Hi all,

Several people, Jan-Pieter D'Anvers, Dan Bernstein, Léo Ducas, Fre Vercauteren, have pointed out a potential bug in the LWE estimator [https://bitbucket.org/malb/lwe-estimator/src/master/] when assessing the security of Saber.

That is, these two should return the same but didn’t:

```python
n = 512
q = 8192
alpha_0 = alphaf(sqrt(10/4.0), q, sigma_is_stddev=True)
alpha_1 = alphaf(sqrt(21/4.0), q, sigma_is_stddev=True)
print(primal_usvp(n, alpha_0, q, secret_distribution=alpha_1, m=n, reduction_cost_model=BKZ.ADPS16))
print(primal_usvp(n, alpha_1, q, secret_distribution=alpha_0, m=n, reduction_cost_model=BKZ.ADPS16))
```

This was indeed due to a bug:

https://bitbucket.org/malb/lwe-estimator/commits/1c2a39d509ec91f30a098c58cada6016135e58f5
https://bitbucket.org/malb/lwe-estimator/commits/c6414bb92eaad7bcec4e572d2ae1279f2df1d3be

The output is now:

```python
n = 512 q = 8192
alpha_0 = alphaf(sqrt(10/4.0), q, sigma_is_stddev=True)
alpha_1 = alphaf(sqrt(21/4.0), q, sigma_is_stddev=True)
```
print(primal_usvp(n, alpha_0, q, secret_distribution=alpha_1, m=n, reduction_cost_model=BKZ.ADPS16))

: Traceback (most recent call last)
: ...
: NotImplementedError: secret size 0.000701 > error size 0.000484

#+begin_src jupyter-python :kernel sagemath print(primal_usvp(n, alpha_1, q, secret_distribution=alpha_0, m=n, reduction_cost_model=BKZ.ADPS16))

: rop: 2^118.0, red: 2^118.0, delta_0: 1.003955, beta: 404, d: 1022, m: 509

That is, the LWE estimator – in agreement with scripts of Léo Ducas and Dan Bernstein – predicts that the primal uSVP attack requires block size 404 when n samples are available for LightSaber.

There is, however, still a (in this case minor) issue to be resolved:

https://bitbucket.org/malb/lwe-estimator/issues/46/support-small-secrets-that-are-larger-than

Cheers,
Martin

--

_pgp: https://keybase.io/martinralbrecht
_www: https://malb.io/

This email, its contents and any attachments are intended solely for the addressee and may contain confidential information. In certain circumstances, it may also be subject to legal privilege. Any unauthorised use, disclosure, or copying is not permitted. If you have received this email in error, please notify us and immediately and permanently delete it. Any views or opinions expressed in personal emails are solely those of the author and do not necessarily represent those of Royal Holloway, University of London. It is your responsibility to ensure that this email and any attachments are virus free.
Dear pq-cryptographers

We recently found an error in the security estimates of SABER as described in the round 2 document and also in the paper [1]. This error was discovered independently by Léo Ducas who ran his new leaky LWE-security estimator [2] on the SABER parameters, and was confirmed by the authors of [1].

The correct security levels are lower than those stated in the round 2 document, but do not affect the NIST levels as such. The numbers given below are expressed in coreSVP, not actual bits (the levels from the round 2 document are given in brackets):

LightSaber:
- classical: 118 (125)
- quantum: 107 (114)

Saber:
- classical: 189 (203)
- quantum: 172 (185)

FireSaber:
- classical: 260 (283)
- quantum: 236 (257)

The above numbers have now been confirmed by 3 independent implementations:
- the original LWE estimator [3]
- the leaky LWE-estimator [2]
- a script written and ran by Dan Bernstein

These all result in the same numbers so we are confident about their correctness.

We would like to thank the many researchers who have spent time and effort improving the security evaluation of SABER, with special thanks to (in alphabetical order) Martin Albrecht, Dan Bernstein, Léo Ducas, Rachel Player and Fernando Virdia.

The SABER team

