PIR with Nearly Optimal Online Time and Bandwidth

Elaine Shi (CMU)

Joint work with Aqeel, Chandrasekaran, and Maggs

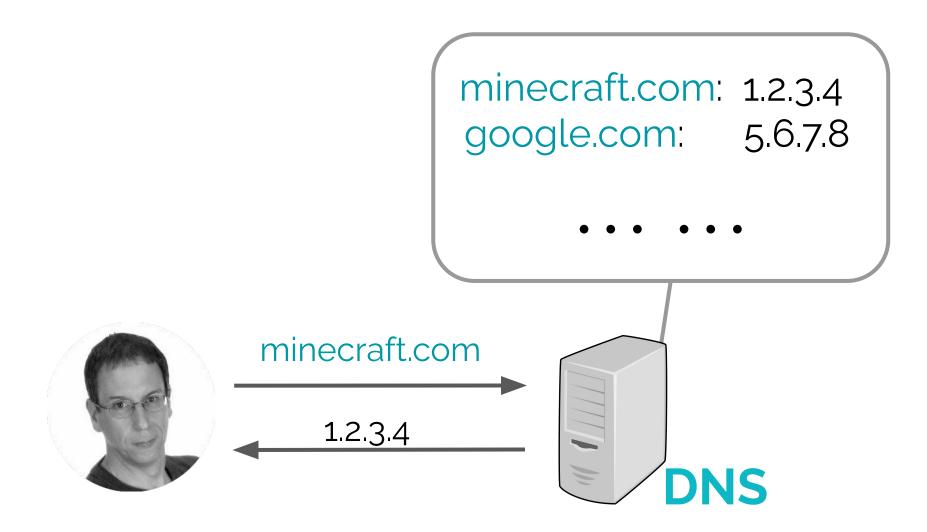
To appear in CRYPTO'21

Oblivious DNS Deployed by Cloudflare and Apple

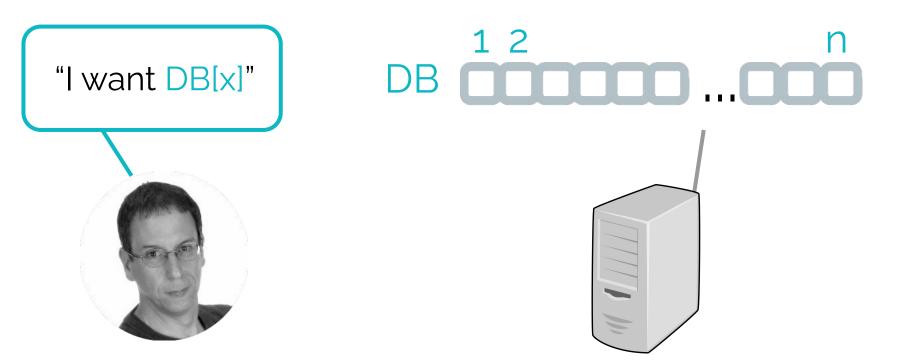
Nick Feamster Follow Dec 8, 2020 · 5 min read ★

Enable Private DNS with 1.1.1.1 on Android 9 Pie

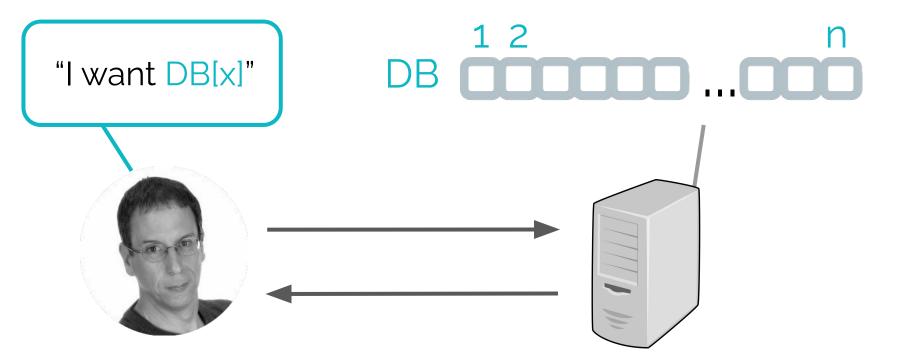
08/16/2018

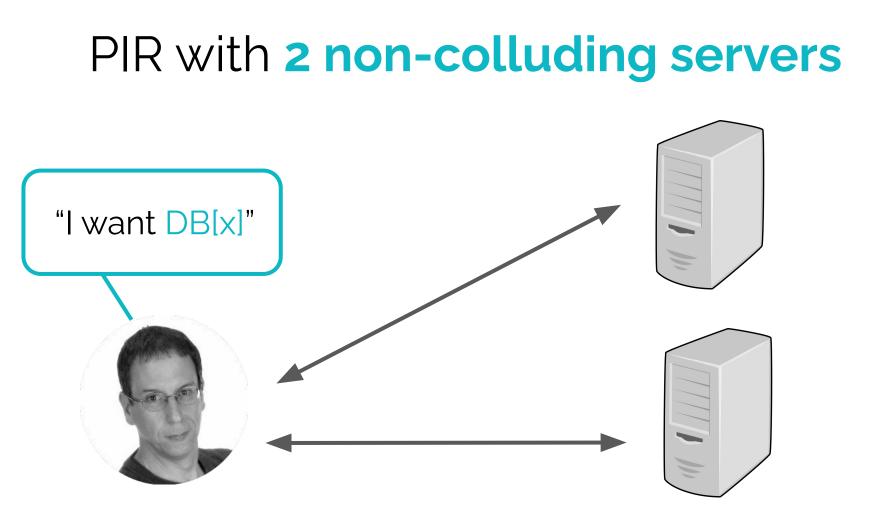


Problem Definition



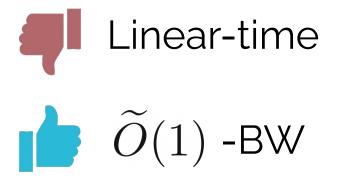
Problem Definition





Classical PIR

(no preprocessing)



Classical PIR

(no preprocessing)

Linear-time $\widetilde{O}(1)$ -BW

Preprocessing PIR

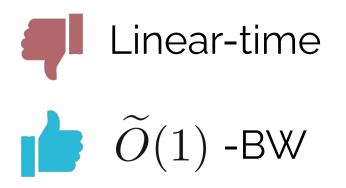
(one-time preprocessing, unbounded queries)

Classical PIR

(no preprocessing)

Preprocessing PIR

(one-time preprocessing, unbounded queries)



 $O(\sqrt{n})$ -time

 $O(\sqrt{n})$ -BW

[CK, Eurocrypt'19 best student paper] Assume: $O(\sqrt{n})$ client storage, OWF

The best of both worlds?

Linear-time
$$\widetilde{O}(1)$$
 -BW

$$O(\sqrt{n})$$
-time

$$O(\sqrt{n}) - BW$$

[CK, Eurocrypt'19 best student paper] Assume: $O(\sqrt{n})$ client storage, OWF

Our result: 2-server preprocessing PIR

$$O(\sqrt{n})$$
-time

$$\widetilde{O}(1)$$
 -BW

Assume: hardness of LWE $O(\sqrt{n})$ client storage

Open question:

A truly practical PIR scheme ?

Our scheme

Privately Puncturable Pseudorandom Sets

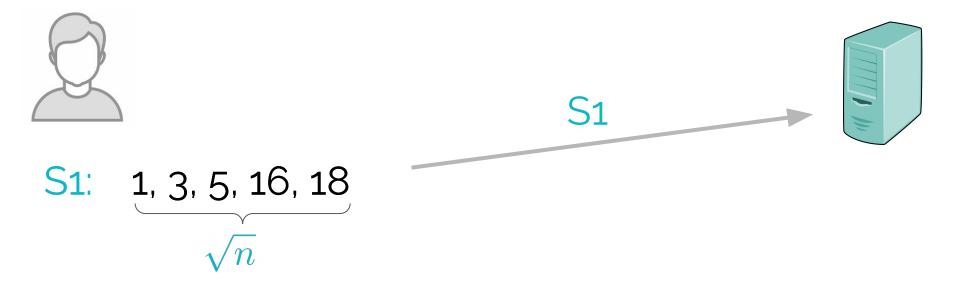
Inefficient strawman

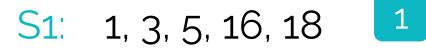
Inspired by [CK19]

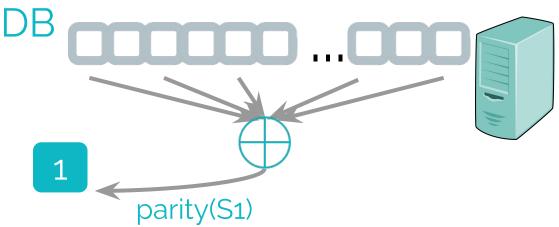
Samples a set: include each index w.p. $\frac{1}{\sqrt{n}}$

Samples a set: include each index w.p. $\frac{1}{\sqrt{n}}$

S1: 1, 3, 5, 16, 18

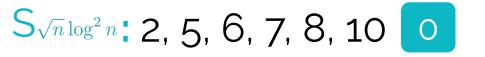


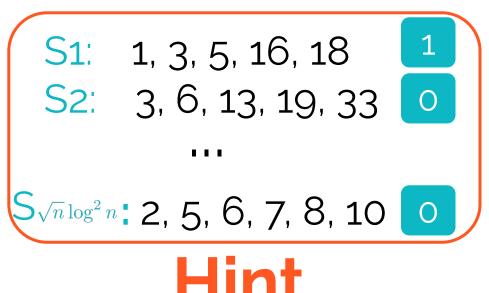




S1:1, 3, 5, 16, 181S2:3, 6, 13, 19, 330

. . .



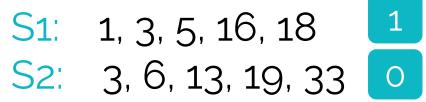


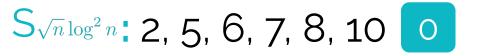
S1:1, 3, 5, 16, 181S2:3, 6, 13, 19, 330

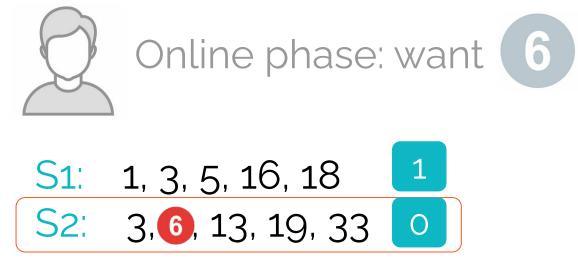
...

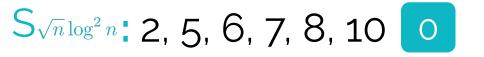
$S_{\sqrt{n}\log^2 n}$: 2, 5, 6, 7, 8, 10

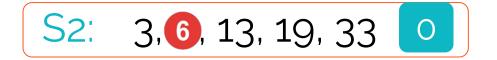
This requires $\widetilde{O}(n)$ client space!

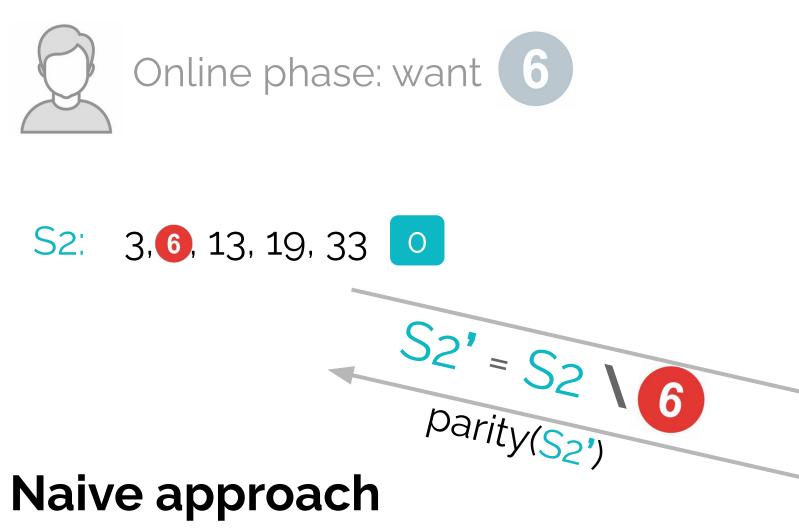












 $S_{2'} = S_{2} \setminus 6$

Parity(S2')

S2: 3,6, 13, 19, 33 O

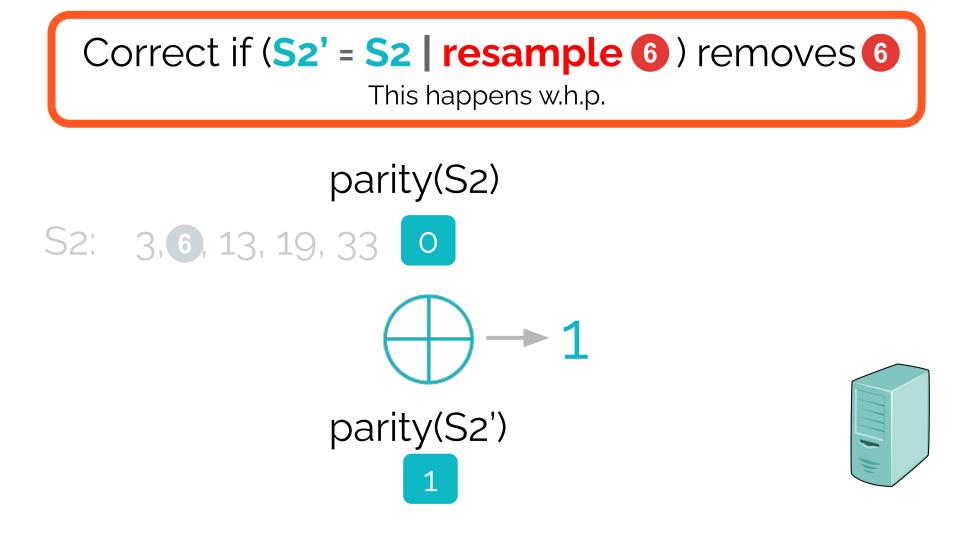
This leaks information

S2' = S2 | resample 6

S2: 3,6, 13, 19, 33 0

S2: 3,6, 13, 19, 33 0

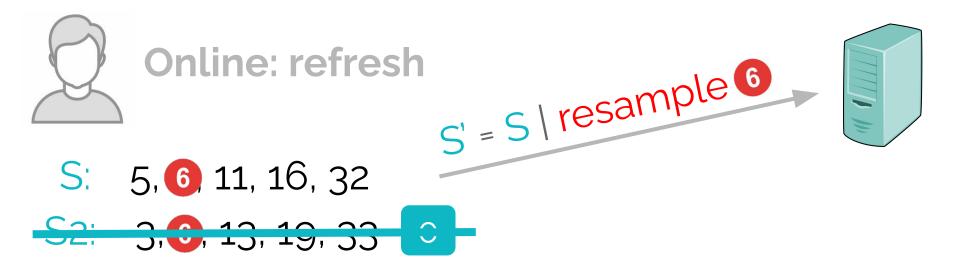




k-fold repetition amplifies correctness

parity(S2) S2: 3,6, 13, 19, 33 0 parity(S2')

Online: refresh



client space $\widetilde{O}(n)$ online BW $\widetilde{O}(\sqrt{n})$ online time $\widetilde{O}(\sqrt{n})$

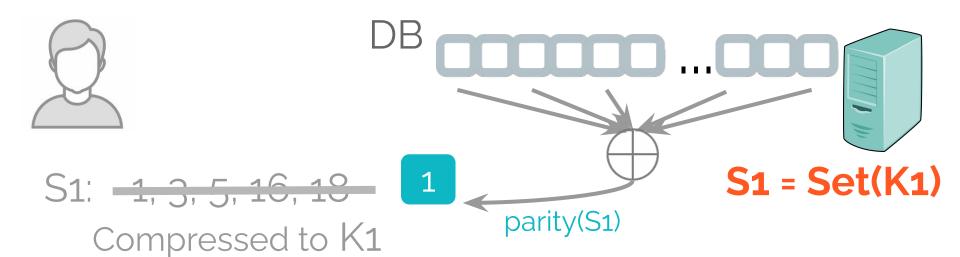
client space $\widetilde{O}(n)$ $\widetilde{O}(\sqrt{n})$ online BW $\widetilde{O}(\sqrt{n})$ \longrightarrow $\widetilde{O}(1)$ online time $\widetilde{O}(\sqrt{n})$ $\widetilde{O}(\sqrt{n})$

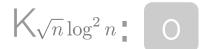
Our scheme

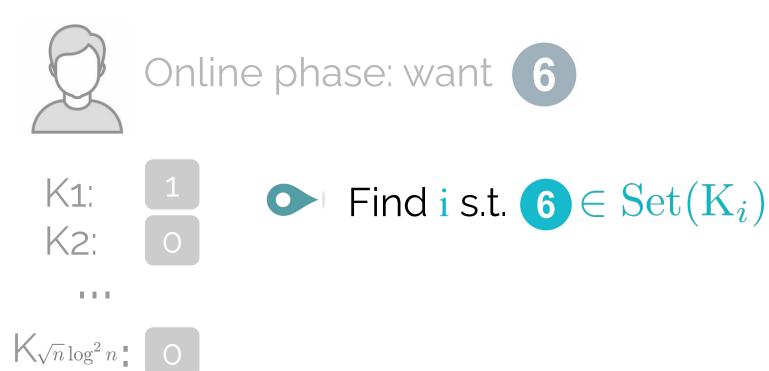
Privately Puncturable Pseudorandom Sets

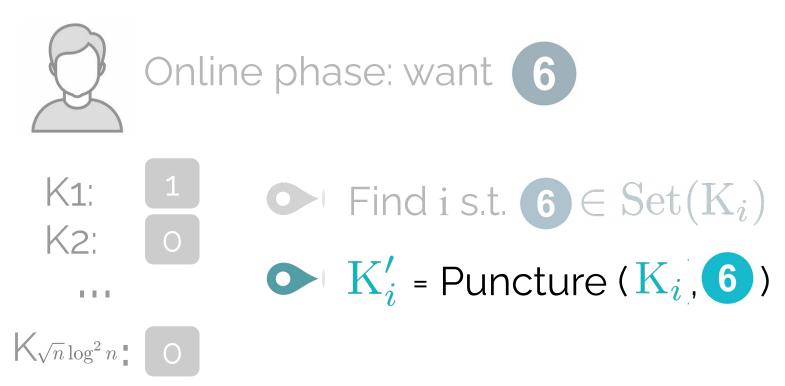
Inefficient strawman

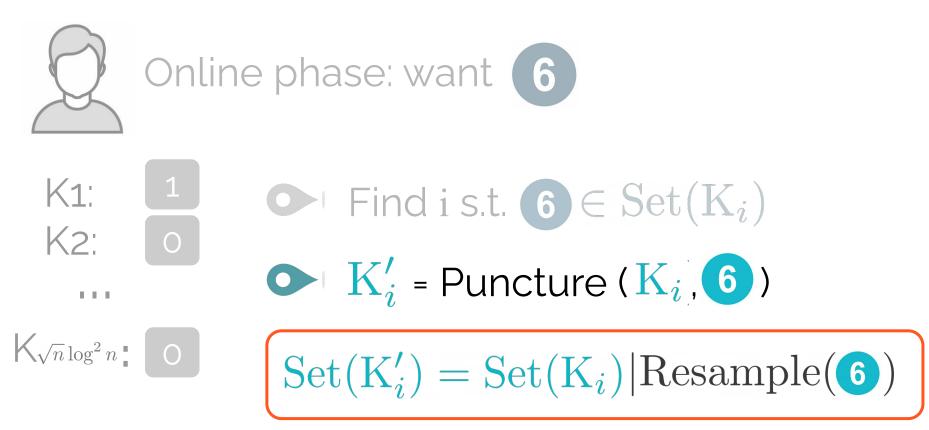
Compressed to K1

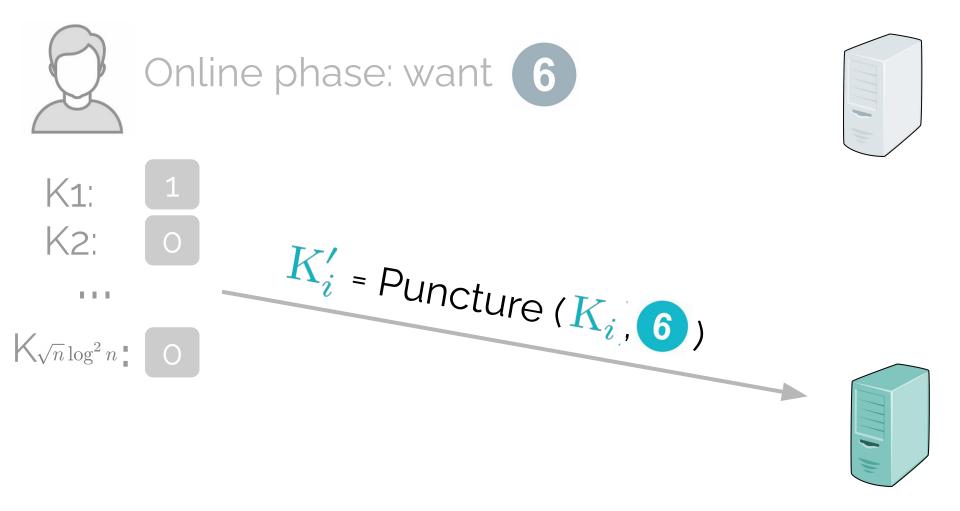


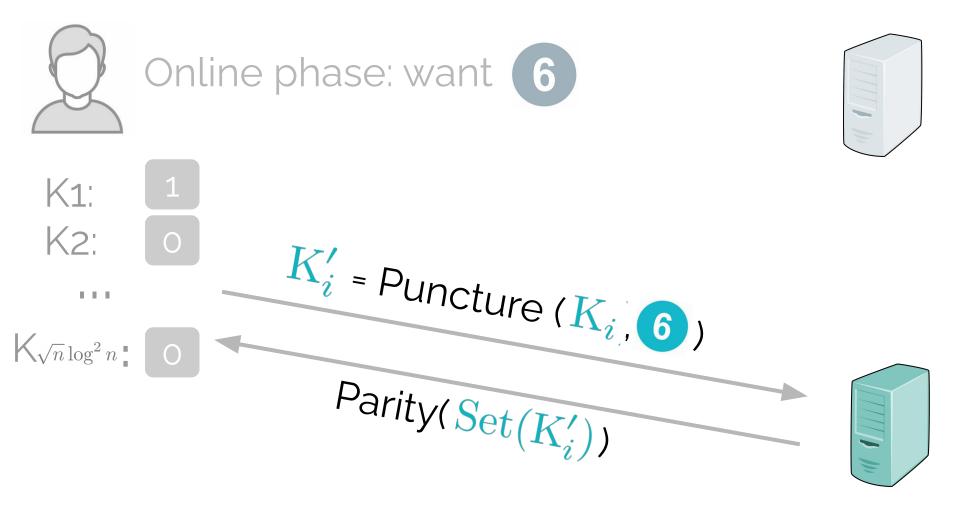












Puncturable Pseudorandom Set

- Sample a key K
- Set(K) enumerates the set
- Puncture(K, x) gives a key that resamples whether x is in the set

Punctured key hide punctured point

sees punctured key

Punctured key hide punctured point

Fast membership test : $\tilde{O}(1)$ $\hat{\Box}$ Find i s.t. $\mathbf{6} \in \operatorname{Set}(\mathrm{K}_i)$

Punctured key hide punctured point

Fast set enumeration : $\widetilde{O}(\sqrt{n})$

Punctured key hide punctured point

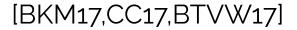
Fast membership test : $\widetilde{O}(1)$

Strawman using **Privately Puncturable PRF**

Ordinary PRF

$\begin{array}{rcl} K & \leftarrow & \operatorname{Gen}(1^{\lambda}) \\ y & \leftarrow & \operatorname{Eval}(K, x) \end{array}$

Privately Puncturable PRF



Privately Puncturable PRF

• Punctured key
$$K_x$$
 hides punctured point x
• $\operatorname{PEval}(K_x, x) \Longrightarrow$ pseudo-random

[BKM17,CC17,BTVW17]

Privately Puncturable PRF: known from LWE

• Punctured key K_x hides punctured point x• $\operatorname{PEval}(K_x, x) \Longrightarrow$ pseudo-random

[BKM17,CC17,BTVW17]

Strawman Puncturable Pseudorandom Set

6 is included iff PRF.Eval(K, 6) has $\frac{1}{2} \log n$ trailing Os

Strawman Puncturable Pseudorandom Set

6 is included iff PRF.Eval(K, 6) has $\frac{1}{2}\log n$ trailing Os

Would this work?

6 is included iff PRF.Eval(K, 6) has $\frac{1}{2}\log n$ trailing Os

PRF.Puncture(K, **6**) punctures **6**

Would this work?

6 is included iff PRF.Eval(K, 6) has $\frac{1}{2}\log n$ trailing Os

PRF.Puncture(K, **6**) punctures **6**

Set enumeration takes O(n) time!

Other strawman attempts

 $\begin{array}{ll} \operatorname{PRF.Eval}(K, 1) & x_1 \\ \operatorname{PRF.Eval}(K, 2) & \longrightarrow & x_2 \\ \end{array}$ $\begin{array}{ll} x_1 \\ x_2 \\ x_2 \\ \end{array}$ $\operatorname{PRF.Eval}(K, \sqrt{n}) & & x_{\sqrt{n}} \end{array}$

Set

Slow membership test!

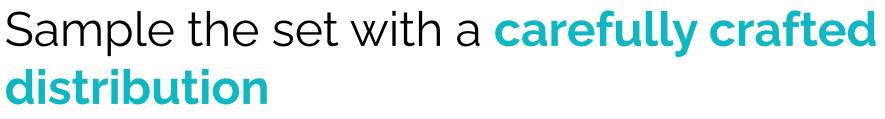
Our scheme

Privately Puncturable Pseudorandom Sets

Inefficient strawman

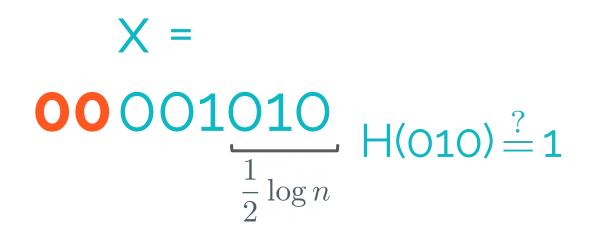
Key Insight

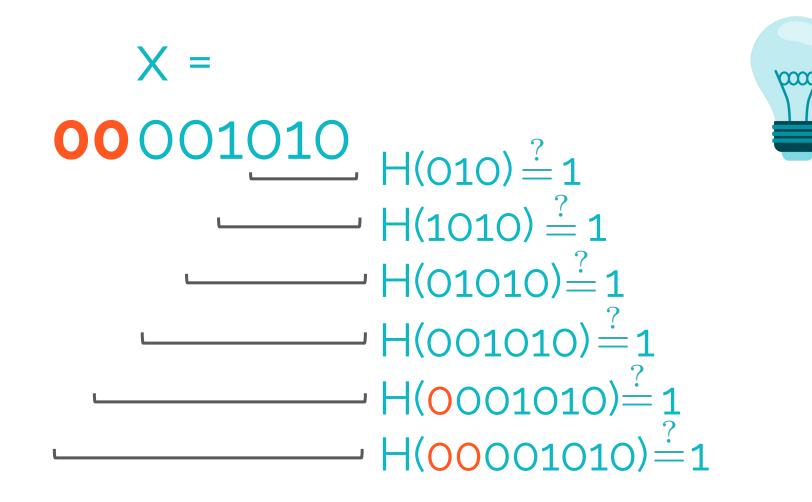
 ∞

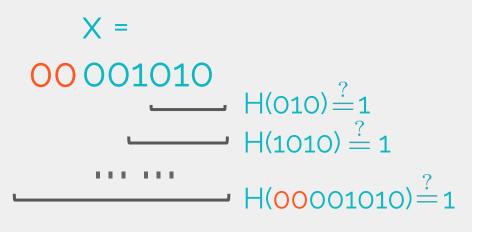


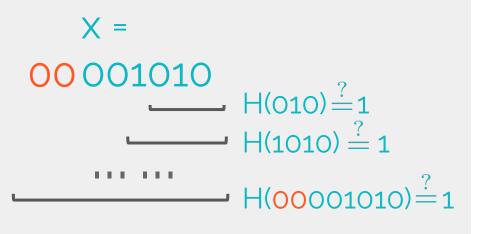
- Fast membership test
- Fast set enumeration
- **Breaks**" puncturing "just a little"

X = 001010

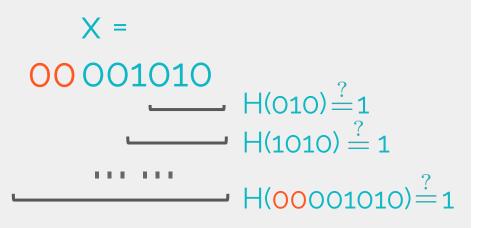


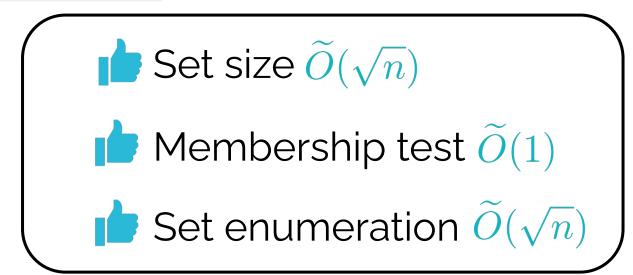






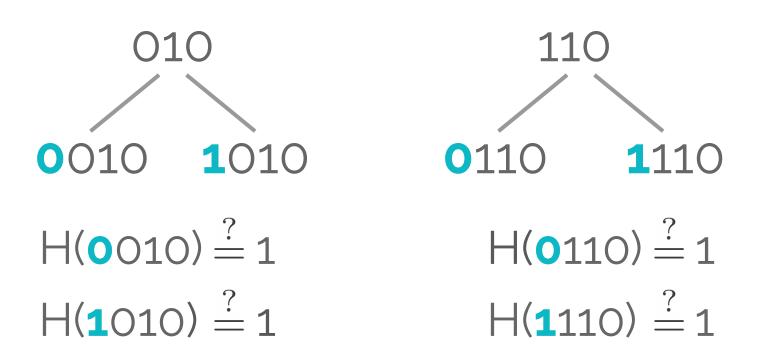
To puncture a point x = 00001010: Puncture all relevant suffixes from the PRF key

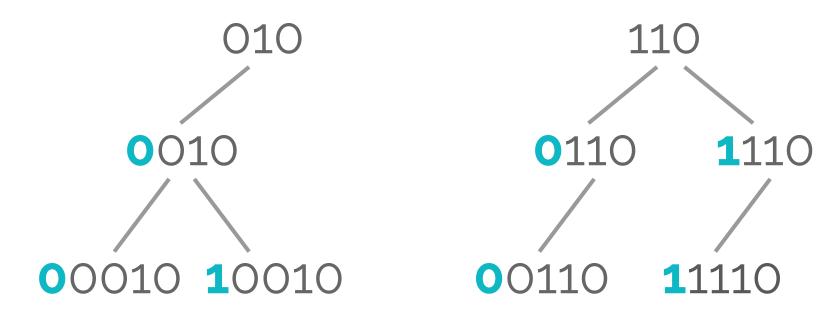




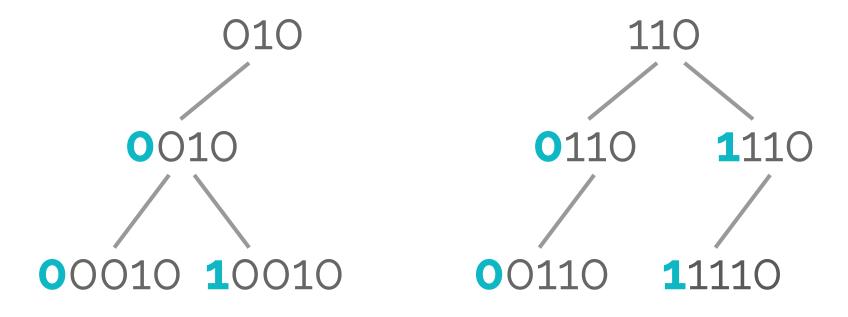
010 H(010) = 1

110 H(110) = 1





Each level has $\widetilde{O}(\sqrt{n})$ size in this tree Set enumeration time: $\widetilde{O}(\sqrt{n})$



X = 0000 1010 Y = 0011 1010

\mathbf{x} included $\implies \mathbf{y}$ more likely included

X = 00001010Y = 00111010

\mathbf{x} included $\implies \mathbf{y}$ more likely included

Puncturing **x** removes **y** with small prob!

Summary: Our PIR scheme

- Key idea: a new puncturable PR Set
- Conceptually very simple construction
- Proofs are non-trivial
- Towards practicality: need a concretely efficient Privately puncturable PRF

See our paper for:

Detailed proofs

Correctness proof is actually tricky!

Trade off client space and online time

https://eprint.iacr.org/2020/1592

Open question:

A truly practical PIR scheme ?

Thank you ! runting@cs.cmu.edu

