Software Fault Interactions and Implications for Software Testing

D. Richard Kuhn
National Institute of Standards and Technology
Gaithersburg, MD 20899
kuhn@nist.gov

Dolores R. Wallace
Software Assurance Technology Center
NASA-Goddard
Space Flight Center
dwallac@pop300.gsfc.nasa.gov

Albert M. Gallo, Jr.
Software Assurance Technology Center
NASA-Goddard
Space Flight Center
Al.Gallo@nasa.gov

Abstract

Exhaustive testing of computer software is intractable, but empirical studies of software failures suggest that testing can in some cases be effectively exhaustive. Data reported in this study and others show that software failures in a variety of domains were caused by combinations of relatively few conditions. These results have important implications for testing. If all faults in a system can be triggered by a combination of n or fewer parameters, then testing all n-tuples of parameters is effectively equivalent to exhaustive testing, if software behavior is not dependent on complex event sequences and variables have a small set of discrete values.

Keywords: D.2.4.h Statistical methods, D.2.5.k Testing strategies, D.2.5.1 Test design

1. Introduction

A software tester’s task is extremely difficult. Seeking to locate the maximum number of latent errors under generally immovable deadlines is daunting, to say the least. Consider, for example, a device that has 20 inputs, each having 10 possible values (or 10 equivalence classes if the variables are continuous). This scenario yields a total of 10^{20} combinations of settings. Only a few hundred test cases can be built and executed under most budgets, yet this would cover less than a fraction of one percent ($< 10^{-15}$) of the possible cases.

Empirical research into quality and reliability, for at least some types of software, suggests that relatively few parameters are actually involved in triggering failures - a phenomenon that has significant implications for testing. This leads one to suspect: If we were able to know with certainty that all faults in a system are triggered by a combination of n or fewer parameters, then testing all n-tuples of parameters is effectively equivalent to exhaustive testing at least for variables with a small set of discrete values (or possibly using equivalence classes for continuous value variables). For variables with a continuous range of values, partition testing of all n-way combinations of equivalence classes might be considered pseudo-exhaustive.

In reality, of course, we can never know in advance what degree of interaction is required to trigger all faults in a system. A somewhat more practical alternative, however, may be to collect empirical data on faults that occur among similar systems in various application domains. For example, if a long history of failure data shows that a particular type of application has never required the interaction of more than 4 parameters to reveal a failure, then an appropriate testing goal for that class of applications might be to test all 5-way or fewer interactions. We will refer to the number of conditions required
to trigger a failure as the failure-triggering fault interaction (FTFI) number. For example, if a microwave oven control module fails when power is set on “High” and time is set to 20 minutes, the FTFI number is 2. Combinatorial testing [1,2] that exercised all 2-tuples of test data would have detected this failure. In this paper we analyze the fault interactions of a large distributed system, compare the results with data reported for systems in other domains, and explore the implications of these results for software testing.

2. Related Work

To our knowledge, only three studies prior to this one attempted to characterize fault interactions using empirical data. Nair et al. [3] described a case study of combinatorial testing for a small subsystem of a screen-based administrative database. The system was designed to present users with input screens, accept data, then process it and store it in a database. Size was not given, but similar systems normally range from a few hundred to a few thousand lines of code. This study was extremely limited in that only one screen of a subsystem with two known faults was involved, but it shows that pairwise testing was sufficient to detect both faults.

Wallace and Kuhn [4] reviewed 15 years of medical device recall data gathered by the US Food and Drug Administration to characterize the types of faults that occur in this application domain. These applications include any devices under FDA authority, but are primarily small to medium sized embedded systems, and would range from roughly 10^4 to 10^5 lines of code. All of the applications in the database were fielded systems that had been recalled because of reported defects. A limitation of this study, however, was that only 109 of the 342 recalls of software-controlled devices contained enough information to determine the number of conditions required to replicate a given failure. Of these 109 cases, 97% of the reported flaws could be detected by testing all pairs of parameter settings, and only three of the recalls had an FTFI number greater than 2. (Number of failures triggered by a single condition was not given in [4], but we reviewed the data and report this figure in Table 1.) The most complex of these failures required four conditions. Kuhn and Reilly [5] analyzed reports in bug tracking databases for open source browser and server software, the Mozilla web browser and Apache server. Both were early releases that were undergoing incremental development. This study found that more than 70% of documented failures were triggered by only one or two conditions, and that no failure had an FTFI number greater than 6. Difficulty in interpreting some of the failure reports (e.g., in some cases it was not clear whether some conditions were “don’t care” or were required to reproduce the failure) led to conservative assumptions regarding failure causes. Thus, some of the failures with high FTFI numbers may actually have been less than 6.

Three other studies provided some limited information regarding fault interactions. Dalal et al. [6] demonstrated the effectiveness of pair-wise testing in four case studies but did not investigate higher-degree interactions. Smith, Feather, and Muscettola investigated pairwise testing of the Remote Agent Experiment (RAX) software on NASA’s Deep Space 1 mission. The RAX is an expert system that generates plans to carry out spacecraft operations without human intervention. This study found that testing all pairs of input values and all individual values detected 88% of the bugs classified as either “correctness” or “convergence” flaws in onboard planning software (i.e.
successfully finding a feasible path), but only about half of engine interface bugs [7].
The authors did not investigate higher-degree combinations required to trigger a failure.
Pan [8] found that testing all values triggered more than 80% of detected errors in a
selection of POSIX operating system function calls. Higher degree combinations were
not reported. Tests were conducted on individual POSIX function calls (i.e., this testing
corresponded to unit testing) from fielded, commercial systems.

3. Empirical Data

We analyzed 329 error reports from development and integration testing of a large
distributed system being developed at NASA Goddard Space Flight Center. This
application is a data management system that gathers and receives large quantities of raw
scientific data. The system is comprised of numerous subsystems for scientific analysis of
the data as well as the storage of all results. Multiple standalone copies of this system are
deployed at several locations. Faults are initially corrected at the site where they were
first discovered, and subsequently all sites receive the correction as there are new releases
of the system. Regardless of the point of origin, faults are characterized in a database by
date submitted, severity, priority for fix, the location where found, status, the activity
being performed when found, and several other features. Several text fields provide
additional context, including one to describe how the fault was found as well as one to
discuss its resolution. Results of this analysis are shown in the last column of Table 1.
System type, release stage, and approximate system size (or size of similar applications,
where this information was not provided) are summarized in Table 2 for comparison
purposes. Also note that the distribution of failure-triggering conditions (see last four
columns of Table 1) appears to follow a power law, but many more data sets would be
required to make this generalization.

<table>
<thead>
<tr>
<th>FTFI No.</th>
<th>RAX convergence</th>
<th>RAX correctness</th>
<th>RAX interface</th>
<th>RAX engine</th>
<th>POSIX modules</th>
<th>Medical Devices</th>
<th>Browser</th>
<th>Server</th>
<th>NASA GSFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61</td>
<td>72</td>
<td>48</td>
<td>39</td>
<td>81.7</td>
<td>66</td>
<td>28.6</td>
<td>41.7</td>
<td>67.5</td>
</tr>
<tr>
<td>2</td>
<td>97</td>
<td>82</td>
<td>54</td>
<td>47</td>
<td>*</td>
<td>97</td>
<td>76.1</td>
<td>70.3</td>
<td>93.3</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>99</td>
<td>95.0</td>
<td>89.3</td>
<td>98.8</td>
</tr>
<tr>
<td>4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>100</td>
<td>97.2</td>
<td>96.4</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>99.4</td>
<td>96.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Cumulative Percent of Faults Triggered by n-way Conditions (* = not reported)

The analyses discussed above raise some interesting questions. Perhaps most
intriguing is the absence of any clear differences in fault interaction complexities between
development projects and fielded products. Intuition suggests that bugs should be more
difficult to trigger, hence occur less frequently, once a system has been developed. Some
spectacular software failures seem to bear out this thought. For example, the Mars
Pathfinder failed as a result of a complex series of events leading to a priority inversion,
which deadlocked critical system processes [9]. This intuition has been referred to as the
“Heisenbug” hypothesis, which posits that bugs in fielded systems are likely to be
transient, hard to reproduce, and not consistently observable.
Yet surprisingly, this expectation does not clearly hold for the two sets of fielded products reviewed above. For all levels of fault interactions reported, the development project failures were harder to trigger than those in both classes of fielded products. In fact, bugs with an FTFI number of 2 accounted for a higher proportion of the medical device failures than for any of the development projects (ignoring the administrative database, which had too few data points to be statistically significant). Much more analysis across a variety of application domains will be needed to provide a comprehensive picture of the fault interactions of fielded systems, but these data suggest that it is not safe to assume that such failures are always due to rare combinations of conditions. We note also that there are a number of famous software failures with an FTFI number of only 1 or 2. One such example, the Ariane 5 disaster [10], occurred because the horizontal velocity of the rocket exceeded that of Ariane 4. (The software-related cause of the error was a failed numerical conversion, but the operational condition required to trigger this situation was simply a horizontal velocity greater than earlier systems.) The USS Yorktown failure is another example of a spectacular failure resulting from a single fault condition. Assigning a value of zero in a particular database field caused a divide-by-zero error, which caused the local network to crash, disabling the entire ship [11].

4. Implications for Testing

Consider the previously discussed system with 20 inputs, each of which can assume 10 possible values. Exhaustive testing would, of course, require 10^{20} test cases, but the empirical results described above show that most failures were actually triggered by a single erroneous parameter; however, nearly all could be triggered by fewer than 4 or 5, and at most 6 for the software that was studied.

Now consider the effort required to exercise all n-tuples of k parameters, each of which has v possible values (known in the combinatorics literature as the problem of
covering array construction [12; 13; 14]). The number of \(n \)-tuples drawn from \(k \) parameters is calculated by \(C(k,n) = \frac{k!}{n!(k-n)!} \), and since each parameter has \(v \) values, the total number of test cases required to test exhaustively would be \(C(k,n) \cdot v^n \). This calculation uses the simplifying assumption that each parameter has the same number, \(v \), of values, but in practice, \(v \) can be the maximum, with “don’t care” values for parameters with less than \(v \) values. Attempting to test all \(4 \)-tuples for the example described above would require 48,450,000 test cases. Fortunately this prohibitively large number can be reduced to a reasonable level.

Since each test case will contain 20 parameters, there are \(C(20,4) = 4,845 \) 4-tuples of parameters and \(C(20,6) = 38,760 \) 6-tuples in each test case. If test case generation is perfectly efficient, then each test case would contain unique sets of \(n \)-tuples, i.e., ensure there are no duplicate tests. A rough best case estimate for the total number of test cases would therefore simply be \(\frac{C(k,n)v^n}{C(k,n)} = v^n \), although avoiding all duplicates is not possible in practice [15; 16; 17], so \(v^n \) is in fact a best-case estimate, and the actual number of tests cases may be a small multiple (e.g., 2 to 3) of \(v^n \). For our earlier examples of 20 inputs with 10 values each, \(v^n \) translates to a minimum of 10,000 tests to cover all 4-tuples. Manually generating an extremely large number of test cases is hardly practical, but new automated test case generation tools [18] render such a task possible. Clearly, many more than 10,000 would be needed in practice because test generation is not 100% efficient, but with automated test generation, it remains practical to generate 20,000 or more test cases. Finding efficient methods for generating \(n \)-way covering test combinations is an active research area [2; 19; 20; 21]. The results reported in this paper suggest that this work could be of significant benefit to software testers.

Real systems are, of course, rarely as simple as the example. Rather than parameters with only 10 discrete values each, most or all parameters are either continuous or have significantly larger sets of discrete input values. Therefore, this form of testing should, for most cases, be considered pseudo-exhaustive, rather than effectively exhaustive. The traditional approach to dealing with the problem of continuous variables is to partition the parameter values into equivalence classes, where values in each set are assumed to be equivalent from a testing standpoint, i.e., correct (incorrect) system operation for one value is assumed to imply correct (incorrect) operation for another value from the same equivalence class. In many cases this assumption is not unreasonable provided the input is partitioned into an appropriate set of classes.

When planning for needed testing resources, the first question to define is the scope of the effort. For a given number, \(N \), of test cases, and a specified level of \(n \)-tuple, how many values, or equivalence classes, can or must be covered? Using \(v^n \) as the best-case approximation of the number of \(n \)-tuples covered by the set of test cases, we have \(v^n \leq N \), so \(n \log v \leq \log N \). So for \(N = 10^4 \) tests, \(v \leq 10^8 \). Maximum values for \(v \), in various combinations of \(n \) and number of test cases, are shown in Table 3. Thus, testing all 2-tuples of parameters using 100 tests would require that each parameter have no more than 10 values. Looked at another way, producing pairwise tests for parameters with 10 values each would require a minimum of 100 tests. One combinatorial testing tool makes it possible to test all pairs of values for this example using 180 cases [22].
Because testing occurs at the end of the development lifecycle, it must be both thorough and efficient in order to maximize effectiveness. Consider the case where deadlines are fixed and management has opted to conduct pseudo-exhaustive testing. If it is believed that any fault present can be triggered by interactions of no more than five variables, the following line of reasoning is used. First, variable values are partitioned into some number of equivalence classes. If we assumed six for each variable, then a minimum of 10,000 tests would be needed to cover all 5-tuples. Using automated test generation tools, this number of tests is feasible to generate. As discussed earlier, significantly more than 10,000 will be required given that test generation methods are never optimal; however, with automated tools and methods, test generation at this level can still be practical even for a small multiple of 10^4 test cases. Practical trials of automated test tools generating this number of tests are needed to evaluate this approach.

5. Conclusions

All failures of software reviewed in this paper were triggered by low FTFI number faults – for the most part 4 to 6 parameters were involved. If experience shows that all errors in a particular class of software are triggered by finite combinations of n values or less, then testing all combinations of n or fewer values would provide a form of “pseudo-exhaustive” testing. Since most variables actually have very large ranges of values, equivalence classes would need to be used in practice. Appropriate levels of n appear to be $3 \leq n \leq 6$ when considering “pseudo-exhaustive” testing, according to dependability requirements. Because the effectiveness of combinatorial testing depends on the fact that a single test case can include a large number of pairs (or higher degree combination) of values, this approach may not be effective for real-time or other software that depends on testing event sequences, but may be applicable to subsystems within real-time software. More empirical studies of other classes of software are needed to evaluate the applicability of combinatorial testing for other classes of systems.

Acknowledgments

We are grateful to Jim Lyle for his careful review, and the TSE reviewers for many helpful suggestions.
References

7 B. Smith, M.S. Feather, N. Muscettola, “Challenges and Methods in Testing the Remote Agent Planner”, *Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems*, Breckenridge, CO.

