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Abstract – While design assurance and testing methods for safety-critical systems have been widely researched and studied for years 
across a number of industry domains, there are few efforts reported in the literature on the actual application of software testing 
methods to nuclear power digital I&C systems or devices. We see this as a gap in the knowledge basis. The motivation for this 
research was to investigate the efficacy and challenges that arise when planning, automating and conducting systematic software 
testing on actual real-time embedded digital devices. In this paper, we present results on the application of a systematic testing 
methodology called Pseudo-Exhaustive testing. The systematic testing methods were applied at the unit, module integration levels of 
the software. The findings suggest that Pseudo Exhaustive testing supported by automated testing technology is an effective approach 
to testing real-time embedded digital devices in critical nuclear applications.  
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I.  INTRODUCTION AND BACKGROUND 
     Nuclear power generation facilities worldwide are steadily trending toward “aging infrastructure” with the average age of a 
Light Water Reactor in the United States at about 37 years. To address this concern, global energy organizations and national 
energy agencies like the International Atomic Energy Agency and the US Department of Energy have introduced research and 
development programs to assist utilities in what is known as “plant modernization and upgrades”. These modernization efforts 
will rely heavily on computer-based or digital Instrumentation and Control (I&C) systems for the replacement of obsolete 
analog or rudimentary digital systems. Even though advanced digital I&C devices have been used extensively in many other 
industries, their use in the nuclear industry for safety-related functions are still limited.  
 
The U.S. Nuclear Regulatory Commission (NRC) identifies two design methods that are acceptable for eliminating Software 
Common Cause Failure (SCCF) concerns: (1) diversity or (2) testability (specifically, 100% testability) [1]. There is near 
universal consensus among computer scientists and software test engineers that enumerated exhaustive testing for modestly 
complex devices or software is infeasible [2]. For this reason, diversity and defense-in-depth architectural methods have 
become the norm in the nuclear industry for addressing vulnerabilities associated with SCCFs [1]. However, the disadvantages 
of large scale diversity methods for plant modernization are significant implementation costs, and increased plant integration 
complexity. Consequently, there has been much interest within the nuclear industry in the past 10 years toward finding cost 
effective testing methods for design assurance that go beyond defense-in-depth and diversity.  
      
The pragmatic motivation for this study was to investigate the efficacy and challenges that arise when planning, automating, 
and conducting systematic software testing on actual real-time embedded digital device, as little has been published with respect 
to systematic software testing with respect to nuclear digital devices. In this paper we present results on the application of a 
systematic testing methodology called “Pseudo-Exhaustive” testing built around t-way combinatorial testing, partitioning, 
boundary value analysis, and path analysis [3]. Our selection of Pseudo Exhaustive testing methods was influenced by several 
important factors. First, the nuclear regulatory guidelines of [1] emphasize the testability of software, with a goal of testing all 
possible inputs and paths, which is intractable for current digital systems. Second, the principle elements of Pseudo Exhaustive 
testing have an established technical basis with a history of use in embedded safety critical systems [4]. In our work, the testing 
methods were applied at the unit, module integration levels of the software of an embedded smart sensor. We provide findings 
on the application of this systematic testing that helps inform the nuclear power community and other safety critical 
communities on broader impacts. 

II. TESTING METHODOLOGY AND STUDY DESIGN 
Our approach builds on a test method called “Pseudo Exhaustive” [5] [6]. The definition of Pseudo Exhaustive is given below.  
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Definition: Pseudo Exhaustive - Software testing is considered bounded or Pseudo exhaustive when well-formed relations 
between input space and state space allow the testable state space to be reduced – enabling a feasible testable set. The key 
assumption is that the state space reduction process must preserve the properties of and among the elements from the original 
state space. 
 
Our realization of Pseudo Exhaustive testing combines a number of testing techniques to satisfy the above definition. 
Specifically, our test methodology is organized around the following well-accepted methods: Equivalence partitioning, 
Boundary Value analysis, t-way combinatorial tests and Path analysis (MC/DC criteria). 
 
    In order to construct a well-formed input space model we employ equivalence partitioning and Boundary Value Analysis 
(BVA) sampling methods to pre-analyze the software prior to generating t-way tests. Next, t-way “covering” test suites are 
generated from the reduced input model. Research conducted by National Institute of Standards and Technology (NIST) [5] on 
software failures for diverse application domains (e.g. aerospace, medical, finance, IT, etc.) strongly indicate that a majority of 
software failures are induced by interaction faults arising from the interaction of just a few parameters, mostly by two and three 
levels of interaction. In our study, experimentation is performed by varying the interaction strength t of the combinatorial 
testing and by varying the set of representative values v for an input partition space. The number of t-way combinatorial tests 
that is necessary has been shown to be proportional to [7].  
 

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑒𝑠𝑡𝑠	 ≜ 𝑣! log 𝑛							(1) 
 
where v is the value span of the input variables or parameter (n), and n is the number of inputs parameters, and t is the number 
of interactions between parameters. The outcome evaluation from these tests are conducted using an oracle or by utilizing 
assertions implanted in the code. The outcomes from these experiments include the Pass/Fail results of the tests, various 
coverage metrics, and the identification of flaws. 

A. Combinatorial Testing via Coverage Analysis  
One of the underlying assumptions for effective t-way combinatorial testing is developing an input model that is 

comprehensive in reaching all regions of the decision logic on the software. One way to achieve this is by coverage path 
analysis. Coverage path analysis involves measuring the structural aspects of the program using several metrics like branch 
coverage, statement coverage, Modified Condition/Decision Coverage (MC/DC) coverage. Our study process aims at achieving 
>95% MC/DC coverage. Previous works have studied the relationship between combinatorial coverage and structural coverage 
with respect to the completeness of test suites [8].  

Branch coverage condition: A test set provides 100% branch coverage for t-way conditionals if Mt + Bt > 1, where Mt = 
minimum combinatorial coverage at level t, and Bt =minimum proportion of t-way combinations that is guaranteed to trigger 
a branch within the code, where all variables in decision predicates have values from the variable set with minimum coverage 
characteristic Mt. [8] 
 

On the basis of this theorem, it can be asserted that test suites based on covering arrays which have a minimum combinatorial 
coverage of 100%, would always result in branch coverage of 100% if the input model is sufficient and complete. Input model 
deficiencies are thereby caught through branch coverage analysis. Since we employ MC/DC coverage analysis which subsumes 
branch coverage, therefore our approach is sound. Finally, the systematic testing of the software architecture follows the well-
known unit test, integration test, and system test paradigm [9]. Safety standards such as IEC 61508, ISO 62626, and DO-178B 
and so on highly recommend this type of systematic testing for high levels of design assurance. 

III. REPRESENTATIVE EMBEDDED DEVICE – THE VCU SMART SENSOR 
The Embedded Digital Device we use for this study is a Smart Sensor, which is representative of the type used in nuclear power 
applications [3 appendix B]. The hardware platform uses the ARM Cortex-M4 processor featuring 2MB of Flash Memory. The 
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application software is hosted by the ChibiOS real-time operating system to ensure the proper scheduling and execution of all 
periodic tasks within the system, which are handled by a priority-based scheduler. 

            
                          Figure 1: Smart Sensor Program Data Flow 
 
Error! Reference source not found.1 shows the program data flow of the software components of the VCU Smart Sensor in 
its testing environment context, including the threads and communication protocols used to transmit data between modules. 
One of the critical threads is ms5611_thread, which is responsible for reading sensor head data and processing it. During the 
first phase of our research, we focused our testing strategy on the MS5611 thread. 

   
Figure 2: Basic flow of the ms5611_thread functions.  

    The basic flow of the ms5611 application thread is shown in Figure 22. The get_current_pressure function takes the raw 
temperature and pressure values from the sensor in the form of 32-bit unsigned integer values as inputs. The function processes 
the raw values and translates into pressure value, in Pascals. The kalman_filter function performs the Kalman Filter calculations 
in order to reduce noise. A floating-point value for the measured pressure values, prior to kalman filter calculations is used as 
the input, while the output is a floating-point value for the pressure values, following the kalman filter calculations. For both 
the functions get_current_pressure and ms5611_kalman_filter, test oracles were created to verify that they function as expected.  

IV. TESTBED ARCHITECTURE 
Our goal was to apply our test methodology on real hardware operating at real-time speeds. Our test bed architecture in Fig. 3 
shows the basic workflow, the tools, hardware components and test artifacts necessary to conduct the real-time systematic 
testing experiments on the smart sensor. The three major tools used in our testbed are (1) Razorcat’s TESSY, (2) National 
Institute of Standards and Technology (NIST) ACTS tool, and (3) Keil Interactive Debugger. TESSY, developed by Razorcat 
is an automated testing tool for safety critical embedded systems software [10]. TESSY provides test automation management 
for unit testing, integration testing directly on real-time embedded hardware. The ACTS tools from US NIST provide 
capabilities to automatically generate effective t-way combinatorial test cases. Additionally, ACTS has features to support for 
BVA, event sequence testing, covering array generation.  

The Keil interactive debugger software is the interface between TESSY software and the target hardware. TESSY exploits the 
ARM Serial Wire Debugger (SWD) port which enables test vectors to be directly executed on target HW, and offers an 
unobtrusive extraction and monitoring of program data that includes I/O data, local and global variables, state variables, 
conditionals and guards.   Referring to Fig. 3, the necessary C/C++ source files are loaded into the TESSY tool. TESSY analyzes 
the source files and populates all the local functions, external functions, external variables, global variables and macros. 
TESSY’s classification tree editor facilitates BVA and equivalence partitioning, to confine the input domain into a tractable 
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set of values. The Software requirements, software design documents and the datatypes of the variables identified by Tessy 
during source code analysis guide the testers in creating various classes to represent equivalence partitions of the input domain 
and sub classes to feed in the boundary values for each partition. These representative test input data values fed into the 
classification tree are then exported from TESSY into excel and xml files. 

Figure 3: Baseline testbed architecture [3] 

    A custom script parses the Tessy exported xml file, which contains all the test data values, and converts it into input language 
that the ACTS tool can recognize. After importing the input model information that contains the input parameters (n) and their 
values (v), and further feeding in the required interaction level (t = 2 to 6) and parameter constraints if any into ACTS, the tool 
is run to produce t-way tests that contain all t-way combinations of input values that are specified in the classification tree in 
TESSY. The t-way test cases exported from ACTs are translated back into TESSY import format by a translation script. To 
address the oracle issue, algorithm/equations can be inserted into TESSY Epilogue and Prologue function which allows for 
automatic ‘expected output’ calculation during runtime. These functions act like a “shell” for automating the comparison of 
oracle to actual results. To support diversity in our oracle module we synthesized a kalman filter from MATLAB and Simulink 
and auto-generated the code from those models. TESSY runs test cases directly on the actual Smart sensor target by interfacing 
with the Keil debugger. The real time values of program data from the software are collected with the help of TESSY's inbuilt 
timestamp mechanism and compared with the fed in oracle data. The final step in the workflow after the initial test execution 
is the coverage analysis. MC/DC coverage data is generated in TESSY. This coverage data information is used to enhance tests 
to improve the code coverage as shown in Fig. 4. Low coverage due to uncovered branches involving more than t variables, 
can be improved by generating a higher t-way interaction test vectors in ACTs. In some cases, an incomplete input model could 
be the reason for low coverage - for example, due to essential parameters or necessary values for testing being not considered 
during input model creation.  
 

 
Figure 4: Coverage Analysis and Optimization process 
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V. RESULTS OF PRELIMINARY TESTING 
Our testing on thread functions starts with the baseline test of 2-way combinatorial testing which then proceeds to 3, 4, 5 and 
6-way tests. The main objective of the test experiments was to identify the level of t at which 100% of the interaction faults in 
the embedded software are detected cumulatively. Our experiments revealed that all the defects identified in the smart sensor 
software were found at the 2-way combinatorial testing level. This is not a general result, rather specific to the nature of the 
logic interactions in the smart sensor software. However, it is confirmatory evidence to other findings that suggest most faults 
are detected at lower interaction levels. The second aim was to analyze the impact of combinatorial testing on path coverage 
and thereby fault detection capability. On the thread functions that we conducted our experiments, a high 100% branch coverage 
was obtained at the baseline 2-way testing level itself [3]. 
 
Error! Reference source not found. presents the summary of results for unit testing on two functions; (1) 
get_current_pressure, and (2) Kalman_filter within the ms5611_thread in the smart sensor software. The number of test vectors 
rose exponentially with increase in t, as anticipated based on the relationship formula (1). The number of values sampled for 
each variable varies between variables and depends on their respective input domain and their usage in the code. The average 
value of variable values was around 7 values/variable. From the data collected, it can be seen that on average it took 400ms to 
execute and evaluate a single test directly on the target hardware. The achievable test productivity with this methodology was 
about 210,000 test vectors/day which is noteworthy when considering actual testing on a physical HW platform. The 
combinatorial unit tests were successful enough to uncover three native bugs (as shown in  

 
  Another interesting bug caught by the combinatorial tests, 
which was not expected, is a potential buffer overflow 
vulnerability that existed in the get_current_pressure code. 
Such an error could be triggered by a hardware fault or 
exploited by a cyber-attack. We found test cases with raw 
pressure value greater than the maximum 24 bits (3 bytes) 
value ‘16777215’ was expected to fail. But they ended up 
with ‘Passed’ results because the input buffer was allowed to 
overflow. 
TABLE 2), in the smart sensor software that had been in use for 
years.  
 
Few test cases resulted in ‘Infinite’ value test outcomes when 
the kalman filter computations ended up in ‘division by zero’. 

The ‘infinity’ output value is an undesirable outcome and 
revealed that the code was missing a check to ensure that the 
divisor is not zero before performing division. Another issue 
identified was the missing overflow checks during float 
computations which resulted in ‘Not a Number’ outcomes for 
few testcases. ‘NaN’ (Not a Number) is an undefined result 
obtained when the processor attempts a 0/0 or Inf/Inf 
computation. A check for an overflow during computations 
and saturating the result to the maximum value of the float 
datatype 3.40282E+38 could prevent the computation result 
from ending up in infinity thereby avoiding infinity and 
undefined final outputs. These severe bugs seem to have 
appeared due to the deficiency of robust coding practices. 

TABLE 1: SUMMARY OF RESULTS[3] 

Function T Testing Type Testing Method Coverage # Tests Time Pass/Fail # 
Defects 

 
 
get_current
_pressure 

T=2 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 21 < 1 min 21/0 1 
T=3 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 76 1 min 76/0 1 
T=4 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 285 2.3 min 285/0 1 
T=5 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 870 8 min 870/0 1 
T=6 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 2411 15 min 2411/0 1 

 
 
kalman_filt
er 

T=2 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 48 < 1 min 42/6 2 
T=3 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 316 3 min 276/40 2 
T=4 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 1608 12.4 min 1389/219 2 
T=5 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 7776 59.1 mins 5855/1921 2 
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Function T Testing Type Testing Method Coverage # Tests Time Pass/Fail # 
Defects 

 
 
get_current
_pressure 

T=2 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 21 < 1 min 21/0 1 
T=3 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 76 1 min 76/0 1 
T=4 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 285 2.3 min 285/0 1 
T=5 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 870 8 min 870/0 1 
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  Another interesting bug caught by the combinatorial tests, 
which was not expected, is a potential buffer overflow 
vulnerability that existed in the get_current_pressure code. 
Such an error could be triggered by a hardware fault or 
exploited by a cyber-attack. We found test cases with raw 
pressure value greater than the maximum 24 bits (3 bytes) 
value ‘16777215’ was expected to fail. But they ended up 
with ‘Passed’ results because the input buffer was allowed to 
overflow. 

TABLE 2 SOFTWARE ISSUES IDENTIFIED BY TESTING [3] 

Issues Software 
Function 

Caught by 

Missing Divide by Zero 
check 

ms5611_kalma
n_filter 

2-way combinatorial unit 
testing 

Missing Overflow check 
in float computations 

ms5611_kalma
n_filter 

2-way combinatorial unit 
testing 

Function processes input 
values outside valid range 

ms5611_get_cu
rrent_pressure 

2-way combinatorial unit 
testing 

 

In addition to verifying the handling of program data in 
threads/functions using combinatorial testing, the sequence 
of function calls (at the right time and right order) within a 
thread must be validated with robust test sets to determine if 
race conditions or disordering of events can occur. To verify 
event-based sequences and validate the correctness of the 
thread functions that have a number of external and local 
function calls driven by control flow logic, sequence-based 
tests were formulated in TESSY’s Sequence editor. 
Sequence-based tests help to validate the temporal behavior 
of the indefinitely running threads scheduled by the real-time 
operating system (RTOS). Due to page limitations, we do not 
go into details of this testing we refer the reader to [3]. 
Testing of call graph execution sequence was more intricate 
and challenging as we had to interact with RTOS scheduler 
while it invoked tasks in the correct order and accurately 
emulate the function call order as per the call graphs. We 
found no faults in the sequencing of the function calls. 

VI. CHALLENGES  
The major challenges we faced are discussed below. One 
significant challenge we encountered was developing the 
testbed architecture to conduct the study. As the multi-
pronged testing approach involved multiple tools and 
software (ACTS, Tessy, Keil uvision), we had to build an 
intricate workflow to interconnect them in order to ensure an 
efficient testing process. The challenge in testing real-time 
systems is that they need to be tested in the temporal domain 

as well as the value domain. Testing in the temporal domain 
implies the need to issue inputs at a precise time instance i.e. 
beginning of the scan cycle, controlling the state of the SW 
object at the start of the test execution and observing the 
timing of the result at the end of execution. These tests were 
complicated to develop as it required detailed knowledge of 
the control flow sequencing.  
One other challenge we faced during our study is the 
identification of a reliable oracle to validate the correctness 
of the test results. Several approaches were explored. 
TESSYs option to feed in the oracle algorithm as user-
specific C code, provides an automated dynamic oracle 
information generator. But this method could lose its 
efficiency when it comes to larger and more complex 
software. Another interesting approach was to use a diverse 
version of the software algorithm from which the reference 
values to verify the DUT can be derived. Simulink was used 
to create a kalman filter model and then embed the generated 
code as the oracle algorithm into TESSY.  
 
Input model preparation consumed the most time in the entire 
test process as it is not an automated process. BVA and 
equivalence partitioning of inputs require a detailed 
knowledge about the usage of the input parameters within the 
code. We found pointer to structures, pointer to pointers and 
structure with pointer members being abundantly used in the 
code and being passed across functions. Such constructs can 
cause misinterpretations of the code and result in incomplete 
or incorrect input models to be prepared by the testers. This 
can further reduce the software coverage achieved with the 
tests. 

VII. FINDINGS AND RECOMMENDATIONS 
The overall goal of this research was to investigate pseudo-
exhaustive testing as a suitable method for testing safety- 
critical embedded software in the context of nuclear power 
applications. As a broad indicator of the method, we 
discovered three native defects in the code that were latent 
for some time, and in one case the defect was there for years. 
In conducting this study, we compiled a number of findings, 
limitations, and recommendations which we feel are 
informative to the community. We summarize a few of these 
below.  
 
Finding 1: Confirmatory evidence to previous studies. The 
results we obtained on interaction faults provide farther 
evidence that most faults are found at lower levels of 
interaction (level 2 or 3). These findings provide guideposts 

 
kalman_filt
er 

T=3 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 316 3 min 276/40 2 
T=4 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 1608 12.4 min 1389/219 2 
T=5 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 7776 59.1 mins 5855/1921 2 
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on the strength of t-way interactions that should be 
considered when conducting testing.  
Finding 2: t-way and path coverage analysis are highly 
synergistic. The combination of t-way and path analysis 
(MC/DC) is a compelling approach for reasoning about 
“completeness” - when to stop testing. Path coverage analysis 
provides direct feedback to the strength of the testing. With a 
given coverage goal, deficiencies in the input model and the 
t-way interaction strength can be found via path analysis.  
Finding 3: Conducting tests on actual HW platforms requires 
highly coordinated testbed and tool support.  Pseudo-
exhaustive testing of the type we conducted has a lot of 
moving parts. As such, test automation tools for test 
generation and management of tests directly on real-time 
embedded hardware are necessary.  
Finding 4: Efficacy of the approach appears to be suitable 
for safety critical nuclear applications. Although research is 
continuing, and results are preliminary, the evidence suggests 
that Pseudo exhaustive testing provides the type of rigor 
required for certification of safety critical SW within nuclear 
applications.  
Limitations: White Box testing and control-oriented 
software. The testing methodology we present is a white box 
testing approach and it requires access to requirements, 
specifications, and source code documents by a testing entity 
or authority. In addition, it seems to work best for control-
oriented software, i.e. SW that has computations organized 
around modes, configurations, and decision logic.  
 
Recommendations (farther needs) 
An interesting aspect of combinatorial test methods is that 
they allow tight integration with approaches to test oracle 
generation, including conventional model-based test 
generation, and some novel approaches as well. Instantiating 
a model with values from a covering array, then generating 
counterexamples from property claims makes it possible to 
produce matching inputs and expected outputs Error! 
Reference source not found.. Methods developed for input 
model validation can be used with covering arrays to partially 
automate oracle generation as well [11]. Similarly, methods 
and tools to facilitate automated assistance with respect to 
constructing the input testing model would be significant gain 
in overall testing productivity for complex embedded 
applications. This aspect of the work consumed about 50% of 
the effort.  
 

VIII. RELATED WORK 
     Recent work by Kuhn et al. [7] [5] [12] studied the 
effectiveness of Combinatorial Testing (CT) in a variety of 
application domains, from critical systems (aircraft collision 
avoidance TCAS to web browsers). Their research has 
consistently shown that about 20%–70% of software faults 
were triggered by single parameters, about 50%–95% of 
faults were triggered by two or fewer parameters, and about 

15% were triggered by three or more parameters. Recent 
work by this group has considered how sequences can be 
tested via CT [13], comparing t-way CT testing with random 
testing, and methods for generating test cases and oracles 
[14].  
     Woods et al [15] propose and demonstrate using 
hierarchical mutation testing methods on smart sensor 
platform for nuclear power applications. This work focused 
on the efficacy and power of model-based testing to develop 
test vectors for detecting a variety of postulated design faults. 
Diao [16] describes the benefits and necessary features for 
automated software testing to be productive. Guerra et al [17] 
describe process safety justification approaches and specific 
techniques that can be used in the justification of a smart 
instruments’ software.  
 
Disclaimer: Certain products may be identified in this document, but 
such identification does not imply recommendation by NIST, nor 
that the products identified are necessarily the best available for the 
purpose. 
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