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Abstract 

Exhaustive testing of computer software is intractable, but empirical studies of 
software failures suggest that testing can in some cases be effectively exhaustive.   Data 
reported in this study and others show that software failures in a variety of domains were 
caused by combinations of relatively few conditions.  These results have important 
implications for testing.  If all faults in a system can be triggered by a combination of n or 
fewer parameters, then testing all n-tuples of parameters is effectively equivalent to 
exhaustive testing, if software behavior is not dependent on complex event sequences and 
variables have a small set of discrete values.   
Keywords:  D.2.4.h  Statistical methods, D.2.5.k  Testing strategies, D.2.5.l   Test design 

 

1. Introduction  

A software tester’s task is extremely difficult.  Seeking to locate the maximum 
number of latent errors under generally immovable deadlines is daunting, to say the least.  
Consider, for example, a device that has 20 inputs, each having 10 possible values (or 10 
equivalence classes if the variables are continuous).  This scenario yields a total of  
combinations of settings. Only a few hundred test cases can be built and executed under 
most budgets, yet this would cover less than a fraction of one percent (< 10-15) of the 
possible cases.  

Empirical research into quality and reliability, for at least some types of software, 
suggests that relatively few parameters are actually involved in triggering failures - a 
phenomenon that has significant implications for testing.  This leads one to suspect: If we 
were able to know with certainty that all faults in a system are triggered by a combination 
of n or fewer parameters, then testing all n-tuples of parameters is effectively equivalent 
to exhaustive testing at least for variables with a small set of discrete values (or possibly 
using equivalence classes for continuous value variables).  For variables with a 
continuous range of values, partition testing of all n-way combinations of equivalence 
classes might be considered pseudo-exhaustive.     

     In reality, of course, we can never know in advance what degree of interaction is 
required to trigger all faults in a system.  A somewhat more practical alternative, 
however, may be to collect empirical data on faults that occur among similar systems in 
various application domains.  For example, if a long history of failure data shows that a 
particular type of application has never required the interaction of more than 4 parameters 
to reveal a failure, then an appropriate testing goal for that class of applications might be 
to test all 5-way or fewer interactions.  We will refer to the number of conditions required 
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to trigger a failure as the failure-triggering fault interaction (FTFI) number.    For 
example, if a microwave oven control module fails when power is set on “High” and time 
is set to 20 minutes, the FTFI number is 2.   Combinatorial testing [1,2] that exercised all 
2-tuples of test data would have detected this failure. In this paper we analyze the fault 
interactions of a large distributed system, compare the results with data reported for 
systems in other domains, and explore the implications of these results for software 
testing. 

 
2. Related Work   

To our knowledge, only three studies prior to this one attempted to characterize fault 
interactions using empirical data.  Nair et al. [3] described a case study of combinatorial 
testing for a small subsystem of a screen-based administrative database.  The system was 
designed to present users with input screens, accept data, then process it and store it in a 
database.  Size was not given, but similar systems normally range from a few hundred to 
a few thousand lines of code.  This study was extremely limited in that only one screen of 
a subsystem with two known faults was involved, but it shows that pairwise testing was 
sufficient to detect both faults.   

Wallace and Kuhn [4] reviewed 15 years of medical device recall data gathered by 
the US Food and Drug Administration to characterize the types of faults that occur in this 
application domain.  These applications include any devices under FDA authority, but are 
primarily small to medium sized embedded systems, and would range from roughly 104 
to 105 lines of code. All of the applications in the database were fielded systems that had 
been recalled because of reported defects.  A limitation of this study, however, was that 
only 109 of the 342 recalls of software-controlled devices contained enough information 
to determine the number of conditions required to replicate a given failure.  Of these 109 
cases, 97% of the reported flaws could be detected by testing all pairs of parameter 
settings, and only three of the recalls had an FTFI number greater than 2. (Number of 
failures triggered by a single condition was not given in [4], but we reviewed the data and 
report this figure in Table 1.)  The most complex of these failures required four 
conditions.  Kuhn and Reilly [5] analyzed reports in bug tracking databases for open 
source browser and server software, the Mozilla web browser and Apache server. Both 
were early releases that were undergoing incremental development. This study found that 
more than 70% of documented failures were triggered by only one or two conditions, and 
that no failure had an FTFI number greater than 6.   Difficulty in interpreting some of the 
failure reports (e.g., in some cases it was not clear whether some conditions were “don’t 
care” or were required to reproduce the failure) led to conservative assumptions regarding 
failure causes.  Thus, some of the failures with high FTFI numbers may actually have 
been less than 6.  
       Three other studies provided some limited information regarding fault interactions.  
Dalal et al. [6] demonstrated the effectiveness of pair-wise testing in four case studies but 
did not investigate higher-degree interactions.  Smith, Feather, and Muscettola 
investigated pairwise testing of the Remote Agent Experiment  (RAX) software on 
NASA’s Deep Space 1 mission.  The RAX is an expert system that generates plans to 
carry out spacecraft operations without human intervention. This study found that testing 
all pairs of input values and all individual values detected 88% of the bugs classified as 
either “correctness” or “convergence” flaws in onboard planning software (i.e. 
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successfully finding a feasible path), but only about half of engine interface bugs [7].  
The authors did not investigate higher-degree combinations required to trigger a failure.  
Pan [8] found that testing all values triggered more than 80% of detected errors in a 
selection of POSIX operating system function calls. Higher degree combinations were 
not reported. Tests were conducted on individual POSIX function calls (i.e., this testing 
corresponded to unit testing) from fielded, commercial systems.    
 

3.   Empirical Data 
      We analyzed 329 error reports from development and integration testing of a large 

distributed system being developed at NASA Goddard Space Flight Center. This 
application is a data management system that gathers and receives large quantities of raw 
scientific data. The system is comprised of numerous subsystems for scientific analysis of 
the data as well as the storage of all results. Multiple standalone copies of this system are 
deployed at several locations. Faults are initially corrected at the site where they were 
first discovered, and subsequently all sites receive the correction as there are new releases 
of the system. Regardless of the point of origin, faults are characterized in a database by 
date submitted, severity, priority for fix, the location where found, status, the activity 
being performed when found, and several other features. Several text fields provide 
additional context, including one to describe how the fault was found as well as one to 
discuss its resolution.  Results of this analysis are shown in the last column of Table 1.  
System type, release stage, and approximate system size (or size of similar applications, 
where this information was not provided) are summarized in Table 2 for comparison 
purposes.   Also note that the distribution of failure-triggering conditions (see last four 
columns of Table 1) appears to follow a power law, but many more data sets would be 
required to make this generalization. 

FTFI 
No. 

RAX 
conver- 
gence 

RAX  
correct- 
ness 

RAX 
interface 

RAX 
engine 

POSIX 
modules 

Medical 
Devices  

Browser 
  
 

Server   
 

NASA 
GSFC 
 

1 61 72 48 39 81.7 66 28.6 41.7 67.5 
2 97 82 54 47 * 97 76.1 70.3 93.3 
3 * * * * * 99 95.0 89.3 98.8 
4 * * * * * 100 97.2 96.4 100.0 
5 * * * * *  99.4 96.4  
6 * * * * *  100.0 100.0  

Table 1.  Cumulative Percent of Faults Triggered by n-way Conditions (* = not reported) 
 

The analyses discussed above raise some interesting questions.  Perhaps most 
intriguing is the absence of any clear differences in fault interaction complexities between 
development projects and fielded products.  Intuition suggests that bugs should be more 
difficult to trigger, hence occur less frequently, once a system has been developed.  Some 
spectacular software failures seem to bear out this thought.  For example, the Mars 
Pathfinder failed as a result of a complex series of events leading to a priority inversion, 
which deadlocked critical system processes [9].  This intuition has been referred to as the 
“Heisenbug” hypothesis, which posits that bugs in fielded systems are likely to be 
transient, hard to reproduce, and not consistently observable.   
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System System type Release 
Stage 

Size 
(LOC) 

Admin 
database 

Database user interface Development - 
integration test 

approx. 103 
(size of similar  
applications) 

RAX 
Planner 

Artificial intelligence Development 3,000  

POSIX 
modules  

Operating system  
function calls 

Fielded 
products 

103   
(varies) 

Medical 
Devices  

Embedded Fielded 
prooducts 

103  -104  
(varies) 

Browser Web browser Development/ 
beta release 

approx.105  

Server   HTTP server Development/ 
beta release 

approx.105  

NASA Distributed scientific 
database 

Development - 
integration test 

approx.105  

Table 2. Characteristics of systems reviewed 

 
      Yet surprisingly, this expectation does not clearly hold for the two sets of fielded 
products reviewed above.  For all levels of fault interactions reported, the development 
project failures were harder to trigger than those in both classes of fielded products.  In 
fact, bugs with an FTFI number of 2 accounted for a higher proportion of the medical 
device failures than for any of the development projects (ignoring the administrative 
database, which had too few data points to be statistically significant).  Much more 
analysis across a variety of application domains will be needed to provide a 
comprehensive picture of the fault interactions of fielded systems, but these data suggest 
that it is not safe to assume that such failures are always due to rare combinations of 
conditions. We note also that there are a number of famous software failures with an 
FTFI number of only 1 or 2.  One such example, the Ariane 5 disaster [10], occurred 
because the horizontal velocity of the rocket exceeded that of Ariane 4.  (The software-
related cause of the error was a failed numerical conversion, but the operational condition 
required to trigger this situation was simply a horizontal velocity greater than earlier 
systems.)  The USS Yorktown failure is another example of a spectacular failure resulting 
from a single fault condition.  Assigning a value of zero in a particular database field 
caused a divide-by-zero error, which caused the local network to crash, disabling the 
entire ship [11].    

 
4. Implications for Testing 

Consider the previously discussed system with 20 inputs, each of which can assume 
10 possible values.  Exhaustive testing would, of course, require 1020 test cases, but the 
empirical results described above show that most failures were actually triggered by a 
single erroneous parameter; however, nearly all could be triggered by fewer than 4 or 5, 
and at most 6 for the software that was studied.   

Now consider the effort required to exercise all n-tuples of k parameters, each of 
which has v possible values (known in the combinatorics literature as the problem of 
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covering array construction [12; 13; 14]).  The number of n-tuples drawn from k 
parameters is calculated by C(k,n) = , and since each parameter has v values, 

the total number of test cases required to test exhaustively would be .  This 
calculation uses the simplifying assumption that each parameter has the same number, v, 
of values, but in practice, v can be the maximum, with “don’t care” values for parameters 
with less than v values.  Attempting to test all 4-tuples for the example described above 
would require 48,450,000 test cases.  Fortunately this prohibitively large number can be 
reduced to a reasonable level.   

Since each test case will contain 20 parameters, there are C(20,4) = 4,845 4-tuples of 
parameters and C(20,6) = 38,760 6-tuples in each test case.  If test case generation is 
perfectly efficient, then each test case would contain unique sets of n-tuples, i.e., ensure 
there are no duplicate tests. A rough best case estimate for the total number of test cases 

would therefore simply be   = vn, although avoiding all duplicates is not 

possible in practice [15; 16; 17], so vn is in fact a best-case estimate, and the actual 
number of tests cases may be a small multiple (e.g., 2 to 3) of vn.  For our earlier 
examples of 20 inputs with 10 values each, vn translates to a minimum of 10,000 tests to 
cover all 4-tuples. Manually generating an extremely large number of test cases is hardly 
practical, but new automated test case generation tools [18] render such a task possible.  
Clearly, many more than 10,000 would be needed in practice because test generation is 
not 100% efficient, but with automated test generation, it remains practical to generate 
20,000 or more test cases.  Finding efficient methods for generating n-way covering test 
combinations is an active research area [2; 19;20; 21].   The results reported in this paper 
suggest that this work could be of significant benefit to software testers. 

Real systems are, of course, rarely as simple as the example.  Rather than parameters 
with only 10 discrete values each, most or all parameters are either continuous or have 
significantly larger sets of discrete input values.  Therefore, this form of testing should, 
for most cases, be considered pseudo-exhaustive, rather than effectively exhaustive.  The 
traditional approach to dealing with the problem of continuous variables is to partition the 
parameter values into equivalence classes, where values in each set are assumed to be 
equivalent from a testing standpoint, i.e., correct (incorrect) system operation for one 
value is assumed to imply correct (incorrect) operation for another value from the same 
equivalence class.  In many cases this assumption is not unreasonable provided the input 
is partitioned into an appropriate set of classes. 

When planning for needed testing resources, the first question to define is the scope 
of the effort. For a given number, N, of test cases, and a specified level of n-tuple, how 
many values, or equivalence classes, can or must be covered?  Using vn as the best-case 
approximation of the number of n-tuples covered by the set of test cases, we have vn £ N, 

so n log v £ log N.  So for N = 10x tests, v £ .  Maximum values for v, in various 
combinations of n and number of test cases, are shown in Table 3.  Thus, testing all 2-
tuples of parameters using 100 tests would require that each parameter have no more than 
10 values.  Looked at another way, producing pairwise tests for parameters with 10 
values each would require a minimum of 100 tests.  One combinatorial testing tool makes 
it possible to test all pairs of values for this example using 180 cases [22]. 
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n 102 tests 103 tests 104 tests 105 tests 106 tests 
All 2-tuples 10 31 100 316 1000 
All 3 tuples 4 10 21 46 100 
All 4 tuples 3 5 10 17 31 
All 5 tuples 2 3 6 10 15 
All 6 tuples 2 3 4 6 10 

 
Table 3.  Maximum value of v for combinations of n-tuples and test cases 

 
Because testing occurs at the end of the development lifecycle, it must be both 

thorough and efficient in order to maximize effectiveness.  Consider the case where 
deadlines are fixed and management has opted to conduct pseudo-exhaustive testing.  If it 
is believed that any fault present can be triggered by interactions of no more than five 
variables, the following line of reasoning is used.  First, variable values are partitioned 
into some number of equivalence classes.  If we assumed six for each variable, then a 
minimum of 10,000 tests would be needed to cover all 5-tuples.  Using automated test 
generation tools, this number of tests is feasible to generate.  As discussed earlier, 
significantly more than 10,000 will be required given that test generation methods are 
never optimal; however, with automated tools and methods, test generation at this level 
can still be practical even for a small multiple of 104 test cases.  Practical trials of 
automated test tools generating this number of tests are needed to evaluate this approach. 
 

5. Conclusions 
 

All failures of software reviewed in this paper were triggered by low FTFI 
number faults – for the most part 4 to 6 parameters were involved.  If experience shows 
that all errors in a particular class of software are triggered by finite combinations of n 
values or less, then testing all combinations of n or fewer values would provide a form of 
“pseudo-exhaustive” testing. Since most variables actually have very large ranges of 
values, equivalence classes would need to be used in practice. Appropriate levels of n 
appear to be  when considering “pseudo-exhaustive” testing, according to 
dependability requirements.  Because the effectiveness of combinatorial testing depends 
on the fact that a single test case can include a large number of pairs (or higher degree 
combination) of values, this approach may not be effective for real-time or other software 
that depends on testing event sequences, but may be applicable to subsystems within real-
time software.  More empirical studies of other classes of software are needed to evaluate 
the applicability of combinatorial testing for other classes of systems.  
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