
Updates on COMET

Shay Gueron1,2 , Ashwin Jha3 , Mridul Nandi3

{shay.gueron,ashwin.jha1991,mridul.nandi}@gmail.com

1University of Haifa, Israel
2Amazon Web Services Inc., Seattle, USA
3Indian Statistical Institute Kolkata, India

September 18, 2020

1 Security Proof

A detailed security proof for COMET has been recently submitted [2] to NIST Lightweight Cryptography
(LwC) Workshop 2020. Here, we briefly discuss the implications of the formal security bounds proved in [2].

Let D denote the total no. of bytes in all queries to the COMET mode of operation, and T denote the
number of direct invocations of the underlying block cipher. Traditionally, D is called the data complexity
or online query limit and T is called the time complexity or offline query limit.

In [2, Section 7.1], we show that the attack advantage of any adversary A against COMET-128 and
COMET-64 are bounded as follows:

D T DT
Advaead + + ,COMET-128(A)≤

263.75 2125.19 2184.24
(1)

D T DT D2T
Advaead

COMET-64(A)≤ + + + ,
258.98 2121.58 2152.24 2193.67

Eq. (1) justifies our security claims for COMET-128 (primary version) as given in [1, Table 3], i.e., secure
< 2119 < 2112while D < 264 and T . For COMET-64, Eq. (1) justifies security while D < 240 and T .

Our data complexity bounds for COMET-64 (secondary version) is slightly less than the claimed complexity
(D < 245). However, we note that there is no matching attack, and it is possible that the data complexity
can be improved further.

2 Third-party Security Analysis

We briefly discuss two cryptanalysis results on COMET. Although these results do not threaten the security
claims of COMET, they help in establishing additional confidence on the security claims of COMET.

Khairallah’s Result [3]: Khairallah [3] studied COMET-128 under the weak key model. While the
author also presents a multi-user analysis, here we only concentrate on the single key analysis. The main
observation of Khairallah’s attack is the fact that the key updation function permute only applies to the
least significant (LS) 64 bits of the key. So, if the LS 64 bits are all zeroes than the key remains unchanged
throughout an encryption query, which can be used to construct forgery and key recover attack. However,
we note that the probability that the LS 64 bits are all zeroes is roughly D/268 (D is in bytes), i.e., the attack
requires approx. 268 bytes of data which breaches the prescribed data limits by a factor of 24 .

Observations of Bernstein, Gilbert and Turan [4]: In a private letter, Bernstein, Gilbert and
Turan, proposed two more observations on the security of COMET-64. The first observation builds upon
Khairallah’s observation, by constructing an encryption query only version of the previous attack. However,
the data complexity of their attack is worse than the previous attack. Specifically, it requires about 296 data
blocks.

The second attack is a slide attack that tries to match two separate encryption query states (key and
input). This strategy requires data complexity about 264 blocks. Hence, again, their observations do not
threaten the security claims of COMET.

We emphasize that all of the above given attack strategies are handled in the detailed security proof submitted
[2] to the NIST LwC workshop 2020. In summary, the above given third-party analysis and the security
bound given in Eq. (1) helps in improving the confidence on the security claims of COMET.

1

mailto:shay.gueron@gmail.com,ashwin.jha1991@gmail.com,mridul.nandi@gmail.com

3 Third-party Implementation Results

Hardware implementation results: In a recent work [5], Rezvani et al. presented hardware imple-
mentation and performance results for several second round candidates, including COMET-128 AES-128/128
and COMET-128 CHAM-128/128, on multiple platforms including Artix-7, Spartan-6. In the following, we
highlight some of their results:

• COMET-128 AES-128/128 and Ascon-AEAD achieve the highest throughput when compared to other
implemented ciphers such as SpoC, GIFT-COFB and Sparkle.

• COMET-128 AES-128/128 and Ascon-AEAD are the most energy efficient ciphers among the above
mentioned candidates, with COMET-128 AES-128/128 performing slightly better than Ascon-AEAD.

• COMET-128 CHAM-128/128, SpoC and GIFT-COFB have the lowest increase in dynamic power with
increasing frequency.

Apart from standalone implementation, in a recent paper, Rezvani et al. [6] study the simultaneous de-
ployment of COMET-128 AES-128/128 and COMET-128 CHAM-128/128 with GIFT-COFB. They show that
on Artix-7 FPGA a simultaneous deployment of the three ciphers uses only 55% of the combined area of
separate implementation of each cipher.

Software implementation results: In [7, 8], Weatherley has given an extensive implementation and
benchmarking of round 2 candidates, including COMET-128 CHAM-128/128, COMET-64 CHAM-64/128 and
COMET-64 SPECK-64/128, on 8-bit and 32-bit microcontrollers. As per the results available in [7, 8], the
COMET implementations outperform all other candidates with a significant margin.

4 Target Area and Comparison with NIST Standard

Target Area of Application: Based on third-party hardware and software implementations and our
design goals, we recommend COMET for both hardware oriented applications like RFID-based applications
and IOT sensors, and software oriented applications like low-end microcontroller-based embedded systems.
Specific variants of COMET to use depends upon the exact requirements.

Comparison with Current NIST Standard: We compare the performance characteristic of COMET
with AES-GCM (the relevant NIST standard).
Hardware: On Artix-7 FPGA, COMET outperforms AES-GCM in the following parameters:

• Area: As per [5], COMET-128 AES-128/128 and COMET-128 CHAM-128/128 require 2753 and 2214
LUTs, while AES-GCM requires 3268 LUTs. In fact, in a recent private communication, Reznavi et al.
state that COMET-128 CHAM-128/128’s area has been further improved to 1664 LUTs, almost twice
as low as AES-GCM.

• Frequency: As per [5], COMET-128 AES-128/128 achieves higher frequency than AES-GCM (251 vs 222
MHz).

• Energy: As per [5, 9], COMET-128 AES-128/128 and COMET-128 CHAM-128/128 consume lesser en-
ergy as compared to AES-GCM at comparable frequencies. Specifically, COMET-128 AES-128/128 and
COMET-128 CHAM-128/128 consume 0.16 and 0.57 nJ/bit at 40 MHz, whereas AES-GCM consumes
1.15 nJ/bit at 50 MHz.

Software: While we could not find comparable implementation and benchmarking values for COMET and
AES-GCM in literature, we expect COMET to perform better than AES-GCM in terms of both speed and
memory usage.

5 Proposed Tweak in the Design

We propose two small tweaks in the COMET mode of operation (resulting design is called COMETv2), that
reduce memory usage by n bits and avoid the attack strategies given in [3, 4]. These changes are color
coded (additions/modifications are colored blue and deletions are colored red) in Algorithm 1-3. Note that,
we reuse the notations and definitions exactly as in the specification file [1]. To summarize, we have made
following changes:

2

Algorithm 1 Encryption/Decryption algorithm in COMETv2.

1: function COMETv2-n[IC] .E(K, N,A,M)
2: C ← ⊥
3: (Y0, Z0, a, m, ̀) ← init(K, N, A, M)
4: if a 6= 0 then
5: (Ya, Za) ← proc ad(Y0, Z0, A)

6: if m 6= 0 then
7: (Y`, Z`, C) ← proc pt(Ya, Za , M)

8: T ← proc tg(Y`, Z`)
9: return (C, T)

1: function COMETv2-n[IC].D(K, N,A,C, T)
2: M ← ⊥
3: is auth ← 0
4: (Y0, Z0, a, m, ̀) ← init(K, N,A, C)
5: if a =6 0 then
6: (Ya, Za) ← proc ad(Y0, Z0 , A)

7: if m =6 0 then
8: (Y`, Z`,M) ← proc ct(Ya, Za, C)

9: T 0 ← proc tg(Y`, Z`)
10: if T 0 = T then
11: is auth ← 1
12: else
13: M ← ⊥
14: return (is auth,M)

1. Change in control bit absorption: In the current version, the control bit information for the current
state requires knowledge of the next input (AD or PT) block. This requires an extra n-bit memory to
store the next input block.

In the proposed tweak, the control bits are XORed at the point where the first/last AD or PT blocks
are absorbed (in v1 control bits are XORed one block earlier). This change was done based on our
personal communication with William Diehl, one of the authors of [5]. This small change is expected to
save the additional n-bit memory (or register) required earlier, as now we do not need the information
about next block.

2. Change in permute Function: In the current version, the permute function only updates the least
significant κ/2 = 64 bits of the input key. This is done via powering up-based masking in the field F64

2
64 4 3using the primitive polynomial x + x + x + x + 1.

In the proposed tweak, the permute function updates the least significant κ − 8 = 120 bit of the
input key. This is done via powering up-based masking over F120 (instead of F64) using the primitive 2 2

120 9 6 2polynomial x + x + x + x + 1. This small change increases the data complexity of the attack
strategy in [3, 4] (see section 2 for attack details), from D ≈ 268 to D ≈ 2124 (in case of COMET-128).

5.1 Security of COMETv2

In [2], we show the following security bounds for COMETv2-128 and COMETv2-64:

D T DT
Advaead + + ,COMETv2-128(A)≤

2119.53 2125.19 2184.24
(2)

D T DT
Advaead

COMETv2-64(A)≤ + + ,
267 2121.58 2152.24

< 2184In other words, COMETv2-128 is secure while D < 2119 and T < 2125 and DT , and COMET-64 is
secure while D < 267 and T < 2121 and DT < 2152 .

References

[1] Gueron, S., Jha A., Nandi M.: COMET: Counter Mode Encryption with Tag. Submission to NIST
Lightweight Cryptography Standardization Process (round 2) (2019)

[2] Gueron, S., Jha A., Nandi M.: Revisiting the Security of COMET Authentication Scheme. In submission
to NIST Lightweight Cryptography Workshop 2020 (2020)

[3] Khairallah, M.: Weak Keys in the Rekeying Paradigm: Application to COMET and mixFeed. In IACR
ToSC 2019(4):272–289 (2019)

[4] Bernstein, D.J., Gilbert, H., Turan, M.S.: Observations on COMET-64. Personal communication (2020)

[5] Rezvani, B., Coleman, F., Sachin, S., Diehl, W.: Hardware Implementations of NIST Lightweight
Cryptographic Candidates: A First Look. IACR Cryptology ePrint Archive 2019:824 (2019)

3

Algorithm 2 Main modules of COMETv2.

1: function init(K,N, A, M)

2: if n = 64 then

3: (Y0, Z0) ← init state 64(K, N)

4: else

5: (Y0, Z0) ← init state 128(K, N)

6: a ← d|A|/ne
7: m ← d|M |/ne
8: ` ← a + m

9: return (Y0, Z0, a, m, ̀)

10: function round(Y, Z, I, ctrl,b)
::

Z011: ← get blk key(Z)

12: X ← IC(Z0, Y)

13: Z ← Z0 ⊕ ctrl
::::::::::

14: if b = 0 then

15: Y ← update(X, I, 0)

16: return (Y, Z)

17: else

18: (Y,O) ← update(X, I, b)

19: return (Y, Z,O)

20: function proc ad(Y0, Z0, A)

21: (Aa−1, . . . , A0) ← parse(A)

22: Z0 ← Z0 ⊕ 000010κ−5 ctrl ← 000010κ−5
::::::::::::

23: for i = 0 to a − 2 do

24: (Yi+1, Zi+1) ← round(Yi, Zi, Ai, ctrl,0)
::

25: ctrl ← 0κ
:::::::

26: if n - |Aa−1| then

27: Za−1 ← Za−1 ⊕ 000100κ−5 ctrl ← ctrl ⊕ 000100κ−5
:::::::::::::::::

28: (Ya, Za) ← round(Ya−1, Za−1, Aa−1, ctrl,0)
::

29: return (Ya, Za)

1: function proc pt(Ya, Za,M)

2: (Mm−1, . . . ,M0) ← parse(M)

3: Za ← Za ⊕ 001000κ−5 ctrl ← 001000κ−5
::::::::::::

4: for j = 0 to m − 2 do

5: k ← a + j

6: (Yk+1, Zk+1, Cj) ← round(Yk , Zk ,Mj , ctrl,1)
::

7: ctrl ← 0κ
:::::::

8: if n - |Mm−1| then

9: Z`−1 ← Z`−1 ⊕ 010000κ−5 ctrl ← ctrl ⊕ 010000κ−5
:::::::::::::::::

10: (Y`, Z`, Cm−1) ← round(Y`−1, Z`−1,Mm−1 , ctrl,1)
::

11: C ← (Cm−1, . . . , C0)

12: return (Y`, Z`, C)

13: function proc ct(Ya, Za , C)

14: (Cm−1, . . . , C0) ← parse(C)

15: Za ← Za ⊕ 001000κ−5 ctrl ← 001000κ−5
:::::::::::::

16: for j = 0 to m − 2 do

17: k ← a + j

18: (Yk+1, Zk+1,Mj) ← round(Yk , Zk , Cj , ctrl,2)
::

19: ctrl ← 0κ
:::::::

20: if n - |Cm−1| then

21: Z`−1 ← Z`−1 ⊕ 010000κ−5 ctrl ← ctrl ⊕ 010000κ−5
::::::::::::::::

22: (Y`, Z`,Mm−1) ← round(Y`−1, Z`−1 , Cm−1 , ctrl,2)
::

23: M ← (Mm−1, . . . ,M0)

24: return (Y`, Z`,M)

25: function proc tg(Y`, Z`)

26: Z` ← Z` ⊕ 100000κ−5

27: Z0 ← get blk key(Z`)`

28: T ← IC(Z0 , Y`)`

29: return T

4

�

[6] Rezvani, B., Conroy, T., Beckwith, L., Bozzay, M., Laffoon, T., McFeeters, D., Shi, Y., Vu, M., Diehl, W.:
Efficient Simultaneous Deployment of Multiple Lightweight Authenticated Ciphers. IACR Cryptology
ePrint Archive 2020:609 (2020)

[7] Weatherley, R.: Lightweight Cryptography Primitives – Performance on 32-bit platforms – Overall
group rankings. Online: https://rweather.github.io/lightweight-crypto/performance.html#
perf_overall (2020)

[8] Weatherley, R.: Lightweight Cryptography Primitives – Performance on AVR – Overall group rank-
ings. Online: https://rweather.github.io/lightweight-crypto/performance_avr.html#perf_
avr_overall (2020)

[9] Abdulgadir, A., Diehl, W., Kaps, J.: An Open-Source Platform for Evaluation of Hardware Implemen-
tations of Lightweight Authenticated Ciphers. In proceedings of International Conference on ReConFig-
urable Computing and FPGAs – ReConFig 2019, pages 1–5 (2019)

Algorithm 3 Various sub-modules of COMETv2. Here, dxer and bxcr respectively denote the most signifi-
cant and least significant r bits of x. α denotes the primitive element of Fp

2.

1: function chop(I, ̀)

2: if ` > n then

3: return ⊥

4: else

5: return i`−1 . . . i0

6: function parse(I)

7: ` = d|I|/ne
8: if ` = 0 then

9: return ⊥

10: else
n

11: (I`−1, . . . , I0) ← I

12: return (I`−1 , . . . , I0)

13: function opt pad0 ∗ 1(I)

14: if |I| = 0 or n - |I| then

15: ξ = n − (|I| mod n)

16: 1kII ← 0ξ−1

17: return I

18: function permute(Z0)

19: p ← κ/2 p ← κ − 8
::::::::
p

20: (Z1
0 , Z0

0) ← Z0 (Z1
0 , Z0

0) ← (dZ0 eκ−p, bZ0 cp),:::::::::::::::::::::
21: Z0 ← Z0

0 α

22: Z ← (Z0 , Z0)1

23: return Z

24: function init state 128(K, N)

25: Y ← K

26: Z ← IC(K, N)

27: return (Y, Z)

1: function init state 64(K, N)

2: Y ← IC(K, 0)

3: Z ← K ⊕ 0κ−r kN

4: return (Y, Z)

5: function shuffle(X0)
n/4

6: (X0 , X0 , X0 , X0) ← X0 3 2 1 0

7: X2 ← X2
0 o 1

8: X ← (X0 , X0 , X2, X
0)1 0 3

9: return X

10: function get blk key(Z0)

11: Z ← permute(Z0)

12: return Z

13: function update(X, I, b)

14: if b = 0 then

15: Y ← X ⊕ opt pad0 ∗ 1(I)

16: return Y

17: else

X018: ← shuffle(X)

19: O ← chop(X0 , |I|) ⊕ I

20: if b = 1 then

21: Y ← X ⊕ opt pad0 ∗ 1(I)

22: else if b = 2 then

23: Y ← X ⊕ opt pad0 ∗ 1(O)

24: return (Y, O)

5

https://rweather.github.io/lightweight-crypto/performance.html#perf_overall
https://rweather.github.io/lightweight-crypto/performance.html#perf_overall
https://rweather.github.io/lightweight-crypto/performance_avr.html#perf_avr_overall
https://rweather.github.io/lightweight-crypto/performance_avr.html#perf_avr_overall

	Security Proof
	Third-party Security Analysis
	Third-party Implementation Results
	Target Area and Comparison with NIST Standard
	Proposed Tweak in the Design
	Security of

