Random Number Generation & Testing

Juan Soto
soto@nist.gov
301/975-4641
The RNG Team

• *Statistics Department, UMBC*
 – Andrew Rukhin

• *Computer Security Division, NIST*
 – Miles Smid, Elaine Barker, Jim Nechvatal,
 Jim Dray, San Vo, and Juan Soto

• *Statistical Engineering Division, NIST*
 – Stefan Leigh, Mark Vangel, David Banks, Mark Levenson, Allen Heckert
Outline

• Introduction
• Overview of the NIST test suite
• Empirical Testing
• Future work
• Summary
Introduction

• Random Number Generation
 – Von Neumann is often quoted as having stated: “Anyone who considers arithmetic methods of producing random digits is, of course, in a state of sin.”

• Testing RNGs
 – He also stated, “…that in his experience it was more trouble to test random sequences than to manufacture them.”
NIST Goals

• A set of statistical tests suitable in the assessment of the randomness of (P)RNGs.
• Provide supporting documentation.
• Inclusion of the tests in the Cryptographic Module Validation Program?
• Development of a Special Publication?
Work In Progress

• The development of several documents:
 – “A Statistical Test Suite for the Validation of Cryptographic RNGs” including test strategy and test interpretation.
• A reference implementation in ANSI C.
Example: A Finite Length Binary Sequence

01010110111010100110101001101011101001010010100101010

- **Bits**
 - 0s = 26
 - 1s = 27

- **Templates**
 - 00s = 5
 - 01s = 20
 - 10s = 20
 - 11s = 7

- **Runs** = 41
 - 0, 1, 0, 1, 0, 11, 0, 111, 0, 1, ...

- **Cycles** = 5
 - 01, 01, 01, 10, 111010.....010

- **Words** = 18
 - 0, 1, 01, 011, 0111, 010, ...

- **Linear Complexity** $< 27, 1 + D^3 + D^8 + D^{10} + D^{17} + D^{19} + D^{22} + D^{23} + D^{24} + D^{25} + D^{26} >$
Overview of the NIST Test Suite

• Frequency (Monobits) Test
 – Assess the distribution of 0s and 1s.

• Block Frequency Test
 – Assess the distribution of m-bit blocks.

• Spectral (DFT) Test
 – Assess the spectral frequency of a bitstring.
Overview of the NIST Test Suite

• **Runs Test**
 – Assess the expected total number of runs.

• **Long Runs Test**
 – Assess the distribution of runs of ones; runs should not exceed $\log_2 n$.

• **Marsaglia’s Rank Test**
 – Assess the distribution of the rank for 32x32 binary matrices.
Rank of Binary Matrices

\[
\begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

\(\text{rank} \) = 4

\[
\begin{pmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

\(\text{rank} \) = 3

The Rank of 32x32 Binary Matrices

28.88% of binary matrices have rank = 32
57.76% of binary matrices have rank = 31
13.36% of binary matrices have rank \(\leq 30 \)
Overview of the NIST Test Suite

• **NonOverlapping Template Matching Test**
 – Assess the frequency of m-bit nonperiodic patterns.

• **Cumulative Sums Test**
 – Assess that the sum of partial sequences isn’t too large or too small; indicative of too many 0s or 1s.

• **Random Excursions Test**
 – Assess the distribution of states within a cycle of a random walk.
Random Walk (1D)

<table>
<thead>
<tr>
<th>Bitstring</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformed</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Summation</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Overview of the NIST Test Suite

• Overlapping Template Matching Test
 – Assess the frequency of \(m \)-bit periodic templates.

• Serial Test
 – Assess the distribution of all \(2^m \) \(m \)-bit blocks.

• Approximate Entropy Test
 – Assess the entropy (regularity) of a bitstring; compares the frequency of all \(m \)-bit patterns against all \((m+1) \)-bit patterns.
Approximate Entropy Plot

Deficit from Maximal Irregularity

Sequence Length

x 10^5
Overview of The NIST Test Suite

• **Maurer’s Universal Statistical Test**
 – Assess the compressibility of a bitstring.

• **Lempel-Ziv Complexity Test**
 – Assess the compressibility of a bitstring.

• **Linear Complexity Test**
 – Assess the linear complexity of a bitstring; the shortest LFSR that can generate the bitstring.
Empirical Testing

• Good PRNGs
 – ANSI X9.17, G-SHA-1, G-DES
 – Blum-Blum-Shub

• Block Cipher Algorithms (AES)
 – Correlation, CBC Mode
 – Key (Plaintext) Avalanche
 – Special Key (Plaintext) Inputs
Poor PRNGs

• **XOR PRNG**
 – Fails the linear complexity test, rank test and several other tests. Failure due to the simplicity of the scheme.

• **HPC Key Avalanche**
 – Fails the monobits test, approximate entropy test and several others. Failure due to the existence of equivalent keys.
Our Efforts

• Tests developed for cryptographic use.
• Full scientific documentation provided (each algorithm based on rigorous math).
• Sixteen statistical tests fully developed to date; over 200 if one considers alternate input parameters.
Future Work

• Peer Review Process
• Testing Hardware RNG data
• Development of Additional Statistical Tests
 – Moving Averages & Generalized OPSO test
 – Block Cipher tests
• Inclusion of Assessment Tools
 – Graphical Utilities & Goodness-of-Fit tests
Summary

- Statistical tests are very important in ensuring good quality (P)RNGs.
- Statistical tests are necessary but not sufficient to recommend a (P)RNG.
- A statistical test suite must be diverse.
- In the last two years, NIST has developed over 200 tests.