
Ascon
v1.2

Submission to NIST

Christoph Dobraunig Maria Eichlseder
Florian Mendel Martin Schläffer

May 31, 2021

ascon@iaik.tugraz.at

https://ascon.iaik.tugraz.at

mailto:ascon@iaik.tugraz.at
https://ascon.iaik.tugraz.at


Contents

1 Introduction 4

2 Specification 5
2.1 Algorithms in the Ascon Cipher Suite . . . . . . . . . . . . . . . . . . 5
2.2 Recommended Parameter Sets . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 State and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Authenticated Encryption . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Processing Associated Data . . . . . . . . . . . . . . . . . . . . 9
2.4.3 Processing Plaintext/Ciphertext . . . . . . . . . . . . . . . . . 10
2.4.4 Finalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Absorbing Message . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.3 Squeezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.1 Addition of Constants . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.2 Substitution Layer . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.3 Linear Diffusion Layer . . . . . . . . . . . . . . . . . . . . . . . 14

3 Security Claims 15
3.1 Authenticated Encryption . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Features 17
4.1 Properties of Ascon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Features for Lightweight Applications . . . . . . . . . . . . . . 19
4.1.2 Features for High-Performance Applications . . . . . . . . . . 20

5 Design Rationale 21
5.1 Design of the Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Choice of the Mode for Authenticated Encryption . . . . . . . 21
5.1.2 Choice of theMode for Hashing and Extendable Output Func-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.3 Choice of the Family Members . . . . . . . . . . . . . . . . . . 23
5.1.4 Choice of the Initial Values . . . . . . . . . . . . . . . . . . . . 24

5.2 Design of the Permutation . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.1 Choice of the Round Constants . . . . . . . . . . . . . . . . . . 24
5.2.2 Choice of the Substitution Layer . . . . . . . . . . . . . . . . . 24
5.2.3 Choice of the Linear Diffusion Layer . . . . . . . . . . . . . . . 25

2



6 Security Analysis 27
6.1 Overview of Best Known Attacks . . . . . . . . . . . . . . . . . . . . . 27
6.2 Analysis of the Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2.1 Hashing and Extendable Output Function . . . . . . . . . . . 27
6.2.2 Authenticated Encryption . . . . . . . . . . . . . . . . . . . . . 29

6.3 Analysis of the Permutation . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.1 Differential and Linear Properties . . . . . . . . . . . . . . . . 29
6.3.2 Algebraic Properties . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3.3 Other Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4 List of Published Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Implementation 40
7.1 Size-Optimized Implementations . . . . . . . . . . . . . . . . . . . . . 40
7.2 Efficiency for Short Messages . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 Flexibility of the Permutation . . . . . . . . . . . . . . . . . . . . . . . 42
7.4 Further Reading on Efficiency . . . . . . . . . . . . . . . . . . . . . . . 44
7.5 Implementation Security and Robustness . . . . . . . . . . . . . . . . 45

3



1 Introduction

In this document, we present the cipher suite Ascon, which provides authenticated
encryption with associated data (AEAD) and hashing functionality. The suite
consists of the authenticated ciphers Ascon-128 and Ascon-128a, which have been
selected as primary choice for lightweight authenticated encryption in the final
portfolio of the CAESAR competition, and a new variantAscon-80pq with increased
resistance against quantum key-search. Additionally, the suite consists of the hash
functions Ascon-Hash and Ascon-Hasha, and the extendable output functions
Ascon-Xof and Ascon-Xofa. The recommendation for NIST includes Ascon-128
combined with Ascon-Hash or Ascon-128a combined with Ascon-Hasha. All
schemes provide 128-bit security and internally use the same 320-bit permutation
(with different round numbers) so that a single lightweight primitive is sufficient to
implement both AEAD and hashing.
The Ascon suite and especially the underlying 320-bit permutation have been de-
signed for high security and robustness in practice with a very low area footprint in
hardware while providing good performance in software and hardware implemen-
tations. Ascon’s permutation is defined on 64-bit words using only bitwise Boolean
functions (and, not, xor) and rotations within words. Hence, the permutation
lends itself well to fast bitsliced implementations on 64-bit platforms, while bit
interleaving allows for fast bitsliced implementations on 32-, 16-, and 8-bit platforms.
Ascon’s low-degree S-box allows masked implementations with a small overhead
in hardware and software. Thus, Ascon is an excellent choice in scenarios where
lightweight devices carry out cryptographic operations. Due to the good perfor-
mance in software, Ascon is a perfect fit in scenarios where lightweight devices
communicate with high-end servers. Benchmarks show that Ascon is particularly
efficient for short messages.
Ascon-128 and Ascon-128a have been selected as the “primary choice” for light-
weight authenticated encryption in the final portfolio of the CAESAR competition.
Of the initial 57 submissions, 6 were selected for this portfolio in 3 use-cases. During
this competition, Ascon and its permutation have undergone a thorough public
evaluation. All existing analysis shows a comfortable security margin. There are no
indications of any weakness regardingAscon-128 andAscon-128a. The best attacks
on round-reduced versions target the initialization reduced to 7 out of 12 rounds,
and even those attacks are far from being a practical threat.
Ciphers are not used in an ideal world. Therefore,Ascon’s authenticated encryption
has been designed to provide robustness against certain implementation mistakes
and attacks: For example, even if an attacker somehow manages to recover an
internal state during data processing (e.g., due to side-channel attacks), this does
not directly lead to the recovery of the secret key or to constructing trivial forgeries.

4



2 Specification

This chapter provides a complete and self-contained specification of the Ascon
cipher suite, starting with an overview of the algorithms in Section 2.1, the indi-
vidual recommended parameter sets in Section 2.2, and the notation in Section 2.3.
Afterwards, the authenticated encryption modes are specified in Section 2.4, the
hashing modes in Section 2.5, and the underlying permutation in Section 2.6.

2.1 Algorithms in the Ascon Cipher Suite

The Ascon cipher suite consists of a family of authenticated encryption designs,
together with a family of hash and extendable output functions.

Authenticated encryption. For the authenticated encryption designs Ascon, the
family members are parameterized by the key length k ≤ 160 bits, the rate (data
block size) r and internal round numbers a and b. Each design specifies an au-
thenticated encryption algorithm Ek,r,a,b and a decryption algorithm Dk,r,a,b. The
authenticated encryption procedure Ek,r,a,b takes as inputs a secret key K with k bits,
a nonce (public message number) N with 128 bits, associated data A of arbitrary
length, and a plaintext P of arbitrary length. It produces an output consisting of
the authenticated ciphertext C of exactly the same length as the plaintext P plus an
authentication tag T of size 128 bits, which authenticates both the associated data
and the encrypted message:

Ek,r,a,b(K, N, A, P) = (C, T) .

The decryption and verification procedure Dk,r,a,b takes as input the key K, nonce N,
associated data A, ciphertext C and tag T, and outputs either the plaintext P if the
verification of the tag is correct or an error ⊥ if the verification of the tag fails:

Dk,r,a,b(K, N, A, C, T) ∈ {P,⊥} .

Hashing. The family of hash and extendable output functions is defined using a
single extendable output function Xh,r,a,b parameterized by the rate r (data block
size), the round numbers a and b, and an output length limit h (h = 0 for unlimited
outputs). Xh,r,a,b maps the input message M of arbitrary length to a hash output H
of arbitrary specified length ` ≤ h:

Xh,r,a,b(M, `) = H .

All hash and extendable output functions use this algorithm: the hash functions
with h = 256 and the extendable output functions with h = 0 for unlimited output.

5



2.2 Recommended Parameter Sets

Authenticated Encryption. Table 1 lists our recommended instances for authenti-
cated encryption and specifies their parameters, including the key size k, the fixed
nonce and tags sizes, the rate r, and the number of rounds a for the initialization and
finalization permutation pa and b for the intermediate permutation pb processing
the associated data and plaintext. The list is sorted by priority: the primary recom-
mendation is Ascon-128 and the secondary recommendation is Ascon-128a. Both
schemes are identical to the CAESAR candidates [DEMS16] selected as primary
choices for lightweight use-cases in the final CAESAR portfolio [Cae14].

Table 1: Parameters for recommended authenticated encryption schemes.

Name Algorithms Bit size of Rounds
key nonce tag data block pa pb

Ascon-128 E ,D128,64,12,6 128 128 128 64 12 6
Ascon-128a E ,D128,128,12,8 128 128 128 128 12 8

Hashing. Table 2 lists our recommended instances for hashing and specifies their
parameters, including the size of the hash output h, the rate r, as well as the number
of rounds a and b for the permutation pa and pb. It is sorted by priority: the primary
recommendation is Ascon-Hash, the secondary recommendation Ascon-Hasha.

Table 2: Parameters for recommended hashing algorithms.

Name Algorithm Bit size of Rounds
hash data block pa pb

Ascon-Hash X256,64,12,12 with ` = 256 256 64 12 12
Ascon-Hasha X256,64,12,8 with ` = 256 256 64 12 8

Recommended Pairing for Authenticated Encryption and Hashing. When de-
sired, we recommend to pair the primary proposals, Ascon-128 and Ascon-Hash
(both have the same rate), or to pair the secondary proposals, Ascon-128a and
Ascon-Hasha (both have the same number of rounds for pb).
Further Constructions using Ascon’s Permutation. Besides these main recom-
mendations,Ascon’s permutation can be used in different parameter configurations.
We define two extendable output functions to produce hash outputs of arbitrary
length. Ascon-Xof uses the algorithm X0,64,12,12 with a rate of 64 bits and 12 rounds
for pa and pb. Ascon-Xofa uses the algorithm X0,64,12,8 with a rate of 64 bits, 12
rounds for pa, and 8 rounds for pb.
Furthermore, we define the authenticated encryption scheme Ascon-80pq which
uses the algorithms E ,D160,64,12,6 with an increased key size of 160 bits, a nonce and
tag size of 128 bits, a rate of 64 bits, 12 rounds for pa, and 6 rounds for pb.

6



2.3 State and Notation

All members of the Ascon cipher suite operate on a state of 320 bits which they
update with permutations pa (a rounds) and pb (b rounds). The 320-bit state S is
divided into an outer part Sr of r bits and an inner part Sc of c bits, where the rate r
and capacity c = 320− r depend on the Ascon variant.
For the description and application of the round transformations (Section 2.6), the
320-bit state S is split into five 64-bit registers words xi, as illustrated in Figure 3a:

S = Sr ‖ Sc = x0 ‖ x1 ‖ x2 ‖ x3 ‖ x4 .

Whenever S needs to be interpreted as a byte-array (or bitstring) for the sponge
interface, this starts with the most significant byte (or bit) of x0 as byte 0 and ends
with the least significant byte (or bit) of x4 as byte 39.
Table 3 lists the notation and symbols used in this document.

Table 3: Notation used for Ascon’s interface, mode, and permutation
K Secret key K of k ≤ 160 bits
N, T Nonce N, tag T, all of 128 bits
P, C, A Plaintext P, ciphertext C, associated data A (in r-bit blocks Pi, Ci, Ai)
M, H Message M, hash value H (in r-bit blocks Mi, Hi)
⊥ Error, verification of authenticated ciphertext failed
S The 320-bit state S of the sponge construction
Sr, Sc The r-bit rate and c-bit capacity part of the state S
p, pa, pb Permutations pa, pb consisting of a, b update rounds p, respectively
x ∈ {0, 1}k Bitstring x of length k (variable if k = ∗)
0k Bitstring of k bits (variable length if k = ∗), all 0
|x| Length of the bitstring x in bits
bxck Bitstring x truncated to the first (most significant) k bits
dxek Bitstring x truncated to the last (least significant) k bits
x ‖ y Concatenation of bitstrings x and y
x⊕ y Xor of bitstrings x and y
x mod y Remainder in integer division of x by y
dxe Ceiling function, smallest integer larger than x

pC, pS, pL constant-addition, substitution and linear layer of p = pL ◦ pS ◦ pC
x0, . . . , x4 The five 64-bit words of the state S
x0,i, . . . , x4,i Bit i, 0 ≤ i < 64, of words x0, . . . , x4, with x·,0 the rightmost bit (LSB)
x⊕ y Bitwise xor of 64-bit words or bits x and y
x� y Bitwise and of 64-bit words or bits x and y (denoted x y in the ANF)
x ≫ i Right-rotation (circular shift) by i bits of 64-bit word x

7



2.4 Authenticated Encryption

The mode of operation of Ascon for authenticated encryption is based on duplex
modes like MonkeyDuplex [BDPV12], but uses a stronger keyed initialization and
keyed finalization function. The encryption anddecryption operations are illustrated
in Figure 1a and Figure 1b and specified in Algorithm 1.

IV‖K‖N

pa

Initialization

0∗‖K

A1
r

pb

c

As
r

pb

c

Associated Data

0∗‖1

P1C1

r

c
pb

Pt−1 Ct−1

r

c
pb

Plaintext

Pt Ct

r

c

K‖0∗

pa

Finalization
K

T

128

(a) Encryption Ek,r,a,b

IV‖K‖N

pa

Initialization

0∗‖K

A1
r

pb

c

As
r

pb

c

Associated Data

0∗‖1

P1C1

r

c
pb

Pt−1 Ct−1

r

c
pb

Ciphertext

Pt Ct

r

c

K‖0∗

pa

Finalization
K

T

128

(b) Decryption Dk,r,a,b

Figure 1: Ascon’s mode of operation.

2.4.1 Initialization

The 320-bit initial state of Ascon is formed by the secret key K of k bits and nonce
N of 128 bits, as well as an IV specifying the algorithm (including the key size k,
the rate r, the initialization and finalization round number a, and the intermediate
round number b, each written as an 8-bit integer):

IVk,r,a,b ← k ‖ r ‖ a ‖ b ‖ 0160−k =


80400c0600000000 for Ascon-128
80800c0800000000 for Ascon-128a
a0400c06 for Ascon-80pq

S← IVk,r,a,b ‖K ‖N

In the initialization, a rounds of the round transformation p are applied to the initial
state, followed by an xor of the secret key K:

S← pa(S)⊕ (0320−k ‖K)

8



Algorithm 1: Authenticated encryption and decryption procedures

Authenticated Encryption
Ek,r,a,b(K, N, A, P)

Input: key K ∈ {0, 1}k, k ≤ 160,
nonce N ∈ {0, 1}128,
associated data A ∈ {0, 1}∗,
plaintext P ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}|P|,
tag T ∈ {0, 1}128

Initialization
S← IVk,r,a,b ‖K ‖N
S← pa(S)⊕ (0320−k ‖K)

Processing Associated Data
if |A| > 0 then

A1 . . . As ← r-bit blocks of A‖1‖0∗
for i = 1, . . . , s do

S← pb((Sr ⊕ Ai) ‖ Sc)
S← S⊕ (0319 ‖ 1)

Processing Plaintext
P1 . . . Pt ← r-bit blocks of P‖1‖0∗
for i = 1, . . . , t− 1 do

Sr ← Sr ⊕ Pi
Ci ← Sr
S← pb(S)

Sr ← Sr ⊕ Pt
C̃t ← bSrc|P| mod r

Finalization
S← pa(S⊕ (0r ‖K ‖ 0320−r−k))

T ← dSe128 ⊕ dKe128

return C1 ‖ . . . ‖Ct−1 ‖ C̃t, T

Verified Decryption
Dk,r,a,b(K, N, A, C, T)

Input: key K ∈ {0, 1}k, k ≤ 160,
nonce N ∈ {0, 1}128,
associated data A ∈ {0, 1}∗,
ciphertext C ∈ {0, 1}∗,
tag T ∈ {0, 1}128

Output: plaintext P ∈ {0, 1}|C| or ⊥
Initialization

S← IVk,r,a,b ‖K ‖N
S← pa(S)⊕ (0320−k ‖K)

Processing Associated Data
if |A| > 0 then

A1 . . . As ← r-bit blocks of A‖1‖0∗
for i = 1, . . . , s do

S← pb((Sr ⊕ Ai) ‖ Sc)
S← S⊕ (0319 ‖ 1)

Processing Ciphertext
C1 . . . Ct−1C̃t ← r-bit blocks of C, 0≤|C̃t|< r
for i = 1, . . . , t− 1 do

Pi ← Sr ⊕ Ci
S← Ci ‖ Sc
S← pb(S)

P̃t ← bSrc|C̃t | ⊕ C̃t

Sr ← Sr ⊕ (P̃t ‖ 1 ‖ 0∗)
Finalization

S← pa(S⊕ (0r ‖K ‖ 0320−r−k))

T∗ ← dSe128 ⊕ dKe128

if T = T∗ return P1 ‖ . . . ‖ Pt−1 ‖ P̃t
else return ⊥

2.4.2 Processing Associated Data

Ascon processes the associated data A in blocks of r bits. It appends a single 1 and
the smallest number of 0s to A to obtain a multiple of r bits and split it into s blocks
of r bits, A1‖ . . . ‖As. In case A is empty, no padding is applied and s = 0:

A1, . . . , As ←
{

r-bit blocks of A ‖ 1 ‖ 0r−1−(|A|mod r) if |A| > 0
∅ if |A| = 0

Each block Ai with i = 1, . . . , s is xored to the first r bits Sr of the state S, followed
by an application of the b-round permutation pb to S:

S← pb((Sr ⊕ Ai) ‖ Sc), 1 ≤ i ≤ s

After processing As (also if s=0), a 1-bit domain separation constant is xored to S:
S← S⊕ (0319 ‖ 1)

9



2.4.3 Processing Plaintext/Ciphertext

Ascon processes the plaintext P in blocks of r bits. The padding process appends a
single 1 and the smallest number of 0s to the plaintext P such that the length of the
padded plaintext is a multiple of r bits. The resulting padded plaintext is split into t
blocks of r bits, P1‖ . . . ‖Pt:

P1, . . . , Pt ← r-bit blocks of P ‖ 1 ‖ 0r−1−(|P|mod r)

Encryption. In each iteration, one padded plaintext block Pi with i = 1, . . . , t is
xored to the first r bits Sr of the internal state S, followed by the extraction of one
ciphertext block Ci. For each block except the last one, the whole internal state S is
transformed by the permutation pb using b rounds:

Ci ← Sr ⊕ Pi

S←
{

pb(Ci ‖ Sc) if 1 ≤ i < t
Ci ‖ Sc if 1 ≤ i = t

The last ciphertext block Ct is then truncated to the length of the unpadded last
plaintext block-fragment so that its length is between 0 and r− 1 bits, and the total
length of the ciphertext C is exactly the same as for the original plaintext P:

C̃t ← bCtc|P| mod r

Decryption. In each iteration except the last one, the plaintext block Pi is computed
by xoring the ciphertext block Ci with the first r bits Sr of the internal state. Then, the
first r bits of the internal state, Sr, are replaced by Ci. Finally, for each ciphertext block
except the last one, the internal state is transformed by the b-round permutation pb:

Pi ← Sr ⊕ Ci

S← pb(Ci ‖ Sc), 1 ≤ i < t

For the last, truncated ciphertext block C̃t with 0 ≤ ` < r bits, the procedure differs:
P̃t ← bSrc` ⊕ C̃t

S← (Sr ⊕ (P̃t ‖ 1 ‖ 0r−1−`)) ‖ Sc

2.4.4 Finalization

In the finalization, the secret key K is xored to the internal state and the state is
transformed by the permutation pa using a rounds. The tag T consists of the last
(least significant) 128 bits of the state xored with the last 128 bits of the key K:

S← pa(S⊕ (0r ‖K ‖ 0c−k))

T ← dSe128 ⊕ dKe128

The encryption algorithm returns the tag T together with the ciphertext C1 ‖ . . . ‖ C̃t.
The decryption algorithm returns the plaintext P1 ‖ . . . ‖ P̃t only if the calculated tag
value matches the received tag value.

10



2.5 Hashing

The mode of operation for hashing is based on sponges [BDPV07]. Both the hash
functions with fixed output size and the extendable output functions with vari-
able output size internally use the same algorithm Xh,r,a,b (see Table 2), which is
illustrated in Figure 2 and specified in Algorithm 2.

IV‖0c

pa

Initialization

M1
r

pb

c

M2
r

pb

c

Absorb Message

Ms
r

c
pa

H1
r

pb

c

Hd`/re
r

pb

c

Squeeze Hash

Figure 2: Hashing mode Xh,r,a,b.

2.5.1 Initialization

The 320-bit initial state for hashing is defined by a constant IV that specifies the
algorithm parameters in a similar format as for Ascon. The IV includes k = 0, the
rate r, the round number a and the value a − b, each written as an 8-bit integer,
followed by the maximal output length of h bits as a 32-bit integer (with h = ` = 256
for Ascon-Hash and Ascon-Hasha, and h = 0 for unlimited output in Ascon-Xof
and Ascon-Xofa) and a 256-bit zero value. The a-round permutation pa is applied
to initialize the state S:

IVh,r,a,b ← 08 ‖ r ‖ a ‖ a− b ‖ h =


00400c0000000100 for Ascon-Hash
00400c0400000100 for Ascon-Hasha
00400c0000000000 for Ascon-Xof
00400c0400000000 for Ascon-Xofa

S← pa(IVh,r,a,b ‖ 0256)

The initial 320-bit state S can be precomputed for each instance and we get:

S←



ee9398aadb67f03d ‖
8bb21831c60f1002 ‖
b48a92db98d5da62 ‖ Ascon-Hash,
43189921b8f8e3e8 ‖
348fa5c9d525e140

b57e273b814cd416 ‖
2b51042562ae2420 ‖
66a3a7768ddf2218 ‖ Ascon-Xof,
5aad0a7a8153650c ‖
4f3e0e32539493b6

01470194fc6528a6 ‖
738ec38ac0adffa7 ‖
2ec8e3296c76384c ‖ Ascon-Hasha,
d6f6a54d7f52377d ‖
a13c42a223be8d87

44906568b77b9832 ‖
cd8d6cae53455532 ‖
f7b5212756422129 ‖ Ascon-Xofa
246885e1de0d225b ‖
a8cb5ce33449973f

11



Algorithm 2: Hashing
Extendable output function Xh,r,a,b(M, `) = H

Input: message M ∈ {0, 1}∗, output bitsize ` ≤ h or ` arbitrary if h = 0
Output: hash H ∈ {0, 1}`

Initialization
S← pa(IVh,r,a,b ‖ 0c)

Absorbing
M1 . . . Ms ← M ‖ 1 ‖ 0∗

for i = 1, . . . , s− 1 do
S← pb((Sr ⊕Mi) ‖ Sc)

Sr ← Sr ⊕Ms
Squeezing

S← pa(S)
for i = 1, . . . , t=d`/re do

Hi ← Sr
S← pb(S)

return bH1 ‖ . . . ‖Htc`

2.5.2 Absorbing Message

The message M is processed in blocks of r bits. The padding process is the same as
for the plaintext of Ascon: it appends a single 1 and the smallest number of 0s to
M such that the length of the padded message is a multiple of r bits. The resulting
padded message is split into s blocks of r bits, M1‖...‖Ms:

M1, . . . , Ms ← r-bit blocks of M ‖ 1 ‖ 0r−1−(|M|mod r)

To process the message block Mi with i = 1, . . . , s, Mi is xored to the first r bits Sr of
the state S, followed by an application of the b-round permutation pb to S if i < s:

S←
{

pb((Sr ⊕Mi) ‖ Sc) if 1 ≤ i < s
(Sr ⊕Mi) ‖ Sc if 1 ≤ i = s

2.5.3 Squeezing

Before extracting the hash output, S is transformed by the a-round permutation pa:
S← pa(S)

Then the hash output is extracted from the state in r-bit blocks Hi until the requested
output length ` ≤ h is completed after t = d`/re blocks. After each extraction, the
internal state S is transformed by the b-round permutation pb:

Hi ← Sr

S← pb(S), 1 ≤ i ≤ t = d`/re

The last output block Ht is truncated to ` mod r bits and H = H1 ‖ . . . ‖ H̃t returned:
H̃t ← bHtc` mod r

12



2.6 Permutation

The main components of the AEAD and hashing schemes of Ascon are the two
320-bit permutations pa and pb. The permutations iteratively apply an SPN-based
round transformation p that in turn consists of three steps pC, pS, pL:

p = pL ◦ pS ◦ pC .

pa and pb differ only in the number of rounds. The number of rounds a and the
number of rounds b are tunable security parameters.
For the description and application of the round transformations, the 320-bit state S
is split into five 64-bit registers words xi, S = x0 ‖ x1 ‖ x2 ‖ x3 ‖ x4 (see Figure 3).

x0x1x2x3x4

(a) Round constant addition pC

x0x1x2x3x4

(b) Substitution layer pS with 5-bit S-box S(x)

x0x1x2x3x4

(c) Linear layer with 64-bit diffusion functions Σi(xi)

Figure 3: The register words of the 320-bit state S and operations pL ◦ pS ◦ pC.

2.6.1 Addition of Constants

The constant addition step pC adds a round constant cr to register word x2 of the
state S in round i (see Figure 3a). Both indices r and i start from zero and we use
r = i for pa and r = i + a− b for pb (see Table 4):

x2 ← x2 ⊕ cr .

Table 4: The round constants cr used in each round i of pa and pb.
p12 p8 p6 Constant cr p12 p8 p6 Constant cr

0 00000000000000f0 6 2 0 0000000000000096

1 00000000000000e1 7 3 1 0000000000000087

2 00000000000000d2 8 4 2 0000000000000078

3 00000000000000c3 9 5 3 0000000000000069

4 0 00000000000000b4 10 6 4 000000000000005a

5 1 00000000000000a5 11 7 5 000000000000004b

13



2.6.2 Substitution Layer

The substitution layer pS updates the state S with 64 parallel applications of the
5-bit S-box S(x) defined in Figure 4a to each bit-slice of the five registers x0 . . . x4
(Figure 3b). It is typically implemented in this bitsliced form with operations
performed on the entire 64-bit words, as in the example code in Figure 5 (page 42).
The lookup table of S is given in Table 5, where x0 is the MSB and x4 the LSB.

Table 5: Ascon’s 5-bit S-box S as a lookup table.
x 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S(x) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

2.6.3 Linear Diffusion Layer

The linear diffusion layer pL provides diffusion within each 64-bit register word xi
(Figure 3c). It applies a linear function Σi(xi) defined in Figure 4b to each word xi:

xi ← Σi(xi), 0 ≤ i ≤ 4 .

x0

x1

x2

x3

x4

1

1

1

1

1

1

x0

x1

x2

x3

x4

(a) Ascon’s 5-bit S-box S(x)

x0 ← Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 ← Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 ← Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 ← Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ← Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(b) Ascon’s linear layer with 64-bit functions Σi(xi)

Figure 4: Ascon’s substitution layer and linear diffusion layer.

14



3 Security Claims

3.1 Authenticated Encryption

All Ascon family members provide 128-bit security in the notion of nonce-based
authenticated encryption with associated data (AEAD); that is, they protect the
confidentiality of the plaintext (except its length) and the integrity of ciphertext
including the associated data (under adaptive forgery attempts). The number of
processed plaintext and associated data blocks protected by the encryption algo-
rithm is limited to a total of 264 blocks per key, which corresponds to 267 bytes (for
Ascon-128, Ascon-80pq) or 268 bytes (for Ascon-128a). We consider this as more
than sufficient for lightweight applications in practice. In order to fulfill the secu-
rity claims stated in Table 6, implementations must ensure that the nonce (public
message number) is never repeated for two encryptions under the same key, and
that decrypted plaintexts are only released after successful verification of the final
tag. The difference between the family members is in their robustness against other
adversaries beyond the classical security claim and is discussed in the following. In
particular, Ascon-128a offers a higher throughput at the cost of reduced robustness.

Table 6: Security claims for recommended parameter configurations of Ascon.

Requirement Security in bits
Ascon-128 Ascon-128a Ascon-80pq

Confidentiality of plaintext 128 128 128
Integrity of plaintext 128 128 128
Integrity of associated data 128 128 128
Integrity of public message number 128 128 128

Ascon has been designed for robust security in case of certain implementation
errors that violate these requirements, such as repeated nonces. For instance, the
security claims of Table 6 can even be fulfilled if nonces are reused a few times
by accident as long as the combination of nonce and associated data stays unique.
Furthermore, even a full recovery of a single secret state during the processing
of the associated data, plaintext, or ciphertext (e.g., with implementation attacks)
does not imply practical global attacks such as key recovery or trivial forgeries.
In this case, forgeries can be obtained with complexity 2c/2, so the robustness of
Ascon-128a (c = 192) is lower than that of Ascon-128 (c = 256). The same holds
for key recovery attacks. We do not expect that key recovery attacks for Ascon-128a
and Ascon-128 can be found with complexity significantly below 296 and 2128 even

15



if a few internal states can be recovered. In fact, it is easy to see that the product of
data and time complexity for a key-recovery attack remains above 2128.
Ascon-80pq has an increased key-size to provide more resistance against a quantum
adversary using Grover’s algorithm for key search. Since Ascon-128 and Ascon-
80pq share the same building blocks and same parameters except the size of the key,
we claim the same security forAscon-80pq against classical attacks as forAscon-128.
Except for the single-use requirement, there are no constraints on the choice of the
nonce (public message number); in particular, it is possible to use a simple counter.
It is beneficial that a system or protocol implementing the algorithm monitors and,
if necessary, limits the number of tag verification failures per key. After reaching
this limit, the decryption algorithm rejects all tags. Such a limit is not required for
the security claims above, but may be reasonable in practice.
As for most encryption algorithms, the ciphertext length leaks the plaintext length
since the two lengths are equal (excluding the tag length). If the plaintext length is
confidential, users must compensate this by padding their plaintexts.
We emphasize that we do not require ideal properties for the permutations pa, pb.
Non-random properties of the permutations pa, pb are known and do not afflict
the claimed security properties of the entire encryption algorithm. For a detailed
security analysis of Ascon, we refer to Chapter 6.

3.2 Hashing

All hash and extendable output functions of Ascon provide 128-bit security against
collision attacks and (second) pre-image attacks, as stated in Table 7. Note that the
security of Ascon-Xof is reduced if the output size ` is less than 256 bits. Like other
sponge-based hash functions, both Ascon-Hash and Ascon-Xof also resist other
attacks, including length extension attacks and second-preimage attacks for long
messages.

Table 7: Security claims for recommended parameter configurations ofAscon-Hash
with 256-bit hash output and Ascon-Xof with an output size of ` bits.

Requirement Security in bits
Ascon-Hash Ascon-Xof
Ascon-Hasha Ascon-Xofa

Collision resistance 128 min(128, `/2)
(Second) Pre-image resistance 128 min(128, `)

Like for authenticated encryption, we emphasize that we do not require ideal prop-
erties for the permutations. Non-random properties of the permutations are known
and do not afflict the claimed security properties of Ascon-Hash, Ascon-Hasha,
Ascon-Xof and Ascon-Xofa.

16



4 Features

The Ascon suite supports authenticated encryption and hashing with the same
lightweight permutation. Ascon-128 and Ascon-128a have been selected as the
“primary choice” for lightweight authenticated encryption in the final portfolio of
the CAESAR competition. Ascon achieves high security and robustness in practice
with a very low area footprint in hardware while providing good performance
in both software and hardware implementations, particularly for short messages.
We believe that ciphers which operate efficiently and securely on very resource-
constrained devices, on modern high-end systems, and also in the area between
these two extremes will be of rising importance in the future. A typical example for
such dual environments is the Internet of Things (IoT), where a large number of
very constrained devices need to communicate efficiently with high-performance
back-end servers. In the following, we summarize the most important properties of
Ascon and justify that the cipher suite is a perfect fit for such applications.

4.1 Properties of Ascon

• Authenticated Encryption and Hashing. Ascon offers authenticated encryp-
tion and hashing with the same underlying permutation. Sharing a single
primitive for all schemes not only reduces the area requirements for hardware
implementations that want to provide both, but also allows to restrict the
code base that has to be maintained. This reduces the workload necessary for
efficient and secure implementations.

• High Cryptanalytic Security. Ascon-128 and Ascon-128a have been selected
as the “primary choice” for lightweight authenticated encryption in the final
portfolio of the CAESAR competition after five years of evaluation. During this
competition, Ascon and its permutation have undergone a thorough public
analysis. All existing analysis shows a comfortable security margin. There are
no indications of any weakness regarding Ascon-128 and Ascon-128a. The
best attacks on round-reduced versions target the initialization reduced to 7
out of 12 rounds.

• Simplicity. Ascon is natively defined on 64-bit words using only the bitwise
Boolean functions and, xor, not, and rot (bitwise rotation). This significantly
reduces the effort of implementing the algorithm on new target platforms.

• Lightweight and Flexible in Hardware. Current implementation results
show that Ascon provides excellent implementation characteristics in terms
of size and speed. Balanced round-based CAESAR API implementations of
Ascon-128 and Ascon-128a achieve a throughput of 4.9–7.3Gbps using less

17



than 10 kGE. Due to the small state size and the elegant structure of Ascon’s
round function, it is additionally possible to provide hardware implementa-
tions that are optimized towards either a smaller area or higher speed. More
details about hardware implementations are provided in Chapter 7.

• Efficient in Software. Ascon is designed to facilitate bitsliced software imple-
mentations. Its internal 64-bit operations are also well-suited for processors
with smaller word sizes, and can take advantage of pipelining and paralleliza-
tion features of high-end processors. In particular, the substitution and linear
layers have been specifically designed to support high instruction parallelism.
In addition, the small state of Ascon allows to hold the whole state within the
CPU’s registers for a wide range of platforms, thus reducing reloads from the
cache to a minimum. Further discussions about the performance in software
can be found in Chapter 7.

• BalancedCross-PlatformDesign. Ascon follows a balanced design approach,
instead of optimizing for only one particular platform or use-case at the cost
of efficiency on other platforms. In particular, Ascon has been designed to
provide lightweight implementation characteristics in both hardware and
software while still offering competitive performance on both. Hence, Ascon
is highly suited for scenarios where many lightweight devices communicate
with a back-end server, a typical use-case in the Internet of Things (IoT).

• Easy Integration of Side-Channel Countermeasures. Ascon can be imple-
mented efficiently for platforms and applications where side-channel resis-
tance is important. The very efficient bitsliced implementation of the S-boxes
prevents cache-timing attacks, since no lookup tables are required. Further-
more, the low algebraic degree of the S-box facilitates both first- and higher-
order protection using masking or sharing-based side-channel countermea-
sures. More information about the integration of countermeasures against
implementation attacks can be found in Section 7.5.

• Robust Security in Practice. Ascon’s sponge-based mode of operation for
nonce-based authenticated encryption features a strengthened keyed initializa-
tion and finalization. This improves the cipher’s robustness in case of misuse
attacks, for example against a nonce-reuse attacker. A potential recovery of
the secret state during data processing due to misuse attacks thus does not
directly lead to a key-recovery or universal forgery.

• Online and Single-Pass. All Ascon algorithms are online and can process
the data blocks before the complete input or its length are known. For both
Ascon encryption and decryption, just one pass over the data is required.

• Inverse-Free. Ascon does not need to implement any inverse operations since
the permutations pa and pb are only evaluated in one direction for both en-
cryption and decryption, which significantly reduces the area overhead.

• High Key Agility. Ascon does not use a key schedule or expand the key by
any other means, so there are no hidden setup costs when the key is changed.

18



4.1.1 Features for Lightweight Applications

• Small hardware area. Ascon’s small state and simple round function are well-
suited for small implementations, without compromising on the full security
of 128 bits. Existing lightweight implementations of Ascon’s authenticated
encryption functionality are as small as 2.6 kGE [GWDE15]. The round-based
implementations are smaller than 10 kGE and still offer a throughput of 4.9–
7.3Gbps, which is already sufficient to encrypt a Gigabit Ethernet connection.
More details about (protected) hardware implementations are provided in
Chapter 7.

• Reuse of core component. Implementing the Ascon permutation once is
enough to get authenticated encryption as well as decryption with a very small
overhead, since decryption does not require the inverse of the permutation
(that is, Ascon is inverse-free). Together with Ascon-Hash, Ascon-Hasha,
Ascon-Xof, or Ascon-Xofa, it also provides hashing functionality using the
same permutation. We want to point out that Ascon’s permutation finds also
use in cryptographic schemes outside of this specification. For example, two
authenticated encryption schemes specified in Isap v2.0 [DEM+19; DEM+20]
are based on Ascon’s permutation.

• Efficiency in hardware. Ascon is not only small and fast, but can also be
efficiently implemented on a wide variety of platforms [GA16]. It allows
many trade-offs between throughput, latency, gate count, power consumption,
etc. [GWDE15]. Comparison of implementation results in [GA16] show that
throughput per area of both Ascon variants is very good compared to many
other CAESAR candidates. Further discussion about the performance in
hardware can be found in Chapter 7.

• Bit-interleaved implementations. Ascon’s permutation is naturally defined
on 64-bit words, with rotation operations performed on them and hence, lends
itself to natural bitsliced implementations on 64-bit processors. However, on
architectures with a smaller word-size, it is possible to implementAscon using
bit interleaving as introduced for Keccak [BDP+12]. In short, bit interleaving
involves sorting the single bits in n registers of 64/n bits (with n = 2, 4, 8),
such that a single rotation on one 64-bit word can be implemented using n
rotations on each of the n (64/n)-bit words. Hence, when neglecting the
effort to interleave the bits, the number of operations per round on smaller
architectures only increases roughly to n · `, where ` are the number of op-
erations needed with 64-bit registers. Thus, Ascon allows not only for fast
bitsliced implementations on modern 64-bit processors, but also allows for
fast bitsliced implementations on smaller architectures that do not require
any data dependent lookup tables. Further insights about the performance in
software on various platforms are given in Chapter 7.

• Natural side-channel protection. This is one of the primary design goals of
Ascon. For protection against side-channel attacks, it is important that the
S-box is easy to protect. Ascon’s S-box has a low algebraic degree of 2 and
a low number of Boolean multiplications, which is well-suited for threshold

19



implementations and similar protection approaches. More information about
the integration of countermeasures against implementation attacks can be
found in Section 7.5.

• Limited damage in misuse settings. Ascon uses nonce-based authenticated
encryption. As with any nonce-based authenticated encryption scheme, re-
peating nonces is a misuse setting, and implies a loss of semantic security.
But compared to other sponge-based constructions, Ascon provides better
robustness in case of a potential state recovery, since both initialization and
finalization are keyed additionally. A recovery of the secret state during data
processing does not directly lead to a key-recovery or universal forgery. Fur-
thermore, Ascon’s mode is compatible with alternative decryption interfaces
for secure implementations in memory-constrained settings [ACS15].

• Low overhead for short messages. Ascon is among the fastest CAESAR can-
didates for short messages according to current software benchmarking re-
sults[AA16; BL], since its initialization and finalization overhead is much
smaller compared to most blockcipher-based constructions, stream ciphers, or
large-state sponges. For instance, if the associated data is empty, no additional
permutation calls are necessary. Ascon’s small rate of 8 or 16 bytes is ideally
suited for short messages that are typical for lightweight applications.

4.1.2 Features for High-Performance Applications

• Efficiency on modern CPUs. The bitsliced design of Ascon using simple
instructionsmakes it easy to implement efficiently on awide range of platforms.
The native word-size of Ascon is 64 bits, which make it especially efficient on
high-end CPUs. Up to 5 instructions can be carried out in parallel in nearly
every step of the permutation which makes Ascon fast in software on 64-bit
as well as 32-bit CPUs. Further insights about the performance in software on
various platforms are given in Chapter 7.

• Efficiency on dedicated hardware. The linear and nonlinear layer in Ascon
are designed to use a small number of simple bitwise Boolean functions. Hence,
it is easy to build dedicated hardware or reuse SIMD instructions for Ascon.

• Natural side-channel protection. Ascon is a bitsliced design with a small
state size, whichmeans that straightforward software implementations require
no data-dependent table lookups or other cache accesses. On many platforms,
all data can be kept in registers during computations. This is for instance
important in cloud applications to prevent cross-VM attacks and other cache-
based attacks.

20



5 Design Rationale

The main goal of the Ascon suite is a very low memory footprint in hardware and
software, while still being fast, robust, and securewith awell-analyzed and generous
security margin. The design rationale behind Ascon is to provide the best trade-off
between security, size and speed in both software and hardware, with a focus on
size.
TheAscon suite is based on the sponge designmethodology [BDPV07]. The permu-
tation of Ascon uses an iterated substitution-permutation-network (SPN), which
provides good cryptographic properties and fast diffusion at a low cost. To provide
these properties, the main components of Ascon are inspired from standardized
and well-analyzed primitives. The substitution layer uses an affine equivalent of
the S-box used in the χ mapping of Keccak [BDPV11c] designed to improve the
diffusion. The permutation layer uses linear functions similar to the Σ functions
used in SHA-2. The resulting design has itself been thoroughly analyzed during the
CAESAR competition, and the published results show a comfortable security mar-
gin. Details on the design principles for each component are given in the following
sections.

5.1 Design of the Modes

5.1.1 Choice of the Mode for Authenticated Encryption

The design principles of Ascon’s authenticated encryption mode follow the sponge
methodology [BDPV07]. More precisely, they are similar to SpongeWrap [BDPV11a]
and MonkeyDuplex [BDPV12]. The sponge-based design has several advantages
compared to other available construction methods like some blockcipher- or hash-
based modes and other dedicated designs:

• The sponge construction is well-studied and has been analyzed and proven
secure for different applications in a large amount of publications. Moreover,
the sponge construction is used in the SHA-3 winner Keccak.

• Flexible to adapt for other functionality (hash, MAC, cipher).
• Elegant and simple design, clear state size, no key schedule.
• Plaintext and ciphertext blocks can both be computed online, without waiting

for the complete message or even the message length.
• Little implementation overhead for decryption, which uses the same permuta-

tions as encryption.

21



• Weak round transformations can be used to process additional plaintext blocks,
improving the performance for long messages.

Compared to other sponge-based authenticated encryption designs, Ascon uses a
stronger keyed initialization and keyed finalization phase. As a result, even in case
an attacker somehow manages to recover the internal state during data processing
(e.g., due to side-channel attacks), this does not directly lead to the recovery of the
secret key or trivial forgeries. To allow this additional robustness, Ascon has to
set the possibility of full state absorption aside. However, we value robustness for
lightweight use-cases more than a potential increase in performance.
The addition of 0319 ‖ 1 after the last processed associated data block and the first
plaintext block acts as a domain separation to prevent attacks that change the role
of plaintext and associated data blocks.
If no associated data and only an incomplete plaintext block is present, the two
initialization and finalization calls to pa are sufficient and no additional intermediate
round transformation pb is needed. To prevent that key additions between the two
applications of pa cancel each other out in this case, they are added to different parts
of the capacity part Sc of the state.

5.1.2 Choice of the Mode for Hashing and Extendable Output Function

As Ascon-128 and Ascon-128a are already well established as the primary recom-
mendations for lightweight use-cases in the final portfolio of the CAESAR compe-
tition, we extend the functionality that can be provided by using the same well-
analyzed permutation. It is a natural decision to also base the hashing and extend-
able output functionality on sponges [BDPV07]. For hashing, sponges provide
similar benefits as for authenticated encryption:

• Sponges are well-studied and have been analyzed and proven secure for
different applications in a large amount of publications. Moreover, the sponge
construction is used in the SHA-3 winner Keccak.

• The core component (permutation) can be reused if Ascon for authenticated
encryption is already implemented, reducing the implementation overhead.

• The elegant and simple design has an obvious state size.
• The construction is flexible to adapt for other functionalities (authenticated

encryption, MAC, cipher).
• Plaintext and ciphertext blocks can both be computed online, without waiting

for the complete message or even the message length initially be present.

22



5.1.3 Choice of the Family Members

TheAscon suite is built around thewell-analyzed authenticated encryption schemes
Ascon-128 and Ascon-128a. The newly added schemes Ascon-80pq, Ascon-Hash,
Ascon-Hasha, Ascon-Xof, and Ascon-Xofa are designed to provide the same secu-
rity level as Ascon-128 and Ascon-128a, which is 128 bits of security against attacks
in the classical setting (e.g., no quantum computers are available), as detailed in
Chapter 3.
The rationale behind this is that 128 bits of security against classical attacks is gener-
ally considered to provide enough security for lightweight applications for the next
decades. Furthermore, choosing and providing instances that give more security
against classical attacks would require more resources without providing any bene-
fit in the foreseeable future, which contradicts the use of lightweight ciphers in the
first place. In the following, we still justify our decision in providing three different
instances Ascon-128, Ascon-128a, and Ascon-80pq for authenticated encryption
with the same security level.
Ascon-128 andAscon-128a provide the same level of security in a black-box scenario
if the nonce is used correctly, but there is a trade-off regarding performance and
robustness. Ascon-128a doubles the rate compared to Ascon-128, at the cost of
slightly more rounds in pb. This decreases the capacity, which also reduces the
robustness of the scheme. For example, if the scheme is not used correctly, an
attacker is more likely to recover the internal state during the data processing. This
still does not directly lead to an efficient key recovery attack on the scheme.
The only difference between Ascon-80pq and Ascon-128 is the increased length of
the key. This increased key length provides additional protection against exhaustive
key search in the case the availability of quantum computers becomes evident. Since
the other tunable security parameters (the number of rounds of the permutations)
have not been increased, the security claim for Ascon-80pq against classical attacks
stays the same as for Ascon-128.
Ascon-Hash and Ascon-Xof reuse the 12-round variant of the Ascon permutation
that from the initialization and finalization of Ascon-128 and Ascon-128a. Pairing
this well-scrutinized building block with the extensively analyzed and researched
sponge construction [BDPV07; BDPV08] provides a secure and efficient hash func-
tion. We have also defined an extendable output function Ascon-Xof in addition to
the fixed-size hash function Ascon-Hash, since the sponge construction naturally
allows this functionality and it may be more useful in practice.
Given the large security margin of Ascon-Hash and Ascon-Xof, we include less
conservative versions called Ascon-Hasha and Ascon-Xofa. Both Ascon-Hasha
and Ascon-Xofa use the permutation pb with b = 8 rounds during absorbing and
squeezing. The transition between absorbing and squeezing still uses pa with a = 12,
since we consider this switch to be the most suitable point to attack.

23



5.1.4 Choice of the Initial Values

The main purpose of the initial values is to provide a separation of the different
instances. For all schemes of the Ascon suite, the IV is added to the first word
and encodes parameters of the scheme such as the key length, rate, number of
rounds, or hash output length. The IV provides a separation between the different
primitives. In the case of a hash or an extendable output function, the first call on
the permutation including the IV is done without any data and hence, an equivalent
initial state can be precomputed, stored and used instead.

5.2 Design of the Permutation

5.2.1 Choice of the Round Constants

The round constants have been chosen large enough to avoid slide, rotational, self-
similarity or similar attacks. Their values were chosen in a simple, obvious way
(increasing and decreasing counter for the two halves of the affected byte), which
makes them easy to compute using a simple counter and inversion operation. Their
low entropy shows that the constants are not used to implement any backdoors.
The pattern can also easily be extended for up to 16 rounds if a very high security
margin is desired. Adding more than 16 rounds is not expected to further improve
the security margin.
The position for inserting the round constants (in word x2) was chosen so as to
allow pipelining with the next or previous few operations (message injection in the
first round or the following instructions of the bit-sliced S-box implementation).

5.2.2 Choice of the Substitution Layer

The substitution layer is the only non-linear part of the round transformation. It
mixes 5 bits, each at the same bit position in one of the 5 state words. The S-box was
designed according to the following criteria:

• Invertible and no fix-points,
• Efficient bit-sliced implementation with few, well pipelinable instructions,
• Each output bit depends on at least 4 input bits,
• Algebraic degree 2 to facilitate threshold implementations and masking,
• Maximum differential probability and linear bias 1/4,
• Differential and linear branch number 3,
• Avoid trivially iterable differential properties in the data injection positions.

24



The χ mapping of Keccak fulfills several of these properties and is already well-
analyzed. In addition, the χ mapping is highly parallelizable and has a compact
description with relatively few instructions. This makes χ fast in both software and
hardware. The drawback of χ are its differential and linear branch numbers (both
2), a fix-point at value zero and that each output bit only depends on 3 input bits,
only two of them non-linearly.
For a better interaction with the linear layer of Ascon and a better trade-off between
performance and security, we require a branch number of 3. This and the other
additional requirements can be achieved without destroying other properties by
adding lightweight affine transformations to the input and output of χ. The costs
of these affine transformations are quickly amortized since a branch number of 3
(together with an according linear layer) essentially doubles the number of active
S-boxes from round to round (in sparse trails). There are only a handful of options
for a lightweight transformation (few xor operations) that achieve both required
branch numbers. We experimentally selected the candidate that provided the best
diffusion in combination with the selected linear layer.
The bit-sliced design of the S-box has several benefits: it is highly efficient to im-
plement parallel invocations on 64-bit processors (and other architectures), and no
lookup tables are necessary. This effectively precludes typical cache-timing attacks
for software implementations.
The algebraic degree of 2 theoretically makes the S-box more prone to analysis with
algebraic attacks. However, we did not find any practical attacks. We consider it
more important to allow efficient implementation of side-channel countermeasures,
such as threshold implementation [NRS11] and masking [CJRR99; GP99], which
are facilitated by the low degree.
The differential and linear probabilities of the S-box are not ideal, but using one
of the available 5-bit AB/APN functions like in Fides [BBK+13] was not an option
due to their much more costly bit-sliced implementation. Considering the relatively
lightweight linear layer, repeating more rounds of the cheaper, reasonably good
S-box is more effective than fewer rounds of a perfect, but very expensive S-box.

5.2.3 Choice of the Linear Diffusion Layer

The linear diffusion layer mixes the bits within each 64-bit state word. For resistance
against linear and differential cryptanalysis, we required a branch number of at
least 3. Additionally, the interaction between the linear layers for separate words
should provide very good diffusion, so different linear functions are necessary for
the 5 different words. These requirements should be achieved at a minimal cost.
Although simple rotations are almost for free in hardware and relatively cheap in
software, the slow diffusion requires a very large number of rounds. Moreover, the
best performance can be achieved by balancing the costs of the substitution and
linear layer.
On the other hand, mixing layers as used in AES-based designs provide a high
branch number, but are too expensive to provide an acceptable speed at a small size.
The mixing layer of Keccak is best used with a large number of large words. Other

25



possible candidates are the linear layers of Luffa [DSW09], Hamsi [Küç09], or other
SPN-based designs. However, these candidates were either too slow or provide a
less optimal diffusion.
The linear diffusion layer and rotation values in Ascon have been chosen similar
to the Σ functions in SHA-2 [Nat08]. These functions offer a branch number of 4.
Additionally, if we choose one rotation constant of each Σ function to be zero, the
performance can be improved while the branch number stays the same. On the
other hand, the cryptographic strength can be improved by using different rotation
constants for each 64-bit word without sacrifice on the performance. In this case,
the branch number of the substitution and linear layer amplify each other which
increases the minimum number of active S-boxes. We have chosen the rotation
constants to achieve a good diffusion after 3 rounds of Ascon.

26



6 Security Analysis

The Ascon authenticated cipher with its permutations pa, pb was first published as
a submission to the CAESAR competition in 2014. Since then, the cryptographic
research community has published numerous analyses of Ascon’s design. The
results have confirmed Ascon’s security with a generous security margin. We
provide a summary of the best results in Section 6.1. For a full list of publications
and comments, we refer to Section 6.4. In Section 6.2, we discuss the security of the
modes of operation for authenticated encryption and hashing. In Section 6.3, we
provide details on the cryptanalytic properties of the Ascon permutation and their
relevance for attacks.

6.1 Overview of Best Known Attacks

Table 8, Table 9 and Table 10 summarize the best published attacks on theAscon per-
mutation, the authenticated ciphers Ascon-128 and Ascon-128a, and the hash and
extendable output functions Ascon-Hash and Ascon-Xof. The hash and extended
output function results can be directly applied to Ascon-Hasha and Ascon-Xofa,
since these are round-reduced variants of Ascon-Hash and Ascon-Xof.
As stated in the original design document, Ascon’s permutations are not consid-
ered to be ideal 320-bit permutations. However, when used in the recommended
modes of operation, Ascon retains a generous security margin. The currently best
cryptanalytic attacks on the Ascon authenticated encryption (excluding misuse
scenarios) can recover the secret key with a time complexity of about 2104 only if the
initialization is reduced to 7 of 12 rounds, which corresponds to a security margin
of 42%.

6.2 Analysis of the Modes

6.2.1 Hashing and Extendable Output Function

The mode of operation for the hash and extendable output functions is closely based
on the sponge methodology proposed by Bertoni et al. [BDPV07] and profits from
the extensive literature on sponges, particularly the results on its indifferentiability
up to about 2c/2 calls to the permutation or its inverse, where c is the capacity in
bits [BDPV08].

27



Table 8: Best known analysis of the Ascon permutation.
Type Target Rounds Time Method Reference
Distinguisher Permutation 12 / 12 2130 Zero-sum [DEMS15]

Permutation 11 / 12 2315 Integral [Tod15]
Permutation 5 / 12 2193 Differential Section 6.3
Permutation 5 / 12 2189 Linear [DEM15]

Distinguisher Permutation 11 / 12 285 Zero-sum Section 6.3
Permutation 7 / 12 260 Integral [RHSS21]
Permutation 7 / 12 265 Integral [Tod15]
Permutation 5 / 12 2109 Truncated Differential [Tez16]
Permutation 4 / 12 2107 Differential Section 6.3
Permutation 4 / 12 2101 Linear [DEM15]

Distinguisher Permutation 5 / 12 – Zero-Correlation Section 6.3
Permutation 5 / 12 – Impossible Differential Section 6.3
Permutation 3 / 12 – Subspace Trails [LTW18]

Table 9: Best known analysis of Ascon (þ = misuse).
Type Target Rounds Time Method Reference
Key recovery Ascon initialization 7 / 12 2104 Cube-like [LDW17]

Ascon initialization 7 / 12 2123 Cube [RHSS21]
Ascon initialization 5 / 12 231.4 Diff.-linear [Tez20]
Ascon initialization 7 / 12 297 þ Cube-like [LZWW17]

Forgery Ascon finalization 4 / 12 2101 Differential [DEMS15]
Ascon finalization 6 / 12 233 þ Cube tester [LZWW17]

State recovery Ascon-128a iteration 2 / 8 − Sat-Solver [DKM+17]
Ascon-128 iteration 5 / 6 266 þ Cube-like [LZWW17]

Table 10: Best known analysis of Ascon-Hash and Ascon-Xof (þ = chosen IV).
Type Target Size Rounds Time Method Reference
Preimage Ascon-Xof 64 2 / 12 239 Cube-like [DEMS19]

Ascon-Xof 64 6 / 12 263.3 Algebraic [DEMS19]
Collision Ascon-Xof 64 2 / 12 215 Differential [ZDW19]

Ascon-Hash 256 2 / 12 2125 Differential [ZDW19]
Ascon-Xof all 4 / 12 –þ Differential [DEMS19]

28



6.2.2 Authenticated Encryption

The mode of operation inAscon is based on the duplex construction [BDPV11a], or
more specifically, a variant of theAEADmodeMonkeyDuplexwith its reduced num-
ber of rounds in the data processing phases [BDPV12]. In contrast toMonkeyDuplex,
however, Ascon’s mode uses a double-keyed initialization and double-keyed final-
ization in order to improve the robustness of the scheme.
AEADmodes using the duplex construction have also enjoyed considerable attention
from the research community, and several security proofswith different bounds have
been provided. The first proofs indicate that the duplex modes can provide security
beyond the birthday bound on the capacity c, as long as the online data complexity
remains well below this birthday bound 2c/2 [BDPV11b; JLM14]. Andreeva et al.
[ADMV15] show that the time complexity is at least min{2k, 2c/µ}, where µ is the
multiplicity [BDPV10], which is small for nonce-based schemes.
Daemen et al. [DMV17] provide stronger bounds based on distinguishing Ascon
from an Ideal Extendable Input Function (IXIF) and consider a multi-user setting
as well as both respecting and misuse adversaries. Their results show that (without
considering robustness and the specifics of the permutation) the data limit or key
size could be further increased.
The main difference from other duplex-based modes of operation is the double-
keyed initialization and finalization. As a result, even if an attacker manages to
recover the internal state in some way (e.g., with implementation attacks such as
side-channels or with misuse attacks such as massive nonce reuse or release of
unverified plaintext), this attack cannot easily be extended to key recovery or trivial
forgeries. Possible attacks after such a state recovery include forgeries by finding
internal collisions (2c/2 time).

6.3 Analysis of the Permutation

6.3.1 Differential and Linear Properties

Ascon’s permutation design is based on two lightweight operations with non-ideal
individual differential and linear properties, but with good combined properties.
The best known characteristics with probability > 2−128 cover 4 rounds of the
permutation.

DDT and LAT

Table 11a lists the differential distribution table (DDT) of the Ascon S-box. The
maximum differential probability of the S-box is 2−2 and its differential branch
number is 3. Table 11b lists the linear approximation table (LAT). The maximum
linear bias of the S-box is 2−2 and its linear branch number is 3.
The differential and linear branch number of the linear Σi functions is 4.

29



Table 11: Differential and linear profile of the Ascon S-box.

(a) Differential distribution table: DDT[α, β] = |{x : S(x⊕ α)⊕ S(x) = β}|
0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0 32 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · · · · · · · 4 · 4 · 4 · 4 · · · · · · · · 4 · 4 · 4 · 4 ·
2 · · · · · · · · · · · · · · · · · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4
3 · 4 · · · 4 · · · 4 · · · 4 · · 4 · · · 4 · · · 4 · · · 4 · · ·
4 · · · · · · 8 · · · · · · · 8 · · · · · · · 8 · · · · · · · 8 ·
5 · · · · · · · · · · · · · · · · · 4 · 4 4 · 4 · 4 · 4 · · 4 · 4
6 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2
7 · · 4 4 · · 4 4 · · 4 4 · · 4 4 · · · · · · · · · · · · · · · ·
8 · · · · · · 4 4 · · · · · · 4 4 · · · · · · 4 4 · · · · · · 4 4
9 · 2 · 2 2 · 2 · 2 · 2 · · 2 · 2 2 · 2 · · 2 · 2 · 2 · 2 2 · 2 ·
a · 2 2 · 2 · · 2 · 2 2 · 2 · · 2 · 2 2 · 2 · · 2 · 2 2 · 2 · · 2
b · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2 · · 2 2
c · 8 · · · · · · 8 · · · · · · · 8 · · · · · · · · 8 · · · · · ·
d · 2 · 2 · 2 · 2 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · · 2 · 2 · 2 · 2
e · 4 4 · 4 · · 4 · · · · · · · · · 4 4 · 4 · · 4 · · · · · · · ·
f · · · · · · · · 4 4 · · 4 4 · · · · · · · · · · 4 4 · · 4 4 · ·
10 · · · · · · · · · 8 · 8 · · · · · · · · · · · · 8 · 8 · · · · ·
11 · · · · · · · · · · · · · · · · · 8 · 8 · 8 · 8 · · · · · · · ·
12 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·
13 · · 8 · 8 · · · · · 8 · 8 · · · · · · · · · · · · · · · · · · ·
14 · · · · 4 4 4 4 · · · · 4 4 4 4 · · · · · · · · · · · · · · · ·
15 · · · · · 4 · 4 · 4 · 4 · · · · · 4 · 4 · · · · · · · · · 4 · 4
16 · · · · · · · · · · · · · · · · 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
17 · · 4 · 4 · · · · · 4 · 4 · · · · · 4 · 4 · · · · · 4 · 4 · · ·
18 · · · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2
19 · · · 4 · · 4 · 4 · · · · 4 · · 4 · · · · 4 · · · · · 4 · · 4 ·
1a · 2 2 · · 2 2 · 2 · · 2 2 · · 2 · 2 2 · · 2 2 · 2 · · 2 2 · · 2
1b · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2 · · · · 2 2 2 2 · ·
1c · 4 · 4 · · · · 4 · 4 · · · · · 4 · 4 · · · · · · 4 · 4 · · · ·
1d · · · 4 · 4 · · 4 · · · · · 4 · 4 · · · · · 4 · · · · 4 · 4 · ·
1e · · · · · · · · 2 2 2 2 2 2 2 2 · · · · · · · · 2 2 2 2 2 2 2 2
1f · · 4 4 4 4 · · · · · · · · · · · · 4 4 4 4 · · · · · · · · · ·

(b) Linear approximation table: LAT[α, β] = |{x : α> · x = β> · S(x)}| − 16

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0 16 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · · · · 8 · · 4 4 · · -4 4 · · · 4 4 · · 4 -4 4 · -4 · -4 · -4 ·
2 · · · · · · -8 8 · · 4 4 · · 4 4 · · 4 4 · · -4 -4 · · · · · · · ·
3 · 8 · · · · · · · 4 · 4 · 4 · -4 -8 · · · · · · · 4 · 4 · 4 · -4 ·
4 · · · 4 · -4 · · · · 4 · · 4 -4 -4 · · 4 · -4 · · · · -8 · -4 -4 · 4 -4
5 · · · 4 · 4 · · · -4 · · · · · -4 · · · -4 4 · -4 -4 4 · -4 4 · -8 · -4
6 · · · 4 · -4 · · · · · -4 · 4 · · · · · -4 -4 · -4 -4 · 8 · -4 -4 · -4 4
7 · · · -4 · -4 · · · 4 4 4 · · -4 · · · -4 · -4 · · · -4 · -4 4 · -8 · 4
8 · · · · · · · · · · 4 4 · · -4 -4 · · · · · · · · · 8 -4 4 · 8 4 -4
9 · · · · · · · -8 · -4 · 4 · 4 · 4 · · 4 4 · · -4 4 4 · · 4 -4 · · 4
a · · · · · · · · · · · · · · · · · · 4 4 · · 4 4 · 8 4 -4 · -8 4 -4
b · 8 · · · · · · · -4 4 · · -4 -4 · 8 · · · · · · · 4 · · -4 4 · · 4
c · · -8 4 -8 -4 · · · · · 4 · -4 · · · · -4 · 4 · · · · · 4 · -4 · · ·
d · · · -4 -8 4 · · · 4 -4 -4 · · -4 · · · · 4 -4 · -4 -4 4 · · · · · 4 ·
e · · · -4 8 -4 · · · · -4 · · -4 -4 -4 · · · 4 4 · -4 -4 · · 4 · -4 · · ·
f · · 8 -4 -8 -4 · · · -4 · · · · · -4 · · 4 · 4 · · · -4 · · · · · -4 ·
10 · · · · · · -8 · · 4 · -4 -4 · -4 · · · · · 4 -4 4 4 4 · -4 · -4 · -4 ·
11 · · · · · · · · -8 · -4 4 -4 -4 · · · 8 4 -4 -4 -4 · · · · · · · · · ·
12 · -8 · · · · · · · -4 4 · -4 · · -4 · · -4 4 -4 -4 · · 4 · 4 · 4 · -4 ·
13 · · · · · · -8 -8 · · · · 4 -4 4 -4 · · · · -4 4 4 -4 · · · · · · · ·
14 · · · 4 · 4 · · · 4 4 -4 -4 -4 · -4 · · 4 · · 4 -4 4 -4 · 4 4 · · · 4
15 · · · 4 · -4 · · · · · -4 4 · -4 4 · 8 · 4 · 4 · · · · · 4 4 · -4 -4
16 · · · -4 · -4 · · · 4 · · -4 4 4 · 8 · · -4 · 4 · · 4 · 4 4 · · · -4
17 · · · 4 · -4 · · 8 · -4 · -4 · · · · · 4 · · -4 4 -4 · · · 4 4 · 4 4
18 · · · · · · · -8 · 4 4 · -4 · · 4 · · · · 4 -4 -4 -4 -4 · · -4 4 · · -4
19 · · · · · · · · · · · · 4 -4 -4 4 · -8 4 -4 -4 -4 · · · · 4 4 · · -4 -4
1a · 8 · · · · · · · -4 · -4 -4 · 4 · · · -4 4 -4 -4 · · -4 · · 4 -4 · · -4
1b · · · · · · · · 8 · -4 4 -4 -4 · · · · · · -4 4 -4 4 · · -4 -4 · · -4 -4
1c · · 8 4 · -4 · · · 4 · · 4 -4 4 · · · -4 · · -4 -4 4 4 · · · · · 4 ·
1d · · · -4 · 4 · · 8 · 4 · 4 · · · · 8 · -4 · -4 · · · · 4 · -4 · · ·
1e · · · 4 · 4 · · · 4 -4 4 4 4 · -4 8 · · 4 · -4 · · -4 · · · · · -4 ·
1f · · 8 4 · 4 · · · · · 4 -4 · -4 4 · · -4 · · 4 4 -4 · · 4 · -4 · · ·

30



Characteristics and Active S-Boxes

The minimum number of active S-boxes of 3 rounds is 15 (for differential character-
istics) and 13 (for linear characteristics).
For results on more than 3 rounds, we used heuristic search tools to find good
differential and linear characteristics for more rounds to get close to the real bound.
The results are listed in Table 12. The best differential and linear characteristics for 4
rounds are given in Table 13a and Table 13b, respectively. We could not find any
differential and linear characteristics for more than 4 rounds with less than 64 active
S-boxes. The best differential and linear characteristics we could find for 5 rounds
already have 78 and 67 active S-boxes, respectively. However, note that due to the
larger search space for 5 rounds, we restricted our search to differential and linear
trails that are sparse in the middle (rounds 1–3).

Table 12: Minimum number of active S-boxes in R-round differential and linear
characteristics for pR. Results for R ≥ 4 are from heuristic search.

Rounds R 1 2 3 4 5
Minimum # of differentially active S-boxes 1 4 15 ≤ 44 ≤ 78
Minimum # of linearly active S-boxes 1 4 13 ≤ 43 ≤ 67

Table 13: The best known differential and linear characteristics for 4 and 5 rounds of
p, given in truncated notation with the pattern of active S-boxes S in each
round r and the corresponding probability or bias [DEMS15; DEM15].

(a) Differential 4-round characteristic

r Active S-boxes #S log2(p)

0 441326c0236cca84 23 −47
1 8040000000040000 3 −12
2 0000100004040000 3 −6
3 c0489800262500a0 15 −42

∑ 44 −107

(b) Linear 4-round characteristic

r Active S-boxes #S log2(ε)

0 8181224200028685 15 −19
1 0100004000000001 3 −4
2 0000000010080001 3 −7
3 04314f4725f80001 22 −23

∑ 43 −50

(c) Differential 5-round characteristic

r Active S-boxes #S log2(p)

0 c01d986058edb14f 29 −58
1 0040800000000001 3 −12
2 0000100040000001 3 −9
3 022030304201080d 13 −30
4 732533f46a0d0a2d 30 −84

∑ 78 −193

(d) Linear 5-round characteristic

r Active S-boxes #S log2(ε)

0 8181224200028685 15 −19
1 0100004000000001 3 −4
2 0000000010080001 3 −7
3 04314f4725f80001 22 −43
4 04364206f5a80802 24 −25

∑ 67 −94

31



Characteristics with Constraints

Besides the differential propagation in Ascon, an attacker is in particular interested
in collision-producing differentials, i.e., differentials with only differences in the
rate part Sr of the state at the input and output of pb, since such differentials might
be used for a forgery attack on the authenticated encryption scheme. However,
considering the good differential properties of pb and the results of the previous
chapters, it is very unlikely that such differentials with a good probability exist.
The best collision-producing differential trails we could find for pb in Ascon-128
(Table 14a) and Ascon-128a (Table 14b) using a heuristic search algorithm have
117 and 192 active S-boxes, respectively.
For forgery attacks on Ascon’s finalization, the input difference must be in the rate,
but there are no restrictions on the output difference. A corresponding characteristic
for 4 out of 12 rounds is provided in Table 14c [DEMS15].

Table 14: Differential characteristics for forgeries in Ascon.

(a) Collision-producing differential for
Ascon-128’s 6-round state update

r Active S-boxes #S
0 8000000000000000 1
1 8100000001400004 5
2 9902a00003c64086 17
3 fcf7eee14feefdf7 48
4 dba6fe7b4fef8cef 45
5 0000400000000000 1
∑ 117

(b) Collision-producing differential for
Ascon-128a’s 8-round state update

r Active S-boxes #S
0 8000000000000000 1
1 c200000000000000 3
2 e238e10000000000 11
3 73b7fbf67f6f19f0 44
4 bb4ffe8fd5dddf7f 48
5 fffffdffffffffff 63
6 2d0486c240902436 20
7 2080000000000000 2
∑ 192

(c) Truncated differential for 4 / 12 rounds of
Ascon’s finalization, p = 2−101 [DEMS15]

r Active S-boxes #S
0 8000000000000000 1
1 8000100801000004 5
2 d302904803844086 18
3 fbbff36d73e4f045 41

Impossible Differentials and Zero-Correlation Approximations

Using an automated search tool, we were able to find impossible differentials for
up to 5 rounds (Table 15a) and zero-correlation linear hulls for up to 5 rounds
(Table 15b) of the permutation. It is possible that impossible differentials for more

32



rounds exist. However, we have not found any practical attack on Ascon using this
property of the permutation.

Table 15: Impossible differential and zero-correlation linear hull for 5 rounds of p.

(a) Impossible differential (5 rounds)

Input difference Output difference
x0: 0000000000000000 0100000000100002

x1: 0000000000000000 0000000000000000

x2: 0000000000000000→ 0000000000000000

x3: 0000000000000000 0000000000000000

x4: 8000000000000000 0000000000000000

(b) Zero-correlation linear hull (5 rounds)

Input mask Output mask
8000000000000000 0000000000000000

0000000000000000 0000000000000000

0000000000000000→ fe08629e8e4b766a

0000000000000000 0000000000000000

0000000000000000 0000000000000000

Other published properties include a differential-linear attack on up to 5 rounds of
Ascon’s initialization with practical complexity [DEMS15; BDKW19; Tez20] and
truncated differential distinguishers based on undisturbed bits for up to 5 rounds
with 2109 data [Tez16].

6.3.2 Algebraic Properties

Ascon’s algebraic degree of 2 for each round is useful for efficient secure implemen-
tations, but requires a sufficient number of rounds to prevent algebraic attacks. The
best known algebraic attacks cover 7 out of 12 rounds of Ascon’s initialization.

Algebraic Normal Form (ANF)

Let x0,i, . . . , x4,i denote the bits in column i, 0 ≤ i < 64, where x0,0 is the least
significant (rightmost) bit of the first register word (outer part) of the state. Let
y0,i, . . . , y4,i denote the same bit position after application of either the S-box layer
pS or the linear layer pL. The ANF of the S-box layer pS is given by:

y0,i = x4,i x1,i ⊕ x3,i ⊕ x2,i x1,i ⊕ x2,i ⊕ x1,i x0,i ⊕ x1,i ⊕ x0,i,
y1,i = x4,i ⊕ x3,i x2,i ⊕ x3,i x1,i ⊕ x3,i ⊕ x2,i x1,i ⊕ x2,i ⊕ x1,i ⊕ x0,i,
y2,i = x4,i x3,i ⊕ x4,i ⊕ x2,i ⊕ x1,i ⊕ 1,
y3,i = x4,i x0,i ⊕ x4,i ⊕ x3,i x0,i ⊕ x3,i ⊕ x2,i ⊕ x1,i ⊕ x0,i,
y4,i = x4,i x1,i ⊕ x4,i ⊕ x3,i ⊕ x1,i x0,i ⊕ x1,i .

(6.1)

The ANF of the linear layer pL is as follows, with index computations mod 64:

y0,i = x0,i ⊕ x0,i+19 ⊕ x0,i+28

y1,i = x1,i ⊕ x1,i+61 ⊕ x1,i+39

y2,i = x2,i ⊕ x2,i+1 ⊕ x2,i+6

y3,i = x3,i ⊕ x3,i+10 ⊕ x3,i+17

y4,i = x4,i ⊕ x4,i+7 ⊕ x4,i+41 .

(6.2)

33



Algebraic Degree

The algebraic degree of the round function p is 2, so the degree after R rounds
is upper-bounded by 2R. A tighter bound based on the general bounds by Boura
and Canteaut [BC10, Theorem 1 with ` = 192 for both S and S−1] and Boura et al.
[BCD11, Theorem 2 with γ = 3 for both S and S−1] is listed in Table 16.

Table 16: Upper bound for the algebraic degree after R rounds [BC10, Theorem 1],
[BCD11, Theorem 2] (not including effects of initial structures).

Rounds R 1 2 3 4 5 6 7 8 9 10 11 12
deg(pR) ≤ 2 4 8 16 32 64 128 256 298 312 317 319
deg(p−R) ≤ 3 9 27 81 209 283 307 314 318 319

Diffusion

Table 17 provides an overview of the diffusion properties of up to 3 rounds of
Ascon’s permutation. After 3 rounds, almost all input bits appear in the ANF of
each output bit (Table 17a). Finally, we list the maximummonomial degree for each
input bit xw,0 in the ANF after 1 round (Table 17c) and after 2 rounds (Table 17d).

Table 17: Diffusion statistics of the Ascon permutation after round r.

(a) #Variables in ANF of xw,i

r 0 1 2

pS pL pS pL pS pL

x0,i 5 15 51 125 219 313
x1,i 5 15 51 115 219 308
x2,i 4 12 41 107 218 316
x3,i 5 15 51 130 219 305
x4,i 4 12 43 107 193 306

(b) # Monomials in ANF of xw,i

0 1 2

pS pL pS pL pS

7 21 746–898 2459–2614 7504022–8329829
7–8 20–24 670–763 1999–2181 5833573–6407756
4–5 12–13 315–327 931–967 3244871–3575653
7–8 21–22 600–666 1851–1964 7594245–8300027
5–5 15–15 585–693 1890–2045 5957375–6660105

(c) Diffusion of input bit xw,0 after 1 round
( deg 1, deg 2)

063

x0,0

063

x1,0

063

x2,0

063

x3,0

063

x4,0

(d) Diffusion of input bit xw,0 after 2 rounds
( deg 1, deg 2, deg 3, deg 4)

063

x0,0

063

x1,0

063

x2,0

063

x3,0

063

x4,0

34



Linearization and Initial Structures

Distinguishers based on the degree can be combined with different initial structures
that linearize the first few rounds in order to create a vector space or linear interme-
diate ANF with respect to the selected input variables. Besides generic structures
(e.g., 0, 1, or 5 cube variables at each S-box input), several structures using the
specific properties of Ascon’s S-box have been proposed [DEMS15; LDW17]. For
example, input bits x2,i are multiplied with neither x0,i nor x4,i in the first round.
By imposing bit conditions on certain input bits (corresponding to the key inAscon),
it is possible to find sufficiently large cubes such that no cube variables multiply
after 1 round and one specific cube variable does not multiply with any others after
2 rounds [LDW17]. An alternative approach suggested by Li et al. [LDW17] does
allow quadratic monomials after 1 round, but ensures that they are not multiplied
with any other monomials after 2 rounds.

Zero-Sum and Cube Attacks

The low degree of the S-box permits inside-out zero-sum distinguishers on the per-
mutations pa and pb, so they can not be considered as perfect random permutations.
The full 12-round permutation can be distinguished with 2130 data [DEMS15] (4 in-
verse rounds, free middle round, and 7 forward rounds, see Table 16), or 11 rounds
with complexity 285 below the security bound (4 + 1 + 6 rounds, with the data
complexity a multiple of the S-box size 5 for the free inner round). However, we are
not aware of attacks able to exploit these properties for attacks on the authenticated
cipher or hash function.
For key-recovery attacks in a nonce-respecting setting, cube variables can be posi-
tioned in the nonce and cube-like attacks can exploit that the cube sum after the
round-reduced initialization only depend on selected key bits [DEMS15]. Using
conditional initial structures of dimension 65 that ensure degree 2 after 2 rounds
and thus degree at most 64 after 7 rounds, Li et al. [LDW17] propose conditional
cube attacks on 7 of 12 rounds of Ascon’s initialization.
In a similar spirit to initial structures, it is also possible to linearize a few rounds of
Ascon’s permutation in order to find preimages for heavily round-reduced versions
of Ascon-Xof as shown in [DEMS19]. Apart from that, an upper bound on the
degree of the round-reducedAsconpermutation can be used tomarginally speed-up
a brute-force search for preimages as suggested by Bernstein [Ber10]. For instance,
it is possible to find a preimage for a version of Ascon-Xof where the number
of rounds is reduced to 6 out of 12 and the output is truncated to 64 bits with a
complexity of 263.3 [DEMS19].

35



6.3.3 Other Properties

Integral Distinguishers and Division Property

Based on the division property, Todo [Tod15] proposes integral distinguishers for
the Ascon permutation, where up to 7 rounds can be evaluated using less than 2128

data (Table 18b).
Göloğlu et al. [GRW16] list the division properties ofAscon’s S-box S and conclude
that these values are optimal with respect to the degree (Table 18a).
Note that in the literature, integral distinguishers are also known as division prop-
erties. For simplictiy and to keep the text consistent we mostly refer to them as
integral distinguishers in this document.

Table 18: Division property results

(a) S-box property [GRW16]

k 0 1 2 3 4 5
D5

k 0 1 1 2 2 5

(b) Integral distinguishers for the permutation [Tod15]

Rounds R 5 6 7 8 9 10 11
log2(data) 18 35 65 130 258 300 315

Subspace Trails

Leander et al. [LTW18] analyze the existence of subspace trails. For Ascon’s per-
mutation, they show that the longest subspace trails using 1-linear structures cover
3 rounds (dimension 298) or 1 inverse round (dimension 125).

SAT Solvers

Dwivedi et al. [DKM+17] use SAT solvers for a state recovery attack on 2 (out of 8)
rounds of the data processing phase of Ascon-128a.

6.4 List of Published Analysis

As the primary recommendation for lightweight authenticated encryption in the
final portfolio of the CAESAR competition [Cae14], Ascon has received a lot of
attention and several results regarding its security have been published. All the
results published so far support the security of Ascon and its underlying permuta-
tion. In other words, no security vulnerabilities have been shown so far and the best
attacks target the initialization ofAscon reduced to 7 (out of 12) rounds, concluding
that Ascon has a security margin of 5 rounds (42 % of the 12 rounds).
The following list contains both results evaluating the permutation and evaluation
of the security ofAscon’s authenticated encryption or hashing, either using variants
of Ascon’s permutation, or idealized versions of it.

36



Key-recovery attack on 7 (out of 12) rounds of the initialization of Ascon in 2123

time and 264 data:

q Raghvendra Rohit, Kai Hu, Sumanta Sarkar, and Siwei Sun. “Misuse-Free
Key-Recovery and Distinguishing Attacks on 7-Round Ascon”. In: IACR Trans-
actions of Symmetric Cryptology 2021.1 (2021), pp. 130–155. doi: 10.46586/
tosc.v2021.i1.130-155.

Differential-linear key-recovery attack on 5 (out of 12) rounds of the initialization
of Ascon in 231.44 time:

q Cihangir Tezcan. “Analysis of Ascon, DryGASCON, and Shamash Permuta-
tions”. In: International Journal of Information Security Science 9.3 (2020),
pp. 172–187. url: https://www.ijiss.org/ijiss/index.php/ijiss/article/
view/762.

Search for differential characteristics and verify some existing ones:

q Fukang Liu, Takanori Isobe, and Willi Meier. “Automatic Verification of Dif-
ferential Characteristics: Application to Reduced Gimli”. In: CRYPTO 2020.
Vol. 12172. LNCS. Springer, 2020, pp. 219–248. doi: 10.1007/978-3-030-56877-
1_8.

Distinguishers for 3 rounds of Ascon’s permutation:

q Anubhab Baksi, Jakub Breier, Yi Chen, and Xiaoyang Dong. “Machine Learn-
ing Assisted Differential Distinguishers For Lightweight Ciphers (Extended
Version)”. IACR Cryptology ePrint Archive, Report 2020/571. 2020. iacr: 2020/
571.

Collisions for Ascon-Hash reduced to 2 rounds with complexity 2125:

q Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. “Collision Attacks on Round-
ReducedGimli-Hash/Ascon-Xof/Ascon-Hash”. IACRCryptology ePrintArchive,
Report 2019/1115. 2019. iacr: 2019/1115.

Integral distinguishers for the round-reduced inverse Ascon permutation:

q Hailun Yan, Xuejia Lai, Lei Wang, Yu Yu, and Yiran Xing. “New zero-sum
distinguishers on full 24-round Keccak-f using the division property”. In: IET
Information Security 13.5 (2019), pp. 469–478. doi: 10.1049/iet-ifs.2018.
5263.

Closer analysis of Ascon’s differential-linear properties:

q Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman. “DLCT:
A New Tool for Differential-Linear Cryptanalysis”. In: EUROCRYPT 2019.
LNCS. Springer, 2019. iacr: 2019/256.

Subspace trails for a small number of rounds for Ascon’s permutation:

37

https://doi.org/10.46586/tosc.v2021.i1.130-155
https://doi.org/10.46586/tosc.v2021.i1.130-155
https://www.ijiss.org/ijiss/index.php/ijiss/article/view/762
https://www.ijiss.org/ijiss/index.php/ijiss/article/view/762
https://doi.org/10.1007/978-3-030-56877-1_8
https://doi.org/10.1007/978-3-030-56877-1_8
https://eprint.iacr.org/2020/571
https://eprint.iacr.org/2020/571
https://eprint.iacr.org/2019/1115
https://doi.org/10.1049/iet-ifs.2018.5263
https://doi.org/10.1049/iet-ifs.2018.5263
https://eprint.iacr.org/2019/256


q Gregor Leander, Cihangir Tezcan, and Friedrich Wiemer. “Searching for Sub-
space Trails and Truncated Differentials”. In: IACR Transactions on Symmetric
Cryptology 2018.1 (2018), pp. 74–100. doi: 10.13154/tosc.v2018.i1.74-100.

Evaluation of the security of Ascon in misuse settings:

q Serge Vaudenay and Damian Vizár. “Can Caesar Beat Galois? – Robustness
of CAESAR Candidates Against Nonce Reusing and High Data Complexity
Attacks”. In: ACNS 2018. Vol. 10892. LNCS. Springer, 2018, pp. 476–494. doi:
10.1007/978-3-319-93387-0_25. iacr: 2017/1147.

Cube-like key-recovery attack on 7 (out of 12) rounds of the initialization of Ascon
in 2103.9 time:

q Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. “Conditional Cube Attack on
Round-Reduced ASCON”. In: IACR Transactions on Symmetric Cryptology
2017.1 (2017), pp. 175–202. doi: 10.13154/tosc.v2017.i1.175- 202. iacr:
2017/160. url: https://github.com/lizhengcn/Ascon_test.

Cube-like attacks in a nonce-misuse setting on round-reduced Ascon:

q Yanbin Li, Guoyan Zhang, Wei Wang, and Meiqin Wang. “Cryptanalysis of
round-reduced ASCON”. In: SCIENCE CHINA Information Sciences 60.3
(2017), p. 38102. doi: 10.1007/s11432-016-0283-3.

SAT-based state recovery on 2 (out of 8) rounds of Ascon-128a’s data processing:

q Ashutosh Dhar Dwivedi, Miloš Klouček, Pawel Morawiecki, Ivica Nikolič,
Josef Pieprzyk, and SebastianWójtowicz. “SAT-based Cryptanalysis of Authen-
ticated Ciphers from the CAESAR Competition”. In: SECRYPT ICETE 2017.
SciTePress, 2017, pp. 237–246. doi: 10.5220/0006387302370246. iacr: 2016/1053.

Evaluating the properties of Ascon’s authenticated encyption mode regarding re-
forgeability:

q Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel. “Reforgeability
of Authenticated Encryption Schemes”. In: ACISP 2017. Vol. 10343. LNCS.
Springer, 2017, pp. 19–37. doi: 10.1007/978-3-319-59870-3_2. iacr: 2017/332.

Truncated, impossible, and improbable differential distinguishers for 4 and 5 rounds
of Ascon’s permutation. Differential distinguishers based on undisturbed bits for
to 5 rounds reduced variants of Ascon with 2109 data:

q Cihangir Tezcan. “Truncated, Impossible, and Improbable Differential Anal-
ysis of Ascon”. In: ICISSP 2016. SciTePress, 2016, pp. 325–332. doi: 10.5220/
0005689903250332. iacr: 2016/490.

Security of Ascon’s S-box with respect to the division property:

q Faruk Göloğlu, Vincent Rijmen, and Qingju Wang. “On the division property
of S-boxes”. 2016. iacr: 2016/188.

38

https://doi.org/10.13154/tosc.v2018.i1.74-100
https://doi.org/10.1007/978-3-319-93387-0_25
https://eprint.iacr.org/2017/1147
https://doi.org/10.13154/tosc.v2017.i1.175-202
https://eprint.iacr.org/2017/160
https://github.com/lizhengcn/Ascon_test
https://doi.org/10.1007/s11432-016-0283-3
https://doi.org/10.5220/0006387302370246
https://eprint.iacr.org/2016/1053
https://doi.org/10.1007/978-3-319-59870-3_2
https://eprint.iacr.org/2017/332
https://doi.org/10.5220/0005689903250332
https://doi.org/10.5220/0005689903250332
https://eprint.iacr.org/2016/490
https://eprint.iacr.org/2016/188


Several linear characteristic for Ascon’s permutation:

q Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Heuristic Tool
for Linear Cryptanalysis with Applications to CAESAR Candidates”. In: ASI-
ACRYPT 2015. Vol. 9453. LNCS. Springer, 2015, pp. 490–509. doi: 10.1007/978-
3-662-48800-3_20. iacr: 2015/1200.

Ascon’s authenticated encryptionmode supports secure implementations on limited-
memory devices:

q MeghaAgrawal, DonghoonChang, and Somitra Sanadhya. “sp-AELM: Sponge
Based Authenticated Encryption Scheme for Memory Constrained Devices”.
In: ACISP 2015. Vol. 9144. LNCS. Springer, 2015, pp. 451–468. doi: 10.1007/978-
3-319-19962-7_26.

Evaluation of Ascon’s permutation using the division property:

q Yosuke Todo. “Structural Evaluation by Generalized Integral Property”. In:
EUROCRYPT 2015. Vol. 9056. LNCS. Springer, 2015, pp. 287–314. doi: 10.1007/
978-3-662-46800-5_12. iacr: 2015/090.

Suggestions to absorb authenticated data more efficiently:

q Yu Sasaki and Kan Yasuda. “How to Incorporate Associated Data in Sponge-
Based Authenticated Encryption”. In: CT-RSA 2015. Vol. 9048. LNCS. Springer,
2015, pp. 353–370. doi: 10.1007/978-3-319-16715-2_19.

Evaluation of the resistance of Ascon’s permutation against algebraic, differential,
linear, and differential-linear attacks. Cube-like and differential-linear key recovery
attacks on round-reduced variants of Ascon. Differential-based forgery attacks on
round-reduced Ascon:

q Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
“Cryptanalysis of Ascon”. In: CT-RSA 2015. Vol. 9048. LNCS. Springer, 2015,
pp. 371–387. doi: 10.1007/978-3-319-16715-2_20. iacr: 2015/030.

Security proof for Ascon ’s authenticated encryption mode even for higher rates:

q Philipp Jovanovic, Atul Luykx, and Bart Mennink. “Beyond 2c/2 Security
in Sponge-Based Authenticated Encryption Modes”. In: ASIACRYPT 2014.
Vol. 8873. LNCS. Springer, 2014, pp. 85–104. doi: 10.1007/978-3-662-45611-
8_5. iacr: 2014/373.

Security analysis and bounds for the full-state keyed duplex with application to
Ascon-128 and Ascon-128a:

q Joan Daemen, Bart Mennink, and Gilles Van Assche. “Full-State Keyed Duplex
with Built-In Multi-user Support”. In: ASIACRYPT 2017. Vol. 10625. LNCS.
Springer, 2017, pp. 606–637. doi: 10 . 1007 / 978 - 3 - 319 - 70697 - 9 _ 21. iacr:
2017/498.

39

https://doi.org/10.1007/978-3-662-48800-3_20
https://doi.org/10.1007/978-3-662-48800-3_20
https://eprint.iacr.org/2015/1200
https://doi.org/10.1007/978-3-319-19962-7_26
https://doi.org/10.1007/978-3-319-19962-7_26
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-46800-5_12
https://eprint.iacr.org/2015/090
https://doi.org/10.1007/978-3-319-16715-2_19
https://doi.org/10.1007/978-3-319-16715-2_20
https://eprint.iacr.org/2015/030
https://doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/978-3-662-45611-8_5
https://eprint.iacr.org/2014/373
https://doi.org/10.1007/978-3-319-70697-9_21
https://eprint.iacr.org/2017/498


7 Implementation

Since Ascon is based on the sponge and duplex constructions, it just relies on the
evaluation of cryptographic permutations in forward direction to allow hashing and
authenticated encryption. In particular, there is no need to implement the inverse
of the permutation, or other often used components in authenticated encryption
schemes like a key schedule, masks, Galois field multiplications etc. This together
with the small state size of 320 bits minimizes the code size and register pressure in
software and the area requirements in hardware. Still, the state size of 320 bits is
large enough to provide both hashing and authenticated encryption with 128 bits
of security.
Detailed software performance results and comparisons for a large number of
platforms are (and will be) given in eBACS, the ECRYPT Benchmarking of Cryp-
tographic Systems [BL]. A preliminary overview of the software performance of
Ascon-128 and Ascon-128a is given in Table 19a and Table 19b.
The software performance of Ascon-Hash and Ascon-Xof is largely the same as
for Ascon-128 with doubled cycles per byte. In a similar manner, the software
performance of Ascon-Hasha and Ascon-Xofa is largely the same as for Ascon-
128a with doubled cycles per byte.

7.1 Size-Optimized Implementations

The whole cipher suite Ascon can be implemented at a very low cost. This is
especially important when implementing several different variants like AEAD and
hashing. Additionally, this reduces the total area significantly, if protection against
implementation attacks is needed. To support size-optimized implementations,
Ascon has the following implementation features:

• The same small 320-bit state for all family members
• The same lightweight round function for all family members
• The same construction and very similar modes for AE, AD and hashing
• Minimal performance overhead for implementing the permutation with loops
• Only 12 32-bit registers (10 state and 2 temporary registers) are needed to

implement the round function, if 3-operand instructions are available1

1ESP32 assembly implementation by Ferdinand Bachmann

40



Table 19: Ascon-128 and Ascon-128a software performance in cycles per byte. Mes-
sage length is length of encrypted plaintext with empty associated data.

(a) Ascon-128

Message Length 1 8 16 32 64 1536 long
AMD Ryzen 7 1700b 14.5 8.8 8.6
Intel Xeon E5-2609 v4b 17.3 10.8 10.5
Cortex-A53 (ARMv8)b 18.3 11.3 11.0
Intel Core i5-6300U 367 58 35 23 17.6 11.9 11.4
Intel Core i5-4200U 521 81 49 32 23.9 16.2 15.8
Cortex-A15 (ARMv7)b 69.8 36.2 34.6
Cortex-A7 (NEON) 2182 249 148 97 71.7 47.5 46.5
Cortex-A7 (ARMv7) 1871 292 175 115 86.6 58.3 57.2
ARM1176JZF-S (ARMv6) 2136 312 186 123 91.6 61.8 62.2
bResults taken from eBACS [BL].

(b) Ascon-128a

Message Length 1 8 16 32 64 1536 long
AMD Ryzen 7 1700b 12.0 6.0 5.7
Intel Xeon E5-2609 v4b 14.1 7.3 6.9
Cortex-A57 (ARMv8)b 15.1 7.6 7.3
Intel Core i5-6300U 365 47 31 19 13.5 8.0 7.8
Intel Core i5-4200U 519 67 44 27 18.8 11.0 10.6
Cortex-A15 (ARMv7)b 60.3 25.3 23.8
Cortex-A7 (NEON) 2204 226 132 82 55.9 31.7 30.7
Cortex-A7 (ARMv7) 1911 255 161 102 71.3 42.3 41.2
ARM1176JZF-S (ARMv6) 2118 261 170 107 75.6 46.0 46.6
bResults taken from eBACS [BL].

• Does not need table-lookups since the round function including S-boxes is
bitsliced by design

• Designed with SCA in mind (efficient masking, levelled implementations)
For these reasons, Ascon can be implemented at a very low size. Additionally, the
performance penalty of low-size implementations compared to highly performance-
optimized implementations is low (less than 50% on most platforms). Also adding
hashing functionality to an already existing AEAD implementation increases the
implementation size by only 10-20% (depending on platform and optimization
level). For more details, we refer to the various NIST LWC software [BL; RPM;Wea]
and hardware [MHN+20; KPC20] benchmarking platforms and initiatives.

41



7.2 Efficiency for Short Messages

The simplicity of the design and the small state play also a crucial role in the
efficiency of Ascon’s authenticated encryption for small messages. For instance, if
no associated data is present, Ascon-128 can encrypt plaintexts strictly smaller than
8 bytes and Ascon-128a can encrypt plaintexts strictly smaller than 16 bytes with
just two calls to the permutation pa. Preliminary software performance results for
several short messages and platforms are also shown in Table 19a and Table 19b.
Ankele and Ankele [AA16] give a detailed performance overview of the second
round CAESAR candidates for short messages. In many scenarios (e.g. SSH with 5
bytes of associated data and 1 byte of plaintext) Ascon-128a is able to perform very
well, even when compared to AES-based designs which use native AES instructions
on Intel Skylake processors [AA16, Figure 6].

7.3 Flexibility of the Permutation

The permutation of Ascon is naturally defined on 64-bit words using only bitwise
Boolean functions (and, not, xor) and rotations within these 64-bit words. As a
consequence, Ascon does not require any data-dependent table lookups. Hence,
it lends itself to bitsliced implementations in software as well as simple and clean
hardware implementations. The S-box and the linear layer provide some flexibility
regarding the number of instructions that can be carried out in parallel and addi-
tional temporary registers that are needed to store intermediate computations in
software implementations. A bitsliced implementation of the S-box that focuses
on instruction parallelism is shown in Figure 5. Considering that the linear layer
is defined separately on each of the 5 64-bit words, up to 5 instructions can be car-
ried out in parallel in nearly every phase of the permutation. This implementation
aspect of Ascon allows for short critical paths in hardware and makes use of the
out-of-order execution capabilities of high-end processors.

x0 ^= x4; x4 ^= x3; x2 ^= x1;

t0 = x0; t1 = x1; t2 = x2; t3 = x3; t4 = x4;

t0 =~ t0; t1 =~ t1; t2 =~ t2; t3 =~ t3; t4 =~ t4;

t0 &= x1; t1 &= x2; t2 &= x3; t3 &= x4; t4 &= x0;

x0 ^= t1; x1 ^= t2; x2 ^= t3; x3 ^= t4; x4 ^= t0;

x1 ^= x0; x0 ^= x4; x3 ^= x2; x2 =~ x2;

Figure 5: Pipelinable instructions for bitsliced implementation of 5-bit S-box S(x).

However, Ascon can also be implemented on systems that do not have a natural
64-bit datapath, like 8-, 16-, and 32-bit processors. This can be done by employing
a technique called bit interleaving as described in the Keccak implementation
overview [BDP+12]. By using this technique, the single bits of one ofAscon’s 64-bit
words are stored interleaved in two 32-bit, four 16-bit, or eight 8-bit registers. This

42



technique allows to translate rotations within the 64-bit words to rotations (and
re-labeling) of the smaller registers. Since the other operations of Ascon are bitwise
Boolean functions, they are unaffected by the changed representations. For such
implementations on resource constrained devices, it is beneficial that the S-box of
Ascon can also be implemented using just two temporary registers as shown in
Figure 6.

x0 ^= x4; x4 ^= x3; x2 ^= x1;

t0 = x0 & (~x4); t1 = x2 & (~x1);

x0 ^= t1; t1 = x4 & (~x3);

x2 ^= t1; t1 = x1 & (~x0);

x4 ^= t1; t1 = x3 & (~x2);

x1 ^= t1; x3 ^= t0;

x1 ^= x0; x3 ^= x2; x0 ^= x4; x2 = ~x2;

Figure 6: Reducing register pressure for bitsliced implementation of the 5-bit S-box
S(x) (inspired by [Dae18; DHVV18]).

That bit interleaving is a very viable strategy can be seen in the work of Noël
Bangma [Ban18], where the performance ofAscon-128 is compared with implemen-
tations of the CAESAR finalists ACORN, AEGIS-128L, Deoxys-II-128, and MORUS-
1280-128 on an ARM Cortex-A8. Here, Ascon-128 is the fastest cipher for short
plaintext messages of 64 bytes [Ban18, Table 5.1].
As shown in Table 20, the flexibility of Ascon also translates to hardware, where a
round-based implementation of Ascon needs 7.08 kGE, but also very small imple-
mentations requiring just 2.57 kGE are possible [GWDE15].

Table 20: Ascon-128 hardware implementations taken from [GWDE15]
Design Chip Area Throughput Power Energy

w/o w/ at 1MHz
interface

[kGE] [kGE] [Mbps] [µW] [µJ/byte]
Ascon-fast

1 round 7.08 7.95 5,524 43 33
2 rounds 10.61 11.48 8,425 72 27
3 rounds 14.26 15.13 10,407 102 25
6 rounds 24.93 25.80 13,218 184 23

Ascon64-bit 4.99 5.86 72 32 1,397
Ascon-x-low-area 2.57 3.75 14 15 5,706

43



7.4 Further Reading on Efficiency

q Michael Tempelmeier, Fabrizio De Santis, Georg Sigl, and Jens-Peter Kaps.
“The CAESAR-API in the real world – Towards a fair evaluation of hardware
CAESAR candidates”. In: HOST 2018. IEEE Computer Society, 2018, pp. 73–80.
doi: 10.1109/HST.2018.8383893.

q William Diehl and Kris Gaj. “RTL implementations and FPGA benchmarking
of selected CAESAR Round Two authenticated ciphers”. In: Microprocessors
and Microsystems 52 (2017), pp. 202–218. doi: 10.1016/j.micpro.2017.06.003.

q Ralph Ankele and Robin Ankele. “Software Benchmarking of the 2nd round
CAESAR Candidates”. 2016. iacr: 2016/740.

q Ko Stoffelen. “Optimizing S-Box Implementations for Several Criteria Using
SAT Solvers”. In: FSE 2016. Vol. 9783. LNCS. Springer, 2016, pp. 140–160. doi:
10.1007/978-3-662-52993-5_8. iacr: 2016/198.

q Noël Bangma. “Ascon: An attempt in NEON on the Cortex-A8”. Bachelor’s
Thesis. 2018. url: https://www.cs.ru.nl/bachelorscripties/2018/Noel_
Bangma___4433939___Ascon_An_attempt_in_NEON_on_the_Cortex-A8.pdf.

q Rajesh Kumar Pal. “Implementation and Evaluation of Authenticated Encryp-
tion Algorithms on Java Card Platform (master’s thesis)”. Master’s Thesis.
2017. url: https://is.muni.cz/th/448415/fi_m/MSThesis_IS.pdf.

q Michael Fivez. “Energy Efficient Hardware Implementations of CAESAR Sub-
missions”. Master’s Thesis. 2016. url: http://securewww.esat.kuleuven.be/
cosic/publications/thesis-279.pdf.

q Kamyar Mohajerani, Richard Haeussler, Rishub Nagpal, Farnoud Farahmand,
Abubakr Abdulgadir, Jens-Peter Kaps, and Kris Gaj. “FPGA Benchmarking of
Round 2 Candidates in the NIST Lightweight Cryptography Standardization
Process: Methodology, Metrics, Tools, and Results”. IACR Cryptology ePrint
Archive, Report 2020/1207. 2020. iacr: 2020/1207.

q Islam Mohamed Shaher, Moustafa Mahmoud, Hassan Ibrahim, Moustafa Ali,
and Hassan Mostafa. “Implementation of a Hardware Accelerator for a Real-
time Encryption System”. In: MWSCAS 2020. IEEE, 2020, pp. 627–630. doi:
10.1109/MWSCAS48704.2020.9184446.

q Stefan Steinegger and Robert Primas. “A Fast and Compact RISC-VAccelerator
for Ascon and Friends”. In: CARDIS 2020. Vol. 12609. LNCS. Springer, 2020,
pp. 53–67. doi: 10.1007/978-3-030-68487-7_4.

44

https://doi.org/10.1109/HST.2018.8383893
https://doi.org/10.1016/j.micpro.2017.06.003
https://eprint.iacr.org/2016/740
https://doi.org/10.1007/978-3-662-52993-5_8
https://eprint.iacr.org/2016/198
https://www.cs.ru.nl/bachelorscripties/2018/Noel_Bangma___4433939___Ascon_An_attempt_in_NEON_on_the_Cortex-A8.pdf
https://www.cs.ru.nl/bachelorscripties/2018/Noel_Bangma___4433939___Ascon_An_attempt_in_NEON_on_the_Cortex-A8.pdf
https://is.muni.cz/th/448415/fi_m/MSThesis_IS.pdf
http://securewww.esat.kuleuven.be/cosic/publications/thesis-279.pdf
http://securewww.esat.kuleuven.be/cosic/publications/thesis-279.pdf
https://eprint.iacr.org/2020/1207
https://doi.org/10.1109/MWSCAS48704.2020.9184446
https://doi.org/10.1007/978-3-030-68487-7_4


q Fabio Campos, Lars Jellema, Mauk Lemmen, Lars Müller, Daan Sprenkels,
and Benoît Viguier. “Assembly or Optimized C for Lightweight Cryptography
on RISC-V?” In: CANS 2020. Vol. 12579. LNCS. Springer, 2020, pp. 526–545.
doi: 10.1007/978-3-030-65411-5_26.

q Mark D. Aagaard and Nusa Zidaric. “ASIC Benchmarking of Round 2 Candi-
dates in the NIST Lightweight Cryptography Standardization Process”. IACR
Cryptology ePrint Archive, Report 2021/049. 2021. iacr: 2021/049.

7.5 Implementation Security and Robustness

Ascon’s permutation uses S-boxes of degree 2 and thus lends itself to efficient
countermeasures against side-channel attacks by masking with a low overhead.
Gross et al. [GWDE15] provide threshold implementations of Ascon-128 as small
as 7.97 kGE. Besides this, many other state-of-the-art masking approaches have been
applied on Ascon, like UMA [GM17] and DOM [GMK16], even for high protection
order (see Table 21). Links to various implementations of Ascon, including DOM
and UMA implementations, can be found at https://ascon.iaik.tugraz.at/.

Table 21: DOM implementations for various protection orders [GM17; GM18].

Protection Order Pipelined Parallel
[kGE] [Mbps] [kGE] [Mbps]

1 10.86 108 28.89 2246
2 16.19 108 53.00 1896
3 21.59 110 81.21 1903
4 27.13 71 118.27 1786
5 32.76 95 161.87 1868

. . .
13 81.20 70 726.00 1833
14 87.75 71 828.19 1439
15 94.24 50 926.34 1480

Next, we give a list of papers that either evaluate the side-channel and fault resistance
ofAscon or elaborate protection mechanisms against side-channel and fault attacks:

q Niels Samwel and JoanDaemen. “DPA on hardware implementations of Ascon
and Keyak”. In: Computing Frontiers – CF’17. ACM, 2017, pp. 415–424. doi:
10.1145/3075564.3079067.

q Niels Samwel. “Side-Channel Analysis of Keccak and Ascon”. Master’s Thesis.
2016. url: http://www.ru.nl/publish/pages/769526/niels_samwel.pdf.

q Alexandre Adomnicai, Jacques J. A. Fournier, and Laurent Masson. “Masking
the Lightweight Authenticated Ciphers ACORN and Ascon in Software”. 2018.
iacr: 2018/708.

45

https://doi.org/10.1007/978-3-030-65411-5_26
https://eprint.iacr.org/2021/049
https://ascon.iaik.tugraz.at/
https://doi.org/10.1145/3075564.3079067
http://www.ru.nl/publish/pages/769526/niels_samwel.pdf
https://eprint.iacr.org/2018/708


q Hannes Gross, Rinat Iusupov, and Roderick Bloem. “Generic Low-Latency
Masking in Hardware”. In: IACR Transactions on Cryptographic Hardware
and Embedded Systems 2018.2 (2018), pp. 1–21. doi: 10.13154/tches.v2018.
i2.1-21. iacr: 2017/1223.

q Hannes Gross, Erich Wenger, Christoph Dobraunig, and Christoph Ehren-
höfer. “Ascon hardware implementations and side-channel evaluation”. In:
Microprocessors and Microsystems 52 (2017), pp. 470–479. doi: 10.1016/j.
micpro.2016.10.006.

q Hannes Gross and Stefan Mangard. “Reconciling d+1 Masking in Hardware
and Software”. In: CHES 2017. Vol. 10529. LNCS. Springer, 2017, pp. 115–136.
iacr: 2017/103.

q Liran Lerman,OlivierMarkowitch, andNikitaVeshchikov. “Comparing Sboxes
of Ciphers from the Perspective of Side-Channel Attacks”. In: AsianHOST 2016.
IEEE Computer Society, 2016, pp. 1–6. doi: 10.1109/AsianHOST.2016.7835556.
iacr: 2016/993.

q Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Florian
Mendel, and Robert Primas. “Protecting against Statistical Ineffective Fault
Attacks”. 2020. doi: 10.13154/tches.v2020.i3.508-543.

q Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. “To-
wards Low-Energy Leakage-Resistant Authenticated Encryption from the Du-
plex Sponge Construction”. IACR Cryptology ePrint Archive, Report 2019/193.
2019. iacr: 2019/193.

q Keyvan Ramezanpour, Paul Ampadu, and William Diehl. “FIMA: Fault In-
tensity Map Analysis”. In: COSADE 2019. Vol. 11421. LNCS. Springer, 2019,
pp. 63–79. doi: 10.1007/978-3-030-16350-1_5.

q Keyvan Ramezanpour, Paul Ampadu, and William Diehl. “A Statistical Fault
Analysis Methodology for the Ascon Authenticated Cipher”. In: HOST 2019.
IEEE, 2019, pp. 41–50. doi: 10.1109/HST.2019.8741029.

q Keyvan Ramezanpour, Paul Ampadu, and William Diehl. “SCARL: Side-
Channel Analysis with Reinforcement Learning on the Ascon Authenticated
Cipher”. In: CoRR abs/2006.03995 (2020). arXiv: 2006.03995. url: https://
arxiv.org/abs/2006.03995.

q Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun
Guo, Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. “Mode-Level vs. Implementation-Level Physical Security in Sym-
metric Cryptography – A Practical Guide Through the Leakage-Resistance
Jungle”. In: CRYPTO 2020. Vol. 12170. LNCS. Springer, 2020, pp. 369–400. doi:
10.1007/978-3-030-56784-2_13.

46

https://doi.org/10.13154/tches.v2018.i2.1-21
https://doi.org/10.13154/tches.v2018.i2.1-21
https://eprint.iacr.org/2017/1223
https://doi.org/10.1016/j.micpro.2016.10.006
https://doi.org/10.1016/j.micpro.2016.10.006
https://eprint.iacr.org/2017/103
https://doi.org/10.1109/AsianHOST.2016.7835556
https://eprint.iacr.org/2016/993
https://doi.org/10.13154/tches.v2020.i3.508-543
https://eprint.iacr.org/2019/193
https://doi.org/10.1007/978-3-030-16350-1_5
https://doi.org/10.1109/HST.2019.8741029
https://arxiv.org/abs/2006.03995
https://arxiv.org/abs/2006.03995
https://arxiv.org/abs/2006.03995
https://doi.org/10.1007/978-3-030-56784-2_13


Acknowledgments

The authors would like to thank all researchers contributing to the design, analysis
and implementation of Ascon. In particular, we want to thank Hannes Gross and
Robert Primas for all their support and various implementations of Ascon.
This work was initiated while all authors were working at Graz University of Tech-
nology. Part of this work has been supported by the Austrian Science Fund (FWF):
P26494-N15 and J 4277-N38, by the European Union’s Horizon 2020 research and
innovation programme (H2020 ICT 644052: HECTOR), and by the Austrian Gov-
ernment (FFG/SFG COMET 836628: SeCoS and FIT-IT 835919: SePAG).

47



Bibliography

[AA16] Ralph Ankele and Robin Ankele. “Software Benchmarking of the 2nd
round CAESAR Candidates”. 2016. iacr: 2016/740 (pp. 20, 42).

[ACS15] MeghaAgrawal, DonghoonChang, and Somitra Sanadhya. “sp-AELM:
Sponge Based Authenticated Encryption Scheme for Memory Con-
strained Devices”. In: ACISP 2015. Vol. 9144. LNCS. Springer, 2015,
pp. 451–468. doi: 10.1007/978-3-319-19962-7_26 (p. 20).

[ADMV15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche.
“Security of Keyed Sponge Constructions Using a Modular Proof
Approach”. In: FSE 2015. Vol. 9054. LNCS. Springer, 2015, pp. 364–
384. doi: 10.1007/978-3-662-48116-5_18 (p. 29).

[Ban18] Noël Bangma. “Ascon: An attempt in NEON on the Cortex-A8”. Bach-
elor’s Thesis. 2018. url: https://www.cs.ru.nl/bachelorscripties/
2018/Noel_Bangma___4433939___Ascon_An_attempt_in_NEON_on_the_

Cortex-A8.pdf (p. 43).
[BBK+13] Begül Bilgin, Andrey Bogdanov, Miroslav Knezevic, Florian Mendel,

and Qingju Wang. “Fides: Lightweight Authenticated Cipher with
Side-Channel Resistance for Constrained Hardware”. In: CHES 2013.
Vol. 8086. LNCS. Springer, 2013, pp. 142–158. doi: 10.1007/978-3-642-
40349-1_9. iacr: 2015/424 (p. 25).

[BC10] Christina Boura and Anne Canteaut. “A zero-sum property for the
Keccak- f permutation with 18 Rounds”. In: ISIT 2010. IEEE, 2010,
pp. 2488–2492. doi: 10.1109/ISIT.2010.5513442 (p. 34).

[BCD11] Christina Boura,AnneCanteaut, andChristopheDeCannière. “Higher-
Order Differential Properties of Keccak and Luffa”. In: FSE 2011.
Vol. 6733. LNCS. Springer, 2011, pp. 252–269. doi: 10.1007/978-3-642-
13858-4_15. iacr: 2010/589 (p. 34).

[BDKW19] Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman.
“DLCT: A New Tool for Differential-Linear Cryptanalysis”. In: EURO-
CRYPT 2019. LNCS. Springer, 2019. iacr: 2019/256 (p. 33).

[BDP+12] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. “Keccak implementation overview version 3.2”.
2012. url: https://keccak.team (pp. 19, 42).

[BDPV07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Sponge functions”. Ecrypt Hash Workshop 2007. 2007. url: http:
//sponge.noekeon.org/SpongeFunctions.pdf (pp. 11, 21–23, 27).

48

https://eprint.iacr.org/2016/740
https://doi.org/10.1007/978-3-319-19962-7_26
https://doi.org/10.1007/978-3-662-48116-5_18
https://www.cs.ru.nl/bachelorscripties/2018/Noel_Bangma___4433939___Ascon_An_attempt_in_NEON_on_the_Cortex-A8.pdf
https://www.cs.ru.nl/bachelorscripties/2018/Noel_Bangma___4433939___Ascon_An_attempt_in_NEON_on_the_Cortex-A8.pdf
https://www.cs.ru.nl/bachelorscripties/2018/Noel_Bangma___4433939___Ascon_An_attempt_in_NEON_on_the_Cortex-A8.pdf
https://doi.org/10.1007/978-3-642-40349-1_9
https://doi.org/10.1007/978-3-642-40349-1_9
https://eprint.iacr.org/2015/424
https://doi.org/10.1109/ISIT.2010.5513442
https://doi.org/10.1007/978-3-642-13858-4_15
https://doi.org/10.1007/978-3-642-13858-4_15
https://eprint.iacr.org/2010/589
https://eprint.iacr.org/2019/256
https://keccak.team
http://sponge.noekeon.org/SpongeFunctions.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf


[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Ass-
che. “On the Indifferentiability of the Sponge Construction”. In: EU-
ROCRYPT 2008. Vol. 4965. LNCS. Springer, 2008, pp. 181–197. doi:
10.1007/978-3-540-78967-3_11. url: http://keccak.team/files/
SpongeIndifferentiability.pdf (pp. 23, 27).

[BDPV10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Sponge-Based Pseudo-RandomNumber Generators”. In: CHES 2010.
Vol. 6225. LNCS. Springer, 2010, pp. 33–47. doi: 10.1007/978-3-642-
15031-9_3. url: http://sponge.noekeon.org/SpongePRNG.pdf (p. 29).

[BDPV11a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Duplexing the Sponge: Single-Pass Authenticated Encryption and
Other Applications”. In: SAC 2011. Vol. 7118. LNCS. Springer, 2011,
pp. 320–337. doi: 10.1007/978-3-642-28496-0_19. iacr: 2011/499
(pp. 21, 29).

[BDPV11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“On the security of the keyed sponge construction”. In: SKEW 2011.
2011. url: http://sponge.noekeon.org/SpongeKeyed.pdf (p. 29).

[BDPV11c] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“The Keccak Reference”. Submission to NIST (Round 3). 2011. url:
https://keccak.team (p. 21).

[BDPV12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Permutation-based Encryption, Authentication and Authenticated
Encryption”. DIAC 2012. July 2012. url: https://keccak.team/files/
KeccakDIAC2012.pdf (pp. 8, 21, 29).

[Ber10] Daniel J. Bernstein. “Second preimages for 6 (7 (8??)) rounds of Kec-
cak?” Posted on the NIST mailing list. 2010. url: http://ehash.iaik.
tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt

(p. 35).
[BL] “eBACS: ECRYPT Benchmarking of Cryptographic Systems”. url:

https://bench.cr.yp.to (visited on 02/14/2019) (pp. 20, 40, 41).
[Cae14] The CAESAR committee. “CAESAR: Competition for Authenticated

Encryption: Security, Applicability, and Robustness”. 2014. url: https:
//competitions.cr.yp.to/caesar-submissions.html (pp. 6, 36).

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
“Towards Sound Approaches to Counteract Power-Analysis Attacks”.
In: CRYPTO ’99. Vol. 1666. LNCS. Springer, 1999, pp. 398–412. doi:
10.1007/3-540-48405-1 (p. 25).

[Dae18] Joan Daemen. “Personal communication about implementing the
3-bit χ layer”. Dec. 2018 (p. 43).

[DEM+19] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian
Mendel, Bart Mennink, Robert Primas, and Thomas Unterluggauer.
“Isap v2.0 (Submission to NIST)”. Finalist of NIST lightweight cryp-
tography standardization process. 2019. url: https://csrc.nist.gov/
Projects/Lightweight-Cryptography/ (p. 19).

49

https://doi.org/10.1007/978-3-540-78967-3_11
http://keccak.team/files/SpongeIndifferentiability.pdf
http://keccak.team/files/SpongeIndifferentiability.pdf
https://doi.org/10.1007/978-3-642-15031-9_3
https://doi.org/10.1007/978-3-642-15031-9_3
http://sponge.noekeon.org/SpongePRNG.pdf
https://doi.org/10.1007/978-3-642-28496-0_19
https://eprint.iacr.org/2011/499
http://sponge.noekeon.org/SpongeKeyed.pdf
https://keccak.team
https://keccak.team/files/KeccakDIAC2012.pdf
https://keccak.team/files/KeccakDIAC2012.pdf
http://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt
http://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt
https://bench.cr.yp.to
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
https://doi.org/10.1007/3-540-48405-1
https://csrc.nist.gov/Projects/Lightweight-Cryptography/
https://csrc.nist.gov/Projects/Lightweight-Cryptography/


[DEM+20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian
Mendel, Bart Mennink, Robert Primas, and Thomas Unterluggauer.
“Isap v2.0”. In: IACR Transactions of Symmetric Cryptology 2020.S1
(2020), pp. 390–416. doi: 10.13154/tosc.v2020.iS1.390-416 (p. 19).

[DEM15] ChristophDobraunig,Maria Eichlseder, and FlorianMendel. “Heuris-
tic Tool for Linear Cryptanalysis with Applications to CAESARCandi-
dates”. In: ASIACRYPT 2015. Vol. 9453. LNCS. Springer, 2015, pp. 490–
509. doi: 10.1007/978-3-662-48800-3_20. iacr: 2015/1200 (pp. 28, 31).

[DEMS15] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. “Cryptanalysis of Ascon”. In: CT-RSA 2015. Vol. 9048. LNCS.
Springer, 2015, pp. 371–387. doi: 10.1007/978-3-319-16715-2_20. iacr:
2015/030 (pp. 28, 31–33, 35).

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Mar-
tin Schläffer. “Ascon v1.2”. Submission to Round 3 of the CAESAR
competition. 2016. url: https://ascon.iaik.tugraz.at (p. 6).

[DEMS19] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Mar-
tin Schläffer. “Preliminary Analysis of Ascon-Xof and Ascon-Hash”.
Technical Report. 2019. url: https://ascon.iaik.tugraz.at (pp. 28,
35).

[DHVV18] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer.
“The design of Xoodoo and Xoofff”. In: IACR Transactions on Sym-
metric Cryptology 2018.4 (2018), pp. 1–38. doi: 10.13154/tosc.v2018.
i4.1-38. iacr: 2018/767 (p. 43).

[DKM+17] Ashutosh Dhar Dwivedi, Miloš Klouček, Pawel Morawiecki, Ivica
Nikolič, Josef Pieprzyk, and Sebastian Wójtowicz. “SAT-based Crypt-
analysis of Authenticated Ciphers from the CAESAR Competition”.
In: SECRYPT ICETE 2017. SciTePress, 2017, pp. 237–246. doi: 10.5220/
0006387302370246. iacr: 2016/1053 (pp. 28, 36).

[DMV17] JoanDaemen, BartMennink, andGilles VanAssche. “Full-State Keyed
Duplex with Built-In Multi-user Support”. In: ASIACRYPT 2017.
Vol. 10625. LNCS. Springer, 2017, pp. 606–637. doi: 10.1007/978-
3-319-70697-9_21. iacr: 2017/498 (p. 29).

[DSW09] Christophe De Cannière, Hisayoshi Sato, and Dai Watanabe. “Hash
Function Luffa: Specification”. Submission to NIST (Round 2). 2009.
url: http://www.hitachi.com/rd/yrl/crypto/luffa/ (p. 26).

[GA16] Kris Gaj and ATHENa Team. “ATHENa: Automated Tool for Hard-
ware Evaluation”. 2016. url: https://cryptography.gmu.edu/athena/
(p. 19).

[GM17] Hannes Gross and Stefan Mangard. “Reconciling d+1 Masking in
Hardware and Software”. In: CHES 2017. Vol. 10529. LNCS. Springer,
2017, pp. 115–136. iacr: 2017/103 (p. 45).

[GM18] Hannes Gross and Stefan Mangard. “A unified masking approach”.
In: Journal of Cryptographic Engineering 8.2 (2018), pp. 109–124. doi:
10.1007/s13389-018-0184-y (p. 45).

50

https://doi.org/10.13154/tosc.v2020.iS1.390-416
https://doi.org/10.1007/978-3-662-48800-3_20
https://eprint.iacr.org/2015/1200
https://doi.org/10.1007/978-3-319-16715-2_20
https://eprint.iacr.org/2015/030
https://ascon.iaik.tugraz.at
https://ascon.iaik.tugraz.at
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://eprint.iacr.org/2018/767
https://doi.org/10.5220/0006387302370246
https://doi.org/10.5220/0006387302370246
https://eprint.iacr.org/2016/1053
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://eprint.iacr.org/2017/498
http://www.hitachi.com/rd/yrl/crypto/luffa/
https://cryptography.gmu.edu/athena/
https://eprint.iacr.org/2017/103
https://doi.org/10.1007/s13389-018-0184-y


[GMK16] HannesGroß, StefanMangard, andThomasKorak. “Domain-Oriented
Masking: Compact Masked Hardware Implementations with Arbi-
trary Protection Order”. In: TIS@CCS 2016. ACM, 2016, p. 3. doi:
10.1145/2996366.2996426. iacr: 2016/486 (p. 45).

[GP99] Louis Goubin and Jacques Patarin. “DES and Differential Power Anal-
ysis (The "Duplication" Method)”. In: CHES’99. Vol. 1717. LNCS.
Springer, 1999, pp. 158–172. doi: 10.1007/3-540-48059-5 (p. 25).

[GRW16] Faruk Göloğlu, Vincent Rijmen, and Qingju Wang. “On the division
property of S-boxes”. 2016. iacr: 2016/188 (p. 36).

[GWDE15] Hannes Gross, Erich Wenger, Christoph Dobraunig, and Christoph
Ehrenhöfer. “Suit up! –Made-to-MeasureHardware Implementations
of Ascon”. In: DSD 2015. IEEE Computer Society, 2015, pp. 645–652.
doi: 10.1109/DSD.2015.14. iacr: 2015/034 (pp. 19, 43, 45).

[JLM14] Philipp Jovanovic, Atul Luykx, and Bart Mennink. “Beyond 2c/2 Se-
curity in Sponge-Based Authenticated Encryption Modes”. In: ASI-
ACRYPT 2014. Vol. 8873. LNCS. Springer, 2014, pp. 85–104. doi: 10.
1007/978-3-662-45611-8_5. iacr: 2014/373 (p. 29).

[KPC20] Mustafa Khairallah, Thomas Peyrin, and Anupam Chattopadhyay.
“Preliminary Hardware Benchmarking of a Group of Round 2 NIST
Lightweight AEAD Candidates”. IACR Cryptology ePrint Archive,
Report 2020/1459. 2020. iacr: 2020/1459 (p. 41).

[Küç09] Özgül Küçük. “The Hash Function Hamsi”. Submission to NIST
(Round 2). 2009. url: http://homes.esat.kuleuven.be/~okucuk/
hamsi/ (p. 26).

[LDW17] Zheng Li, Xiaoyang Dong, and XiaoyunWang. “Conditional Cube At-
tack on Round-Reduced ASCON”. In: IACR Transactions on Symmet-
ric Cryptology 2017.1 (2017), pp. 175–202. doi: 10.13154/tosc.v2017.
i1.175- 202. iacr: 2017/160. url: https://github.com/lizhengcn/
Ascon_test (pp. 28, 35).

[LTW18] Gregor Leander, Cihangir Tezcan, and Friedrich Wiemer. “Searching
for Subspace Trails and Truncated Differentials”. In: IACR Trans-
actions on Symmetric Cryptology 2018.1 (2018), pp. 74–100. doi:
10.13154/tosc.v2018.i1.74-100 (pp. 28, 36).

[LZWW17] Yanbin Li, Guoyan Zhang, Wei Wang, and Meiqin Wang. “Cryptanal-
ysis of round-reduced ASCON”. In: SCIENCE CHINA Information
Sciences 60.3 (2017), p. 38102. doi: 10.1007/s11432- 016- 0283- 3
(p. 28).

[MHN+20] Kamyar Mohajerani, Richard Haeussler, Rishub Nagpal, Farnoud
Farahmand, Abubakr Abdulgadir, Jens-Peter Kaps, and Kris Gaj.
“FPGABenchmarking of Round 2Candidates in theNIST Lightweight
Cryptography Standardization Process: Methodology, Metrics, Tools,
and Results”. IACR Cryptology ePrint Archive, Report 2020/1207.
2020. iacr: 2020/1207 (p. 41).

51

https://doi.org/10.1145/2996366.2996426
https://eprint.iacr.org/2016/486
https://doi.org/10.1007/3-540-48059-5
https://eprint.iacr.org/2016/188
https://doi.org/10.1109/DSD.2015.14
https://eprint.iacr.org/2015/034
https://doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/978-3-662-45611-8_5
https://eprint.iacr.org/2014/373
https://eprint.iacr.org/2020/1459
http://homes.esat.kuleuven.be/~okucuk/hamsi/
http://homes.esat.kuleuven.be/~okucuk/hamsi/
https://doi.org/10.13154/tosc.v2017.i1.175-202
https://doi.org/10.13154/tosc.v2017.i1.175-202
https://eprint.iacr.org/2017/160
https://github.com/lizhengcn/Ascon_test
https://github.com/lizhengcn/Ascon_test
https://doi.org/10.13154/tosc.v2018.i1.74-100
https://doi.org/10.1007/s11432-016-0283-3
https://eprint.iacr.org/2020/1207


[Nat08] National Institute of Standards and Technology. “FIPS PUB 180-3:
Secure Hash Standard”. Federal Information Processing Standards
Publication 180-3, U.S. Department of Commerce. 2008. url: http://
csrc.nist.gov/publications/fips/fips180-3/fips-180-3_final.pdf

(p. 26).
[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. “Secure Hard-

ware Implementation ofNonlinear Functions in the Presence ofGlitches”.
In: Journal of Cryptology 24.2 (2011), pp. 292–321. doi: 10.1007/
s00145-010-9085-7 (p. 25).

[RHSS21] Raghvendra Rohit, Kai Hu, Sumanta Sarkar, and Siwei Sun. “Misuse-
FreeKey-Recovery andDistinguishingAttacks on 7-RoundAscon”. In:
IACR Transactions of Symmetric Cryptology 2021.1 (2021), pp. 130–
155. doi: 10.46586/tosc.v2021.i1.130-155 (p. 28).

[RPM] Sebastian Renner, Enrico Pozzobon, and Jürgen Mottok. “NIST LWC
Software Performance Benchmarks on Microcontrollers”. url: https:
//lwc.las3.de/ (visited on 05/15/2021) (p. 41).

[Tez16] Cihangir Tezcan. “Truncated, Impossible, and Improbable Differential
Analysis of Ascon”. In: ICISSP 2016. SciTePress, 2016, pp. 325–332.
doi: 10.5220/0005689903250332. iacr: 2016/490 (pp. 28, 33).

[Tez20] Cihangir Tezcan. “Analysis of Ascon, DryGASCON, and Shamash
Permutations”. In: International Journal of Information Security Sci-
ence 9.3 (2020), pp. 172–187. url: https://www.ijiss.org/ijiss/
index.php/ijiss/article/view/762 (pp. 28, 33).

[Tod15] Yosuke Todo. “Structural Evaluation by Generalized Integral Prop-
erty”. In: EUROCRYPT 2015. Vol. 9056. LNCS. Springer, 2015, pp. 287–
314. doi: 10.1007/978-3-662-46800-5_12. iacr: 2015/090 (pp. 28, 36).

[Wea] RhysWeatherley. “Lightweight Cryptography Primitives”. url: https:
//rweather.github.io/lightweight-crypto/ (visited on 05/15/2021)
(p. 41).

[ZDW19] Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. “Collision Attacks on
Round-Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash”. IACR Cryp-
tology ePrint Archive, Report 2019/1115. 2019. iacr: 2019/1115 (p. 28).

52

http://csrc.nist.gov/publications/fips/fips180-3/fips-180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips-180-3_final.pdf
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.46586/tosc.v2021.i1.130-155
https://lwc.las3.de/
https://lwc.las3.de/
https://doi.org/10.5220/0005689903250332
https://eprint.iacr.org/2016/490
https://www.ijiss.org/ijiss/index.php/ijiss/article/view/762
https://www.ijiss.org/ijiss/index.php/ijiss/article/view/762
https://doi.org/10.1007/978-3-662-46800-5_12
https://eprint.iacr.org/2015/090
https://rweather.github.io/lightweight-crypto/
https://rweather.github.io/lightweight-crypto/
https://eprint.iacr.org/2019/1115

	Introduction
	Specification
	Algorithms in the Ascon Cipher Suite
	Recommended Parameter Sets
	State and Notation
	Authenticated Encryption
	Initialization
	Processing Associated Data
	Processing Plaintext/Ciphertext
	Finalization

	Hashing
	Initialization
	Absorbing Message
	Squeezing

	Permutation
	Addition of Constants
	Substitution Layer
	Linear Diffusion Layer


	Security Claims
	Authenticated Encryption
	Hashing

	Features
	Properties of Ascon
	Features for Lightweight Applications
	Features for High-Performance Applications


	Design Rationale
	Design of the Modes
	Choice of the Mode for Authenticated Encryption
	Choice of the Mode for Hashing and Extendable Output Function
	Choice of the Family Members
	Choice of the Initial Values

	Design of the Permutation
	Choice of the Round Constants
	Choice of the Substitution Layer
	Choice of the Linear Diffusion Layer


	Security Analysis
	Overview of Best Known Attacks
	Analysis of the Modes
	Hashing and Extendable Output Function
	Authenticated Encryption

	Analysis of the Permutation
	Differential and Linear Properties
	Algebraic Properties
	Other Properties

	List of Published Analysis

	Implementation
	Size-Optimized Implementations
	Efficiency for Short Messages
	Flexibility of the Permutation
	Further Reading on Efficiency
	Implementation Security and Robustness


