
Preprint: D.R. Kuhn, D.R. Wallace, A.M. Gallo, Jr., Software Fault Interactions and Implications for Software Testing, IEEE
Transactions on Software Engineering, vol. 30, no. 6, June 2004, pp. 418-421 DOI: 10.1109/TSE.2004.24

 1

 Software Fault Interactions and Implications for Software Testing

D. Richard Kuhn Dolores R. Wallace Albert M. Gallo, Jr.
National Institute of

Standards and Technology
Software Assurance Technology

Center
Software Assurance
Technology Center

Gaithersburg, MD 20899 NASA-Goddard
Space Flight Center

NASA-Goddard
Space Flight Center

kuhn@nist.gov dwallac@pop300.gsfc.nasa.gov Al.Gallo@nasa.gov

Abstract

Exhaustive testing of computer software is intractable, but empirical studies of
software failures suggest that testing can in some cases be effectively exhaustive. Data
reported in this study and others show that software failures in a variety of domains were
caused by combinations of relatively few conditions. These results have important
implications for testing. If all faults in a system can be triggered by a combination of n or
fewer parameters, then testing all n-tuples of parameters is effectively equivalent to
exhaustive testing, if software behavior is not dependent on complex event sequences and
variables have a small set of discrete values.
Keywords: D.2.4.h Statistical methods, D.2.5.k Testing strategies, D.2.5.l Test design

1. Introduction

A software tester’s task is extremely difficult. Seeking to locate the maximum
number of latent errors under generally immovable deadlines is daunting, to say the least.
Consider, for example, a device that has 20 inputs, each having 10 possible values (or 10
equivalence classes if the variables are continuous). This scenario yields a total of
combinations of settings. Only a few hundred test cases can be built and executed under
most budgets, yet this would cover less than a fraction of one percent (< 10-15) of the
possible cases.

Empirical research into quality and reliability, for at least some types of software,
suggests that relatively few parameters are actually involved in triggering failures - a
phenomenon that has significant implications for testing. This leads one to suspect: If we
were able to know with certainty that all faults in a system are triggered by a combination
of n or fewer parameters, then testing all n-tuples of parameters is effectively equivalent
to exhaustive testing at least for variables with a small set of discrete values (or possibly
using equivalence classes for continuous value variables). For variables with a
continuous range of values, partition testing of all n-way combinations of equivalence
classes might be considered pseudo-exhaustive.

 In reality, of course, we can never know in advance what degree of interaction is
required to trigger all faults in a system. A somewhat more practical alternative,
however, may be to collect empirical data on faults that occur among similar systems in
various application domains. For example, if a long history of failure data shows that a
particular type of application has never required the interaction of more than 4 parameters
to reveal a failure, then an appropriate testing goal for that class of applications might be
to test all 5-way or fewer interactions. We will refer to the number of conditions required

2010

Preprint: D.R. Kuhn, D.R. Wallace, A.M. Gallo, Jr., Software Fault Interactions and Implications for Software Testing, IEEE
Transactions on Software Engineering, vol. 30, no. 6, June 2004, pp. 418-421 DOI: 10.1109/TSE.2004.24

 2

to trigger a failure as the failure-triggering fault interaction (FTFI) number. For
example, if a microwave oven control module fails when power is set on “High” and time
is set to 20 minutes, the FTFI number is 2. Combinatorial testing [1,2] that exercised all
2-tuples of test data would have detected this failure. In this paper we analyze the fault
interactions of a large distributed system, compare the results with data reported for
systems in other domains, and explore the implications of these results for software
testing.

2. Related Work

To our knowledge, only three studies prior to this one attempted to characterize fault
interactions using empirical data. Nair et al. [3] described a case study of combinatorial
testing for a small subsystem of a screen-based administrative database. The system was
designed to present users with input screens, accept data, then process it and store it in a
database. Size was not given, but similar systems normally range from a few hundred to
a few thousand lines of code. This study was extremely limited in that only one screen of
a subsystem with two known faults was involved, but it shows that pairwise testing was
sufficient to detect both faults.

Wallace and Kuhn [4] reviewed 15 years of medical device recall data gathered by
the US Food and Drug Administration to characterize the types of faults that occur in this
application domain. These applications include any devices under FDA authority, but are
primarily small to medium sized embedded systems, and would range from roughly 104
to 105 lines of code. All of the applications in the database were fielded systems that had
been recalled because of reported defects. A limitation of this study, however, was that
only 109 of the 342 recalls of software-controlled devices contained enough information
to determine the number of conditions required to replicate a given failure. Of these 109
cases, 97% of the reported flaws could be detected by testing all pairs of parameter
settings, and only three of the recalls had an FTFI number greater than 2. (Number of
failures triggered by a single condition was not given in [4], but we reviewed the data and
report this figure in Table 1.) The most complex of these failures required four
conditions. Kuhn and Reilly [5] analyzed reports in bug tracking databases for open
source browser and server software, the Mozilla web browser and Apache server. Both
were early releases that were undergoing incremental development. This study found that
more than 70% of documented failures were triggered by only one or two conditions, and
that no failure had an FTFI number greater than 6. Difficulty in interpreting some of the
failure reports (e.g., in some cases it was not clear whether some conditions were “don’t
care” or were required to reproduce the failure) led to conservative assumptions regarding
failure causes. Thus, some of the failures with high FTFI numbers may actually have
been less than 6.
 Three other studies provided some limited information regarding fault interactions.
Dalal et al. [6] demonstrated the effectiveness of pair-wise testing in four case studies but
did not investigate higher-degree interactions. Smith, Feather, and Muscettola
investigated pairwise testing of the Remote Agent Experiment (RAX) software on
NASA’s Deep Space 1 mission. The RAX is an expert system that generates plans to
carry out spacecraft operations without human intervention. This study found that testing
all pairs of input values and all individual values detected 88% of the bugs classified as
either “correctness” or “convergence” flaws in onboard planning software (i.e.

Preprint: D.R. Kuhn, D.R. Wallace, A.M. Gallo, Jr., Software Fault Interactions and Implications for Software Testing, IEEE
Transactions on Software Engineering, vol. 30, no. 6, June 2004, pp. 418-421 DOI: 10.1109/TSE.2004.24

 3

successfully finding a feasible path), but only about half of engine interface bugs [7].
The authors did not investigate higher-degree combinations required to trigger a failure.
Pan [8] found that testing all values triggered more than 80% of detected errors in a
selection of POSIX operating system function calls. Higher degree combinations were
not reported. Tests were conducted on individual POSIX function calls (i.e., this testing
corresponded to unit testing) from fielded, commercial systems.

3. Empirical Data
 We analyzed 329 error reports from development and integration testing of a large

distributed system being developed at NASA Goddard Space Flight Center. This
application is a data management system that gathers and receives large quantities of raw
scientific data. The system is comprised of numerous subsystems for scientific analysis of
the data as well as the storage of all results. Multiple standalone copies of this system are
deployed at several locations. Faults are initially corrected at the site where they were
first discovered, and subsequently all sites receive the correction as there are new releases
of the system. Regardless of the point of origin, faults are characterized in a database by
date submitted, severity, priority for fix, the location where found, status, the activity
being performed when found, and several other features. Several text fields provide
additional context, including one to describe how the fault was found as well as one to
discuss its resolution. Results of this analysis are shown in the last column of Table 1.
System type, release stage, and approximate system size (or size of similar applications,
where this information was not provided) are summarized in Table 2 for comparison
purposes. Also note that the distribution of failure-triggering conditions (see last four
columns of Table 1) appears to follow a power law, but many more data sets would be
required to make this generalization.

FTFI
No.

RAX
conver-
gence

RAX
correct-
ness

RAX
interface

RAX
engine

POSIX
modules

Medical
Devices

Browser

Server

NASA
GSFC

1 61 72 48 39 81.7 66 28.6 41.7 67.5
2 97 82 54 47 * 97 76.1 70.3 93.3
3 * * * * * 99 95.0 89.3 98.8
4 * * * * * 100 97.2 96.4 100.0
5 * * * * * 99.4 96.4
6 * * * * * 100.0 100.0

Table 1. Cumulative Percent of Faults Triggered by n-way Conditions (* = not reported)

The analyses discussed above raise some interesting questions. Perhaps most
intriguing is the absence of any clear differences in fault interaction complexities between
development projects and fielded products. Intuition suggests that bugs should be more
difficult to trigger, hence occur less frequently, once a system has been developed. Some
spectacular software failures seem to bear out this thought. For example, the Mars
Pathfinder failed as a result of a complex series of events leading to a priority inversion,
which deadlocked critical system processes [9]. This intuition has been referred to as the
“Heisenbug” hypothesis, which posits that bugs in fielded systems are likely to be
transient, hard to reproduce, and not consistently observable.

Preprint: D.R. Kuhn, D.R. Wallace, A.M. Gallo, Jr., Software Fault Interactions and Implications for Software Testing, IEEE
Transactions on Software Engineering, vol. 30, no. 6, June 2004, pp. 418-421 DOI: 10.1109/TSE.2004.24

 4

System System type Release
Stage

Size
(LOC)

Admin
database

Database user interface Development -
integration test

approx. 103
(size of similar
applications)

RAX
Planner

Artificial intelligence Development 3,000

POSIX
modules

Operating system
function calls

Fielded
products

103
(varies)

Medical
Devices

Embedded Fielded
prooducts

103 -104
(varies)

Browser Web browser Development/
beta release

approx.105

Server HTTP server Development/
beta release

approx.105

NASA Distributed scientific
database

Development -
integration test

approx.105

Table 2. Characteristics of systems reviewed

 Yet surprisingly, this expectation does not clearly hold for the two sets of fielded
products reviewed above. For all levels of fault interactions reported, the development
project failures were harder to trigger than those in both classes of fielded products. In
fact, bugs with an FTFI number of 2 accounted for a higher proportion of the medical
device failures than for any of the development projects (ignoring the administrative
database, which had too few data points to be statistically significant). Much more
analysis across a variety of application domains will be needed to provide a
comprehensive picture of the fault interactions of fielded systems, but these data suggest
that it is not safe to assume that such failures are always due to rare combinations of
conditions. We note also that there are a number of famous software failures with an
FTFI number of only 1 or 2. One such example, the Ariane 5 disaster [10], occurred
because the horizontal velocity of the rocket exceeded that of Ariane 4. (The software-
related cause of the error was a failed numerical conversion, but the operational condition
required to trigger this situation was simply a horizontal velocity greater than earlier
systems.) The USS Yorktown failure is another example of a spectacular failure resulting
from a single fault condition. Assigning a value of zero in a particular database field
caused a divide-by-zero error, which caused the local network to crash, disabling the
entire ship [11].

4. Implications for Testing

Consider the previously discussed system with 20 inputs, each of which can assume
10 possible values. Exhaustive testing would, of course, require 1020 test cases, but the
empirical results described above show that most failures were actually triggered by a
single erroneous parameter; however, nearly all could be triggered by fewer than 4 or 5,
and at most 6 for the software that was studied.

Now consider the effort required to exercise all n-tuples of k parameters, each of
which has v possible values (known in the combinatorics literature as the problem of

Preprint: D.R. Kuhn, D.R. Wallace, A.M. Gallo, Jr., Software Fault Interactions and Implications for Software Testing, IEEE
Transactions on Software Engineering, vol. 30, no. 6, June 2004, pp. 418-421 DOI: 10.1109/TSE.2004.24

 5

covering array construction [12; 13; 14]). The number of n-tuples drawn from k
parameters is calculated by C(k,n) = , and since each parameter has v values,

the total number of test cases required to test exhaustively would be . This
calculation uses the simplifying assumption that each parameter has the same number, v,
of values, but in practice, v can be the maximum, with “don’t care” values for parameters
with less than v values. Attempting to test all 4-tuples for the example described above
would require 48,450,000 test cases. Fortunately this prohibitively large number can be
reduced to a reasonable level.

Since each test case will contain 20 parameters, there are C(20,4) = 4,845 4-tuples of
parameters and C(20,6) = 38,760 6-tuples in each test case. If test case generation is
perfectly efficient, then each test case would contain unique sets of n-tuples, i.e., ensure
there are no duplicate tests. A rough best case estimate for the total number of test cases

would therefore simply be = vn, although avoiding all duplicates is not

possible in practice [15; 16; 17], so vn is in fact a best-case estimate, and the actual
number of tests cases may be a small multiple (e.g., 2 to 3) of vn. For our earlier
examples of 20 inputs with 10 values each, vn translates to a minimum of 10,000 tests to
cover all 4-tuples. Manually generating an extremely large number of test cases is hardly
practical, but new automated test case generation tools [18] render such a task possible.
Clearly, many more than 10,000 would be needed in practice because test generation is
not 100% efficient, but with automated test generation, it remains practical to generate
20,000 or more test cases. Finding efficient methods for generating n-way covering test
combinations is an active research area [2; 19;20; 21]. The results reported in this paper
suggest that this work could be of significant benefit to software testers.

Real systems are, of course, rarely as simple as the example. Rather than parameters
with only 10 discrete values each, most or all parameters are either continuous or have
significantly larger sets of discrete input values. Therefore, this form of testing should,
for most cases, be considered pseudo-exhaustive, rather than effectively exhaustive. The
traditional approach to dealing with the problem of continuous variables is to partition the
parameter values into equivalence classes, where values in each set are assumed to be
equivalent from a testing standpoint, i.e., correct (incorrect) system operation for one
value is assumed to imply correct (incorrect) operation for another value from the same
equivalence class. In many cases this assumption is not unreasonable provided the input
is partitioned into an appropriate set of classes.

When planning for needed testing resources, the first question to define is the scope
of the effort. For a given number, N, of test cases, and a specified level of n-tuple, how
many values, or equivalence classes, can or must be covered? Using vn as the best-case
approximation of the number of n-tuples covered by the set of test cases, we have vn £ N,

so n log v £ log N. So for N = 10x tests, v £ . Maximum values for v, in various
combinations of n and number of test cases, are shown in Table 3. Thus, testing all 2-
tuples of parameters using 100 tests would require that each parameter have no more than
10 values. Looked at another way, producing pairwise tests for parameters with 10
values each would require a minimum of 100 tests. One combinatorial testing tool makes
it possible to test all pairs of values for this example using 180 cases [22].

)!(!
!
nkn

k
-

nvnkC ×),(

),(
),(
nkC
vnkC n

n
x

10

Preprint: D.R. Kuhn, D.R. Wallace, A.M. Gallo, Jr., Software Fault Interactions and Implications for Software Testing, IEEE
Transactions on Software Engineering, vol. 30, no. 6, June 2004, pp. 418-421 DOI: 10.1109/TSE.2004.24

 6

n 102 tests 103 tests 104 tests 105 tests 106 tests
All 2-tuples 10 31 100 316 1000
All 3 tuples 4 10 21 46 100
All 4 tuples 3 5 10 17 31
All 5 tuples 2 3 6 10 15
All 6 tuples 2 3 4 6 10

Table 3. Maximum value of v for combinations of n-tuples and test cases

Because testing occurs at the end of the development lifecycle, it must be both

thorough and efficient in order to maximize effectiveness. Consider the case where
deadlines are fixed and management has opted to conduct pseudo-exhaustive testing. If it
is believed that any fault present can be triggered by interactions of no more than five
variables, the following line of reasoning is used. First, variable values are partitioned
into some number of equivalence classes. If we assumed six for each variable, then a
minimum of 10,000 tests would be needed to cover all 5-tuples. Using automated test
generation tools, this number of tests is feasible to generate. As discussed earlier,
significantly more than 10,000 will be required given that test generation methods are
never optimal; however, with automated tools and methods, test generation at this level
can still be practical even for a small multiple of 104 test cases. Practical trials of
automated test tools generating this number of tests are needed to evaluate this approach.

5. Conclusions

All failures of software reviewed in this paper were triggered by low FTFI
number faults – for the most part 4 to 6 parameters were involved. If experience shows
that all errors in a particular class of software are triggered by finite combinations of n
values or less, then testing all combinations of n or fewer values would provide a form of
“pseudo-exhaustive” testing. Since most variables actually have very large ranges of
values, equivalence classes would need to be used in practice. Appropriate levels of n
appear to be when considering “pseudo-exhaustive” testing, according to
dependability requirements. Because the effectiveness of combinatorial testing depends
on the fact that a single test case can include a large number of pairs (or higher degree
combination) of values, this approach may not be effective for real-time or other software
that depends on testing event sequences, but may be applicable to subsystems within real-
time software. More empirical studies of other classes of software are needed to evaluate
the applicability of combinatorial testing for other classes of systems.

Acknowledgments

We are grateful to Jim Lyle for his careful review, and the TSE reviewers for many helpful
suggestions.

63 ££ n

Preprint: D.R. Kuhn, D.R. Wallace, A.M. Gallo, Jr., Software Fault Interactions and Implications for Software Testing, IEEE
Transactions on Software Engineering, vol. 30, no. 6, June 2004, pp. 418-421 DOI: 10.1109/TSE.2004.24

 7

References

1 R. Brownlie, J. Prowse, and M.S. Phadke. Robust Testing of AT&T PMX/StarMail

using OATS. AT&T Technical Journal, 71(3): 41-47 (May/June 1992).

2 D.M. Cohen, S.R. Dalal, J. Parelius, and G.C. Patton. The Combinatorial Approach to

Automatic Test Generation. IEEE Software, 13(5): 83-88, (September 1996).

3 V.N. Nair, D.A. James, W.K. Erlich, J. Zevallos, “A Statistical Assessment of Some

Software Testing Strategies and Application of Experimental Design Techniques”,
Statistica Sinica, Volume 8, Number 1, pp 165-184, 1998.

4 D.R. Wallace, D.R. Kuhn, “Failure Modes in Medical Device Software: an Analysis of

15 Years of Recall Data”, International Journal of Reliability, Quality and Safety
Engineering, vol. 8, no. 4, 2001.

5 D.R. Kuhn, M.J. Reilly, "An Investigation of the Applicability of Design of
Experiments to Software Testing", 27th NASA/IEEE Software Engineering Workshop,
IEEE Computer Society, 4-6 December, 2002.

6 S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton, B.M.
Horowitz, “Model-Based Testing in Practice”, International Conference on Software
Engineering, 1999.

7 B. Smith, M.S. Feather, N. Muscettola, “Challenges and Methods in Testing the

Remote Agent Planner”, Proceedings of the Fifth International Conference on Artificial
Intelligence Planning Systems, Breckenridge, CO.

8 J. Pan, “The Dimensionality of Failures – a Fault Model for Characterizing Software
Robustness”, Proceedings of FTCS 99, 15-18, June 1999, Madison, Wisconsin.

9 M. Jones, “What Really Happened on Mars Pathfinder Rover”, RISKS Digest, Vol. 19,
No. 49, December 9, 1997.

10 J. L. Lions, “Ariane 5, Flight 501, Report of the Inquiry Board,” European Space
Agency, Paris, July 19, 1996.

11 G. Slabodkin, “Software Glitches Leave Navy Smart Ship Dead in the Water”,

Government Computer News, July 13, 1998.

12 B. Stevens, L. Moura, E. Mendelsohn, "Lower Bounds for Transversal Covers,"
Design, Codes, and Cryptography, Vol. 15 (1998), pp. 279-299.

13 C.J. Colbourn, J.H. Dinitz, editors, "The CRC Handbook of Combinatorial Designs,"
CRC Press, Boca Raton FL (1996).

14 A.W. Williams, R.L. Probert, "A Measure for Component Interaction Test Coverage,"
in Proceedings of the ACS/IEEE International Conference on Computer Systems and
Applications (AICCSA 2001), Beirut Lebanon, June 2001, pp.304-311.

Preprint: D.R. Kuhn, D.R. Wallace, A.M. Gallo, Jr., Software Fault Interactions and Implications for Software Testing, IEEE
Transactions on Software Engineering, vol. 30, no. 6, June 2004, pp. 418-421 DOI: 10.1109/TSE.2004.24

 8

15 B. Stevens, L. Moura, E. Mendelsohn, "Lower Bounds for Transversal Covers,"
Design, Codes, and Cryptography, Vol. 15 (1998), pp. 279-299.

16 C.J. Colbourn, J.H. Dinitz, editors, "The CRC Handbook of Combinatorial Designs,"
CRC Press, Boca Raton FL (1996).

17 A.W. Williams, R.L. Probert, "A Measure for Component Interaction Test Coverage,"
in Proceedings of the ACS/IEEE International Conference on Computer Systems and
Applications (AICCSA 2001), Beirut Lebanon, June 2001, pp.304-311.
18 Paul E. Ammann, Paul E. Black, and William Majurski, Using Model Checking to

Generate Tests from Specifications, Proceedings of 2nd IEEE International Conference
on Formal Engineering Methods (ICFEM'98), Brisbane, Australia (December 1998),
IEEE Computer Society, pages 46-54.

19 K.C. Tai, Y. Lie, A Test Generation Strategy for Pairwise Testing, IEEE Transactions
on Software Engineering 28(1): 109-111 (2002)

20 A.W. Williams, R.L. Probert, “Formulation of the Interaction Test Coverage Problem
as an Integer Program”, TestCom 2002: 283-298.

21 M.B.Cohen, C.J. Colbourn, P.B. Gibbons and W.B. Mugridge, Constructing test suites
for interaction testing, 25th Proc. of the Intl. Conf. on Software Engineering (ICSE 2003),
Portland, Oregon, May 2003, pp. 38-48.

22 D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton. The AETG System: An
Approach to Testing Based on Combinatorial Design. IEEE Transactions on Software
Engineering, 23(7): 437-444, (July 1997).

