
Math.Comput.Sci.
https://doi.org/10.1007/s11786-021-00502-7 Mathematics in Computer Science

FactorialsExperiments,CoveringArrays, andCombinatorial
Testing

Raghu N. Kacker · D. Richard Kuhn · Yu Lei · Dimitris E. Simos

Received: 29 January 2020 / Revised: 9 October 2020 / Accepted: 27 October 2020
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021, corrected publication 2021

Abstract In the twenty-first century, our life will increasingly depend on software-based products and complex
interconnected systems. Thus, the quality and security of software-based systems is a world-wide concern. Combi-
natorial testing is a versatile methodology for finding errors (bugs) and vulnerabilities in software-based systems.
This paper offers a review of combinatorial testing. Combinatorial testing (CT)methods evolved from investigations
which looked like factorial experiments (FE)with pass/fail outcomes.Wewill discuss the similarities and differences
between FE and CT. Use of CT for detecting errors (bugs) in software-based systems has gained significant interest
from the international software testing community. Many successful results have been reported from the use of CT
to detect software errors in aerospace, automotive, defense, cybersecurity, electronic medical systems, and financial
service industries. Now, combinatorial testing methods are being increasingly used to investigate vulnerabilities in
software-based systems. Combinatorial testing could be useful in detecting errors and security vulnerabilities in
Internet of Things, Autonomous Systems, and Artificially Intelligent Software.

Keywords Design of experiments · Orthogonal arrays · Pairwise-testing · Software testing · Verification and
validation of software

Mathematics Subject Classification 00: General and overarching topics · 05: Combinatorics · 68: Computer
Science

Disclaimer Identification of any commercial products in this paper does not imply recommendation or endorsement by NIST.

R. N. Kacker · D. R. Kuhn
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
e-mail: raghu.kacker@nist.gov
e-mail: d.kuhn@nist.gov

Y. Lei
University of Texas at Arlington, Arlington, TX 76019, USA
e-mail: ylei@cse.uta.edu

D. E. Simos (B)
SBA-Research, 1040 Vienna, Austria
e-mail: dsimos@sba-research.org

http://crossmark.crossref.org/dialog/?doi=10.1007/s11786-021-00502-7&domain=pdf


R. N. Kacker et al.

1 Introduction

Statistical design of experiments (DoE) were initially developed to improve agricultural production, an urgent
concern in some parts of the world of the early twentieth century. DoE methods were adapted and optimized
for experiments with animals, for manufacturing processes, for drugs development, and for biomedical research.
Factorial experiments are a subclass of DoE popular in chemical and hardware manufacturing industries. In the
twenty-first century software has become ubiquitous in tools, systems, and methods for science, engineering,
medicine, commerce, human interactions, and remote work. Most high-value products have embedded software.
Therefore, the assurance of quality and security of software and software-based systems has become an important
world-wide concern. The cost of error and recovery from the failure of a single critical system can run into many
billions of dollars [142]. The ACM Forum on Risks (Website) [1] reports many examples of computer failures and
their effects on the public. Combinatorial testing (CT) is a modification of factorial experiments that complements
other methods for testing, verification, and validation to assure the quality and security of software and software-
based systems.

In Sect. 2, we review briefly the objectives and methods of factorial experiments. An orthogonal array (OA)
is a mathematical object which may be used as the design matrix of a factorial experiment [53]. Also, the design
matrix of an efficient factorial experiment is an OA or includes an OA as a subset. CT began with the use of OAs
to test software-based systems. Covering arrays (CAs) are generalizations of OAs that are better suited for CT. In
Sects. 3 and 4 we discuss OAs and CAs. Section 5 offers a review of CT. It includes abundant reference for further
details. In Sect. 6, we discuss the main differences between factorial experiments and combinatorial testing. CT has
become practical because various tools to generate test suites for CT are now available. In Sect. 7, we review a free
research tool for generating test suites for CT. In Sect. 8, we comment on the application of CT to security testing
of software-based systems. In Sect. 9, we restate the main points and comment on three areas for further research
and application of CT.

2 Factorial Experiments (FEs)

A factorial experiment (FE) is a statistically designed investigation of a natural or man-made system (that is
sufficiently-stable) in which the system is run (executed) for some input variables, called factors, each having
plural test values (levels or settings), and the corresponding output variables, called responses, are measured. The
generic object in a factorial experiment is to form an empirical statistical model for the relationship between the
values of input factors and the output response. A sequence of factorial experiments is often required to form a
statistical model. An experimental run (test run or test case or treatment) is a combination of one test value for each
input factor. A batch of experimental runs is called the design of experiment or design matrix (or test suite). The
chronological order of running the test cases (or allocation of treatments to the experimental units) is randomized
to avoid the results of experiment from being contaminated by systematic (non-random) effects. A test case may be
run two or more times (replicated) to estimate the variance of response from experimental replication error. Table 1
displays a factorial design matrix of 18 experimental runs for 5 factors (denoted by A, B, C, D, and E) each with
three possible test values (denoted by -1, 0, and 1). These test values may be codes for ‘low’, ‘center’ and ‘high’
levels of continuous-valued factors. The text books on the design and data analysis of factorial experiments include
the following classics: Fisher [35], Kempthorne [55], Cochran and Cox [19], Searle [103], Graybill [43], Box et
al. [12], Snedecor and Cochran [117], Box and Draper [13], Montgomery [83], Hinkelmann and Kempthorne [49],
Wu and Hamada [132], and some other more recent books, including later editions of some classics. A very brief
reminder on factorial experiments is given below. More thorough description can be found in the references cited
above.

Factorial design of experiments includes full factorial, fractional factorial, and response surfacemodeling designs.
If k input factors have v test values (levels) each then there are vk possible test cases. A full factorial design matrix
includes all vk test cases. Full factorial designs where v = 2 are most popular. Experiments where v = 3 or



Factorials Experiments, Covering Arrays

Table 1 Design matrix of a
factorial experiment for five
factors each with three
possible values

A B C D E

1 − 1 − 1 − 1 − 1 1

2 1 − 1 − 1 − 1 − 1

3 − 1 1 − 1 − 1 − 1

4 1 1 − 1 − 1 1

5 − 1 − 1 1 − 1 − 1

6 1 − 1 1 − 1 1

7 − 1 1 1 − 1 1

8 1 1 1 − 1 − 1

9 − 1 − 1 − 1 1 − 1

10 1 − 1 − 1 1 1

11 − 1 1 − 1 1 1

12 1 1 − 1 1 − 1

13 − 1 − 1 1 1 1

14 1 − 1 1 1 − 1

15 − 1 1 1 1 − 1

16 1 1 1 1 1

17 0 0 0 0 0

18 0 0 0 0 0

where the factors have unequal numbers of test values (that is, mixed-level full factorial designs) are also used. In a
two-level (v = 2) full factorial experiment, the effect of a factor is the change in response produced by a change in
the test value of the factor while the values of the other factors are fixed. The main effect of a factor A is the average
effect of that factor for all values of each other factor in the experiment. A two-factor (linear-by-linear) interaction
effect A × B is the difference in the conditional main effects of factor A corresponding to the two values of the
factor B averaged for all values of each other factor. A three-factor interaction effect A×B×C is the difference in
the conditional two-factor interaction effects A×B corresponding to the two values of the factor C averaged for all
values of each other factor. The main effects and interaction effects are collectively referred to as factorial effects.
The statistical idea of three-factor and higher order interaction effects may be difficult to interpret physically.

The number of test cases 2k increases exponentially with the number of factors k. The cost of conducting an
experiment usually increases with the number of test cases to be run. Therefore, experimenters are concerned
with minimizing the number of test cases without greatly compromising the information obtained about important
factorial effects. A 2k−p fractional factorial design, where p is less than k, is a 1/2p fraction of the 2k test cases of
a full factorial design. The 2k−p test cases have the same values for p independent “defining relations”. In Table 1,
the experimental runs 1 to 16 form a 25-1 fractional-factorial design. For this half-fraction of all possible 25 = 32
test cases, the “defining relation” is that the product of the values (−1 or 1) of the five factors is always 1. (In the
complementary 16 of the 32 test cases, the product of the five values is always −1.) This experiment plan enables
estimation of the fivemain effects and the ten two-factor interaction effects under the assumption that all three-factor
and higher order interaction effects can be neglected. In Table 1, two center points (0, 0, 0, 0, 0) are appended to
check for the curvature of the output response and to assess variation from experimental replication error.

Response surface modeling (RSM) designs, such as central composite designs and Box-Behnken designs, are
also an important category of factorial designs of experiments. In a central composite design, center points and
axial points are appended to a full or fractional factorial design matrix. The corresponding statistical model includes
quadratic effects in addition to the main effects and (linear-by-linear) interaction effects. The design of a factorial



R. N. Kacker et al.

Table 2 Latin square of
order 3

i ii iii

1 A B C

2 B C A

3 C A B

Table 3 Another Latin
square that is orthogonal to
the Latin square of Table 2

i ii iii

1 a b c

2 c a b

3 b c a

experiment is always written in a matrix form as shown in Table 1, where the columns represent the input factors,
the entries in the columns represent the test values and the rows represent the experimental runs (test cases).

A statistically designed experiment is pairedwith a hypothesized statisticalmodel, which is the basis for interpret-
ing the data. Usually, the statistical model is a special case of the general linear model y = Xβ +e for each response
vector y, where X is a known model matrix, β is a vector of unobservable parameters, and e is an unobservable
random vector, representing the experimental error. The error vector e is usually assumed to have a multivariate
normal distribution with expected value E(e) = 0 and variance V(e) = σ 2V where σ 2 is an unknown parameter
and V is a known positive definite matrix. The matrix V is often taken be the identity matrix I. The number of
elements in the parameter vector β is at least one more (for the overall average response) than the number of input
factors (that is, columns of the design matrix). For the design matrix of 5 columns in Table 1, the model matrix X
may have 16 columns, one for the overall average, five for the main effects, and ten for the two-factor interaction
effects. The elements of the model matrix Xmay be 1’s and 0’s representing presence or absence of the elements of
parameter vector β; coded levels (such as−1, 0, and 1); or actual values of the input factors; or other known values.
The general linear model includes both analysis-of-variance (ANOVA) models and regression models. Challenges
in statistical modeling are discussed in books such as Miller [82] and Freedman [37]. Generalizations of the linear
model y = Xβ + e are discussed in McCulloch and Searle [79].

After running (executing) the system for each test case of the design matrix, the measured value for each output
response is determined. The model matrix and the measured data on a response variable are used to estimate the
unknown parameters (that is, the elements of β and σ 2). The estimates of the elements of β include factorial effects.
The input factors and the output responses may be transformed to a scale for which the general linear model is a
better fit to the realized data. The hypothesized statistical model and the estimated values of the unknown parameters
form an empirical statistical model for the relationship between the values of input factors and the output response.

Generally, the empirical statisticalmodel is used for one ormore of the following four practical ends. (i)Determine
which test values of input factors give a more favorable output response (this is called comparison). (ii) Determine
which few (often, 2 to 4) of the k input factors (where k is more than 4) have the greatest effects on the output
response (this is called screening). Then, further investigation is focused on such important factors. (iii) Determine
a parsimonious empirical statistical model that is sufficiently good to predict the output response of the system
for specified values of the input factors in some neighborhood of the test values that were used in the experiment
(this is called prediction). (iv) Determine optimum values of the input factors for which the output responses of the
system are favorable (this is called optimization). Thus, factorial experiments are used for comparison, screening,
prediction, and optimization with respect to a target system of interest.



Factorials Experiments, Covering Arrays

Table 4 Graeco-Latin
square of order 3

i ii iii

1 Aa Bb Cc

2 Bc Ca Ab

3 Cb Ac Ba

Table 5 Orthogonal array
constructed from two
mutually orthogonal Latin
squares

R C U L

1 1 i A a

2 1 ii B b

3 1 iii C c

4 2 i B c

5 2 ii C a

6 2 iii A b

7 3 i C b

8 3 ii A c

9 3 iii B a

3 Orthogonal Arrays (OAs)

A Latin square of order v is an arrangement of v symbols in v2 cells arranged in v rows and v columns, such that
every symbol appears in each row and each column. Table 2 is a Latin square of three upper-case letters used as
symbols (A, B, C) and Table 3 is another Latin square of three lower-case symbols (a, b, c). Two Latin squares of the
same order v are said to be mutually orthogonal to each other if when superimposed on one another, every pair of
symbols (consisting of one symbol from each Latin square) appears exactly once. A superimposition of twomutually
orthogonal Latin-squares is referred to as a Graeco-Latin square. In Table 4, the two Latin squares of upper-case
symbols (A, B, C) and lower-case symbols (a, b, c) are superimposed. In Table 4 every pair of upper-case symbols
(A, B, C) and lower-case symbols (a, b, c) appears exactly once. Thus, Tables 2 and 3 are mutually orthogonal Latin
squares, and Table 4 is a Graeco-Latin square. The 9 cells of Table 4 show a balanced arrangement of 4 variables:
row numbers (R) with values (1, 2, 3), column numbers (C) with values (i, ii, iii), upper-case symbols (U) with
values (A, B, C), and lower-case symbols (L) with values (a, b, c). Every value of each variable appears with each
value of the other three variables exactly once. Table 5 displays the Table 4 (Graeco-Latin square of order 3) as a
matrix of 9 rows and 4 columns. In Table 5, every possible pair of values appears exactly once. Table 6 displays
the Table 5 in a canonical form using the symbols (0, 1, 2) for the values of each variable. Table 6 is said to be an
orthogonal array (OA) of 9 rows, 4 columns, 3 symbols in each column, and strength 2, denoted as OA(9, 4, 3, 2).
The strength 2 means that in every one of the six pair of columns ((1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)), each of
the 32 = 9 possible pairs of symbols ((0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)) appears with the
same frequency. The same frequency is called index. The index of OA(9, 4, 3, 2) is one.

An orthogonal array OA(N , k, v, t) is an N × k matrix of entries from a set of v symbols (elements) V =
(0, 1, . . . , (v − 1)) and strength t if every N × t sub-matrix contains each possible t-tuple of symbols the same
number of times, called index denoted by λ. Since the index λ is determined by the other parameters N , k, v, and
t , it is not mentioned (λ = N/vt ). An orthogonal array of strength t is necessarily an OA of strength less than
t . A permutation of the rows, or the columns, or the symbols (0, 1, . . . , (v − 1)) of any column of an orthogonal
array (OA) results in an OA with the same parameters. In place of the list notation OA(N , k, v, t), the exponential
notation OA(N , vk, t) is also used.



R. N. Kacker et al.

Table 6 Orthogonal array
OA(N = 9, k = 4, v =
3, t = 2) in canonical form

1 2 3 4

1 0 0 0 0

2 0 1 1 1

3 0 2 2 2

4 1 0 1 2

5 1 1 2 0

6 1 2 0 1

7 2 0 2 1

8 2 1 0 2

9 2 2 1 0

An OA is a mathematical object that satisfies the combinatorial properties stated above. However, it may be
used as a design matrix of a fractional-factorial experiment of k factors with v values each in N test runs. For
example, a full factorial experiment of k = 4 factors each with v = 3 values requires vk = 34 = 81 test cases.
The OA(9, 4, 3, 2) ≡ OA(9, 34, 2) displayed in Table 6 may be regarded as a fraction N/vk = 9/81 = 1/9 of the
design matrix of a 34 full factorial experiment. This highly fractionated plan may be useful when in the associated
statistical model, the effects of all 4 factors are additive; that is, all interaction effects are neglected.

An OA(N , k, v, t) is a fixed-level orthogonal array, since every column has the same fixed number v of distinct
symbols (elements). When each column has two distinct symbols, the OA is called a binary OA. The concept of
a fixed-level OA can be extended to a mixed-level OA where not-all-columns have the same number of distinct
elements. Suppose the k factors have v1, . . . , vk elements, respectively, then a mixed-level OA may be denoted as
OA(N,k,(v1, . . . , vk), t). When not all k values (v1, . . . , vk) are distinct, then in place of the list (v1, . . . , vk) an
exponential notation may be used. An interesting example is OA(36, 211 × 312, 2). This OA may be regarded as a
fraction 36/(211 × 312) = 1/30, 233, 088 of the design matrix of a full factorial experiment of 23 factors where
11 factors have 2 distinct values each and 12 factors have 3 distinct values each. The OA(36, 211 × 312, 2) appears
in Taguchi [119]. It was first constructed by Masuyama [78] from a “difference set” which Seiden [106] found (by
trial and error) and used to construct OA(36, 313, 2). In 1985, an OA(36, 211 × 312, 2) was used to investigate the
main effects of 17 factors in an experiment on wave soldering process [73].

The concept of orthogonal arrays was defined by Rao [100]. However, Taguchi [119] promulgated the use of
OAs for industrial experiments [52]. A library of known OAs is offered by Sloane (Website) [114]. In the Sloane’s
library, most OAs have strength t = 2; OAs of strength t = 3 are binary, and very few OAs have strength greater
than t = 3. Additional information about OAs and their relationship with design matrices of factorial experiments
can be found in Raghavarao [98], Raktoe et al. [99], Hedayat et al. [48], and the references cited there.

4 Covering Arrays (CAs)

Sloane [115] generalized the concept of an orthogonal array of index one to a mathematical object called covering
array (CA). A covering array CA(N ; t, k, v) is an N × k matrix of entries from a set of v symbols (elements)
V = (0, 1, . . . , (v − 1)) and strength t if every N × t sub-matrix contains each possible t-tuple of symbols at least
once. With k columns there are k-choose-t , C(k, t), sets of t columns each. In every set, the number of possible
t-tuples of symbols is vt . The t-tuples of symbols for one set of t columns are distinct from the t-tuples of symbols
for another set of t columns, although they may superficially appear alike. So, the total number of distinct t-tuples
of symbols is C(k, t) × vt . Each distinct t-tuple must appear at least once in the N rows for the N × k matrix to be
a CA. A permutation of the rows, or the columns, or the symbols (0, 1, . . . , (v − 1)) of any column of a covering



Factorials Experiments, Covering Arrays

Table 7 CA(N = 24; t = 4, k = 12, v = 2) generated by the IFS-greedy algorithm [54]

1 2 3 4 5 6 7 8 9 10 11 12

1 1 0 1 0 0 1 0 1 1 0 1 0

2 1 1 0 0 1 0 1 1 0 0 1 0

3 1 0 0 0 1 1 1 0 1 1 0 0

4 0 1 1 0 0 0 1 0 1 1 1 0

5 0 1 1 1 0 0 0 1 0 0 1 1

6 1 1 1 1 0 1 1 0 0 0 0 0

7 1 1 0 0 0 1 0 0 0 1 1 1

8 1 0 1 1 1 0 0 0 0 1 1 0

9 1 1 0 1 0 0 0 1 1 1 0 0

10 1 0 1 0 0 0 1 1 0 1 0 1

11 1 0 0 1 1 1 0 1 0 0 0 1

12 1 1 1 0 1 0 0 0 1 0 0 1

13 0 0 1 0 1 1 1 0 0 0 1 1

14 0 0 1 1 0 1 0 0 1 1 0 1

15 0 1 0 0 0 1 1 1 1 0 0 1

16 1 1 1 1 1 1 1 1 1 1 1 1

17 0 0 0 0 1 0 0 1 1 1 1 1

18 0 0 1 1 1 0 1 1 1 0 0 0

19 0 1 1 0 1 1 0 1 0 1 0 0

20 1 0 0 1 0 0 1 0 1 0 1 1

21 0 1 0 1 1 0 1 0 0 1 0 1

22 0 1 0 1 1 1 0 0 1 0 1 0

23 0 0 0 1 0 1 1 1 0 1 1 0

24 0 0 0 0 0 0 0 0 0 0 0 0

array results in a CA with the same parameters. In place of the list notation CA(N ; t, k, v), the exponential notation
CA(N ; t, vk) is also used. In the notation CA(N ; t, k, v) for a covering array, the strength t is listed after the number
of rows, whereas in the notation OA(N , k, v, t) for an orthogonal array the strength t is listed last. The concept of
a fixed-level covering array CA(N ; t, k, v) can be extended to a mixed-level covering array where not all columns
have the same number of distinct elements. Suppose the k factors have v1, . . . , vk elements each then a mixed-level
covering array may be denoted as CA(N ; t, k, (v1, . . . , vk)). When not all k values (v1, . . . , vk) are distinct, an
exponential notation may be used in place of the list notation.

Table 7 displays CA(24; 4, 12, 2), a covering array of N = 24 rows, strength t = 4, k = 12 columns, and v = 2
symbols in each column. This example of CA(24; 4, 12, 2) was generated by an algorithm described in Kampel and
Simos [54]. An earlier reference for the construction of a CA(24; 4, 12, 2) is Yan and Zhang [135]. In each column
of Table 7, twelve elements are 0 and twelve are 1. Table 8 displays the 12 rows of the first 11 columns of Table 7
corresponding to the element 0 in the column number 12. Interestingly, Table 8 is a covering array CA(12; 3, 11,
2) of strength t = 3. The elements of any single column of the 12 columns of CA(24; 4, 12, 2) can be used to form
two covering arrays of strength 3 like Table 8.

The minimum number N of rows required to produce a CA(N ; t, k, v) is called covering array number denoted
as CAN(t, k, v). A covering array number CAN(t, k, v) may be determined (known) but the corresponding covering
array CA(N ; t, k, v) may be difficult to produce. When a CA(N ; t, k, v) has been produced, one knows an upper



R. N. Kacker et al.

Table 8 CA(N = 12; t = 3, k = 11, v = 2) derived as rows corresponding to the element 0 in the column 12 of Table 7

1 2 3 4 5 6 7 8 9 10 11

1 1 0 1 0 0 1 0 1 1 0 1

2 1 1 0 0 1 0 1 1 0 0 1

3 1 0 0 0 1 1 1 0 1 1 0

4 0 1 1 0 0 0 1 0 1 1 1

5 1 1 1 1 0 1 1 0 0 0 0

6 1 0 1 1 1 0 0 0 0 1 1

7 1 1 0 1 0 0 0 1 1 1 0

8 0 0 1 1 1 0 1 1 1 0 0

9 0 1 1 0 1 1 0 1 0 1 0

10 0 1 0 1 1 1 0 0 1 0 1

11 0 0 0 1 0 1 1 1 0 1 1

12 0 0 0 0 0 0 0 0 0 0 0

bound for CAN(t, k, v). Colbourn (Website) [24] has posted the best known upper bounds on CAN(t, k, v) for
t = 2, 3, 4, 5, and 6; k up to 20,000 for t = 2, and k up to 10,000 for t = 3, . . . , 6; and v up to 25.

The NIST covering array tables (Website) [87] display CA(N ; t, k, v) for t = 2, 3, 4, 5, and 6 and v = 2, 3, 4, 5,
and 6 (except for t = v = 6). These tables were developed by Michael Forbes during the summer of 2007
[36]. Torres-Jimenez (Website) [124] displays a collection of binary (v = 2) covering arrays CA(N ; t, k, v) for
t = 2, 3, 4, 5, and 6. A survey of binary covering arrays appears in Lawrence et al. [64]. Additional information
about CAs can be found in Colbourn [25], Hartman and Raskin [47], Colbourn and Dinitz [26], Torres-Jimenez
and Izquierdo-Marquez [125], and Panario et al. [92] and the references cited there.

Useful orthogonal arrays of sufficiently small number of rows N exist only for certain conforming values of
the parameters k, (v1, . . . , vk) and t . However, useful covering arrays can be constructed for any values of k,
(v1, . . . , vk), and t . It is difficult to construct useful orthogonal arrays OA(N, k, (v1, . . . , vk), t) of strength t greater
than two or three. However, covering arrays CA(N ; t, k, (v1, . . . , vk)), for any practical value of the strength t can
be constructed. (In combinatorial testing, CAs of strength t up to 6 may be required.) An OA(N , k, v, t) of index
λ = 1 is the smallest possible covering array. However, OAs of index λ = 1 exist only for exceptional values of
the parameters N, k, v, and t [15]. Except when an OA of index λ = 1 exists, for a given number of factors k with
values (v1, . . . , vk) and strength t , a CA of fewer number of rows N than the number of rows in a corresponding OA
can usually be constructed. Orthogonal arrays OA(N, k, (v1, . . . , vk), t) are constructed using combinatorial design
theory (finite plane projective and Euclidean geometries). To construct a covering array CA(N ; t, k, (v1, . . . , vk)),
both computational algorithms and combinatorial design theory are used, alone or in combination. CAs constructed
from combinatorial design theory usually have fewer rows than the corresponding CAs generated by computational
algorithms. In the following subsections, we describe three special types of covering arrays.

4.1 Variable-Strength Covering Array

A covering array of strength t is also a CA of strength less than t . A CA(N ; t, k, v) includes some combinations of
more than t values; for example, it includes the number N of the vk possible k-tuples (where k is greater than t). It
is possible to construct a CA of two or more strengths. For example, a CA(N ; t , k, v) can be extended to obtain a
variable-strength covering array of Ñ rows where the first k1 columns 1,…, k1 have strength t1, the next k2 columns
k1 + 1, . . . , k1 + k2 have strength t2, and k = k1 + k2. Such a variable-strength covering array may be denoted
as CA(Ñ ; (t1; 1, . . . , k1), (t2; k1 + 1, . . . , k1 + k2), k, v) or simply as CA(Ñ ; t = Variable, k, v). Table 9 displays



Factorials Experiments, Covering Arrays

Table 9 CA(N = 17; t = Variable, k = 11, v = 2) constructed from Table 8 by appending the rows 5, 11, 12, 13 and 15 of Table 7

1 2 3 4 5 6 7 8 9 10 11

1 1 0 1 0 0 1 0 1 1 0 1

2 1 1 0 0 1 0 1 1 0 0 1

3 1 0 0 0 1 1 1 0 1 1 0

4 0 1 1 0 0 0 1 0 1 1 1

5 1 1 1 1 0 1 1 0 0 0 0

6 1 0 1 1 1 0 0 0 0 1 1

7 1 1 0 1 0 0 0 1 1 1 0

8 0 0 1 1 1 0 1 1 1 0 0

9 0 1 1 0 1 1 0 1 0 1 0

10 0 1 0 1 1 1 0 0 1 0 1

11 0 0 0 1 0 1 1 1 0 1 1

12 0 0 0 0 0 0 0 0 0 0 0

13 0 1 1 1 0 0 0 1 0 0 1

14 1 0 0 1 1 1 0 1 0 0 0

15 1 1 1 0 1 0 0 0 1 0 0

16 0 0 1 0 1 1 1 0 0 0 1

17 0 1 0 0 0 1 1 1 1 0 0

a variable-strength covering array CA(N = 17; t = Variable, k = 11, v = 2) whose first four columns 1, 2, 3,
4 have strength 4 and the next seven columns 5, 6, 7, 8, 9, 10, 11 have strength 3. In the first four columns each
of the 24 = 16 quadruples of symbols ((0, 0, 0, 0), (0, 0, 0, 1), . . . , (1, 1, 1, 0), (1, 1, 1, 1)) appears at least once;
the quadruple (0, 1, 1, 0) appears twice (in rows 4 and 9) and the other appear exactly once. The first twelve rows
of Table 9 are identical to Table 8. Table 9 was constructed by appending to Table 8 rows 5, 11, 12, 13 and 15 of
CA(24; 4, 12, 2) shown in Table 7. Variable-strength covering arrays are useful in combinatorial testing.

4.2 Constrained Covering Array

Certain combinations of the elements (symbols representing test values of input factors) may be invalid (physically
or logically). A row (representing a test case) that includes an invalid combination is invalid. An invalid combi-
nation destroys an orthogonal array. However, a constrained covering array that avoids invalid combinations can
be constructed. For example, consider the covering array CA(12; 3, 11, 2) shown in Table 8. It contains each of
the C(11, 3) × 23 = 1320 distinct triples of symbols at least once. (A triple of symbols, for example (0, 0, 0), in
columns 1, 2, and 3 is distinct from the triple (0, 0, 0) in columns 1, 2, and 4.) Suppose that for some reason, in the
three pairs of columns (5, 6), (7, 8) and (9, 10) the pair of elements (1, 1) is invalid. Then the eight rows (2, 3, 4,
7, 8, 9, 10, and 11) of the twelve rows in Table 8 are invalid. Only four rows (1, 5, 6, and 12) remain valid. The
number of distinct triples involving the three invalid pairs of elements (1, 1) is 3 × 9 × 2 = 54. Thus, the number
of distinct valid triples is 1320− 54 = 1266. The four valid rows of CA(12; 3, 11, 2) include only 600 of the 1266
valid triples. Table 10 displays a constrained covering array CA(20; 3, 11, 2) of 20 rows which includes all 1266
valid triples of combinations (subject to the constraint that the pair of elements (1, 1) in the three pairs of columns
(5, 6), (7, 8) and (9, 10) are forbidden). The four valid rows from Table 8 are preserved. This constrained covering
array was generated by extending the valid rows using a tool discussed in Sect. 7. Whether all 1266 valid triples
can be covered with less than 20 rows remains a challenge. Constrained covering arrays are useful in combinatorial
testing.



R. N. Kacker et al.

Table 10 Constrained CA(N = 20; t = 3, k = 11, v = 2) which avoids the pair of elements (1, 1) in the three pairs of columns (5,
6), (7, 8) and (9, 10). The four valid rows from Table 8 are preserved

1 2 3 4 5 6 7 8 9 10 11

1 1 0 1 0 0 1 0 1 1 0 1

2 1 1 1 1 0 1 1 0 0 0 0

3 1 0 1 1 1 0 0 0 0 1 1

4 0 0 0 0 0 0 0 0 0 0 0

5 1 0 0 1 1 0 1 0 1 0 0

6 0 1 0 1 1 0 0 1 1 0 1

7 1 1 0 0 1 0 1 0 0 1 1

8 0 0 1 1 0 1 1 0 1 0 1

9 0 1 1 0 1 0 1 0 1 0 0

10 1 1 0 1 0 1 0 1 0 1 0

11 0 1 0 0 0 1 1 0 1 0 1

12 0 0 1 0 1 0 0 1 0 1 0

13 1 1 1 1 0 0 0 1 1 0 0

14 0 0 0 0 0 1 1 0 0 1 1

15 0 1 1 1 0 0 1 0 0 1 0

16 0 1 0 0 0 1 0 1 0 1 1

17 0 1 1 0 0 1 0 0 1 0 0

18 1 0 0 1 1 0 0 1 0 0 1

19 1 0 1 0 0 1 0 0 0 1 0

20 1 1 1 1 0 0 1 0 1 0 1

4.3 Some Binary OAs are CAs of Higher Strength and Some CAs are OAs of Lower Strength

Some two-level (v = 2) fractional factorial experiments are based on design matrices attributed to Plackett and
Burman [97]. Plackett-Burman (P-B) designs are binary orthogonal arrays OA(N , k, v = 2, t = 2) of strength
two, where the number of rows N is a multiple of 4 and the number of columns k = N − 1. They are a subclass
of OAs obtained from Hadamard matrices [48]. It is known that some P-B designs for N = 12, 16, 20, 24, 28, 32,
and 36 have the property that every set of three columns contains at least one 23 full factorial design [72]. Thus,
these orthogonal arrays of strength t = 2 are covering arrays CA(N ; t = 3, k, v = 2) of higher strength t = 3.
Sloane’s library of OAs includes binary orthogonal arrays OA(40, 20, 2, t = 3) and OA(56, 28, 2, t = 3) of strength
t = 3. It can be checked that these OAs of strength t = 3 are covering arrays CA(40, t = 4, 20, 2) and CA(56,
t = 4, 28, 2) of higher strength t = 4. Thus, some binary orthogonal array OA(N , k, v, t− 1) of strength t − 1 are
covering arrays CA(N ; t, k, v) of strength t .

The binary covering array CA(24; t = 4, 12, 2) of strength t = 4 displayed in Table 7 turns out to be an
orthogonal array OA (24, 12, 2, t = 3) of lower strength t = 3. The binary covering array CA(12; t = 3, 11, 2)
of strength t = 3 displayed in Table 8 is an orthogonal array OA (12, 11, 2, t = 3) of lower strength t = 2. Thus,
some binary covering arrays CA(N ; t, k, v) of strength t are orthogonal array OA(N , k, v, t − 1) of strength t − 1.
This observation is possible because explicit tables of binary covering arrays are available.

In this paper, we discuss the use of covering arrays for testing software-based systems. In general, covering
arrays are useful whenever a large input space or experimental space is to be explored with a small number of test
cases to detect combinations that are important in some sense (see, for example, [67,107]).



Factorials Experiments, Covering Arrays

5 Combinatorial Testing (CT)

Combinatorial testing (CT) is a methodology for testing a software-based system in which the system under test
(SUT) is executed (run) for a collection of test cases. A test case consists of one test value for each of the test factors.
The collection of test cases is called a test suite. In CT, the test suite satisfies the property that for every subset of
t out of all k test factors (where k � t) each possible combination of the t-test values (t-tuples) is present in at
least one test case [59]. The number t is the strength of the test suite (where t = 2, 3, 4, . . .). Thus, CT is based on
covering arrays. A test suite for CT is generated by a computational tool or constructed from an available covering
array (by assigning the factors to the columns and associating the test values with the entries in the columns). To a
test suite determined from a CA, a tester may append additional test cases based on technical judgment. For each
test case that is executed, the behavior of the system is monitored. The expected (correct) behavior of the system is
pre-determined. The observed (actual) behavior is compared against the expected. A complete test case consists of
both the description of the test value for each test factor and the corresponding expected system behavior. When the
actual behavior agrees with the expected, the system has passed the test case. When the actual behavior disagrees
with the expected, the system has failed the test case. In most applications of CT, the result for a test case (pass
or fail) does not change when that test case is repeated (that is, run again). Certain combinations of the test values
may be logically or physically forbidden. Such forbidden combinations are excluded from the test suite. When the
system fails for one or more test cases, efforts are made to locate, from the pass/fail data, one or more combinations
of the values of a least number of factors which may have induced the failures. An n-way combinatorial interaction
fault is a combination of n test values (where n = 1, 2, 3, . . .) whose presence in a test case induces a failure of the
SUT (that is, produces a behavior that is different from the pre-determined expected behavior). The term ‘n-way
combinatorial interaction fault’ is generally abbreviated to ‘n-way interaction fault’. The purpose of combinatorial
t-way testing is to detect n-way interaction faults for n less than or equal to a chosen strength t . We will discuss
the choice of strength t in combinatorial testing. (An n-way interaction fault for n > t may also be detected if
it is present in the test suite.) The effort to isolate one or more n-way interaction faults from the pass/fail data
is called combinatorial interaction fault localization. We will abbreviate the term ‘combinatorial interaction fault
localization’ to ‘combinatorial fault localization’. Combinatorial fault localizationmay require defining and running
additional test cases. Once a failure-inducing interaction fault has been detected, the underlying defect in the source
code of the SUT is searched and corrected. Thus, combinatorial testing is a methodology for detecting interaction
faults in a software-based system. (In CT, an n-way interaction fault is a combination of n test values. There is no
connection between an interaction fault and the statistical concept of interaction effects in a factorial experiment.)

As an example, suppose the object of investigation is a software which receives inputs from a user and displays
the corresponding output at the monitor of a computer. A user inputs the values of 10 factors A, B, C, D, E, F,
G, H, I, and J and the software outputs the corresponding result. Suppose each of the ten input factors can have
two possible values, which are denoted by 0 and 1. A test case is a combination of one of the two values (0 or 1)
for each of the ten input factors. Thus, a test case is an input vector of ten zero or one values. The correct output
result for each test vector is pre-determined. For each test vector, the software must produce the pre-determined
correct output result. With ten factors each having two possible values, the total number of possible test cases is
210 = 1024. Running all possible test cases is called exhaustive testing. (Exhaustive testing corresponds to running
a full factorial experiment). Exhaustive testing covers all possible n-way combinations for every value of n from
1 to 10. Often, exhaustive testing is neither practical nor necessary. In the present case, suppose it is sufficient to
test for n-way combinations for n = 1, 2, and 3. The number of single test values (trivially, 1-way combinations,
A = 0, A = 1, . . . , J = 0, J = 1) is 10 × 2 = 20. There are C(11, 2) = 45 pairs of factors (AB, AC, . . ., IJ). Each
pair can have 22 = 4 possible value (00, 01, 10, 11). So, the number of 2-way combinations (pairs of test values) is
C(10, 2) × 22 = 180. The number of 3-way combinations (triples of test values) is C(10, 3) × 23 = 960. Triples
contain pairs which contain single test values. Suppose we assign the ten input factors A, B, C, D, E, F, G, H, I,
and J to the first 10 of the 11 columns of the strength t = 3 covering array CA(12; 3, 11, 2) displayed in Table 8,
associate the corresponding test values 0 and 1 with the entries in the columns, and delete the eleventh column.
Then the 12 rows of CA(12; 3, 11, 2) define 12 of the 1024 test cases which cover all 960 triples of the test values.



R. N. Kacker et al.

Table 11 Results from the study of [71]

Package Method Number of test cases Number of bugs found Did CT find FT bugs?

DP-I FT 98 2

CT 49 6 Yes

DP-II FT 102 1

CT 77 5 Yes

DP-III FT 116 2

CT 80 7 Missed 1

DP-IV FT 122 2

CT 90 4 Yes

Thus, by running a test suite of 12 test cases determined by using CA(12; 3, 11, 2) it is possible to detect any n-way
interaction fault for n up to the strength t = 3. For detecting any n-way interaction fault for n greater than the
strength t = 3, more than 12 test cases would typically be required.

The covering array CA(12; 3, 11, 2) contains some n-way combinations for n greater than 3. If any one of these
n-way combinations turns out to be an interaction fault, then its existence may also be revealed. Suppose a software
tester wants to assure that no 4-way interaction fault involving the first four input factors A, B, C, and D exists.
Table 9 is a variable-strength covering array CA(17; (4; 1, . . . , 4), (3; 5, . . . , 11), 11, 2) of two strengths where the
first 4 columns 1, 2, 3, 4 have strength 4 and the next 7 columns 5, 6, 7, 8, 9, 10, 11 have strength 3. By using a test
suite of 17 test cases constructed from CA(17; (4; 1, . . . , 4), (3; 5, . . . , 11), 11, 2), it is possible to also detect any
4-way interaction fault involving the four input factors A, B, C, and D. Testing for 4-way interaction faults involving
all ten input factors would require 24 test cases (because the covering array number CAN for t = 4, k = 10 and
v = 2 is 24, [24].

Now, suppose the object of investigation is a text processing software. Suppose the ten input factors are font
options: A: Bold, B: Italic, C: Underline, D: Strikethrough, E: Subscript, F: Superscript, G: Outline-effect, H:
Shadow-effect, I: Large, and J: Small. Suppose each of the font options has two possible values: off (denoted by 0)
and on (denoted by 1). The following three pairs of font options are mutually exclusive: (i) Subscript and Superscript
(E and F), (ii) Outline-effect and Shadow-effect (G and H), and (iii) Large and Small (I and J). Thus, the pair of test
values (1, 1) is forbidden for the three pairs of input factors (E and F), (G and H), and (I and J). The CA(20; 3, 11,
2) displayed in Table 10 is a constrained covering array which avoids the pair of elements (1, 1) in the three pairs
of columns (5, 6), (7, 8) and (9, 10). By assigning the ten input factors to the first ten of the eleven columns of this
constrained covering array a test suite of 20 valid test cases can be constructed. With this test suite it is possible to
detect any n-way interaction fault for n up to 3, while avoiding the forbidden pairs.

The NIST Combinatorial testing page (Website) [88] lists over forty application papers. Most of these papers
describe application of CT for detecting errors (bugs) in a software-based system. For example, Li et al. [71] describe
an application in which four software packages (DP-I, DP-II, DP-III, and DP-IV) which control the dashboard of
a subway control system were tested. A software testing company had used a function-coverage-based technique
(FT) to test the four packages and had found some bugs. The company allowed a subset of the authors (Li, Gao,
Wong, Yang, and Li) to re-test the same four packages using combinatorial testing (CT). The original testing took
two months. Combinatorial testing took two weeks. The results from Li et al. [71] are reproduced in Table 11. CT
detected more bugs with fewer test cases, but failed to detect one bug previously found by FT.

Combinatorial testing is based on covering arrays (CAs) rather than orthogonal (OAs) for the following reasons.
(i) CAs can be constructed for any number of factors k, any unequal numbers of test values (v1, . . . , vk), and any
strength t . (ii) For a given number of factors k with values (v1, . . . , vk) and strength t , a CA of fewer number
of rows N than the number of rows in a corresponding OA can usually be constructed (except when an OA of
index one is available). (iii) In generating test suites based on CAs, forbidden combinations can be excluded. (iv)



Factorials Experiments, Covering Arrays

Variable-strength CAs can be used to cut down the number of test cases. (v) The balancing property of OAs (that
is, in every set of t out of k columns, each t-tuple of symbols appears the same number of times) is not needed in
combinatorial testing.

5.1 Generation of Test Suites for CTs

Combinatorial testing began in the 1980s as pairwise (2-way) testing using orthogonal arrays (OAs) in various
organizations. We are aware of the work in Fujitsu of Japan and the descendent organizations of the AT&T Bell
System in the USA. The earliest papers include the following: Sato and Shimokawa [101], Shimokawa [109],Mandl
[76], Tatsumi et al. [123], and Tatsumi [122], An AT&T Bell Labs researcher and his colleagues developed a tool
called OATS (Orthogonal Array Testing System) to generate test suites based on OAs of strength 2. OATS was used
to test an AT&T system PMX/Starmail [14]. When another AT&TBell Labs researcher tried to use OATS to specify
“client test configurations for a local area network product”, he ran into the limitations of test suites based on OAs.
Some test cases were invalid and could not be run because they contained invalid (forbidden) combinations. So, he
developed a tool called CATS (Constrained Array Testing System) to generate test suites which excluded forbidden
combinations of the test values while minimizing the number of test cases [108]. Test suites generated by CATS
were predecessors of the test suites based on constrained covering arrays.

The first publicly available tool for generating test suites based on CAs for pairwise testing was AETG, Cohen
et al. [20–22]. In 1998, Lei and Tai developed a tool called IPO for generating test suites for pairwise testing based
on CAs which excluded forbidden combinations of test values, Lei and Tai [65], and Tai and Lei [120]. Usefulness
of CAs led to a burst of interest among mathematicians and computer scientists to develop tools for generating test
suites based on CAs for pairwise (and higher strength) testing. A website maintained by Czerwonka (Website) [30]
lists 37 tools (beginning with OATS, CATS, AETG and IPO) for generating test suites for combinatorial testing.

5.2 Inadequacy of Pairwise Testing

A team of NIST (National Institute of Standards and Technology, USA) researchers investigated fifteen years’
worth of recall data due to failures of software embedded in medical devices and failure reports for a browser, a
server, and a database system. The initial motivation of these investigations was to generate insights into the kinds
of software testing that could have detected the underlying flaws (defects, errors, and other unintended mistakes)
in the software to prevent the failure in use. The NIST researchers counted the numbers of ‘individual factors’ that
were involved in the flaws underlying the actual failures. In the four systems investigated by the NIST team, 29%
to 68% of the flaws involved a single factor; 70% to 97% of the flaws involved one or two factors; 89% to 99%
of the flaws involved one, two or three factors; 96% to 100% of the flaws involved one, two, three or four factors;
96% to 100% of the flaws involved one, two, three, four or five factors, and no flaw involved more than six factors
[62,63,128]. A lesson from the NIST investigations of the failures of real-world systems is as follows. While many
factors may affect the behavior of a system, only a few are involved in any given failure. Most failures involved a
single factor or interaction between two factors. Progressively fewer failures involved interactions between three,
four, or more factors. The maximum number of factors involved in a failure so far observed is six. This lesson is
referred to as the empirical interaction rule. In the context of combinatorial testing, the empirical interaction rule
implies that combinatorial (2-way) testing (commonly known as pairwise testing) is useful but it may not always
provide adequate assurance. Combinatorial (t-way) testing for t greater than 2 may be required. These conclusions
are supported by other investigations including the following: Finelli [34], Bell and Vouk [8], Zhang et al. [140].
This insight motivated the authors of this paper to advance the tools and techniques for combinatorial (t-way) testing
for t � 2.



R. N. Kacker et al.

5.3 Choice of Strength t

For a given application, how should a software tester choose the strength t for combinatorial (t-way) testing?
Consider the combinatorial test structure 334452; that is, nine factors of which three have 3 values each, four have
4 values each, and two have 5 values each. (This happens to be the configuration options for a smart phone.)
Exhaustive testing would require 334452 = 172, 800 test cases. The number of test cases required for t-way testing
for t = 2, 3, 4, 5, and 6 are, respectively, 29, 137, 625, 2532, and 9168 (as determined by a test generation tool
discussed in Sect. 7). The number of test cases required increases by an order of magnitude as the strength t increases
from 2 to 3 to 5.

The choice of strength t = 5 or 6 greatly increases the cost of testing and combinatorial fault localization. The
expected (correct) behavior of the system would need to be pre-determined for thousands of test cases, which is an
arduous task. Running the SUT for thousands of times may take much effort and a long time. If one or more test
cases fail, combinatorial fault localization is required. The number of test cases for which the SUT fails tends to
increase with the strength t even when the faults involve only 2 or 3 factors. So, combinatorial fault localization is
substantially more difficult and costlier when t is set as 5 or 6. Interaction faults for t = 5 or 6 occur infrequently
and they arise in very special situations. So, interaction faults involving 5 or 6 factors may not show up. In most
cases, the cause of failure turns out to be an interaction fault involving four or fewer factors.

The success of CT in detecting any lurking interaction faults depends critically on the choice of the test factors
and their test values. A tester may wish to test the systemwith different test values of the current factors or altogether
different factors and test values. For the same cost as required to test for 5-way or 6-way interaction faults with
the current factors and test values, it may be possible to test several times with different test values or altogether
different factors and test values for interaction faults involving four or fewer factors. The latter course of action may
provide more thorough assurance about more likely interaction faults involving four or fewer factors. Therefore,
we suggest that in the absence of additional knowledge about possible existence of the t-way interaction faults for
t > 4, the choice of strength t should be limited to 2, 3, and 4. Li et al. [68] and Chandrasekaran et al. [16] offered
the same advice based on empirical investigations in two different contexts.

5.4 Black-Box Investigation

Methods for testing software-based systems are often categorized into black-box and white-box testing. In black-
box testing, a SUT is run (executed) for various input test cases (possible inputs or configuration options of the
SUT) and the corresponding outputs are used to investigate the system without reference to the internal workings.
In black-box testing of a software, the source code of the software is hidden. The input test cases are determined
from the specifications, requirements, and prior experience with similar systems. Both allowed and disallowed but
physically (and logically) possible inputs are used. Somehow, the expected (correct) behavior of the system in
response to the input test cases must be pre-determined.

White-box testing refers to checking of the internal workings of a SUT and the source code of software. White-
box testing includes control flow testing (see [4]), data flow testing (see [118]), and testing for complete modified
condition/decision coverage (MC/DC) (see [18]). Typically, white-box testing methods analyze the source code
to derive test cases such that certain characteristics, for example, all statements, all branching conditions, or all
definition-use pairs, are checked. In an intermediate category called gray-box testing, the internal workings of the
system are partially known; for example, the data structures and the mathematical algorithms that are implemented
in the software may be known. The available partial knowledge is used to define the test cases and check the
execution behavior. Both black-box and white-box testing are required in practice. White-box testing is usually
done by the software developers themselves. Black-box testing is often done by independent software verifiers and
validators.

A factorial experiment is a black-box investigation because the experimenter may have limited understanding of
the internal structures and workings of the system. Combinatorial testing is also a black-box technique. However,



Factorials Experiments, Covering Arrays

when a combinatorial interaction fault is detected, the source code of software is required to search and correct
the underlying defects. When the internal structures and workings of the system are known, or the source code of
software is available, such knowledge may be used to define the test factors and their values.

5.5 Defects, Errors, and Vulnerabilities

Defects in a software-based system may loosely be categorized into two types: errors and vulnerabilities. Errors are
usually referred to as bugs. An error is a defect that can make a software-based system behave in an unexpected way
for someuser inputs or configurations or states of the system.Avulnerability is a defect in thedesign, implementation,
or operation and management of a software-based system that an adversary can exploit to breach privacy, security,
safety, or otherwise violate the security policy of the system. Some errors can lead to vulnerabilities. Most errors
tend to be ordinary bugs in coding (or implementation), although errors also occur in design and configuration of
a system. Vulnerabilities can arise, for example, from mistakes such as not validating external inputs, and buffer
overflow errors. It turns out that about two-thirds of the vulnerabilities tend to be implementation-related [61].
Combinatorial testing is useful for both detecting errors (bugs) and exposing vulnerabilities.

5.6 Sub-Processes of Combinatorial Testing

The software-based SUT must be bounded and described completely. When a SUT has many functions, separate
testingmay be needed for some functions. All documentation including specifications, user manuals, possible inputs
and outputs, possible configuration options, and permitted environmental use conditions must be collected. Such
documents are used to define the test cases and determine the corresponding expected behaviors of the system.
When the SUT is like one or more previously tested systems, prior experience may be useful in developing a test
suite for the current system. Combinatorial testing requires six sub-processes: (i) input parameter modeling, (ii) test
generation, (iii) test oracle, (iv) infrastructure for executing the test cases, (v) combinatorial fault localization, and
(vi) correction of the SUT.
(i) Input parameter modeling

In statistical inference, the term parameter is used for a fixed constant of a probability distribution or a statistical
model which is to be estimated. In the computer science literature on software testing the input test factors for the
SUT are referred to as parameters. The test settings (or levels) of the test factors are referred to as values of the
parameters. Thus, input parameter modeling is the process of specifying the parameters (test factors) for testing a
SUT, their discrete test values, and constraints among those test values. An input parameter model (IPM) consists
of the specified parameters, test values, and constraints. An IPM defines the scope of combinatorial testing. The
types of parameters used in CT include possible inputs to the SUT and configuration options of the SUT (including
controllable state variables). A parameter may have a range of infinitely many possible values on a continuous
scale or a wide range of discrete values. For each specified parameter, discrete test values are selected. Constraints
are the restrictions that must be satisfied for a test case to be valid. For example, if one wants to check whether
a web-application can work correctly with different browsers and operating systems, Internet Explorer cannot be
combined with MacOS, since Internet Explorer is not supported by MacOS. The constraints identified in the IPM
usually imply avoidance of certain combinations of the test values.

The effectiveness of CT depends to a large extent on the quality of IPM. Suppose a system fails only when two
parameters take on a specific pair of values. If that pair of values is not captured in the IPM, CT would not be able
to detect the underlying interaction fault and the defect. The following references provide more details on input
parameter modeling: Ostrand and Balcer [91], Grochtmann and Grimm [46], Lott et al. [74], Grindal and Offutt
[44] and Grindal et al. [45].
(ii) Test generation

Test generation refers to the process of building a test suite of a small number of test cases based on a covering
array which includes all t-way combinations of the test values while avoiding the forbidden combinations (which



R. N. Kacker et al.

are dictated by the constraints stated in the IPM). The desired strength t of the test suite is chosen before test
generation. Combinatorial testing has become practical because various tools for generating test suites for CT are
now available, Czerwonka (Website) [30]. The following references offer more details on generation of test suites
for CT: Cohen et al. [22,23], Lei et al. [66], Nie and Leung [85], Khalsa and Labiche [56], Wu et al. [133], Wagner
et al. [127], and Mercan et al. [81].
(iii) Test oracle

A test oracle is a mechanism for determining whether the SUT has passed or failed the test cases. It has two
parts: oracle information that represents the expected (correct) behavior of the SUT for each test case and an ora-
cle procedure that compares the oracle informationwith the actual behavior. For each test case, the oracle information
must be pre-determined. An execution monitor is used to assess the actual behavior of the SUT after running (exe-
cuting) the test cases. The test oracle is then used to compare the actual with the expected behavior and declare
whether the SUT has passed or failed the test case. Development of a test oracle is a challenging problem in all
software testing not just CT. The following references discuss the test oracle problem: Peters and Parnas [95],
Memon et al. [80], Xie and Memon [134], Pezze and Zhang [96], Barr et al. [7], Segura et al. [104], and Li and
Offutt [69].
(iv) Infrastructure for executing the test cases

A testing infrastructure is a system which integrates all required tools and techniques for testing the SUT.
It includes generation of the test suite, test oracle, test execution, and search of failure-inducing combinatorial
interaction faults. The required infrastructure is often specific to the SUT. The test cases are generally abstract
descriptions, and they need to be transformed into concrete test cases that can be executed. The testing infrastructure
sets up the environment for executing the test cases. For example, the SUTmay need to be initialized and brought up
to a ready state before it can be executed. Furthermore, to maintain independence between different test executions,
the environment may need to be reset after each execution. For additional information about testing infrastructures
see Bertolino [9], and Bonn et al. [11].
(v) Combinatorial fault localization

Combinatorial fault localization refers to the process of identifying from the pass/fail data one or more failure-
inducing combinatorial interaction faults which triggered a failure of the SUT. One wants to identify interaction
faults involving the least number of factors. Failure-inducing interaction faults can be identified non-adaptively,
i.e., using only the pass/fail data of the initial test suite. This approach typically requires the initial test suite
to be constructed from special kinds of covering arrays. Alternatively, failure-inducing interaction faults can be
identified in an adaptive manner, where new tests are generated to provide additional information that is needed for
combinatorial fault localization. The following references discuss various approaches andmethods for combinatorial
fault localization: Zeller and Hildebrandt [139], Yilmaz et al. [137], Colbourn and McClary [27], Nie and Leung
[86], Zhang and Zhang [141], Colbourn and Syrotiuk [28], Seidel et al. [105], Ghandehari et al. [42], Niu et al.
[89], and Niu et al. [90].
(vi) Correction of the SUT

The ultimate objective of any software testing is to detect defects in the SUT and correct them. Once one or more
failure-inducing combinatorial interaction faults have been identified the underlying defects in the SUT are searched
and corrected. Detection and correction of defects requires complete access to the SUT including the source code
of software. The following references discuss various approaches and methods for correction of defects: Jones and
Harrold [51], Baah et al. [6], Jin and Orso [50], Wong et al. [129], and Pearson et al. [94].

In the literature on software testing the terms ‘defect’ and ‘fault’ are used as synonym. We have used the term
‘fault’ for an ‘interaction fault’which is a failure-inducing combination of the test values of a small number of factors.
Every real application has special features for which the above sub-processes need to be modified appropriately.

6 Comparison of Combinatorial Testing and Factorial Experiments

Combinatorial testing and factorial experiments are both black-box investigations with the following differences.



Factorials Experiments, Covering Arrays

(i) Objective of investigation
The object of a factorial experimentation is to develop an empirical statistical model for the relationship between

the settings (levels) of the important input factors and the output response of a natural or man-made system.
Information for treatment comparison and system optimization comes out of the statistical model. The object in
combinatorial testing is to detect one or more combinations of the values of a least number of factors for which a
software-based systemmay not behave as expected (correctly). The expected behavior of the SUT for each test case
must be pre-determined. When such a combination of values (called a combinatorial interaction fault) is detected,
the underlying defect in the software-based system is searched and corrected. In combinatorial testing, statistical
models are not used.
(ii) Numbers of factors and test values

Factorial experiments deal with a small number of factors. An investigation may start with, say, ten candidate
factors determined from technical knowledge. From these candidates, two to four important factors are selected
based on technical knowledge and/or screening factorial experiments. The few important factors are used to develop
a statistical model. In a factorial experiment, the factors have a few test values, typically two to four. Combinatorial
testing may involve tens, hundreds or thousands of factors (called parameters). A recent CT investigation involved
2,127 factors each having 3, 7 or 10 test values, Smith et al. [116]. In a CT investigation the factors may have many
test values. Thus, Colbourn (Website) [24] lists covering array numbers for up to 25 test values per factor. Recently
one of our collaborators requested and received strength t = 3 covering arrays for 751 factors each having from 6
to 25 test values per factor.
(iii) Replication error

In a factorial experiment, the response may change when a test case is repeated. This change is attributed to
experimental replication error. Therefore, one ormore test cases are repeated to estimate variation from experimental
error. In unreplicated factorial experiments, three-factor and higher order interaction effects are regarded as variation
from experimental replication error. In most applications of combinatorial testing, the result of a test case (pass or
fail) does not change when the test case is repeated. Thus, each test case needs to be run only once.
(iv) Combinatorial criterion

In a factorial experiment, the combinatorial criterion for developing a design matrix is best estimation of the
unknown parameters of the associated statistical model while limiting the total number of test cases. In a fractional
factorial experiment, factorial effects are confounded with each other, Thus, ‘best estimation’ largely means that
low order factorial effects are not confounded with each other. In combinatorial testing, the combinatorial criterion
for defining a test suite is that for each set of t-factors all possible combinations of the test values (t-tuples) are
included in the test suite, and the total number of test cases is minimized for a specified value of the strength t
(forbidden combinations are excluded).
(v) Unary factors

In a factorial experiment, every factor has plural test values (levels) because the objective is to compare various
alternatives. In combinatorial testing some factors (parameters) may have only one value. Such unary factors are
required to determine whether a combination involving their unary values is an interaction fault.
(vi) Conclusion of investigation

In a factorial experiment, the empirical statistical model is often intended for conditions wider than those in which
the experiment was done. For example, conclusions from an investigation conducted in an industrial laboratory may
be intended for manufacturing conditions or customer’s use conditions. The conclusions from combinatorial testing
are relevant only for the specific system that was tested and only for the conditions in which it was tested.

7 ACTS/IPOG for Generating Test Suites for CT

ACTS is a collection of research tools for combinatorial testing which is freely available at the NIST Combinatorial
testing page (Website) [88]. Themain test suite generation tool inACTS is IPOG.See,Yuet al. [138] for details. Three
interfaces are offered: Graphic User Interface (GUI), Command Line Interface (CLI), andApplication Programming



R. N. Kacker et al.

Interface (API). The GUI is user-friendly. The CLI and the API are offered to facilitate test automation. The major
features of ACTS/IPOG include the following:
(i) Generation of high strength test suites

ACTS/IPOG generates combinatorial t-way test suites for the strength t up to 6, which is considered enough
for most CT applications. ACTS/IPOG includes two test generation modes: scratch and extend. The scratch mode
allows a test suite to be built from scratch. The extend mode allows a test suite to be built by extending an existing
test suite. By extending an existing test suite one can save the effort that has already been spent in the testing process.
(ii) Variable-strength test suites

ACTS/IPOG allows factor (parameter) relations to be created and covered with different strengths in the same
test suite. A factor relation is a group of factors that are closely related to each other and whose interactions need
to be tested. Factor relations may overlap; that is, a factor may be involved in more than one relation.
(iii) Constraint support

ACTS/IPOG allows the user to specify constraints that must be satisfied for a test case to be valid. The specified
constraints are considered in test generation to assure that the resulting test suite will cover, and only cover,
combinations that satisfy these constraints. In ACTS/IPOG, constraints are specified using logic expressions and
a subset of arithmetic operators that are common in practical applications. ACTS/IPOG includes two algorithms
for constraint support. One is based on a constraint solver, and the other is based on forbidden tuples. The latter
algorithm is more efficient for constraints that are less complex.
(iv) Negative Testing

Negative testing (or robustness testing) is used to test whether a system handles impermissible inputs correctly.
Impermissible values are tested to assure that they are rejected by the system. ACTS/IPOG allows the user to
designate some values of a factor (parameter) as impermissible values. During test generation, ACTS/IPOG ensures
that each test case contains at most one impermissible value. This is to avoid potential masking effect between
impermissible values. In addition, ACTS/IPOG ensures that every impermissible value is combined with every (t
- 1)-way combination of permissible values. Currently, ACTS/IPOG supports negative testing only for individual
factor-values that are impermissible. That is, it does not support negative testing of impermissible combinations of
factor-values where each individual value is permissible.
(v) Coverage Verification

This feature is used to verify whether a test suite satisfies t-way coverage. Coverage of t-way combinations is one
way of assuring that an adequate inputmodel has been defined [60]. If no constraint is specified, ACTS/IPOGverifies
that all t-way combinations are covered. If some constraints are specified, it verifies that all the t-way combinations
satisfying the constraints are covered. A test suite to be verified can be a test suite previously generated by ACTS
or a test suite supplied by the user and imported into ACTS/IPOG.

ACTS/IPOG is slow when the strength t , the number of factors (parameters) k, and the number of values v are
large. CAgen is a new research tool to generate combinatorial test suites with support for constraints which is very
fast and can handle arbitrary strength. The architecture of CAgen is based on the core algorithm implementations
described in Kleine and Simos [58]. CAgen algorithms use significantly less memory and can generate test suites for
large numbers of factors. CAgen is freely available at SBA-Research/CAgen (Website) [102]. Features of CAgen
are described in Wagner et al. [127].

8 Security Testing of Software-Based Systems

Software-based systems are becoming increasingly complex and interconnected. The security of such systems is
a critical concern. For example, the so-called Heartbleed bug, which allowed anyone on the Internet to read the
memory of systems protected by the OpenSSL software (for example, banking applications), highlighted the critical
need to assure attack-free implementations of software-based systems [32].

An important domain for the application of CT is testing for the security of software-based systems. Security
testing can be (i) security functional testing or (ii) security vulnerability testing. Security functional testing verifies



Factorials Experiments, Covering Arrays

that the specified security requirements are implemented correctly. Security vulnerability testing detects existence
of inadvertent vulnerabilities. The latter technique uses the simulation of attacks and other kinds of penetration
testing attempting to compromise the security of a system by playing the role of an adversary trying to attack the
system and exploit its vulnerabilities [5]. Security testing is challenging because modelling of vulnerabilities is
specific to the application and the identification of factors triggering such exploits is difficult. Simos et al. [113]
outlines a research program to bridge the gap between CT and security testing, and in the process, establish a
new research field: combinatorial security testing. Many applications illustrate the effectiveness of CT for security
testing, in a wide range of applications ranging from web technologies [39,40], [111,112] and network protocols
[113] to operating systems [38,41] and cryptographic applications [57,84].

Combinatorial testing has been used to test implementations of cryptographic hardware systems; that is, hardware
implementations of cryptographic algorithms, for example, Advanced Encryption Standard [57]. In this research
field, the problem of malicious hardware logic detection, more commonly referred to as the problem of detecting
hardware Trojan horses or simply “Trojans” is especially important, where a well-designed Trojan activates under
rare conditions and can escape detection during testing [2]. Such conditions cannot be exhaustively searched,
especially in the case of cryptographic core implementations with hundreds of inputs. Kitsos et al. [57] explored the
applicability of CT to the detection of Trojans that allegedly reside inside embedded chips which perform encryption
and decryption (of cryptographic algorithms). It was demonstrated that CT provides the theoretical guarantees for
activating a Trojan of specific lengths by covering all input combinations. These findings indicated that CTmethods
can dramatically improve the existing Trojan detection capabilities by reducing the number of tests needed by
several orders of magnitude.

9 Main-Points and Comments for Further Research and Application

Combinatorial testing (CT) is an investigation in which the software-based system under test (SUT) is executed
for a suite of test cases to identify one or more combinations of the least number of test values for which the SUT
does not behave as expected (that is, correctly). The expected behavior is pre-determined for each test case. A
combination of a few test values whose presence in a test case makes the SUT behave different from the expected
behavior is called a combinatorial interaction fault. A combinatorial interaction fault indicates the presence of some
defect in the SUT. When one or more combinatorial interaction faults are identified, the underlying defects in the
SUT are searched and corrected.

Combinatorial testing began with the use of orthogonal arrays (OAs) to detect pairs of values for which the
SUT does not behave as expected. Analyses of the reports of actual failures showed that such pairwise testing is
useful, but it may not be enough because some defects may show only as combinatorial interaction faults involving
three or more values. Also, covering arrays (CAs) are better suited than OAs for combinatorial testing. CAs can
be constructed for any number of factors, any numbers of test values, and any strength (while, useful OAs exist
only for certain conforming values of the parameters). For a given number of factors, values, and strength, a CA of
fewer number of rows than the number of rows in a corresponding OA can usually be constructed. In generating
test suites based on CAs, forbidden combinations can be excluded. Also, variable-strength CAs can be used to cut
down the number of test cases.

Combinatorial testing and factorial experiments (FE) are both black-box investigations in which the internal
workings of the SUT are opaque, unavailable or not referred. But FE and CT have fundamental differences. In a
factorial experiment the objective is to form an empirical statistical model for the SUT. The statistical model is
in turn used for one or more of the four practical ends: comparison, screening, prediction, and optimization. In
combinatorial testing the object is to detect one or more combinations of the values of a least number of factors
for which a software-based system may not behave correctly. In CT, statistical models are not used. Factorial
experiments deal with a few factors each having a few test values. (When the number of candidates is more-than-
a-few, two to four important factors are selected.) Combinatorial testing may involve tens, hundreds or thousands
of factors. In CT, the number of test values per factor may be as large as, for example, twenty-five.



R. N. Kacker et al.

For testing a software or a software-based system, no single approach is enough. Plural approaches are gener-
ally needed at various stages of software development and installation. Combinatorial testing complements other
approaches. Testing can detect the presence of defects, but it cannot assure their absence. Therefore, it is difficult
to quantify confidence that a tested system is free of all defects. The defects may range from a minor nuisance to
catastrophic.

Combinatorial testing is being increasinglyused for investigating the security of software-based systems.Automa-
tion is essential for effective software quality assurance [77] and for security testing [130]. CT methods and tools
are now well developed to enable automated testing for detection and identification of security flaws, in specific
application domains. Also, now it is possible to extend the use of CT to additional application domains (see, [113]).
We think combinatorial testing could be useful in the following three applications areas.
(i) Internet of Things (IoT)

Combinatorial methods are ideally suited for an IoT environment, where testing can involve a very large number
of nodes and combinations [29,93,126,136]. Combinatorial security testing might prove particularly useful for IoT
systems which send and receive data from a large often continually changing set of interacting devices (the number
of possible communicating pairs increases with the square of the number of devices).
(ii) Autonomous Systems (AS)

Quality assurance methods and techniques are crucial for safety critical systems like cars, trains, and airplanes.
The case of automated driving represents the next level of safety critical systems where additional challenges
arise especially in the case of software verification as discussed by Altinger et al. [3] and Wotawa et al. [131].
Combinatorial methods have been employed so far for testing distributed automotive features by Dominka et al.
[31], Tao et al. [121], and Li et al. [70]; and for measuring the coverage of test cases used in testing of embedded
software in the railway industry as documented by Fifo et al. [33]. However, the added level of complexity when
testing for security vulnerabilities for such autonomous systems has not been considered in detail and hence poses
a significant research challenge in future applications.
(iii) Artificially Intelligent Software (AI-software)

Verifying the correctness of the implementation of machine learning algorithms like neural networks has become
a major topic due to their increasing use in the context of, for example, image recognition, natural language
processing, and autonomous systems. Preliminary work by Ma et al. [75], suggests that combinatorial testing and
related testing approaches like the ones presented by Chetouane et al. [17] are a promising avenue for testing neural
networks and should be explored further. In the case of security, it would be of interest to examine the robustness
of implementations of adversarial machine learning algorithms as recently proposed by Biggio and Roli [10].

Acknowledgements Feng Duan helped construct and verify covering arrays. We thank NIST reviewers Brad Alpert, Adam Pintar,
and anonymous journal referees.

References

1. ACM Forum on Risks (Website) (http://catless.ncl.ac.uk/Risks/)
2. Adee, S.: The hunt for the kill switch. IEEE Spectrum 45, 34–39 (2008). https://doi.org/10.1109/MSPEC.2008.4505310
3. Altinger, H., Wotawa, F., Schurius, M.: Testing methods used in the automotive industry: results from a survey. In: Proceedings of

the 2014 Workshop on Joining AcadeMiA and Industry Contributions to Test Automation and Model-Based Testing (JAMAICA
2014), San Jose, CA, USA, July 21, 2014, pp. 1-6 (2014). https://doi.org/10.1145/2631890.2631891

4. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press, Cambridge (2017)
5. Arkin, B., Stender, S., McGraw, G.: Software penetration testing. IEEE Secur. Privacy 3, 84–87 (2005). https://doi.org/10.1109/

MSP.2005.23
6. Baah, G., Podgurski, A., Harrold, M.: Causal inference for statistical fault localization. In; Proceedings of the 2010 ACM Interna-

tional Symposium on Software Testing and Analysis (ISSTA), Trento, Italy, July 12-16, 2010, pp. 73–84 (2010). https://doi.org/
10.1145/1831708.1831717

7. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in software testing: a survey. IEEE Trans. Softw.
Eng. 41, 507–525 (2015). https://doi.org/10.1109/TSE.2014.2372785

http://catless.ncl.ac.uk/Risks/
https://doi.org/10.1109/MSPEC.2008.4505310
https://doi.org/10.1145/2631890.2631891
https://doi.org/10.1109/MSP.2005.23
https://doi.org/10.1109/MSP.2005.23
https://doi.org/10.1145/1831708.1831717
https://doi.org/10.1145/1831708.1831717
https://doi.org/10.1109/TSE.2014.2372785


Factorials Experiments, Covering Arrays

8. Bell, K.Z., Vouk, M.A.: On effectiveness of pairwise methodology for testing network-centric software, Proceedings of the 2005
International Conference on Information & Communication Technology, Cairo, Egypt, December 5-6, 2005, pp. 221-235 (2005).
https://doi.org/10.1109/ITICT.2005.1609626

9. Bertolino, A.: Software testing research: achievements, challenges, dreams. In: Proceedings of Future of Software Engineering
(FOSE), Minneapolis, MN, USA, May 23–25 (2007). https://doi.org/10.1109/FOSE.2007.25

10. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine learning. Pattern Recognit. 84, 317–331 (2018).
https://doi.org/10.1016/j.patcog.2018.07.023

11. Bonn, J., Fögen, K., Lichter, H.: A framework for automated combinatorial test generation, execution, and fault characterization.
In: Proceedings of the 2019 IEEE International Conference on Software Testing, Verification and ValidationWorkshops (ICSTW),
Xian, China, April 23, 2019, pp. 224–233 (2019). https://doi.org/10.1109/ICSTW.2019.00057

12. Box, G.E.P., Hunter, W.G., Hunter, J.S.: Statistics for Experimenters. Wiley, New York (1978)
13. Box, G.E.P., Draper, N.R.: Empirical Model Building and Response Surfaces. Wiley, New York (1987)
14. Brownlie, R., Prowse, J., Phadke, M.S.: Robust testing of AT&T PMX/Starmail using OATS. AT&T Tech. J. 71, 41–47 (1992).

https://doi.org/10.1002/j.1538-7305.1992.tb00164.x
15. Bush, K.A.: Orthogonal arrays of index unity. Ann. Math. Stat. 23, 426–434 (1952)
16. Chandrasekaran, J., Feng, H., Lei, Y., Kuhn, D.R., Kacker, R.N.: Applying combinatorial testing to data mining algorithms. In:

Proceedings of the 2017 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW),
Tokyo, Japan, March 13–17, 2017, pp. 253–261 (2017). https://doi.org/10.1109/ICSTW.2017.46

17. Chetouane, N., Klampfl, L., Wotawa, F.: Investigating the effectiveness of mutation testing tools in the context of deep neural
networks, In: Rojas, I., Joya, G., Catala, A. (eds.), Advances in Computational Intelligence. IWANN 2019. Lecture Notes in
Computer Science, 11506, pp. 766–777. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-8_63

18. Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision coverage to software testing. Softw. Eng. J. 9, 193–200
(1994). https://doi.org/10.1049/sej.1994.0025

19. Cochran, W.G., Cox, G.M.: Experimental Designs, 2nd edn. Wiley, New York (1957)
20. Cohen, D.M., Dalal, S.R., Kajla, A., Patton, G.C.: The automatic efficient test generator (AETG) system. In: Proceedings of

the 1994 IEEE International Symposium on Software, Reliability Engineering, Monterey, CA, USA, November 6–9, 1994, pp.
303–309 (1994). https://doi.org/10.1109/ISSRE.1994.341392

21. Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The combinatorial design approach to automatic test generation. IEEE Softw.
13, 83–89 (1996). https://doi.org/10.1109/52.536462

22. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an approach to testing based on combinatorial design.
IEEE Trans. Softw. Eng. 23, 437–444 (1997). https://doi.org/10.1109/32.605761

23. Cohen, M.B., Gibbons, P.B., Mugridge, W.B., Colbourn, C.J.: Constructing test suites for interaction testing. In: Proceedings of
the 2003 International Conference on Software Engineering (ICSE), May 3–10, 2003, Portland, OR, USA, pp. 38–48 (2003).
https://doi.org/10.1109/ICSE.2003.1201186

24. Colbourn (Website) http://www.public.asu.edu/_ccolbou/src/tabby/catable.html
25. Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Matematiche 59, 121–167 (2004)
26. Colbourn, C.J., Dinitz, J.H.: The CRC Handbook of Combinatorial Designs, 2nd edn. CRC Press, Boca Raton (2010)
27. Colbourn, C.J., McClary, D.W.: Locating and detecting arrays for interaction faults. J. Comb. Optim. 15, 17–48 (2008). https://

doi.org/10.1007/s10878-007-9082-4
28. Colbourn, C.J., Syrotiuk, V.R.: Coverage, location, detection, and measurement. In: Proceedings of the 2016 IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICSTW), Chicago, IL, USA, April 11–15, 2016, pp.
19–25 (2016). https://doi.org/10.1109/ICSTW.2016.38

29. Cui, K., Zhou, K., Qiu, T., Li, M., Yan, L.: A hierarchical combinatorial testing method for smart phone software in wearable IoT
systems. Comput. Electr. Eng. 61, 250–265 (2017). https://doi.org/10.1016/j.compeleceng.2017.06.004

30. Czerwonka (Website) http://www.pairwise.org
31. Dominka, S., Mandl, M., Dubner, M., Ertl, D.: Using combinatorial testing for distributed automotive features: applying com-

binatorial testing for automated feature-interaction-testing. In: Proceedings of the 2018 IEEE eighth Annual Computing and
Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, January 8–10, 2018, pp. 490–495 (2018). https://doi.
org/10.1109/CCWC.2018.8301632

32. Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F., Weaver, N., Amann, J., Beekman, J., Payer, M., Paxson,
V.: The matter of Heartbleed. In: Proceedings of the 2014 ACM Internet Measurement Conference (IMC), Vancouver, Canada,
November 5–7, 2014, pp. 475–488 (2014). https://doi.org/10.1145/2663716.2663755

33. Fifo, M., Enoiu, E., Afzal, W.: On measuring combinatorial coverage of manually created test cases for industrial software. In:
Proceedings of the 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW),
Xian, China, April 22–23, 2019, pp. 264–267 (2019). https://doi.org/10.1109/ICSTW.2019.00062

34. Finelli, G.B.: NASA software failure characterization experiments. Reliab. Eng. Syst. Saf. 32, 155–169 (1991). https://doi.org/
10.1016/0951-8320(91)_90052-9

35. Fisher, R.A.: The Design of Experiments. Oliver and Boyd, London (1935)
36. Forbes, M., Lawrence, J.F., Lei, Y., Kacker, R.N., Kuhn, D.R.: Refining the in-parameter-order strategy for constructing covering

arrays. J. Res. Natl. Inst. Stand. Technol. 113, 287–297 (2008)
37. Freedman, D.A.: Statistical Models: Theory and Practice. Cambridge University Press, Cambridge (2005)

https://doi.org/10.1109/ITICT.2005.1609626
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1016/j.patcog.2018.07.023
https://doi.org/10.1109/ICSTW.2019.00057
https://doi.org/10.1002/j.1538-7305.1992.tb00164.x
https://doi.org/10.1109/ICSTW.2017.46
https://doi.org/10.1007/978-3-030-20521-8_63
https://doi.org/10.1049/sej.1994.0025
https://doi.org/10.1109/ISSRE.1994.341392
https://doi.org/10.1109/52.536462
https://doi.org/10.1109/32.605761
https://doi.org/10.1109/ICSE.2003.1201186
http://www.public.asu.edu/_ccolbou/src/tabby/catable.html
https://doi.org/10.1007/s10878-007-9082-4
https://doi.org/10.1007/s10878-007-9082-4
https://doi.org/10.1109/ICSTW.2016.38
https://doi.org/10.1016/j.compeleceng.2017.06.004
http://www.pairwise.org
https://doi.org/10.1109/CCWC.2018.8301632
https://doi.org/10.1109/CCWC.2018.8301632
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1109/ICSTW.2019.00062
https://doi.org/10.1016/0951-8320(91)_90052-9
https://doi.org/10.1016/0951-8320(91)_90052-9


R. N. Kacker et al.

38. Garn, B., Simos, D.E.: Eris: A tool for combinatorial testing of the Linux system call interface. In: Proceeding of the 2014 IEEE
International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Cleveland, OH, USA, March
31–April 4, 2014, pp. 58–67 (2014). https://doi.org/10.1109/ICSTW.2014.7

39. Garn, B., Kapsalis, I. Simos, D.E., Winkler, S.: On the applicability of combinatorial testing to web application security testing: a
case study. In: Proceedings of the 2014 ACMWorkshop on Joining AcadeMiA and Industry Contributions to Test Automation and
Model-Based Testing (JAMAICA 2014), San Jose, CA, USA, July 21, 2014, pp. 16–21 (2014). https://doi.org/10.1145/2631890.
2631894

40. Garn, B., Simos, D.E., Zauner, S., Kuhn, D.R., Kacker, R.N.: Browser fingerprinting using combinatorial sequence testing. In:
Proceedings of the 6-th Annual Symposium on Hot Topics in the Science of Security (HotSoS 2019), Nashville, TN, USA, April
1–3, 2019, Article 7 (2019). https://doi.org/10.1145/3314058.3314062

41. Garn, B., Würfl, F., Simos, D.E.: KERIS: a CT tool of the linux kernel with dynamic memory analysis capabilities. In: Strichman,
O., Tzoref-Brill, R. (eds.), Hardware and Software: Verification and Testing. HVC 2017. Lecture Notes in Computer Science,
10629, pp. 225–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70389-3_17

42. Ghandehari, L., Lei, Y., Kacker, R.N., Kuhn, D.R., Kung, D., Xie, T.: A combinatorial testing-based approach to fault localization.
IEEE Trans. Softw. Eng. (TSE) 46, 616–645 (2019). https://doi.org/10.1109/TSE.2018.2865935

43. Graybill, F.A.: Theory and Application of the Linear Statistical Model. Duxbury Press, North Scituate (1976)
44. Grindal, M., Offutt, J.: Input parameter modeling for combination strategies. In; Proceedings of the 2007 Conference on IASTED

International Multi-Conference: Software Engineering, Innsbruck, Austria, February 13–15, 2007, pp. 255–260 (2007). https://
dlnext.acm.org/doi/abs/10.5555/1332044.1332085

45. Grindal, M., Offutt, J., Mellin, J.: Managing conflicts when using combination strategies to test software. In: Proceedings of the
Australian Software Engineering Conference (ASWEC), Melbourne, Vic., Australia, April 10–13, 2007, pp. 255–264 (2007).
https://doi.org/10.1109/ASWEC.2007.27

46. Grochtmann, M., Grimm, K.: Classification trees for partition testing. Softw. Test. Verif. Reliab. 3, 63–82 (1993). https://doi.org/
10.1002/stvr.4370030203

47. Hartman, A., Raskin, L.: Problems and algorithms for covering arrays. Discrete Math. 284, 149–156 (2004). https://doi.org/10.
1016/j.disc.2003.11.029

48. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Applications. Springer, New York (1999)
49. Hinkelmann, K., Kempthorne, O.: Design and Analysis of Experiments, vol. 1. Wiley, New York (1994)
50. Jin, W., Orso, A.: F3: fault localization for field failures. Proceedings of the 2013 ACM International Symposium on Software

Testing and Analysis (ISSTA), Lugano, Switzerland, July 15–20, 2013, pp. 213–223 (2013). https://doi.org/10.1145/2483760.
2483763

51. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-localization technique. In: Proceeding of the 20-th
IEEE/ACM International Conference on Automated Software Engineering (ASE), Long Beach, CA, USA, November 07–11, 200,
pp. 273–282 (2005). https://doi.org/10.1145/1101908.1101949

52. Kackar, R.N.: Off-line quality control, parameter design, and the Taguchi method (with comments and response). Journal of
Quality Technology 17, 176–209 (1985). https://doi.org/10.1080/00224065.1985.11978964

53. Kacker, R.N., Lagergren, E.S., Filliben, J.J.: Taguchi’s orthogonal arrays are classical designs of experiments. J. Res. Natl. Inst.
Stand. Technol. 96, 577–591 (1991)

54. Kampel, L., Simos, D.E.: Set-Based Algorithms for Combinatorial Test Set Generation. In: Wotawa, F., Nica, M., Kushik, N.
(eds.), Testing Software and Systems. ICTSS 2016. Lecture Notes in Computer Science, 9976, pp. 231–240. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47443-4_16

55. Kempthorne, O.: The Design and Analysis of Experiments. Wiley, New York (1952)
56. Khalsa, S., Labiche, Y.: An orchestrated survey of available algorithms and tools for combinatorial testing. In: Proceedings of

the 2014 IEEE International Symposium on Software Reliability Engineering (ISSRE), Naples, Italy, November 3–6, 2014, pp.
323–334 (2014). https://doi.org/10.1109/ISSRE.2014.15

57. Kitsos, P., Simos, D.E., Torres-Jimenez, J., Voyiatzis, A.G.: Exciting FPGA cryptographic Trojans using combinatorial testing. In;
Proceedings of the 26th IEEE International Symposium on Software Reliability Engineering (ISSRE), Gaithersburg, MD, USA,
November 2–5, 2015, pp. 69–76 (2015). https://doi.org/10.1109/ISSRE.2015.7381800

58. Kleine, K., Simos, D.E.: An efficient design and implementation of the in-parameter-order algorithm. Math. Comput. Sci. 12,
51–67 (2018). https://doi.org/10.1007/s11786-017-0326-0

59. Kuhn, D.R., Kacker, R.N., Lei, Y.: Introduction to Combinatorial Testing. CRC Press, Boca Raton (2013)
60. Kuhn, D.R., Kacker, R.N., Lei, Y., Simos, D.E.: Input space coverage matters. IEEE Comput. 53, 37–44 (2020). https://doi.org/

10.1109/MC.2019.2951980
61. Kuhn, D.R., Raunak, M.S., Kacker, R.N.: It doesn’t have to be like this: cybersecurity vulnerability trends, IT professional,19

(November/December 2017), pp. 66–70 (2017). https://doi.org/10.1109/MITP.2017.4241462
62. Kuhn, D.R., Reilly, M.J.: An investigation of the applicability of design of experiments to software testing. In: Proceedings of the

27-th NASA/IEEE Software Engineering Workshop, Goddard Space Flight Center, Greenbelt, MD, USA, December 5–6, 2002,
pp. 91–95 (2002). https://doi.org/10.1109/SEW.2002.1199454

63. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implications for software testing. IEEE Trans. Softw.
Eng. 30, 418–421 (2004). https://doi.org/10.1109/TSE.2004.24

https://doi.org/10.1109/ICSTW.2014.7
https://doi.org/10.1145/2631890.2631894
https://doi.org/10.1145/2631890.2631894
https://doi.org/10.1145/3314058.3314062
https://doi.org/10.1007/978-3-319-70389-3_17
https://doi.org/10.1109/TSE.2018.2865935
https://dlnext.acm.org/doi/abs/10.5555/1332044.1332085
https://dlnext.acm.org/doi/abs/10.5555/1332044.1332085
https://doi.org/10.1109/ASWEC.2007.27
https://doi.org/10.1002/stvr.4370030203
https://doi.org/10.1002/stvr.4370030203
https://doi.org/10.1016/j.disc.2003.11.029
https://doi.org/10.1016/j.disc.2003.11.029
https://doi.org/10.1145/2483760.2483763
https://doi.org/10.1145/2483760.2483763
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1080/00224065.1985.11978964
https://doi.org/10.1007/978-3-319-47443-4_16
https://doi.org/10.1109/ISSRE.2014.15
https://doi.org/10.1109/ISSRE.2015.7381800
https://doi.org/10.1007/s11786-017-0326-0
https://doi.org/10.1109/MC.2019.2951980
https://doi.org/10.1109/MC.2019.2951980
https://doi.org/10.1109/MITP.2017.4241462
https://doi.org/10.1109/SEW.2002.1199454
https://doi.org/10.1109/TSE.2004.24


Factorials Experiments, Covering Arrays

64. Lawrence, J.F., Kacker, R.N., Lei, Y., Kuhn, D.R., Forbes, M.: A survey of binary covering arrays. Electron. J. Comb. 18, Article
84 (2011). https://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p84

65. Lei, Y., Tai, K.C.: In-parameter order: a test generation strategy for pairwise testing. In: Proceedings of the 3rd IEEE International
High Assurance Systems Engineering Symposium (HASE), Washington, DC, USA, November 13–14, 1998, pp. 254–261 (1998).
https://doi.org/10.1109/HASE.1998.731623

66. Lei, Y., Kacker, R., Kuhn, D., Okun, V., Lawrence, J.: IPOG/IPOG-D: efficient test generation for multi-way combinatorial testing.
Softw. Test. Verif. Reliab. 18, 125–148 (2008). https://doi.org/10.1002/stvr.381

67. Lejay, L.V., Shasha, D.E., Palenchar, P.M., Kouranov, A.Y., Cruikshank, A.A., Chou,M.F., Coruzzi, G.M.: Adaptive combinatorial
design to explore large experimental spaces: approach and validation, Systems Biology, 1, pp. 206–212 (2004).https://www.ncbi.
nlm.nih.gov/pubmed/17051692

68. Li, D., Hu, L., Gao, R.,Wong,W. E., Kuhn,D.R., Kacker, R.N.: ImprovingMC/DC and fault detection strength using combinatorial
testing. In; Proceedings of the 2017 IEEE International Conference on Software Quality, Reliability, and Security (QRS 2017),
Prague, Czech Republic, July 25–29, 2017, pp. 297–303 (2017). https://doi.org/10.1109/QRS-C.2017.131

69. Li, N., Offutt, J.: Test oracle strategies for model-based testing. IEEE Trans. Softw. Eng. (TSE) 43, 372–395 (2017). https://doi.
org/10.1109/TSE.2016.2597136

70. Li, Y., Tao, J., Wotawa, F.: Ontology-based test generation for automated and autonomous driving functions. Inf. Softw. Technol.
117, Article 106200 (2020). https://doi.org/10.1016/j.infsof.2019.106200

71. Li, X., Gao, R., Wong, W.E., Yang, C., Li, D.: Applying combinatorial testing in industrial settings. In: Proceedings of the 2016
IEEE International Conference on Software Quality, Reliability and Security (QRS), Vienna, Austria, August 1–3, 2016, Article
16378499 (2016). https://doi.org/10.1109/QRS.2016.16

72. Lin, D.K.J., Draper, N.R.: Projection properties of Plackett and Burman designs. Technometrics 34, 423–428 (1992)
73. Lin, K.M., Kackar, R.N.: Optimizing the wave soldering process. Electronic Packaging& Production, February 1986, pp. 108–115

(1986). Reprinted in Dehnad, K. (eds) Quality Control, Robust Design, and the Taguchi Method, pp. 143–157. Springer, Boston,
MA, 1989. https://doi.org/10.1007/978-1-4684-1472-1_7

74. Lott, C., Jain, A., Dalal, S.: Modeling requirements for combinatorial software testing. ACM SIGSOFT Softw. Eng. Notes 30,
1–7 (2005). https://doi.org/10.1145/1082983.1083281

75. Ma, L., Juefei-Xu, F., Xue, M., Li, B., Li, L., Liu, Y., Zhao, J.: DeepCT: tomographic combinatorial testing for deep learning
systems. In: Proceedings of the 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering
(SANER), Hangzhou, China, February 24–27, 2019, pp. 614–618 (2019). https://doi.org/10.1109/SANER.2019.8668044

76. Mandl, R.: Orthogonal Latin squares: an application of experiment design to compiler testing. Commun. ACM 28, 1054–1058
(1985). https://doi.org/10.1145/4372.4375

77. Mariani, L., Hao, D., Subramanyan, R., Zhu, H.: The central role of test automation in software quality assurance. Softw. Qual.
J. 25, 797–802 (2017). https://doi.org/10.1007/s11219-017-9383-5

78. Masuyama, M.: On difference sets for constructing orthogonal arrays of index two and strength two, Reports of Statistical
Application Research, 5, pp. 27–34. Union of Japanese Scientists and Engineers (JUSE), Tokyo, Japan (1957)

79. McCulloch, C.E., Searle, S.R.: Generalized, Linear, and Mixed Models. Wiley, New York (2001)
80. Memon, A., Banerjee, I., Nagarajan, A.: What test oracle should i use for effective GUI testing? In; Proceedings of the 18-th IEEE

International Conference on Automated Software Engineering (ASE 2003), Montreal, Canada, October 6–10, 2003, pp. 164–173
(2003). https://doi.org/10.1109/ASE.2003.1240304

81. Mercan, H., Javeed, A., Yilmaz, C.: Flexible combinatorial interaction testing. IEEE Trans. Softw. Eng. (2020). https://doi.org/
10.1109/TSE.2020.3010317

82. Miller, R.G.: Beyond ANOVA, Basic and Applied Statistics. Wiley, New York (1986)
83. Montgomery, D.C.: Design and Analysis of Experiments, 3rd edn. Wiley, New York (1991)
84. Mouha, N., Raunak, M.S., Kuhn, D.R., Kacker, R.N.: Finding bugs in cryptographic hash function implementations. IEEE Trans.

Reliab. 67, 870–884 (2018). https://doi.org/10.1109/TR.2018.2847247
85. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Computing Surveys (CSUR), 43, Article 11 (2011). https://doi.org/

10.1145/1883612.1883618
86. Nie, C., Leung, H.: The minimal failure-causing schema of combinatorial testing. ACM Trans. Softw. Eng. Methodol. (TOSEM)

20, Article 15, (2011). https://doi.org/10.1145/2000799.2000801
87. NIST Covering array tables (Website) https://math.nist.gov/coveringarrays/
88. NIST Combinatorial testing page (Website) https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
89. Niu, X., Nie, C., Lei, Y., Leung, H., Wang, X.: Identifying failure-causing schemas in the presence of multiple faults. IEEE Trans.

Softw. Eng. 46, 141–162 (2020). https://doi.org/10.1109/TSE.2018.2844259
90. Niu, X., Nie, C., Leung, H., Lei, Y., Wang, X., Xu, J., Wang, Y.: An interleaving approach to combinatorial testing and failure-

inducing interaction identification. IEEE Trans. Softw. Eng. 46, 584–615 (2020). https://doi.org/10.1109/TSE.2018.2865772
91. Ostrand, T., Balcer,M.: The category-partitionmethod for specifying and generating functional tests. Commun. ACM 31, 676–686

(1988). https://doi.org/10.1145/62959.62964
92. Panario, D., Saaltink, M., Stevens, B., Wevrick, D.: An extension of a construction of covering arrays. J. Comb. Des. 28, 842–861

(2020). https://doi.org/10.1002/jcd.21747
93. Patil, A.H.: Design and implementation of combinatorial testing based test suites for operating systems used for internet of things,

Lulu.com (2019)

https://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p84
https://doi.org/10.1109/HASE.1998.731623
https://doi.org/10.1002/stvr.381
https://www.ncbi.nlm.nih.gov/pubmed/17051692
https://www.ncbi.nlm.nih.gov/pubmed/17051692
https://doi.org/10.1109/QRS-C.2017.131
https://doi.org/10.1109/TSE.2016.2597136
https://doi.org/10.1109/TSE.2016.2597136
https://doi.org/10.1016/j.infsof.2019.106200
https://doi.org/10.1109/QRS.2016.16
https://doi.org/10.1007/978-1-4684-1472-1_7
https://doi.org/10.1145/1082983.1083281
https://doi.org/10.1109/SANER.2019.8668044
https://doi.org/10.1145/4372.4375
https://doi.org/10.1007/s11219-017-9383-5
https://doi.org/10.1109/ASE.2003.1240304
https://doi.org/10.1109/TSE.2020.3010317
https://doi.org/10.1109/TSE.2020.3010317
https://doi.org/10.1109/TR.2018.2847247
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1145/2000799.2000801
https://math.nist.gov/coveringarrays/
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://doi.org/10.1109/TSE.2018.2844259
https://doi.org/10.1109/TSE.2018.2865772
https://doi.org/10.1145/62959.62964
https://doi.org/10.1002/jcd.21747


R. N. Kacker et al.

94. Pearson, S.,Campos, J., Just,R., Fraser,G.,Abreu,R., Ernst,M.D., Pang,D.,Keller,B.: Evaluating and improving fault localization.
In: Proceedings of the 39th IEEE International Conference on Software Engineering (ICSE), BuenosAires, Argentina,May 20–28,
2017, pp. 609–620 (2017). https://doi.org/10.1109/ICSE.2017.62

95. Peters, D., Parnas, D.: Using test oracles generated from program documentation. IEEE Trans. Softw. Eng. 24, 161–173 (1998).
https://doi.org/10.1109/32.667877

96. Pezze, M., Zhang, C.: Chapter one—Automated test oracles: a survey. Adv. Comput. 95, 1–48 (2014). https://doi.org/10.1016/
B978-0-12-800160-8.00001-2

97. Plackett, R.L., Burman, J.P.: The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1946). https://www.
jstor.org/stable/pdf/2332195.pdf

98. Raghavarao, D.: Constructions and Combinatorial Problems in Design of Experiments. Wiley, New York (1971)
99. Raktoe, B.L., Hedayat, A.S., Federer, W.T.: Factorial Designs. Wiley, New York (1981)
100. Rao, C.R.: Hypercubes of strength d leading to confounded designs of factorial experiments. Bull. Calc. A Math. Soc. 38, 67–68

(1946)
101. Sato, S., Shimokawa, H.: Methods for setting software test parameters using the design of experiments method (in Japanese),

Proceedings of 4th Symposium on Quality Control in Software, Union of Japanese Scientists and Engineers (JUSE), 1984, pp.
1–8 (1984)

102. SBA-Research/CAgen (Website) https://matris.sba-research.org/tools/cagen
103. Searle, S.R.: Linear Models. Wiley, New York (1971)
104. Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A.: A survey on metamorphic testing. IEEE Trans. Softw. Eng. 42, 805–824

(2016). https://doi.org/10.1109/TSE.2016.2532875
105. Seidel, S.A., Sarkar, K., Colbourn, C.J., Syrotiuk, V.R.: Separating interaction effects using locating and detecting arrays. In:

Iliopoulos, C., Leong, H., Sung, W.K. (eds.) Combinatorial Algorithms. IWOCA 2018. Lecture Notes in Computer Science,
10979, pp. 349–360. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94667-2_29

106. Seiden, E.: On the problem of construction of orthogonal arrays. Ann. Math. Stat. 25, 151–156 (1954)
107. Shasha, D.E., Kouranov, A.Y., Lejay, L.V., Chou, M.F., Coruzzi, G.M.: Using combinatorial design to study regulation by multiple

input signals. A tool for parsimony in the post-genomics era, Plant Physiology 127, 1590–1594 (2001). http://www.plantphysiol.
org/content/127/4/1590

108. Sherwood, G.B.: Effective testing of factor combinations, Proceedings of 3rd International Conference on Software Testing,
Analysis and Review (STAR-1994), Washington, DC, USA, May 8–12, 1994, pp. 151–166 (1994). http://testcover.com/pub/
background/star1994_paper.pdf

109. Shimokawa, H.: Method of generating software test cases using the experimental design (in Japanese), Report on Software
Engineering SIG, Information Processing Society of Japan, No.1984-SE-040 (1985)

110. Simos, D.E., Bozic, J., Garn, B., Leithner, M., Duan, F., Kleine, K., Lei, Y., Wotawa, F.: Testing TLS using planning-based
combinatorialmethods and execution framework. Softw.Qual. J. 27, 703–729 (2019). https://doi.org/10.1007/s11219-018-9412-z

111. Simos, D.E., Garn, B., Zivanovic, J., Leithner, M.: Practical combinatorial testing for XSS Detection using Locally Optimized
Attack Models. In: Proceedings of the 2019 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), Xian, China, April 22–23, 2019, pp. 122–130 (2019). https://doi.org/10.1109/ICSTW.2019.00040

112. Simos, D.E., Zivanovic, J., Leithner, M.: Automated combinatorial testing for detecting SQL vulnerabilities in web applications.
In: Proceedings of the 14th InternationalWorkshop onAutomation of Software Test, collocatedwith 41st ACM/IEEE International
Conference on Software Engineering (ICSE), Montreal, Canada, May 27, 2019, pp 56–61 (2019). https://doi.org/10.1109/AST.
2019.00014

113. Simos, D.E., Kuhn, D.R., Voyiatzis, A., Kacker, R.N.: Combinatorial methods in security testing. IEEE Comput. 49, 80–83 (2016)
114. Sloane, N.J.A.: (Website) http://neilsloane.com/oadir/index.html
115. Sloane, N.J.A.: Covering arrays and intersecting codes. J. Comb. Des. 1, 51–63 (1973). https://doi.org/10.1002/jcd.3180010106
116. Smith, R., Jarman, D., Kuhn, D. R., Kacker, R. N., Simos, D., Kampel, L., Leithner, M., Gosney, G.: Applying combinatorial

testing to large-scale data processing at Adobe. In: Proceedings of the 2019 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), Xian, China, April 22–23, 2019, pp.190–193 (2019). https://doi.org/10.1109/
ICSTW.2019.00051

117. Snedecor, G.W., Cochran, W.G.: Statistical Methods, 7th edn. Iowa State University Press, Ames (1980)
118. Su, T., Wu, K., Miao, W., Pu, G., He, J., Chen, Y., Su, Z.: A survey on data-flow testing. ACM Computing Surveys 50, Article 5

(2017). https://doi.org/10.1145/3020266
119. Taguchi, G.: System of Experimental Design, Vol 1 and 2. Maruzen, Japan (in Japanese) (1977)
120. Tai, K.C., Lei, Y.: A test generation strategy for pairwise testing. IEEE Transactions on Software Engineering 28, 109–111 (2002).

https://doi.org/10.1109/32.979992
121. Tao, J., Li, Y., Wotawa, F., Felbinger, H., Nica, M.: On the industrial application of combinatorial testing for autonomous driving

functions. In: Proceedings of the 2019 IEEE International Conference on Software Testing, Verification and ValidationWorkshops
(ICSTW), Xian, China, April 22–23, 2019, pp. 234-240 (2019). https://doi.org/10.1109/ICSTW.2019.00058

122. Tatsumi, K.: Test-case design support system. In: Proceedings of the International Conference on Quality Control, Tokyo, Japan,
pp. 615–620 (1987)

123. Tatsumi, K., Watanabe, S., Takeuchi, Y., Shimokawa, H.: Conceptual support for test case design. In: Proceedings of 11th IEEE
Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, October 1987, pp. 285–290 (1987)

https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/32.667877
https://doi.org/10.1016/B978-0-12-800160-8.00001-2
https://doi.org/10.1016/B978-0-12-800160-8.00001-2
https://www.jstor.org/stable/pdf/2332195.pdf
https://www.jstor.org/stable/pdf/2332195.pdf
https://matris.sba-research.org/tools/cagen
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1007/978-3-319-94667-2_29
http://www.plantphysiol.org/content/127/4/1590
http://www.plantphysiol.org/content/127/4/1590
http://testcover.com/pub/background/star1994_paper.pdf
http://testcover.com/pub/background/star1994_paper.pdf
https://doi.org/10.1007/s11219-018-9412-z
https://doi.org/10.1109/ICSTW.2019.00040
https://doi.org/10.1109/AST.2019.00014
https://doi.org/10.1109/AST.2019.00014
http://neilsloane.com/oadir/index.html
https://doi.org/10.1002/jcd.3180010106
https://doi.org/10.1109/ICSTW.2019.00051
https://doi.org/10.1109/ICSTW.2019.00051
https://doi.org/10.1145/3020266
https://doi.org/10.1109/32.979992
https://doi.org/10.1109/ICSTW.2019.00058


Factorials Experiments, Covering Arrays

124. Torres-Jimenez (Website) https://www.tamps.cinvestav.mx/~oc/
125. Torres-Jimenez, Izquierdo-Marquez: Survey of covering arrays. In: Proceedings of 2013 IEEE International Symposium and

Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, September 23–26, 2013, pp. 20–27 (2013).
https://doi.org/10.1109/SYNASC.2013.10

126. Voas, J., Kuhn, D.R., Laplante, P.: Testing IoT systems. In: Proceedings of the 2018 IEEE Symposium on Service-Oriented System
Engineering (SOSE), Bamberg, Germany, March 26–29, 2018, pp. 48–52 (2018). https://doi.org/10.1109/SOSE.2018.00015

127. Wagner, M., Kleine, K., Simos, D.E., Kuhn, D.R., Kacker, R.N.: CAGEN: a fast combinatorial test generation tool with support
for constraints and higher-index arrays. In: 2020 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), Porto, Portugal, October 24–28, 2020, pp. 191–200 (2020). https://doi.org/10.1109/ICSTW50294.2020.
00041

128. Wallace, D.R., Kuhn, D.R.: Failure modes in medical device software: an analysis of 15 years of recall data. Int. J. Reliab. Qual.
Saf Eng. 8, 351–371 (2001). https://doi.org/10.1142/S021853930100058X

129. Wong, W., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault localization. IEEE Trans. Softw. Eng. 42, 707–740
(2016). https://doi.org/10.1109/TSE.2016.2521368

130. Wotawa, F.: On the automation of security testing. In: Proceedings of the 2016 IEEE International Conference on Software Security
and Assurance (ICSSA), St. Polten, Austria, August 24–25, 2016, pp. 11–16 (2016). https://doi.org/10.1109/ICSSA.2016.9

131. Wotawa, F., Peischl, B., Klueck, F., Nica, M.: Quality assurance methodologies for automated driving. e & i Elektrotechnik und
Informationstechnik 135, 322–327 (2018). https://doi.org/10.1007/s00502-018-0630-7

132. Wu, C.F., Hamada, M.S.: Experiments: Planning, Analysis, and Optimization, 2nd edn. Wiley, New York (2009)
133. Wu,H.,Nie,C., Petke, J., Jia,Y.,Harman,M.:Comparative analysis of constraint handling techniques for constrained combinatorial

testing. IEEE Transactions on Software Engineering (Early Access) (2019). https://doi.org/10.1109/TSE.2019.2955687
134. Xie, Q., Memon, A.: Designing and comparing automated test oracles for GUI-based software applications. ACM Trans. Softw.

Eng. Methodol. (TOSEM) 16. Article 4 (2007). https://doi.org/10.1145/1189748.1189752
135. Yan, J., Zhang, Jian: A backtracking search tool for constructing combinatorial test suites. J. Syst,. Softw. 81, 1681–1693 (2008).

https://doi.org/10.1016/j.jss.2008.02.034
136. Yang, J., Zhang, H., Fu, J.: A fuzzing framework based on symbolic execution and combinatorial testing. In: Proceedings of

the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE
Cyber, Physical and Social Computing, Beijing, China, August 20–23, 2013, pp. 2076-2080 (2013). https://doi.org/10.1109/
GreenCom-iThings-CPSCom.2013.389

137. Yilmaz, C., Cohen, M., Porter, A.: Covering arrays for efficient fault characterization in complex configuration spaces. IEEE
Trans. Softw. Eng. (TSE) 32, 20–34 (2006). https://doi.org/10.1109/TSE.2006.8

138. Yu, L., Lei, Y., Kacker, R.N., Kuhn, D.R.: ACTS: a combinatorial test generation tool. In: Proceedings of the 2013 IEEE Interna-
tional Conference on Software Testing, Verification and Validation Workshops (ICSTW), Luxembourg, March 18–22, 2013, pp.
370–375 (2013). https://doi.org/10.1109/ICST.2013.52

139. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE Trans. Softw. Eng.(TSE) 28, 183–200 (2002).
https://doi.org/10.1109/32.988498

140. Zhang, Z., Liu, X., Zhang, J.: Combinatorial testing on ID3v2 tags of MP3 files. In: Proceedings of the 2012 IEEE International
Conference on Software Testing, Verification and Validation, Workshops (ICSTW), Montreal, QC, Canada, April 17–21, 2012,
pp. 587–590 (2012). https://doi.org/10.1109/ICST.2012.145

141. Zhang, Z., Zhang, J.: Characterizing failure-causing parameter interactions by adaptive testing. In; Proceedings of the 2011 ACM
International Symposium on Software Testing and Analysis (ISSTA), Toronto, ON, Canada, July 17–21, 2011, pp. 331–341
(2011). https://doi.org/10.1145/2001420.2001460

142. Zhivich, M., Cunnigham, R.: The real cost of software errors. IEEE Privacy Secur. 7, 87–90 (2009). https://doi.org/10.1109/MSP.
2009.56

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.tamps.cinvestav.mx/~oc/
https://doi.org/10.1109/SYNASC.2013.10
https://doi.org/10.1109/SOSE.2018.00015
https://doi.org/10.1109/ICSTW50294.2020.00041
https://doi.org/10.1109/ICSTW50294.2020.00041
https://doi.org/10.1142/S021853930100058X
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/ICSSA.2016.9
https://doi.org/10.1007/s00502-018-0630-7
https://doi.org/10.1109/TSE.2019.2955687
https://doi.org/10.1145/1189748.1189752
https://doi.org/10.1016/j.jss.2008.02.034
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.389
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.389
https://doi.org/10.1109/TSE.2006.8
https://doi.org/10.1109/ICST.2013.52
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/ICST.2012.145
https://doi.org/10.1145/2001420.2001460
https://doi.org/10.1109/MSP.2009.56
https://doi.org/10.1109/MSP.2009.56

	Factorials Experiments, Covering Arrays, and Combinatorial Testing
	Abstract
	1 Introduction
	2 Factorial Experiments (FEs)
	3 Orthogonal Arrays (OAs)
	4 Covering Arrays (CAs)
	4.1 Variable-Strength Covering Array
	4.2 Constrained Covering Array
	4.3 Some Binary OAs are CAs of Higher Strength and Some CAs are OAs of Lower Strength

	5 Combinatorial Testing (CT)
	5.1 Generation of Test Suites for CTs
	5.2 Inadequacy of Pairwise Testing
	5.3 Choice of Strength t
	5.4 Black-Box Investigation
	5.5 Defects, Errors, and Vulnerabilities
	5.6 Sub-Processes of Combinatorial Testing

	6 Comparison of Combinatorial Testing and Factorial Experiments
	7 ACTS/IPOG for Generating Test Suites for CT
	8 Security Testing of Software-Based Systems
	9 Main-Points and Comments for Further Research and Application
	Acknowledgements
	References




