations brought ECC to the
high-performance alternative it is today. In addition, for many applications, such as protocols with fixed-
size packets, bandwidth is a more precious commodity than computational cycles, and SIKE represents a
good fit for such situations.

49



Bibliography

[1] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domínguez, Alfred Menezes, and Francisco
Rodríguez-Henríquez. On the cost of computing isogenies between supersingular elliptic curves.
In Carlos Cid and Michael J. Jacobson Jr., editors, Selected Areas in Cryptography - SAC 2018 -
25th International Conference, Calgary, AB, Canada, August 15-17, 2018, Revised Selected Papers,
volume 11349 of Lecture Notes in Computer Science, pages 322–343. Springer, 2018. 40, 43, 44, 48

[2] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christopher Leonardi. Key com-
pression for isogeny-based cryptosystems. In Keita Emura, Goichiro Hanaoka, and Rui Zhang,
editors, Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography,
AsiaPKC@AsiaCCS, Xi’an, China, May 30 – June 03, 2016, pages 1–10. ACM, 2016. 11, 18, 19

[3] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions
of security for public-key encryption schemes. In Advances in Cryptology — CRYPTO ’98, 18th
Annual International Cryptology Conference, Santa Barbara, California, USA, August 23-27, 1998,
Proceedings, pages 26–45, 1998. 41

[4] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck,
Peter Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM.
Cryptology ePrint Archive, Report 2017/634, 2017. http://eprint.iacr.org/2017/634. 17

[5] Denis Charles, Kristin Lauter, and Eyal Goren. Cryptographic hash functions from expander graphs.
J. Cryptology, 22(1):93–113, 2009. 41

[6] Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve isogenies in
quantum subexponential time. J. Mathematical Cryptology, 8(1):1–29, 2014. 48

[7] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David Urbanik. Effi-
cient compression of SIDH public keys. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology — EUROCRYPT 2017 — 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France, April 30 – May 4, 2017, Pro-
ceedings, Part I, volume 10210 of Lecture Notes in Computer Science, pages 679–706, 2017. 1, 11,
18, 19, 20

[8] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for supersingular isogeny
Diffie-Hellman. In Matt Robshaw and Jonathan Katz, editors, Advances in Cryptology — CRYPTO
2016 — 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-
18, 2016, Proceedings, Part I, volume 9814 of Lecture Notes in Computer Science, pages 572–601.
Springer, 2016. 1, 7, 12, 13, 49

50

http://eprint.iacr.org/2017/634


[9] Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes, and Fernando Virdia. Improved clas-
sical cryptanalysis of the computational supersingular isogeny problem. Cryptology ePrint Archive,
Report 2019/298, 2019. https://eprint.iacr.org/2019/298. 12, 43, 44, 48

[10] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291,
2006. http://eprint.iacr.org/2006/291. 48

[11] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from supersin-
gular elliptic curve isogenies. J. Mathematical Cryptology, 8(3):209–247, 2014. 1, 13, 14, 15, 17,
41, 48

[12] Christina Delfs and Steven D. Galbraith. Computing isogenies between supersingular elliptic curves
over Fp. Designs, Codes and Cryptography, 78(2):425–440, Feb 2016. 39

[13] Morris J. Dworkin. SHA-3 standard: Permutation-based hash and extendable-output functions. Fed-
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Appendix A

Explicit algorithms for isogen` and isoex`:
Optimized implementation

This section contains explicit formulas for computing the isogenies described in §1.3.5 and §1.3.6. As-
suming access to all of the field operations in Fp2 , Algorithms 3–24 can compute isogen` and isoex`
for ` ∈ {2, 3} in their entirety for the three sets of parameters SIKEp434, SIKEp503, and SIKEp751. In
the case of SIKEp610, the exponent of 2 is odd, meaning the algorithm needs to start or finish with a
single 2-isogeny; for simplicity, we have presented the algorithms using 4-isogenies only, but refer to the
codebase(s) in the case of SIKEp610 for the scenario where a 2-isogeny is needed.

The notation (XP : ZP) with ZP , 0 is used for the projective tuple in P1(Fp2) representing the Montgomery
x-coordinate xP = XP/ZP; lower case letters are used for normalized coordinates, upper cases for projective
coordinates.

Several variants of the Montgomery curve constants are used below for enhanced performance. Write Ea

for the curve Ea/Fp2 : y2 = x3 + ax2 + x and use (A : C) to denote the equivalence (A : C) ∼ (a : 1)
in P1(Fp2). Furthermore, define (A+

24 : C24) ∼ (A + 2C : 4C), (A+
24 : A−24) ∼ (A + 2C : A − 2C), and

(a+
24 : 1) ∼ (A + 2C : 4C).

Algorithm 8, which computes the three point ladder, uses the recent and improved algorithm from [14].

Algorithms 19 and 20 use a deque (double ended queue) data structure with three defined operations: push
adds an item on top of the deque, pop removes an item from the top of the deque, and pull removes an
item from the bottom of the deque.

Algorithm 3: Coordinate doubling

function xDBL
Input: (XP : ZP) and (A+

24 : C24)

Output: (X[2]P : Z[2]P)

1 t0 ← XP − ZP

2 t1 ← XP + ZP

3 t0 ← t2
0

4 t1 ← t2
1

5 Z[2]P ← C24 · t0
6 X[2]P ← Z[2]P · t1

7 t1 ← t1 − t0
8 t0 ← A+

24 · t1
9 Z[2]P ← Z[2]P + t0

10 Z[2]P ← Z[2]P · t1
11 return (X[2]P : Z[2]P)
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Algorithm 4: Repeated coordinate doubling

function xDBLe
Input: (XP : ZP), (A+

24 : C24), and e ∈ Z

Output: (X[2e]P : Z[2e]P)

1 (X′ : Z′)← (XP : ZP)

2 for i = 1 to e do
3 (X′ : Z′)← xDBL

(
(X′ : Z′), (A+

24 : C24)
)

// Alg. 3

4 return (X′ : Z′)

Algorithm 5: Combined coordinate doubling and differential addition

function xDBLADD
Input: (XP : ZP), (XQ : ZQ), (XQ−P : ZQ−P), and (a+

24 : 1) ∼ (A + 2C : 4C)

Output: (X[2]P : Z[2]P), (XP+Q : ZP+Q)

1 t0 ← XP + ZP

2 t1 ← XP − ZP

3 X[2]P ← t2
0

4 t2 ← XQ − ZQ

5 XP+Q ← XQ + ZQ

6 t0 ← t0 · t2
7 Z[2]P ← t2

1

8 t1 ← t1 · XP+Q

9 t2 ← X[2]P − Z[2]P

10 X[2]P ← X[2]P · Z[2]P

11 XP+Q ← a+
24 · t2

12 ZP+Q ← t0 − t1
13 Z[2]P ← XP+Q + Z[2]P

14 XP+Q ← t0 + t1

15 Z[2]P ← Z[2]P · t2
16 ZP+Q ← Z2

P+Q

17 XP+Q ← X2
P+Q

18 ZP+Q ← XQ−P · ZP+Q

19 XP+Q ← ZQ−P · XP+Q

20 return {(X[2]P : Z[2]P),

(XP+Q : ZP+Q)}

Algorithm 6: Coordinate tripling

function xTPL
Input: (XP : ZP) and (A+

24 : A−24)

Output: (X[3]P : Z[3]P)

1 t0 ← XP − ZP

2 t2 ← t2
0

3 t1 ← XP + ZP

4 t3 ← t2
1

5 t4 ← t1 + t0
6 t0 ← t1 − t0

7 t1 ← t2
4

8 t1 ← t1 − t3
9 t1 ← t1 − t2

10 t5 ← t3 · A+
24

11 t3 ← t5 · t3
12 t6 ← t2 · A−24

13 t2 ← t2 · t6
14 t3 ← t2 − t3
15 t2 ← t5 − t6
16 t1 ← t2 · t1
17 t2 ← t3 + t1
18 t2 ← t2

2

19 X[3]P ← t2 · t4
20 t1 ← t3 − t1
21 t1 ← t2

1

22 Z[3]P ← t1 · t0
23 return (X[3]P : Z[3]P)
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Algorithm 7: Repeated coordinate tripling

function xTPLe
Input: (XP : ZP), (A+

24 : A−24), and e ∈ Z+

Output: (X[3e]P : Z[3e]P)

1 (X′ : Z′)← (XP : ZP)

2 for i = 1 to e do
3 (X′ : Z′)← xTPL

(
(X′ : Z′), (A+

24 : A−24)
)

// Alg. 6

4 return (X′ : Z′)

Algorithm 8: Three point ladder

function Ladder3pt
Input: m = (m`−1, . . . ,m0)2 ∈ Z, (xP, xQ, xQ−P), and (A : 1)

Output: (XP+[m]Q : ZP+[m]Q)

1
(
(X0 : Z0), (X1 : Z1), (X2 : Z2)

)
←

(
(xQ : 1), (xP : 1), (xQ−P : 1)

)
2 a+

24 ← (A + 2)/4

3 for i = 0 to ` − 1 do
4 if mi = 1 then
5

(
(X0 : Z0), (X1 : Z1)

)
← xDBLADD

(
(X0 : Z0), (X1 : Z1), (X2 : Z2), (a+

24 : 1)
)

// Alg. 5

6 else
7

(
(X0 : Z0), (X2 : Z2)

)
← xDBLADD

(
(X0 : Z0), (X2 : Z2), (X1 : Z1), (a+

24 : 1)
)

// Alg. 5

8 return (X1 : Z1)

Algorithm 9: Montgomery j-invariant computation

function jInvariant
Input: (A : C)

Output: j-invariant j(EA/C) ∈ Fp2

1 j← A2

2 t1 ← C2

3 t0 ← t1 + t1
4 t0 ← j − t0
5 t0 ← t0 − t1

6 j← t0 − t1
7 t1 ← t2

1

8 j← j · t1
9 t0 ← t0 + t0

10 t0 ← t0 + t0

11 t1 ← t2
0

12 t0 ← t0 · t1
13 t0 ← t0 + t0
14 t0 ← t0 + t0
15 j← 1/ j

16 j← t0 · j

17 return j
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Algorithm 10: Recovering the Montgomery curve coefficient

function get_A
Input: xP, xQ and xQ−P corresponding to points on EA : y2 = x3 + Ax2 + x

Output: A ∈ Fp2

1 t1 ← xP + xQ

2 t0 ← xP · xQ

3 A← xQ−P · t1
4 A← A + t0

5 t0 ← t0 · xQ−P

6 A← A − 1

7 t0 ← t0 + t0
8 t1 ← t1 + xQ−P

9 t0 ← t0 + t0
10 A← A2

11 t0 ← 1/t0
12 A← A · t0

13 A← A − t1
14 return A

Algorithm 11: Computing the 2-isogenous curve

function 2_iso_curve
Input: (XP2 : ZP2), where P2 has exact order 2 on EA/C

Output: (A+
24 : C24) ∼ (A′ + 2C′ : 4C′) corresponding to EA′/C′ = EA/C/〈P2〉

1 A+
24 ← X2

P2
, 2 C24 ← Z2

P2
, 3 A+

24 ← A+
24 −C24, 4 return A+

24, C24

Algorithm 12: Evaluating a 2-isogeny at a point

function 2_iso_eval
Input: (XP2 : ZP2), where P2 has exact order 2 on EA/C , and (XQ : ZQ) where Q ∈ EA/C

Output: (XQ′ : ZQ′) corresponding to Q′ ∈ EA′/C′ , where EA′/C′ is the curve 2-isogenous to EA/C output

from 2_iso_curve

1 t0 ← XP2 + ZP2 ,

2 t1 ← XP2 − ZP2 ,

3 t2 ← XQ + ZQ ,

4 t3 ← XQ − ZQ ,

5 t0 ← t0 · t3 ,

6 t1 ← t1 · t2 ,

7 t2 ← t0 + t1 ,

8 t3 ← t0 − t1 ,

9 XQ′ ← XQ · t2 ,

10 ZQ′ ← ZQ · t3 ,

11 return (XQ′ : ZQ′)

Algorithm 13: Computing the 4-isogenous curve

function 4_iso_curve
Input: (XP4 : ZP4), where P4 has exact order 4 on EA/C

Output: (A+
24 : C24) ∼ (A′ + 2C′ : 4C′) corresponding to EA′/C′ = EA/C/〈P4〉, and constants

(K1,K2,K3) ∈ (Fp2)3

1 K2 ← XP4 − ZP4 ,

2 K3 ← XP4 + ZP4 ,

3 K1 ← Z2
P4

,

4 K1 ← K1 + K1 ,

5 C24 ← K2
1 ,

6 K1 ← K1 + K1 ,

7 A+
24 ← X2

P4
,

8 A+
24 ← A+

24 + A+
24 ,

9 A+
24 ← (A+

24)2 ,

10 return A+
24, C24,

(K1,K2,K3)
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Algorithm 14: Evaluating a 4-isogeny at a point

function 4_iso_eval
Input: Constants (K1,K2,K3) ∈ (Fp2)3 from 4_iso_curve, and (XQ : ZQ) where Q ∈ EA/C

Output: (XQ′ : ZQ′) corresponding to Q′ ∈ EA′/C′ , where EA′/C′ is the curve 4-isogenous to EA/C output

from 4_iso_curve

1 t0 ← XQ + ZQ ,

2 t1 ← XQ − ZQ ,

3 XQ ← t0 · K2 ,

4 ZQ ← t1 · K3 ,

5 t0 ← t0 · t1 ,

6 t0 ← t0 · K1 ,

7 t1 ← XQ + ZQ ,

8 ZQ ← XQ − ZQ ,

9 t1 ← t2
1 ,

10 ZQ ← Z2
Q ,

11 XQ ← t0 + t1 ,

12 t0 ← ZQ − t0 ,

13 XQ′ ← XQ · t1 ,

14 ZQ′ ← ZQ · t0 ,

15 return (XQ′ : ZQ′)

Algorithm 15: Computing the 3-isogenous curve

function 3_iso_curve
Input: (XP3 : ZP3), where P3 has exact order 3 on EA/C

Output: Curve constant (A+
24 : A−24) ∼ (A′ + 2C′ : A′ − 2C′) corresponding to EA′/C′ = EA/C/〈P3〉, and

constants (K1,K2) ∈ (Fp2)2

1 K1 ← XP3 − ZP3 ,

2 t0 ← K2
1 ,

3 K2 ← XP3 + ZP3 ,

4 t1 ← K2
2 ,

5 t2 ← t0 + t1 ,

6 t3 ← K1 + K2 ,

7 t3 ← t2
3 ,

8 t3 ← t3 − t2 ,

9 t2 ← t1 + t3 ,

10 t3 ← t3 + t0 ,

11 t4 ← t3 + t0 ,

12 t4 ← t4 + t4 ,

13 t4 ← t1 + t4 ,

14 A−24 ← t2 · t4 ,

15 t4 ← t1 + t2 ,

16 t4 ← t4 + t4 ,

17 t4 ← t0 + t4 ,

18 t4 ← t3 · t4 ,

19 t0 ← t4 − A−24 ,

20 A+
24 ← A−24 + t0 ,

21 return (A+
24 : A−24),

(K1,K2) ∈ (Fp2)2

Algorithm 16: Evaluating a 3-isogeny at a point

function 3_iso_eval
Input: Constants (K1,K2) ∈ (Fp2)3 output from 3_iso_curve together with (XQ : ZQ) corresponding to

Q ∈ EA/C

Output: (XQ′ : ZQ′) corresponding to Q′ ∈ EA′/C′ , where EA′/C′ is 3-isogenous to EA/C

1 t0 ← XQ + ZQ ,

2 t1 ← XQ − ZQ ,

3 t0 ← K1 · t0 ,

4 t1 ← K2 · t1 ,

5 t2 ← t0 + t1 ,

6 t0 ← t1 − t0 ,

7 t2 ← t2
2 ,

8 t0 ← t2
0 ,

9 XQ′ ← XQ · t2 ,

10 ZQ′ ← ZQ · t0.

11 return (XQ′ : ZQ′),

(K1,K2) ∈ (Fp2)2
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Algorithm 17: Computing and evaluating a 2e-isogeny, simple version

function 2_e_iso
Static parameters: Integer e2 from the public parameters

Input: Constants (A+
24 : C24) corresponding to a curve EA/C, (XS : ZS ) where S has exact order

2e2 on EA/C

Optional input: (X1 : Z1), (X2 : Z2) and (X3 : Z3) on EA/C

Output: (A+
24
′ : C′24) corresponding to the curve EA′/C′ = E/〈S 〉

Optional output: (X′1 : Z′1), (X′2 : Z′2) and (X′3 : Z′3) on EA′/C′

1 for e = e2 − 2 downto 0 by −2 do
2 (XT : ZT )← xDBLe

(
(XS : ZS ), (A+

24 : C24), e
)

// Alg. 4

3
(
(A+

24 : C24), (K1,K2,K3)
)
← 4_iso_curve ((XT : ZT )) // Alg. 13

4 (XS : ZS )← 4_iso_eval ((K1,K2,K3), (XS : ZS )) // Alg. 14

5 for (X j : Z j) in optional input do
6 (X j : Z j)← 4_iso_eval

(
(K1,K2,K3), (X j : Z j)

)
// Alg. 14

7 return (A+
24 : C24),

[
(X1 : Z1), (X2 : Z2), (X3 : Z3)

]

Algorithm 18: Computing and evaluating a 3e-isogeny, simple version

function 3_e_iso
Static parameters: Integer e3 from the public parameters

Input: Constants (A+
24 : A−24) corresponding to a curve EA/C, (XS : ZS ) where S has exact order

3e3 on EA/C

Optional input: (X1 : Z1), (X2 : Z2) and (X3 : Z3) on EA/C

Output: (A+
24
′ : A−24

′) corresponding to the curve EA′/C′ = E/〈S 〉

Optional output: (X′1 : Z′1), (X′2 : Z′2) and (X′3 : Z′3) on EA′/C′

1 for e = e3 − 1 downto 0 by −1 do
2 (XT : ZT )← xTPLe

(
(XS : ZS ), (A+

24 : A−24), e
)

// Alg. 7

3
(
(A+

24 : A−24), (K1,K2)
)
← 3_iso_curve ((XT : ZT )) // Alg. 15

4 (XS : ZS )← 3_iso_eval ((K1,K2), (XS : ZS )) // Alg. 16

5 for (X j : Z j) in optional input do
6 (X j : Z j)← 3_iso_eval

(
(K1,K2), (X j : Z j)

)
// Alg. 16

7 return (A+
24 : A−24),

[
(X1 : Z1), (X2 : Z2), (X3 : Z3)

]
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Algorithm 19: Computing and evaluating a 2e-isogeny, optimized version

function 2_e_iso
Static parameters: Integer e2 from the public parameters, a strategy

(s1, . . . , se2/2−1) ∈ (N+)e2/2−1

Input: Constants (A+
24 : C24) corresponding to a curve EA/C, (XS : ZS ) where S has exact order

2e2 on EA/C

Optional input: (X1 : Z1), (X2 : Z2) and (X3 : Z3) on EA/C

Output: (A+
24
′ : C′24) corresponding to the curve EA′/C′ = E/〈S 〉

Optional output: (X′1 : Z′1), (X′2 : Z′2) and (X′3 : Z′3) on EA′/C′

1 Initialize empty deque S
2 push

(
S, (e2/2, (XS : ZS ))

)
3 i← 1

4 while S not empty do
5 (h, (X : Z))← pop(S)

6 if h = 1 then
7

(
(A+

24 : C24), (K1,K2,K3)
)
← 4_iso_curve ((X : Z)) // Alg. 13

8 Initialize empty deque S′

9 while S not empty do
10 (h, (X : Z))← pull(S)

11 (X : Z)← 4_iso_eval ((K1,K2,K3), (X : Z)) // Alg. 14

12 push
(
S′, (h − 1, (X : Z))

)
13 S← S′

14 for (X j : Z j) in optional input do
15 (X j : Z j)← 4_iso_eval

(
(K1,K2,K3), (X j : Z j)

)
// Alg. 14

16 else if 0 < si < h then
17 push

(
S, (h, (X : Z))

)
18 (X : Z)← xDBLe

(
(X : Z), (A+

24 : C24), 2 · si

)
// Alg. 4

19 push
(
S, (h − si, (X : Z))

)
20 i← i + 1

21 else
22 Error: Invalid strategy

23 return (A+
24 : C24),

[
(X1 : Z1), (X2 : Z2), (X3 : Z3)

]
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Algorithm 20: Computing and evaluating a 3e-isogeny, optimized version

function 3_e_iso
Static parameters: Integer e3 from the public parameters, a strategy (s1, . . . , se3−1) ∈ (N+)e3−1

Input: Constants (A+
24 : A−24) corresponding to a curve EA/C, (XS : ZS ) where S has exact order

3e3 on EA/C

Optional input: (X1 : Z1), (X2 : Z2) and (X3 : Z3) on EA/C

Output: (A+
24
′ : A−24

′) corresponding to the curve EA′/C′ = E/〈S 〉

Optional output: (X′1 : Z′1), (X′2 : Z′2) and (X′3 : Z′3) on EA′/C′

1 Initialize empty deque S
2 push

(
S, (e3, (XS : ZS ))

)
3 i← 1

4 while S not empty do
5 (h, (X : Z))← pop(S)

6 if h = 1 then
7

(
(A+

24 : A−24), (K1,K2)
)
← 3_iso_curve ((X : Z)) // Alg. 15

8 Initialize empty deque S′

9 while S not empty do
10 (h, (X : Z))← pull(S)

11 (X : Z)← 3_iso_eval ((K1,K2), (X : Z)) // Alg. 16

12 push
(
S′, (h − 1, (X : Z))

)
13 S← S′

14 for (X j : Z j) in optional input do
15 (X j : Z j)← 3_iso_eval

(
(K1,K2), (X j : Z j)

)
// Alg. 16

16 else if 0 < si < h then
17 push

(
S, (h, (X : Z))

)
18 (X : Z)← xTPLe

(
(X : Z), (A+

24 : A−24), si

)
// Alg. 7

19 push
(
S, (h − si, (X : Z))

)
20 i← i + 1

21 else
22 Error: invalid strategy

23 return (A+
24 : A−24),

[
(X1 : Z1), (X2 : Z2), (X3 : Z3)

]
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Algorithm 21: Computing public keys in the 2-torsion

function isogen2
Input: Secret key sk2 ∈ Z (see §1.2.6) and public parameters

{e2, e3, p, xP2, xQ2, xR2, xP3, xQ3, xR3} (see §1.6)

Output: Public key pk2 = (x1, x2, x3) equivalent to the output of Step 4 of isogen` (see §1.3.5)

1
(
(A : C), (A+

24 : C24)
)
← ((0 : 1), (1 : 2))

2 ((X1 : Z1), (X2 : Z2), (X3 : Z3))← ((xP3 : 1), (xQ3 : 1), (xR3 : 1))

3 (XS : ZS )← Ladder3pt(sk2, (xP2, xQ2, xR2), (A : C)) // Alg. 8

4
(
(A+

24 : C24), (X1 : Z1), (X2 : Z2), (X3 : Z3)
)
←

2_e_iso
(
(A+

24 : C24), (XS : ZS ), (X1 : Z1), (X2 : Z2), (X3 : Z3)
)

// Alg. 17 or Alg. 19

5 ((x1 : 1), (x2 : 1), (x3 : 1))← ((X1 : Z1), (X2 : Z2), (X3 : Z3))

6 return pk2 = (x1, x2, x3) // Encoded as in §1.2.9

Algorithm 22: Computing public keys in the 3-torsion

function isogen3
Input: Secret key sk3 ∈ Z (see §1.2.6) and public parameters

{e2, e3, p, xP2, xQ2, xR2, xP3, xQ3, xR3} (see §1.6)

Output: Public key pk3 = (x1, x2, x3) equivalent to the output of Step 4 of isogen` (see §1.3.5)

1
(
(A : C), (A+

24 : A−24)
)
← ((0 : 1), (2 : −2))

2 ((X1 : Z1), (X2 : Z2), (X3 : Z3))← ((xP2 : 1), (xQ2 : 1), (xR2 : 1))

3 (XS : ZS )← Ladder3pt(sk3, (xP3, xQ3, xR3), (A : C)) // Alg. 8

4
(
(A+

24 : A−24), (X1 : Z1), (X2 : Z2), (X3 : Z3)
)
←

3_e_iso
(
(A+

24 : A−24), (XS : ZS ), (X1 : Z1), (X2 : Z2), (X3 : Z3)
)

// Alg. 18 or Alg. 20

5 ((x1 : 1), (x2 : 1), (x3 : 1))← ((X1 : Z1), (X2 : Z2), (X3 : Z3))

6 return pk3 = (x1, x2, x3) // Encoded as in §1.2.9
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Algorithm 23: Establishing shared keys in the 2-torsion

function isoex2

Input: Secret key sk2 ∈ Z (see §1.2.6), public key pk3 = (x1, x2, x3) ∈ (Fp2)3 (see §1.2.9), and

parameter e2 (see §1.6)

Output: A j-invariant j2 equivalent to the output of Step 4 of isogen` (see §1.3.6)

1 (A : C)← (get_A(x1, x2, x3) : 1) // Alg. 10

2 (XS : ZS )← Ladder3pt(sk2, (x1, x2, x3), (A : C)) // Alg. 8

3 (A+
24 : C24)← (A + 2 : 4)

4 (A+
24 : C24)← 2_e_iso

(
(A+

24 : C24), (XS : ZS )
)

// Alg. 17 or Alg. 19

5 (A : C)← (4A+
24 − 2C24 : C24)

6 j = j_inv((A : C)) // Alg. 9

7 return j // Encoded as in §1.2.8

Algorithm 24: Establishing shared keys in the 3-torsion

function isoex3

Input: Secret key sk3 ∈ Z (see §1.2.6), public key pk2 = (x1, x2, x3) ∈ (Fp2)3 (see §1.2.9), and

parameter e3 (see §1.6)

Output: A j-invariant j3 equivalent to the output of Step 4 of isogen` (see §1.3.6)

1 (A : C)← (get_A(x1, x2, x3) : 1) // Alg. 10

2 (XS : ZS )← Ladder3pt(sk3, (x1, x2, x3), (A : C)) // Alg. 8

3 (A+
24 : A−24)← (A + 2 : A − 2)

4 (A+
24 : A−24)← 3_e_iso

(
(A+

24 : A−24), (XS : ZS )
)

// Alg. 18 or Alg. 20

5 (A : C)← (2 · (A−24 + A+
24) : A+

24 − A−24)

6 j = j_inv((A : C)) // Alg. 9

7 return j // Encoded as in §1.2.8
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Appendix B

Explicit algorithms for isogen` and isoex`:
Reference implementation

This section contains explicit formulas for computing the isogenies described in §1.3.5 and §1.3.6 as used
in the reference implementation. Assuming access to all of the field operations in Fp2 , Algorithms 25–45
can compute isogen` and isoex` for ` ∈ {2, 3} in their entirety.

The notation (xP, yP) is used for the affine tuple in P1(Fp2) representing the Montgomery x/y-coordinate.
For simplicity, the reference implementation operates only on normalized, affine coordinates.

Only a single variant of the Montgomery curve constants are used with the tuple (a, b). Write Ea,b for the
curve Ea,b/Fp2 : by2 = x3 + ax2 + x.

Algorithm 25: Affine coordinate doubling

function xDBL
Input: (xP, yP) and (a, b)

Output: (x[2]P, y[2]P)

1 if P = ∞ then
2 return∞

3 t0 ← xP
2

4 t1 ← t0 + t0
5 t2 ← 1

6 t0 ← t0 + t1
7 t1 ← a · xP

8 t1 ← t1 + t1
9 t0 ← t0 + t1

10 t0 ← t0 + t2
11 t1 ← b · yP

12 t1 ← t1 + t1
13 t1 ← t1−1

14 t0 ← t0 · t1
15 t1 ← t02

16 t2 ← b · t1

17 t2 ← t2 − a

18 t2 ← t2 − xP

19 t2 ← t2 − xP

20 t1 ← t0 · t1
21 t1 ← b · t1
22 t1 ← t1 + yP

23 y[2]P ← xP + xP

24 y[2]P ← y[2]P + xP

25 y[2]P ← y[2]P + a

26 y[2]P ← y[2]P · t0
27 y[2]P ← y[2]P − t1
28 x[2]P ← t2
29 return (x[2]P, y[2]P)
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Algorithm 26: Repeated affine coordinate doubling

function xDBLe
Input: (xP, yP), (a, b), and e ∈ Z

Output: (x[2e]P, y[2e]P)

1 (x′, y′)← (xP, yP)

2 for i = 1 to e do
3 (x′, y′)← xDBL ((x′, y′), (a, b)) // Alg. 25

4 return (x′, y′)

Algorithm 27: Affine coordinate addition

function xADD
Input: P = (xP, yP), Q = (xQ, yQ), and (a, b)

Output: (xP+Q, yP+Q)

1 if P = ∞ then
2 return (xQ, yQ)

3 if Q = ∞ then
4 return (xP, yP)

5 if P = Q then
6 return xDBL ((xP, yP), (a, b))

7 if P = −Q then
8 return∞

9 t0 ← yQ − yP

10 t1 ← xQ − xP

11 t1 ← t1−1

12 t0 ← t0 · t1
13 t1 ← t02

14 t2 ← xP + xP

15 t2 ← t2 + xQ

16 t2 ← t2 + a

17 t2 ← t2 · t0
18 t0 ← t0 · t1

19 t0 ← b · t0
20 t0 ← t0 + yP

21 t0 ← t2 − t0
22 t1 ← b · t1
23 t1 ← t1 − a

24 t1 ← t1 − xP

25 x[P+Q] ← t1 − xQ

26 y[P+Q] ← t0
27 return (xP+Q, yP+Q)

Algorithm 28: Affine coordinate tripling

function xTPL
Input: (xP, yP) and (a, b)

Output: (x[3]P, y[3]P)

1 (x[2]P, y[2]P)← xDBL ((xP, yP), (a, b)) // Alg. 25

2 (x[3]P, y[3]P)← xADD
(
(xP, yP), (x[2]P, y[2]P), (a, b)

)
// Alg. 27

3 return (x[3]P, y[3]P)
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Algorithm 29: Repeated affine coordinate tripling

function xTPLe
Input: (xP, yP), (a, b), and e ∈ Z+

Output: (x[3e]P, y[3e]P)

1 (x′, y′)← (xP, yP)

2 for i = 1 to e do
3 (x′, y′)← xTPL ((x′, y′), (a, b)) // Alg. 28

4 return (x′, y′)

Algorithm 30: Double-and-add scalar multiplication

function double_and_add
Input: m = (m`−1, . . . ,m0)2 ∈ Z, P = (x, y), and (a, b)

Output: (x[m]P, y[m]P)

1 (x0, y0)← (0, 0)

2 for i = ` − 1 to 0 by −1 do
3 (x0, y0)← xDBL ((x0, y0), (a, b)) // Alg. 25

4 if mi = 1 then
5 (x0, y0)← xADD ((x0, y0), (x, y), (a, b)) // Alg. 27

6 return (x0, y0)

Algorithm 31: Montgomery j-invariant computation

function j_inv
Input: a

Output: j-invariant j(Ea,b) ∈ Fp2

1 t0 ← a2

2 j← 3

3 j← t0 − j

4 t1 ← j2

5 j← j · t1

6 j← j + j

7 j← j + j

8 j← j + j

9 j← j + j

10 j← j + j

11 j← j + j

12 j← j + j

13 j← j + j

14 t1 ← 4

15 t0 ← t0 − t1

16 t0 ← t0−1

17 j← j · t0
18 return j
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Algorithm 32: Computing the 2-isogenous curve

function curve_2_iso
Input: xP2 and b, where P2 has exact order 2 on Ea,b

Output: (a′, b′) corresponding to Ea′,b′ = Ea,b/〈P2〉

1 t1 ← xP2
2

2 t1 ← t1 + t1

3 t1 ← 1 − t1
4 a′ ← t1 + t1

5 b′ ← xP2 · b

6 return (a′, b′)

Algorithm 33: Evaluating a 2-isogeny at a point

function eval_2_iso
Input: (xQ, yQ) and xP2 , where P ∈ Ea,b, and P2 has exact order 2 on Ea,b

Output: (xQ′ , yQ′) corresponding to Q′ ∈ Ea′,b′ , where Ea′,b′ is the curve 2-isogenous to Ea,b output from

curve_2_iso

1 t1 ← xQ · xP2

2 t2 ← xQ · t1
3 t3 ← t1 · xP2

4 t3 ← t3 + t3

5 t3 ← t2 − t3
6 t3 ← t3 + xP2

7 t3 ← yQ · t3
8 t2 ← t2 − xQ

9 t1 ← xQ − xP2

10 t1 ← t1−1

11 xQ′ ← t2 · t1
12 t1 ← t12

13 yQ′ ← t3 · t1
14 return (xQ′ , yQ′)

Algorithm 34: Computing the 4-isogenous curve

function curve_4_iso
Input: xP4 and b, where P4 has exact order 4 on Ea,b

Output: (a′, b′) corresponding to Ea′,b′ = Ea,b/〈P4〉

1 t1 ← xP4
2

2 a′ ← t12

3 a′ ← a′ + a′

4 a′ ← a′ + a′

5 t2 ← 2

6 a′ ← a′ − t2
7 t1 ← xP4 · t1
8 t1 ← t1 + xP4

9 t1 ← t1 · b

10 t2 ← t2−1

11 t2 ← −t2
12 b′ ← t2 · t1

13 return (a′, b′)
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Algorithm 35: Evaluating a 4-isogeny at a point

function eval_4_iso
Input: (xQ, yQ) and xP4 , where P ∈ Ea,b, and P4 has exact order 4 on Ea,b

Output: (xQ′ , yQ′) corresponding to Q′ ∈ Ea′,b′ , where Ea′,b′ is the curve 4-isogenous to Ea,b output from

curve_4_iso

1 t1 ← xQ
2

2 t2 ← t12

3 t3 ← xP4
2

4 t4 ← t2 · t3
5 t2 ← t2 + t4
6 t4 ← t1 · t3
7 t4 ← t4 + t4
8 t5 ← t4 + t4
9 t5 ← t5 + t5

10 t4 ← t4 + t5
11 t2 ← t2 + t4
12 t4 ← t32

13 t5 ← t1 · t4
14 t5 ← t5 + t5
15 t2 ← t2 + t5
16 t1 ← t1 · xQ

17 t4 ← xP4 · t3
18 t5 ← t1 · t4
19 t5 ← t5 + t5
20 t5 ← t5 + t5
21 t2 ← t2 − t5
22 t1 ← t1 · xP4

23 t1 ← t1 + t1
24 t1 ← t1 + t1
25 t1 ← t2 − t1
26 t2 ← xQ · t4
27 t2 ← t2 + t2
28 t2 ← t2 + t2
29 t1 ← t1 − t2
30 t1 ← t1 + t3
31 t1 ← t1 + 1

32 t2 ← xQ · xP4

33 t4 ← t2 − 1

34 t2 ← t2 + t2
35 t5 ← t2 + t2
36 t1 ← t1 − t5
37 t1 ← t4 · t1
38 t1 ← t3 · t1
39 t1 ← yQ · t1
40 t1 ← t1 + t1
41 yQ′ ← −t1
42 t2 ← t2 − t3
43 t1 ← t2 − 1

44 t2 ← xQ − xP4

45 t1 ← t2 · t1
46 t5 ← t12

47 t5 ← t5 · t2
48 t5 ← t5−1

49 yQ′ ← yQ′ · t5
50 t1 ← t1 · t2
51 t1 ← t1−1

52 t4 ← t42

53 t1 ← t1 · t4
54 t1 ← xQ · t1
55 t2 ← xQ · t3
56 t2 ← t2 + xQ

57 t3 ← xP4 + xP4

58 t2 ← t2 − t3
59 t2 ← −t2
60 xQ′ ← t1 · t2
61 return (xQ′ , yQ′)

Algorithm 36: Computing the 3-isogenous curve

function curve_3_iso
Input: xP3 and (a, b), where P3 has exact order 3 on Ea,b

Output: Curve constant (a′, b′) corresponding to Ea′,b′ = Ea,b/〈P3〉

1 t1 ← xP3
2

2 b′ ← b · t1
3 t1 ← t1 + t1

4 t2 ← t1 + t1
5 t1 ← t1 + t2
6 t2 ← 6

7 t1 ← t1 − t2
8 t2 ← a · xP3

9 t1 ← t2 − t1

10 a′ ← t1 · xP3

11 return (a′, b′)
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Algorithm 37: Evaluating a 3-isogeny at a point

function eval_3_iso
Input: (xQ, yQ) and xP3 , where P ∈ Ea,b, and P3 has exact order 3 on Ea,b

Output: (xQ′ , yQ′) corresponding to Q′ ∈ Ea′,b′ , where Ea′,b′ is the curve 3-isogenous to Ea,b output from

curve_3_iso

1 t1 ← xQ
2

2 t1 ← t1 · xP3

3 t2 ← xP3
2

4 t2 ← xQ · t2
5 t3 ← t2 + t2
6 t2 ← t2 + t3

7 t1 ← t1 − t2
8 t1 ← t1 + xQ

9 t1 ← t1 + xP3

10 t2 ← xQ − xP3

11 t2 ← t2−1

12 t3 ← t22

13 t2 ← t2 · t3
14 t4 ← xQ · xP3

15 t4 ← t4 − 1

16 t1 ← t4 · t1
17 t1 ← t1 · t2
18 t2 ← t42

19 t2 ← t2 · t3
20 xQ′ ← xQ · t2
21 yQ′ ← yQ · t1
22 return (xQ′ , yQ′)
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Algorithm 38: Computing and evaluating a 2e-isogeny, simple version

function iso_2_e
Static parameters: Integer e2 from the public parameters

Input: Constants (a, b) corresponding to a curve Ea,b, (xS , yS ) where S has exact order 2e2 on

Ea,b

Optional input: {(x1, y1), ..., (xn, yn)} on Ea,b

Output: (a′, b′) corresponding to the curve Ea′,b′ = E/〈S 〉

Optional output: {(x′1, y
′
1), ..., (x′n, y

′
n)} on Ea′,b′

1 (a′, b′)← (a, b)

2 e′2 ← e2
3 if e′2 is odd then
4 (xT , yT )← xDBLe

(
(xS , yS ), (a′, b′), e′2 − 1

)
// Alg. 26

5 (a′, b′)← curve_2_iso (xT , b′) // Alg. 32

6 (xS , yS )← eval_2_iso ((xS , yS ), xT ) // Alg. 33

7 for (x j, y j) in optional input do
8 (x′j, y

′
j)← eval_2_iso

(
(x j, y j), xT

)
// Alg. 33

9 e′2 ← e′2 − 1

10 for e = e′2 − 2 downto 0 by −2 do
11 (xT , yT )← xDBLe ((xS , yS ), (a′, b′), e) // Alg. 26

12 (a′, b′)← curve_4_iso (xT , b′) // Alg. 34

13 (xS , yS )← eval_4_iso ((xS , yS ), xT ) // Alg. 35

14 for (x j, y j) in optional input do
15 (x′j, y

′
j)← eval_4_iso

(
(x j, y j), xT

)
// Alg. 35

16 return (a′, b′),
[
(x′1, y

′
1), ..., (x′n, y

′
n)
]
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Algorithm 39: Computing and evaluating a 3e-isogeny, simple version

function iso_3_e
Static parameters: Integer e3 from the public parameters

Input: Constants (a, b) corresponding to a curve Ea,b, (xS , yS ) where S has exact order 3e3 on

Ea,b

Optional input: {(x1, y1), ..., (xn, yn)} on Ea,b

Output: (a′, b′) corresponding to the curve Ea′,b′ = E/〈S 〉

Optional output: {(x′1, y
′
1), ..., (x′n, y

′
n)} on Ea′,b′

1 (a′, b′)← (a, b)

2 for e = e3 − 1 downto 0 by −1 do
3 (xT , yT )← xTPLe ((xS , yS ), (a′, b′), e) // Alg. 29

4 (a′, b′)← curve_3_iso (xT , yT ) // Alg. 36

5 (xS , yS )← eval_3_iso ((xS , yS ), xT ) // Alg. 37

6 for (x j, y j) in optional input do
7 (x′j, y

′
j)← eval_3_iso

(
(x j, y j), xT

)
// Alg. 37

8 return (a′, b′),
[
(x′1, y

′
1), ..., (x′n, y

′
n)
]

Algorithm 40: Recovering the x-coordinate of R

function get_xR
Input: Parameters of Ea,b with generator points: (a, b), P = (xP, yP), Q = (xQ, yQ)

Output: xR, such that R = P − Q

1 (xR, yR)← xADD
(
(xP, yP), (xQ,−yQ), (a, b)

)
// Alg. 27

2 return xR
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Algorithm 41: Recovering the y-coordinates of P and Q, and the Montgomery curve coefficient a

function get_yP_yQ_A_B
Input: pk = (xP, xQ, xR) // Encoded as in §1.2.8

Output: (yP, yQ, a, b)

1 a← get_A(xP, xQ, xR) // Alg. 10

2 b← 1

3 t1 ← xP
2

4 t2 ← xP · t1

5 t1 ← a · t1

6 t1 ← t2 + t1

7 t1 ← t1 + xP

8 yP ←
√

t1

9 t1 ← xQ
2

10 t2 ← xQ · t1

11 t1 ← a · t1

12 t1 ← t2 + t1

13 t1 ← t1 + xQ

14 yQ ←
√

t1

15 (xT , yT )← xADD
(
(xP, yP), (xQ,−yQ), (a, b)

)
// Alg. 27

16 if xT , xR then
17 yQ ← −yQ

18 return (yP, yQ, a, b)

Algorithm 42: Computing public keys in the 2-torsion

function isogen2
Input: Secret key sk2 ∈ Z (see §1.2.6) and public parameters

{e2, e3, p, (xP2, yP2), (xQ2, yQ2), (xP3, yP3), (xQ3, yQ3)} (see §1.6)

Output: Public key pk2 = (x′P3, x
′
Q3, x

′
R3) equivalent to the output of Step 4 of isogen`

(see §1.3.5)

1 (a, b)← (6, 1)

2 (xS , yS )← double_and_add
(
sk2, (xQ2, yQ2), (a, b)

)
// Alg. 30

3 (xS , yS )← xADD ((xP2, yP2), (xS , yS ), (a, b)) // Alg. 27

4
(
(a′, b′), (x′P3, y

′
P3), (x′Q3, y

′
Q3)

)
← iso_2_e

(
(a, b), (xS , yS ), (xP3, yP3), (xQ3, yQ3)

)
// Alg. 38

5 x′R3 ← get_xR
(
(a′, b′), (x′P3, y

′
P3), (x′Q3, y

′
Q3)

)
// Alg. 40

6 return pk2 = (x′P3, x
′
Q3, x

′
R3) // Encoded as in §1.2.9
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Algorithm 43: Computing public keys in the 3-torsion

function isogen3
Input: Secret key sk3 ∈ Z (see §1.2.6) and public parameters

{e2, e3, p, (xP2, yP2), (xQ2, yQ2), (xP3, yP3), (xQ3, yQ3)} (see §1.6)

Output: Public key pk3 = (x′P2, x
′
Q2, x

′
R2) equivalent to the output of Step 4 of isogen`

(see §1.3.5)

1 (a, b)← (6, 1)

2 (xS , yS )← double_and_add
(
sk3, (xQ3, yQ3), (a, b)

)
// Alg. 30

3 (xS , yS )← xADD ((xP3, yP3), (xS , yS ), (a, b)) // Alg. 27

4
(
(a′, b′), (x′P2, y

′
P2), (x′Q2, y

′
Q2)

)
← iso_3_e

(
(a, b), (xS , yS ), (xP2, yP2), (xQ2, yQ2)

)
// Alg. 39

5 x′R2 ← get_xR
(
(a′, b′), (x′P2, y

′
P2), (x′Q2, y

′
Q2)

)
// Alg. 40

6 return pk3 = (x′P2, x
′
Q2, x

′
R2) // Encoded as in §1.2.9

Algorithm 44: Establishing shared keys in the 2-torsion

function isoex2

Input: Secret key sk2 ∈ Z (see §1.2.6), public key pk3 = (x′P2, x
′
Q2, x

′
R2) ∈ (Fp2)3 (see §1.2.9),

and parameter e2 (see §1.6)

Output: A j-invariant j2 equivalent to the output of Step 4 of isogen` (see §1.3.6)

1 (y′P2, y
′
Q2, a, b)← get_yP_yQ_A_B(x′P2, x

′
Q2, x

′
R2) // Alg. 41

2 (xS , yS )← mult_double_add
(
sk2, (x′Q2, y

′
Q2), (a, b)

)
// Alg. 30

3 (xS , yS )← xADD
(
(x′P2, y

′
P2), (xS , yS ), (a, b)

)
// Alg. 27

4 (a, b)← 2_e_iso ((a, b), (xS , yS )) // Alg. 38

5 j2 = j_inv(a) // Alg. 31

6 return j2 // Encoded as in §1.2.8
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Algorithm 45: Establishing shared keys in the 3-torsion

function isoex3

Input: Secret key sk3 ∈ Z (see §1.2.6), public key pk2 = (x′P3, x
′
Q3, x

′
R3) ∈ (Fp2)3 (see §1.2.9),

and parameter e3 (see §1.6)

Output: A j-invariant j3 equivalent to the output of Step 4 of isogen` (see §1.3.6)

1 (y′P3, y
′
Q3, a, b)← get_yP_yQ_A_B(x′P3, x

′
Q3, x

′
R3) // Alg. 41

2 (xS , yS )← mult_double_add
(
sk3, (x′Q3, y

′
Q3), (a, b)

)
// Alg. 30

3 (xS , yS )← xADD
(
(x′P3, y

′
P3), (xS , yS ), (a, b)

)
// Alg. 27

4 (a, b)← 3_e_iso ((a, b), (xS , yS )) // Alg. 39

5 j3 = j_inv (a)) // Alg. 31

6 return j3 // Encoded as in §1.2.8
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Appendix C

Computing optimized strategies for fast isogeny
computation

Algorithms 19 and 20 need to be parameterized by a computational strategy as described in Section 1.3.7.
Any valid strategy, i.e. any sequence (s1, . . . , sn−1) corresponding to a full binary tree, can be used without
affecting the security of the protocol.

For the sake of efficiency, we recommend using the parameters specified in this section. They were
generated by the algorithm below. The inputs to the algorithm are the strategy size n, which is one less
than the number of leaves in the tree, the cost for a scalar multiplication step p and the cost for an isogeny
computation and evaluation step q. Specifically, we use n4, the size of the strategy for computations using
the 2-torsion group, p4 the cost of two xDBL operations, q4 the cost of computation and evaluation of a
4-isogeny, i.e. of the functions 4_iso_curve and 4_iso_eval. Similarly, n3 is the size of the strategy for
computations using the 3-torsion group, p3 the cost of a xTPL operation, and q3 the cost of computation and
evaluation of a 3-isogeny, i.e. of the functions 3_iso_curve and 3_iso_eval. We denote the respective
strategies by S 4 and S 3, respectively.

Algorithm 46: Computing optimized strategy

function compute_strategy
Input: Strategy size n, parameters p, q > 0

Output: Optimal strategy of size n

1 S ← [1→ ε]

2 C ← [1→ 0]

3 for i = 2 to n + 1 do
4 Set b← argmin0<b<i(C[i − b] + C[b] + bp + (i − b)q)

5 Set S [i]← b . S [i − b] . S [b]

6 Set C[i]← C[i − b] + C[b] + bp + (i − b)q

7 return S [n + 1]
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C.1 Strategies for SIKEp434

C.1.1 2-torsion

n4 = 107

p4 = 5633

q4 = 5461

S4 = (48, 28, 16, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 13,
7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 4, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 21, 12, 7, 4, 2, 1, 1, 2, 1,

1, 3, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2,

1, 1)

C.1.2 3-torsion

n3 = 136

p3 = 5322

q3 = 5282

S3 = (66, 33, 17, 9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1,
2, 1, 1, 16, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 32,

16, 8, 4, 3, 1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 16, 8, 4,

2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1)

C.2 Strategies for SIKEp503

C.2.1 2-torsion

n4 = 124

p4 = 7490

q4 = 7278

S4 = (61, 32, 16, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1,
16, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 29, 16,

8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 13, 8, 4, 2,

1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 5, 4, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1)
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C.2.2 3-torsion

n3 = 158

p3 = 7189

q3 = 7051

S3 = (71, 38, 21, 13, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 5, 4, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1,
9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 17, 9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1,

4, 2, 1, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 33, 17, 9, 5, 3, 2, 1, 1,

1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 16, 8, 4,

2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1)

C.3 Strategies for SIKEp610

C.3.1 2-torsion

n4 = 151

p4 = 10370

q4 = 10096

S4 = (67, 37, 21, 12, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 9, 5, 3, 2, 1,
1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 16, 9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1,

1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 33, 16, 8, 5, 2, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1,

1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 16, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8,

4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1)

C.3.2 3-torsion

n3 = 191

p3 = 10084

q3 = 9794

S3 = (86, 48, 27, 15, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 12,
7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 21, 12, 7, 4, 2, 1, 1, 2, 1, 1,

3, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1,
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1, 38, 21, 12, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 9, 5, 3, 2, 1,

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 17, 9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1,

8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1)

C.4 Strategies for SIKEp751

C.4.1 2-torsion

n4 = 185

p4 = 14166

q4 = 13810

S4 = (80, 48, 27, 15, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1,
12, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 21, 12, 7, 4, 2, 1, 1,

2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1,

1, 1, 2, 1, 1, 33, 20, 12, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1,

8, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 16, 8, 4, 2, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1,

1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1)

C.4.2 3-torsion

n3 = 238

p3 = 13898

q3 = 13409

S3 = (112, 63, 32, 16, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1,
1, 16, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 31, 16,

8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 15, 8, 4, 2, 1,

1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 49, 31, 16, 8, 4, 2, 1, 1, 2,

1, 1, 4, 2, 1, 1, 2, 1, 1, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 15, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2,

1, 1, 2, 1, 1, 7, 4, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 21, 12, 8, 4, 2, 1, 1, 2, 1, 1, 4, 2, 1, 1, 2, 1,

1, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 9, 5, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1)
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Appendix D

Explicit algorithms for compressed SIKE:
Optimized implementation

The major algorithms underlying the current key compression techniques [42] are listed next. In this
section we assume that the public parameters include the following data.

• The torsion basis generation algorithms 48 and 54 use elligator-like techniques to get points on the
curve. This involves computing values of the form v = 1/(1+u · r2) ∈ Fp2 . In order to avoid multiple
inversions, a precomputed table T is employed in the optimized implementation. Experimentally,
less than 20 elements are enough for storage.

• Optimal traversal paths {pathk = (s1, . . . , sek/2−1) ∈ (N+)ek/2−1
} where k ∈ {2, 3} for solving dis-

crete logarithms via Pohlig-Hellman. Optimal paths for discrete logarithms can be generated by
compute_strategy (Algorithm 46), the same that allows for computing smooth degree isogenies in
complexity O(e` log e`). In this context the input parameters p, q will consist of the costs of pow-
ering an element of Fp2 to ` (or `w in the general case) and of multiplying two elements in Fp2 ,
respectively.

• When computing a discrete logarithm of the form logg(r) with r = gd and d = (dk−1 · · · d1d0)`w , the
base g ∈ Fp2 is fixed and can be included in the public parameters. In particular, precomputed tables
are employed to speed up computations. The compression algorithms uses tables T1[u][d] := g−`

w·u·d

and T2[0][di] := g−di and T2[u][di] := g−di·`
e mod w+(u−1)w

for 0 < u < de/we and 0 as described in [42]
to speed up computations. The parameter w can be seen as a tradeoff between speed vs. storage.
Larger w implies smaller trees to be traversed but larger discrete logarithm instances at the leaves.
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Algorithm 47: x-only tripling k times on the Montgomery curve EA : y2 = x3 + Ax2 + x
function xTPLe_fast

Input: P = (x, z) ∈ EA, the coefficient A2 = A/2 ∈ Fp2 and the number of triplings k.
Output: [3k]P = (x′, z′)

1 for j = 1 to k do
2 t1 ← x2

3 t2 ← z2

4 t3 ← t1 + t2

5 t4 ← A2 · ((x + z)2 − t3) + t3

6 t3 ← (t1 − t2)2

7 t1 ← (t1 · t4 − t3)2

8 t2 ← (t2 · t4 − t3)2

9 x′ ← x · t2

10 z′ ← z · t1

11 return (x′, z′)
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Algorithm 48: Entangled basis generation for E[2e2](Fp2) : y2 = x3 + Ax2 + x

function get_2_torsion_entangled_basis_compression
Input: A = a + bi ∈ Fp2 and the public parameters u0 ∈ Fp2 : u = u2

0 ∈ Fp2\Fp; tables T1,T2 of
pairs (r ∈ Fp, v = 1/(1 + ur2) ∈ Fp2) of QNR and QR.

Output: {S 1, S 2} such that 〈[3e3]S 1, [3e3]S 2〉 = E[2e2](Fp2), a bit bit indicating the quadraticity
of A and the table entry for r

1 z← a2 + b2

2 s← z(p+1)/4

3 T ← (s2 ?
= z) T1 : T2 select proper table by testing quadraticity of A

4 repeat
5 lookup next entry (r, v) from T
6 x← −A · v
7 t ← x · (x2 + A · x + 1)
8 test quadraticity of t = c + di
9 z← c2 + d2,

10 s← z(p+1)/4

11 until s2 = z
12 compute y←

√
x3 + A · x2 + x

13 z← (c + s)/2
14 α← z(p+1)/4

15 β← d · (2α)−1

16 y← (α2 ?
= z) α + βi : −β − αi

17 return S 1 ← (x, y), S 2 ← (ur2x, u0ry), bit ← (T ?
= T1) 1 : 0, r
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Algorithm 49: Entangled basis generation with shared Elligator for E[2e2](Fp2) : y2 = x3 + Ax2 + x

function get_2_torsion_entangled_basis_decompression
Input: A = a + bi ∈ Fp2 , a bit bit indicating A’s quadraticity, a counter r ∈ Fp and the public

parameters u0 ∈ Fp2 : u = u2
0 ∈ Fp2\Fp; tables T1,T2 of pairs

(r ∈ Fp, v = 1/(1 + ur2) ∈ Fp2) of QNR and QR.
Output: {S 1, S 2} such that 〈[3e3]S 1, [3e3]S 2〉 = E[2e2](Fp2)

1 T ← (bit ?
= 1) T1 : T2 select proper table according to A’s quadraticity

2 lookup entry v corresponding to r on T
3 x← −A · v
4 t ← x · (x2 + A · x + 1)
5 test quadraticity of t = c + di
6 z← c2 + d2

7 s← z(p+1)/4

8 if s2 , z then
9 Abort: invalid input parameters (bit, r) received

10 compute y←
√

x3 + A · x2 + x
11 z← (c + s)/2,
12 α← z(p+1)/4,
13 β← d · (2α)−1

14 y← (α2 ?
= z) α + βi : −β − αi

15 return S 1 ← (x, y), S 2 ← (ur2x, u0ry)

Algorithm 50: x-only doubling (k times) on a Montgomery curve E : y2 = x3 + Ax2 + x

function Double
Input: Curve coefficient in the form A24 = (A + 2)/4, point (x, z) and integer k

Output: Point (x′, z′) = [2k](x, z) ∈ E.

1 for j = 1 to k do
2 a← x + z

3 b← x − z

4 aa← a2

5 bb← b2

6 c← aa − bb

7 x← aa · bb

8 z← c(bb + A24 · c)

9 return x, z
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Algorithm 51: xz-only construction of a point of order 3e3 in the Montgomery curve E : y2 =

x3 + Ax2 + x from counter r

function BasePoint3n
Input: Curve coefficient A, r ∈ Z256, nd public table T of elligator values v = 1/(1 + ur2) ∈ Fp2

Output: Chosen table entry r, point (x, z) of order 3e3 and (t,w) = [3e3−1](x, y)

1 repeat
2 r ← r + 1

3 v← T [r]

4 x← −Av

5 yy← x((x + A)x + 1)

6 N ← norm(yy) // NB: norm(a + bi) = a2 + b2

7 z← N(p+1)/4

8 if z2 , N then
9 x← −x − A

10 x, z = DOUBLE(x, 1, (A + 2)/4, e2) // Alg. 50

11 t,w← xT PLe_ f ast(A/2, x, z, e3 − 1) // Alg. 47

12 until w , 0

13 return (r, x, z, t,w)
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Algorithm 52: Deterministic xz-only construction of a point of order 3e3 in the Montgomery curve

E : y2 = x3 + Ax2 + x from r

function BasePoint3n_decompression
Input: Curve coefficient A, r ∈ Z and public table T of elligator values v = 1/(1 + ur2) ∈ Fp2

Output: Point (x, z) of order 3e3

1 r ← r + 1

2 v← T [r]

3 x← −Av

4 yy← x((x + A)x + 1)

5 N ← norm(yy) // NB: norm(a + bi) = a2 + b2

6 z← N(p+1)/4

7 if z2 , N then
8 x← −x − A

9 x, z = DOUBLE(x, 1, (A + 2)/4, e2) // Alg. 50

10 return (x, z)

Algorithm 53: Given a xz-only representation on a Montgomery curve E, compute the affine repre-

sentation.

function CompleteMPoint
Input: Montgomery curve coefficient A, point P = (x, z) ∈ E

Output: (x′, y′, z′), the affine representation of P

1 if z , 0 then
2 xz← x · z

3 ss← (x + i · z)(x − i · z)

4 rr ← xz(A · xz + ss)

5 yz←
√

rr

6 invz← z−1

7 x′ ← x · invz

8 y′ ← yz · invz2

9 z′ ← 1

10 else
11 x′ ← 0; y′ ← 1; z′ ← 0

12 return x′, y′, z′
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Algorithm 54: Generating a basis for E[3e3](Fp2) : y2 = x3 + Ax2 + x

function BuildOrdinaryE3nBasis
Input: Montgomery curve coefficient A

Output: (x1, y1), (x2, y2): a basis for E[3e3] in affine representation and the elligator counters

(r1, r2) ∈ Z2
256

1 r ← 0

2 r, x1, z1, t1,w1 ← BasePoint3n(A, r) // Alg. 51

3 r1 ← r repeat
4 r, x2, z2, t2,w2 ← BasePoint3n(A, r) // Alg. 51

5 until t2 · w1 = t1 · w2

6 r2 ← r

7 x1, y1,← CompleteMPoint(A, x1, z1) // Alg. 53

8 x2, y2 ← CompleteMPoint(A, x2, z2) // Alg. 53

9 return (x1, y1), (x2, y2), r1, r2

Algorithm 55: Deterministically generating a basis for E[3e3](Fp2) : y2 = x3 + Ax2 + x from A and

elligator counters r1, r2

function BuildOrdinaryE3nBasis_decompression
Input: Montgomery curve coefficient A and elligator counters (r1, r2) ∈ Z2

256

Output: (x1, y1), (x2, y2): a basis for E[3e3]

1 x1, z1, t1,w1 ← BasePoint3n_decompression(A, r1) // Alg. 52

2 x2, z2, t2,w2 ← BasePoint3n_decompression(A, r2) // Alg. 52

3 x1, y1 ← CompleteMPoint(A, x1, z1) // Alg. 53

4 x2, y2 ← CompleteMPoint(A, x2, z2) // Alg. 53

5 return (x1, y1), (x2, y2)
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Algorithm 56: Tate2(P, [Q j]): reduced Tate pairing of order r = 2e2

function Tate_pairings_2_torsion
Input: Weierstrass Curve E : y2 = x3 + ax + b, point P = [XP : YP : ZP] on E of order 2e2 and t

points Q j = [XQ j : YQ j : ZQ j] on E, ZQ j ∈ {0, 1}
Output: List of t values e2e2 (P,Q j)

1 X ← XP; Y ← YP; Z ← ZP; T ← Z2; U ← a · T 2

2 for j← 0 to t − 1 do
3 f j ← 1;
4 h j ← T · XQ j − X

5 for k ← 0 to e2 − 1 do
6 point doubling and line function construction:
7 X2 ← X2; Y2 ← Y2; W ← 2Y2; W2 ← W2

8 M ← 3X2 + U; S ← (X + W)2 − X2 −W2

9 X′ ← M2 − 2S ; Y ′ ← M · (S − X′) − 2W2

10 Z′ ← (Y + Z)2 − Y2 − T ; T ′ ← (Z′)2

11 U′ ← 4W2 · U; L← Z′ · T
12 if Z′ = 0 then
13 exception for points in [2]E
14 X′ ← 1;
15 Y ′ ← 1

16 line function evaluation and accumulation:
17 for j← 0 to t − 1 do
18 if Z′ , 0 then
19 g← M · h j + W − L · YQ j

20 h j ← T ′ · XQ j − X′

21 g← g · h̄ j

22 else
23 exception for points in [2]E
24 g← h j

25 f j ← f 2
j ;

26 f j ← f j · g

27 X ← X′; Y ← Y ′; Z ← Z′; T ← T ′; U ← U′

28 a dedicated final exponentiation should be used next:

29 return [(ZQ j

?
, 0) f (p2−1)/r

j : 1 | j = 0 . . . t − 1]
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Algorithm 57: Tate3(P, [Q j]): reduced Tate pairing of order r = 3e3

function Tate_pairings_3_torsion
Input: Weierstrass Curve E : y2 = x3 + ax + b, point P = [XP : YP : ZP] on E of order 3e3 and t

points Q j = [XQ j : YQ j : ZQ j] on E, ZQ j ∈ {0, 1}
Output: List of t values e3e3 (P,Q j)

1 X ← XP; Y ← YP; Z ← ZP; T ← Z2; U ← a · T 2

2 for j← 0 to t − 1 do
3 f j ← 1;
4 h j ← T · XQ j − X

5 for k ← 0 to e3 − 1 do
6 point tripling and parabola function construction:
7 X2 ← X2; Y2 ← Y2; Y4 ← Y2

2

8 M ← 3X2 + U; M2 ← M2

9 D← (X + Y2)2 − X2 − Y4; F ← 6D − M2

10 F2 ← F2; W ← 2Y2; W ′ ← 2W; S ← 16Y4

11 G ← (M + F)2 − M2 − F2 − S ; G′ ← S −G
12 H ← 2F2; H2 ← H2; H′ ← 4G; F′ ← 2F
13 X′ ← (X + H)2 − X2 − H2 −W ′ · H′

14 Y ′ ← 2Y · (H′ ·G′ − F′ · H)
15 Z′ ← (Z + F)2 − T − F2

16 T ′ ← (Z′)2; U′ ← 4H2 · U
17 L← ((Y + Z)2 − Y2 − T ) · T
18 if Z′ = 0 exception for points in [3]E then
19 X′ ← 1; Y ′ ← 1

20 parabola function evaluation and accumulation:
21 for j← 0 to t − 1 do
22 d ← W − L · YQ j if Z′ , 0 then
23 g← (M · h j + d)(G′ · h j + F′ · d)(W ′ · h j + F)−

24 h j ← T ′ · XQ j − X′; g← g · h̄ j

25 else
26 exception for points in [3]E
27 g← (M · h j + d)

28 f ← f 3

29 f ← f · g

30 X ← X′; Y ← Y ′; Z ← Z′; T ← T ′; U ← U′

31 a dedicated final exponentiation should be used next:

32 return [(ZQ j

?
, 0) f (p2−1)/r

j : 1 | j = 0 . . . t − 1]
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Algorithm 58: Compute logg(r) for a fixed g ∈ Fp2 using an optimal traversal strategy

function Traverse_w_div_e
Input: r: value of root vertex ∆ jk, i.e. r := r`

w j

k ; j, k: coordinates of root vertex ∆ jk; z: number of

leaves in subtree rooted at ∆ jk, w: an integer dividing ek (the exponent of the respective

torsion) and the public parameters P: traversal path and T : lookup table.

Output: d: digits (radix `w) of logg r0

1 Remark: initial call is Traverse_w_div_e(r0, 0, 0, len(P) − 1, `,w, P,T, d).

2 Remark: assume w divides the exponent of the respective torsion e.

3 if z > 1 then
4 t ← P[z]

5 r′ ← r`
w(z−t)

// go left w(z − t) times

6 Traverse_w_div_e(r′, j + (z − t), k, t, `,w, P,T, d)

7 r′ ← r ·
∏k+t−1

h=k T [ j + h][dh] // go right t times

8 Traverse_w_div_e(r′, j, k + t, z − t, `,w, P,T, d)

9 else
// leaf

10 find t ∈ {0, . . . , `w − 1} such that r = T [e/w − 1][t]

11 dk ← t // recover k-th digit dk
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Algorithm 59: Compute logg(r) for a fixed g ∈ Fp2 using an optimal traversal strategy

function Traverse_w_notdiv_e
Input: r: value of root vertex ∆ j,k, i.e. r := r`

e mod w+( j−1)w

k ; j, k: coordinates of root vertex ∆ j,k; z:

number of leaves in subtree rooted at ∆ j,k, w: an integer not dividing e (the exponent of

the respective torsion) and the public parameters P: traversal path, T1,T2: lookup tables.

Output: d: digits (radix `w) of logg r0

1 Remark: initial call is Traverse_w_notdiv_e(r0, 0, 0, len(P) − 1, `,w, P,T1,T2, d).

2 Remark: assume w divides the exponent of the torsion e.

3 if z > 1 then
4 t ← P[z] // z leaves

5 if j > 0 then
6 r′ ← r`

w(z−t)
// go left w(z − t) times

7 else
8 r′ ← r`

e mod w+w(z−t−1)
// go left e (mod w) + w(z − t − 1) times

9 Traverse_w_notdiv_e(r′, j + (z − t), k, t, `,w, P,T1,T2, d)

10 if j = 0 then
// go right t times

11 r′ ← r ·
∏k+t−1

h=k T1[ j + h][dh]

12 else
13 r′ ← r ·

∏k+t−1
h=k T2[ j + h][dh]

14 Traverse_w_notdiv_e(r′, j, k + t, z − t, `,w, P,T1,T2, d)

15 else
// leaf

16 if j = 0 and k = de/we − 1 then
17 find 0 ≤ t < `e mod w s.t. r = T1[de/we − 1][t]

18 else
19 find 0 ≤ t < `w s.t. r = T2[de/we − 1][t]

20 dk ← t // recover the k-th digit dk
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Algorithm 60: Convert a point on a Montgomery curve E : y2 = x3 + Ax2 + x into the corresponding

point on its short Weierstrass form EW : y2 = x3 + ax + b.

function PointMonty2Weier
Input: Point (x, y, z) ∈ E and A

Output: Affine point (x′, y′) ∈ EW

1 if z = 0 then
2 x′ ← 0; y′ ← 1; z′ ← 0

3 else
4 x′ ← x + A/3

5 y′ ← y

6 z′ ← 1

7 return (x′, y′, z′)

Algorithm 61: Convert a Montgomery curve E : y2 = x3 + Ax2 + x into the corresponding short

Weierstrass form EW : y2 = x3 + ax + b.

function Monty2Weier
Input: Montgomery curve coefficient A

Output: Weierstrass coefficients (a, b)

1 a← 1 − A2/3

2 b← (2 · A3 − 9 · A)/27

3 return (a, b)
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Algorithm 62: Compute 4 reduced Tate pairings simultaneously:

e2e2 (P, S 1), e2e2 (P, S 2), e2e2 (Q, S 1), e2e2 (Q, S 2)

function Tate_4_pairings_2_torsion
Input: Points P = (xPM , yPM ),Q = (xQM , yQM ), S 1 = (xS 1 , yS 1), S 2 = (xS 2 , yS 2) on

E : y2 = x3 + Ax2 + x

Output: Reduced Tate pairing values (n1, n2, n3, n4) ∈ (Fp2)4 where

n1 = e2e2 (PW , S 1W), n2 = e2e2 (PW , S 2W), n3 = e2e2 (QW , S 1W), n4 = e2e2 (QW , S 2W) and TW

means the short Weierstrass representation of T ∈ EA

1 a, b← Monty2Weier(A) // Alg. 61

2 (xPW , yPW )← PointMonty2Weier(xPM , yPM , A) // Alg. 60

3 (xQW , yQW )← PointMonty2Weier(xQM , yQM , A) // Alg. 60

4 (xS 1W , yS 1W )← PointMonty2Weier(xS 1 , yS 1 , A) // Alg. 60

5 (xS 2W , yS 2W )← PointMonty2Weier(xS 2 , yS 2 , A) // Alg. 60

6 n1, n2 ← Tate_pairings_2_torsion((xPW , yPW ), [(xS 1W , yS 1W ), (xS 2W , yS 2W )], a, 2) // Alg. 56

7 n3, n4 ← Tate_pairings_2_torsion((xQW , yQW ), [(xS 1W , yS 1W ), (xS 2W , yS 2W )], a, 2) // Alg. 56

8 return (n1, n2, n3, n4) ∈ (Fp2)4

Algorithm 63: Compute 4 reduced Tate pairings simultaneously:

e3e3 (P, S 1), e3e3 (P, S 2), e3e3 (Q, S 1), e3e3 (Q, S 2)

function Tate_4_pairings_3_torsion
Input: Points P = (xPM , yPM ),Q = (xQM , yQM ), S 1 = (xS 1 , yS 1), S 2 = (xS 2 , yS 2) on

E : y2 = x3 + Ax2 + x

Output: Reduced Tate pairing values (n1, n2, n3, n4) ∈ (Fp2)4 where

n1 = e3e3 (PW , S 1W), n2 = e3e3 (PW , S 2W), n3 = e3e3 (QW , S 1W), n4 = e3e3 (QW , S 2W) and TW

means the short Weierstrass representation of T ∈ EA

1 a, b← Monty2Weier(A) // Alg. 61

2 (xPW , yPW )← PointMonty2Weier(xPM , yPM , A) // Alg. 60

3 (xQW , yQW )← PointMonty2Weier(xQM , yQM , A) // Alg. 60

4 (xS 1W , yS 1W )← PointMonty2Weier(xS 1 , yS 1 , A) // Alg. 60

5 (xS 2W , yS 2W )← PointMonty2Weier(xS 2 , yS 2 , A) // Alg. 60

6 n1, n2 ← Tate_pairings_3_torsion((xPW , yPW ), [(xS 1W , yS 1W ), (xS 2W , yS 2W )], a, 2) // Alg. 57

7 n3, n4 ← Tate_pairings_3_torsion((xQW , yQW ), [(xS 1W , yS 1W ), (xS 2W , yS 2W )], a, 2) // Alg. 57

8 return (n1, n2, n3, n4) ∈ (Fp2)4

91



Algorithm 64: Compute the discrete logarithm (optimal Pohlig-Hellman traversal strategy) d =

logg(r) where g = e`ek
k

(Pk,Qk)`
ek̄
k̄ ∈ Fp2 and k̄ is the complement of the torsion k ∈ {2, 3}.

function solve_dlog
Input: Element r ∈ Fp2 , the corresponding torsion k and the following public parameters

corresponding to torsion k: optimal Pohlig-Hellman traversal path pathk ∈ Z
plenk , tables

(T1)k, (T2)k of precomputed values in Fp2 , and exponent wk.

Output: The discrete logarithm d ∈ Z`ek
k

1 if ek (mod w) = 0 then
2 d ← Traverse_w_div_e(r, 0, 0, plenk − 1, `,wk, pathk, (T1)k) // Alg. 58

3 else
4 d ← Traverse_w_notdiv_e(r, 0, 0, plenk − 1, `,wk, pathk, (T1)k, (T2)k) // Alg. 59

5 return d ∈ Z`ek
k

Algorithm 65: Compute 4 discrete logarithms (optimal Pohlig-Hellman strategy) on the multiplica-

tive subgroup of order `ek
k

function ph
Input: Points P = (xPM , yPM ),Q = (xQM , yQM ), S 1 = (xS 1 , yS 1), S 2 = (xS 2 , yS 2) on

E : y2 = x3 + Ax2 + x, the coefficient A, and the corresponding torsion k ∈ {2, 3}

Output: The discrete logs (c0, c1, d0, d1) ∈ Z`ek
k

such that P = [c0]S 1 + [c1]S 2 and

Q = [d0]S 1 + [d1]S 2

1 n1, n2, n3, n4 ← Tate_4_pairings_k_torsion(P,Q, S 1, S 2, A) // Alg. 62 or 63

2 d0 ← solve_dlog(n1, k) // Alg. 64

3 c0 ← solve_dlog(n3, k) // Alg. 64

4 d1 ← solve_dlog(n2, k) // Alg. 64

5 c1 ← solve_dlog(n4, k) // Alg. 64

6 return c0, d0, c1, d1 ∈ (Z`ek
k

)4
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Algorithm 66: Computing compressed public keys in the 3e3-torsion

function PublicKeyCompression_2
Input: Public key pk2 = (x1, x2, x3)

Output: Compressed public key pk_comp2 = (bit, t1, t2, t3, A, r1, r2) according to compressed

encoding

1 yP, yQ, A← get_yP_yQ_A_B(x1, x2, x3) // Alg. 41

2 x1, y1, x2, y2, r1, r2 ← BuildOrdinaryE3nBasis(A) // Alg. 54

3 c0, d0, c1, d1 ← ph(yP, yQ, x1, y1, x2, y2, A, 3) // Alg. 65

4 if d1 (mod 3e3) , 0 then
5 bit ← 0

6 t1 ← −d0 · d−1
1

7 t2 ← −c1 · d−1
1

8 t3 ← c0 · d−1
1

9 else
10 bit ← 1

11 t1 ← −d1 · d−1
0

12 t2 ← c1 · d−1
0

13 t3 ← −c0 · d−1
0

14 return (bit, t1, t2, t3, A, r1, r2) // Encoded as in §1.2.10

93



Algorithm 67: Computing compressed public keys in the 2e2-torsion

function PublicKeyCompression_3
Input: Public key pk3 = (x1, x2, x3)

Output: Compressed public key pk_comp3 = (bit, t1, t2, t3, A, entang_bit, r) // Encoded as

in §1.2.10

1 yP, yQ, A← get_yP_yQ_A_B(x1, x2, x3) // Alg. 41

2 x1, y1, x2, y2, entang_bit, r ← get_2_torsion_entangled_basis_compression(A) // Alg. 48

3 c0, d0, c1, d1 ← ph(yP, yQ, x1, y1, x2, y2, A, 2) // Alg. 65

4 if d1 (mod 2e2) , 0 then
5 bit ← 0

6 t1 ← −d0 · d−1
1

7 t2 ← −c1 · d−1
1

8 t3 ← c0 · d−1
1

9 else
10 bit ← 1

11 t1 ← −d1 · d−1
0

12 t2 ← c1 · d−1
0

13 t3 ← −c0 · d−1
0

14 return (bit, t1, t2, t3, A, entang_bit, r) // Encoded as in §1.2.10
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Algorithm 68: Compute a kernel generator for the last 2e2-isogeny

function PublicKeyDecompression_2
Input: Secret key sk2 ∈ Z2e2 and compressed public key

{bit, (t1, t2, t3) ∈ (Z2e2 )3, A, entang_bit, r}

Output: A kernel generator (x′, z′) ∈ E[2e2] of the last 2e2-isogeny

1 (x1, y1)P1 , (x2, y2)P2 ← BuildEntangledE2mBasis_Decompression(A, entang_bit, r) // Alg. 49

2 if bit = 0 then
3 scal← (t1 + sk2 ·t3)(1 + sk2 ·t2))−1

4 x, z← Ladder3pt(scal, (x1, x2, x(P1 − P2), (A : 1)) // Alg. 8

5 else
6 scal← (t1 + sk2 ·t2)(1 + sk2 ·t3))−1

7 x, z← Ladder3pt(scal, (x2, x1, x(P1 − P2), (A : 1)) // Alg. 8

8 (x′, z′)← xT PLe_ f ast(x, z, A/2, e3) // Alg. 47

9 return (x′, z′)

Algorithm 69: Compute a kernel generator for the last 3e3-isogeny

function PublicKeyDecompression_3
Input: Secret key sk3 ∈ Z3e3 and compressed public key {bit, (t1, t2, t3) ∈ (Z3e3 )3, A, r1, r2}

Output: A kernel generator (x′, z′) ∈ EA[3e3] of the last 3e3-isogeny

1 (x1, y1)P1 , (x2, y2)P2 ← BuildOrdinaryE3nBasis_decompression(A, bit, r1, r2) // Alg. 55

2 if bit = 0 then
3 scal← (t1 + sk3 · t3)(1 + sk3 · t2))−1

4 x, z← Ladder3pt(scal, (x1, x2, x(P1 − P2)), (A : 1))) // Alg. 8

5 else
6 scal← (t1 + sk3 · t2)(1 + sk3 · t3))−1

7 x, z← Ladder3pt(scal, (x2, x1, x(P2 − P1)), (A : 1))) // Alg. 8

8 (x′, z′)← xT PLe_ f ast(x, z, A/2, e3) // Alg. 47

9 return (x′, z′)
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Appendix E

Changes made in the 2nd round

The main differences between the first round and second round SIKE submissions are as follows.

• Two new parameter sets have been added: SIKEp434 (§1.6.1) and SIKEp610 (§1.6.4).

• One parameter set (SIKEp964) has been removed.

• Security categories for parameter sets have been adjusted upward. Chapter 5 presents the rationale
for this change.

• The starting curve has been changed from A = 0 to A = 6. §1.3.2 presents the rationale for this
change.

• An additional implementation including public key compression has been added (§1.5, §2.3).
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Appendix F

Notation

`,m Integers `,m ∈ {2, 3} such that ` , m
e` The index of ` in the degree of the `-power isogeny
sk` The secret key corresponding to points in the `e`-torsion
pk` The public key corresponding to points in the `e`-torsion
φ` The secret `e`-isogeny corresponding to sk`
P` A point of exact order `e` in E0(Fp2) \ E0(Fp), such that the order-`e`

Weil pairing, e`e` (P`,Q`), has exact order `e`

Q` A point of exact order `e` in E0(Fp)
R` The point defined as R` = Q` − P`

isogen` The algorithm that computes public keys — see §1.3.5
isoex` The algorithm that establishes shared keys — see §1.3.6
compress` The algorithm that compresses public keys — see §1.5.1
decompress` The algorithm that decompresses public keys — see §1.5.2

Ea The Montgomery curve defined by Ea/Fp2 : y2 = x3 + ax2 + x
Ea The Montgomery curve defined by Ea/Fp2 : y2 = x3 + ax2 + x
p The prime field characteristic defined as p = 2e23e3 − 1
xP The x-coordinate of the point P
yP The y-coordinate of the point P
K2 The keyspace corresponding to points in the 2e2-torsion
K3 The keyspace corresponding to points in the 3e3-torsion
Np The number of bytes used to represent elements in Fp

Nsk The number of bytes used to represent secret keys
Npk The number of bytes used to represent public keys
Z The ring of integers
Fq The finite field with q elements
F̄q The algebraic closure of the finite field with q elements
Fp The prime field with p elements
Fp2 The quadratic extension field Fp2 , constructed over the prime field Fp as

Fp2 = Fp(i) with i2 + 1 = 0
Pn(K) The projective space of dimension n over the field K

Q2 A point of exact order 2e2 in E0(Fp)
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P2 A point of exact order 2e2 in E0(Fp2) \ E0(Fp), such that the order-2e2

Weil pairing, e2e2 (P2,Q2), has exact order 2e2

R2 The point defined as R2 = Q2 − P2

Q3 A point of exact order 3e3 in E0(Fp)
P3 A point of exact order 3e3 in E0(Fp2) \ E0(Fp), such that the order-3e3

Weil pairing, e3e3 (P3,Q3), has exact order 3e3

R3 The point defined as R3 = Q3 − P3

SIKE Supersingular isogeny key encapsulation
SIDH Supersingular isogeny Diffie–Hellman
PKE Public-key encryption
KEM Key encapsulation mechanism

IND-CPA Indistinguishability under chosen plaintext attack
IND-CCA Indistinguishability under chosen ciphertext attack

SIDH Supersingular Isogeny Diffie–Hellman
RSA Rivest–Shamir–Adleman (cryptosystem)
ECC Elliptic curve cryptography
⊕ The binary exclusive or (XOR) of equal-length bitstrings
I An oracle computing isogenies of degree `e`/2

B A block cipher
GC The number of gates of a classical circuit
GQ The number of gates of a quantum circuit
DC The depth of a classical circuit
DQ The depth of a quantum circuit
AES Advanced Encryption Standard
PKE An isogeny-based public-key encryption scheme
KEM An isogeny-based key encapsulation mechanism
Gen Key generation algorithm for PKE
Enc Encryption algorithm for PKE
Dec Decryption algorithm for PKE
KeyGen Key generation algorithm for KEM
Encaps Encapsulation algorithm for KEM
Decaps Decapsulation algorithm for KEM

F A random oracle
G A random oracle
H A random oracle

SHAKE256 A customizable extendable-output function standardized by NIST
c0 First part of an encapsulation of KEM
c1 Second part of an encapsulation of KEM
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