
--

From: Johann Großschädl <johann.groszschaedl@gmail.com>
Sent: Thursday, July 25, 2019 3:23 PM
To: lightweight-crypto
Cc: lwc-forum@list.nist.gov
Subject: OFFICIAL COMMENT: SPARKLE

Dear LWC-Forum,

The SPARKLE team has developed new Assembler implementations of the
SPARKLE256/384/512 permutation family for the ARMv7-M architecture, e.g.
Cortex-M3 and M4 microcontrollers. These new implementations are between
2.7 and 3.2 times faster than the timings given in Section 5.4 of the specification document that we submitted in March. The
following table summarizes our results and compares them with some other ARX-based and ARX-like permutations for which the
designers provided optimized Assembler code for ARMv7-M.

Permutation | Execution time | Code size
==
Gimli | 1041 cycles | 3950 bytes

SNEIK 1.1 fast (6r) | 1227 cycles | 568 bytes
SNEIK 1.1 fast (7r) | 1427 cycles | 568 bytes
SNEIK 1.1 fast (8r) | 1627 cycles | 568 bytes

SPARKLE256 (slim) | 632 cycles | 348 bytes
SPARKLE384 (slim) | 1016 cycles | 476 bytes
SPARKLE512 (slim) | 1528 cycles | 624 bytes

Xoodoo | 657 cycles | 2376 bytes

All execution times include the full function-call overhead and were determined with the cycle-accurate instruction-set simulator
of Keil MicroVision v5.24.2.0 using a generic Cortex-M3 model as target device.
However, as mentioned on http://www2.keil.com/mdk5/simulation, the simulator assumes ideal conditions for memory
accesses and does not simulate wait states for data or code fetches. Therefore, the timings in the table above should be seen as
lower bounds of the actual execution times one will get on a real Cortex-M3 device. The fact that the Keil simulator does not
take Flash wait-states into account may also explain why our simulated execution time for the Gimli permutation (1041 cycles)
differs slightly from the 1047 cycles specified in Section 5.5 of http://gimli.cr.yp.to/gimli-20170627.pdf.

We took the source code of Gimli, SNEIK, and Xoodoo from [1], [2], and [3], respectively, whereby we converted the former two
from the GNU syntax to the Keil syntax. The permutations of Gimli and Xoodoo are fully unrolled, which explains their relatively
large code size. On the other hand, the main loop of the SNEIK and SPARKLE permutations is "rolled," and the number of loop
iterations can be passed as an argument to the function that implements the permutation. The execution time of SNEIK and
SPARKLE could be further improved by full loop unrolling.

The source code of the three SPARKLE permutations is available online at https://www.cryptolux.org/index.php/Sparkle

1

http://www2.keil.com/mdk5/simulation
http://gimli.cr.yp.to/gimli-20170627.pdf
https://www.cryptolux.org/index.php/Sparkle

The current version of the Assembler code can only be used with the Keil tools, but we plan to provide versions for the GNU
Assembler within the next few days.

Kind regards,

Johann (for the SPARKLE team)

[1] https://www.cryptolux.org/index.php/Sparkle, function gimli() in the the arm-m3 sub-directory.
[2] http://github.com/PQShield/sneik/tree/master/common/sneik_f512 , function sneik_f512() in the file
sneik_f512_armv7_fast.S.
[3] http://github.com/XKCP/XKCP/tree/master/lib/low/Xoodoo , function
Xoodoo_Permute_12rounds() in the file
OptimizedAsmARM/Xoodoo-uf-armv7m-le-armcc.s

2

http://github.com/XKCP/XKCP/tree/master/lib/low/Xoodoo
http://github.com/PQShield/sneik/tree/master/common/sneik_f512
https://www.cryptolux.org/index.php/Sparkle

